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Networks are ubiquitous in biology, and computational approaches have been largely investigated for their inference. In partic-

ular, supervised machine learning methods can be used to complete a partially known network by integrating various measure-

ments. Two main supervised frameworks have been proposed: the local approach, which trains a separate model for each network

node, and the global approach, which trains a single model over pairs of nodes. Here, we systematically investigate, theoretically

and empirically, the exploitation of tree-based ensemble methods in the context of these two approaches for biological network

inference. We first formalize the problem of network inference as classification of pairs, unifying in the process homogeneous

and bipartite graphs and discussing two main sampling schemes. We then present the global and the local approaches, extending

the later for the prediction of interactions between two unseen network nodes, and discuss their specializations to tree-based

ensemble methods, highlighting their interpretability and drawing links with clustering techniques. Extensive computational

experiments are carried out with these methods on various biological networks that clearly highlight that these methods are

competitive with existing methods.

1 Introduction

In biology, relationships between biological entities (genes,

proteins, transcription factors, micro-RNA, diseases, etc.) are

often represented by graphs (or networks‡). In theory, most of

these networks can be identified from lab experiments but in

practice, because of the difficulties in setting up these experi-

ments and their costs, we often have only a very partial knowl-

edge of them. Because more and more experimental data be-

come available about biological entities of interest, several re-

searchers took an interest in using computational approaches

to predict interactions between nodes in order to complete ex-

perimental predictions.

When formulated as a supervised learning problem, net-

work inference consists in learning a classifier on pairs of

nodes. Mainly two approaches have been investigated in the

literature to adapt existing classification methods for this prob-

lem.1 The first one, that we call the global approach, con-

siders this problem as a standard classification problem on

an input feature vector obtained by concatenating the feature

vectors of each node from the pair.1 The second approach,

called local,2,3 trains a different classifier for each node sep-
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‡ In this paper, the terms network and graph will refer to the same thing.

arately, aiming at predicting its direct neighbors in the graph.

These two approaches have been mainly exploited with sup-

port vector machine (SVM) classifiers. In particular, several

kernels have been proposed for comparing pairs of nodes in

the global approach4,5 and the global and local approaches

can be related for specific choices of this kernel.6 A number

of papers applied the global approach with tree-based ensem-

ble methods, mainly Random Forests,7 for the prediction of

protein-protein8–11 and drug-protein12 interactions, combin-

ing various feature sets. Besides the local and global meth-

ods, other approaches for supervised graph inference includes,

among others, matrix completion methods,13 methods based

on output kernel regression,14,15 Random Forests-based simi-

larity learning,16 and methods based on network properties.17

In this paper, we would like to systematically investigate,

theoretically and empirically, the exploitation of tree-based

ensemble methods in the context of the local and global ap-

proaches for supervised biological network inference. We

first formalize biological network inference as the problem

of classification on pairs, considering in the same framework

homogeneous graphs, defined on one kind of nodes, and bi-

partite graphs, linking nodes of two families. We then de-

fine the general local and global approaches in the context

of this formalization, extending in the process the local ap-

proach for the prediction of interactions between two unseen

network nodes. The paper discusses in details the specializa-

tion of these approaches to tree-based ensemble methods. In

particular, we highlight their high potential in terms of inter-
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pretability and draw connections between these methods and

unsupervised (bi-)clustering methods. Experiments on several

biological networks show the good predictive performance of

the resulting family of methods. Both the local and the global

approaches are competitive with however an advantage for the

global approach in terms of predictive performance and for the

local approach in terms of compactness of the inferred models.

The paper is structured as follows. Section 2 first defines the

general problem of supervised network inference and cast it as

classification problem on pairs. Then, it presents two generic

approaches to address it and their particularization for tree en-

sembles. Section 3 reports experiments with these methods on

several homogeneous and bipartite biological networks. Sec-

tion 4 concludes and discusses future work directions. Addi-

tional experimental results and implementation details can be

found in the supplementary material.

2 Methods

We first formalize the problem of supervised network infer-

ence and discuss the evaluation of these methods in Section

2.1. We then present in Section 2.2 two generic approaches

to address it. Section 2.3 discusses the specialization of these

two approaches in the context of tree-based ensemble meth-

ods.

2.1 Supervised network inference as classification on

pairs

For the sake of generality, we consider bipartite graphs that

connect two sets of nodes. The graph is thus defined by an

adjacency matrix Y , where each entry yi j is equal to one if

there is an edge between the nodes ni
r and n

j
c, and zero if not.

The subscripts r and c are used to differentiate the two sets of

nodes and stand respectively for row and column of the adja-

cency matrix Y . Moreover, each node (or sometimes pair of

nodes) is described by a feature representation, i.e. typically

a vector of numerical values, denoted by x(n) (see Figure 1

for an illustration). Homogeneous graphs defined on only one

family of nodes can be obtained as special cases of this gen-

eral framework by considering only one set of nodes and thus

a square and symmetric adjacency matrix.18

In this context, the problem of supervised network inference

can be formulated as follows (see Figure 1):

Given a partial knowledge of the adjacency matrix

Y of the target network, find the best possible pre-

dictions of the missing or unknown entries of this

matrix by exploiting the feature description of the

network nodes.

In this paper, we address this problem as a supervised classi-

fication problem on pairs18. A learning sample, denoted LSp,

n
j
c

n
i

r

x(ni

r
)

x(nj
c)

Y

yij

described by

de
sc

rib
ed

 b
y

?

?

?

?

?

?

?

?

Fig. 1 A network can be represented by an adjacency matrix Y

where each row and each column correspond to a specific node, with

potentially different families of nodes associated with rows and

columns. Each node is furthermore described by a feature vector,

with potentially different features describing row and column nodes.

For instance, row nodes ni
r can be proteins and column nodes n

j
c can

be drugs, with the adjacency matrix encoding drug-protein

interactions. Proteins could be described by their PFAM domains

and drugs by features encoding their chemical structure. Supervised

network inference then consists in inferring missing entries in the

adjacency matrix (question marks in gray) from known entries (in

white) by exploiting node features.

is constructed as the set of all pairs of nodes that are known

to interact or not (i.e., the known entries in the adjacency ma-

trix). The input variables used to describe these pairs are the

feature vectors of the two nodes in the pair. A classification

model f (i.e. a function associating a label in {0,1} to each

combination of the input variables) can then be trained from

LSp and used to predict the missing entries of the adjacency

matrix.

The evaluation of the predictions of supervised network in-

ference methods requires special care. Indeed, all pairs are not

as easy as the others to predict: it is typically much more diffi-

cult to predict pairs that involve nodes for which no examples

of interactions are provided in the learning sample LSp. As a

consequence, to get a complete assessment of a given method,

one needs to partition the predictions into different families,

depending on whether the nodes in the tested pair are repre-

sented or not in the learning set LSp, and then to perform a

separate evaluation within each family.18

To formalize this, let us denote by LSc and LSr the nodes

from the two sets that are present in LSp (i.e. which are in-

volved in some pairs in LSp) and by T Sc and T Sr (where TS

stands for Test Set) the nodes that are unseen in LSp. The pairs

of nodes to predict (i.e., outside LSp) can be divided into the

following four families (where S1 × S2 denotes the cartesian

product between sets S1 and S2 and S1 \ S2 their difference):

• (LSr ×LSc)\LSp: predictions of (unseen) pairs between

two nodes which are represented in the learning sample.

• LSr ×T Sc or T Sr×LSc: predictions of pairs between one
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Fig. 2 (A) Schematic representation of known and unknown pairs

in the network adjacency matrix. Known pairs (that can be

interacting or not) are in white and unknown pairs, to be predicted,

are in gray. Rows and columns of the adjacency matrix have been

rearranged to highlight the four families of unknown pairs described

in the text: LSr ×LSc, LSr ×T Sc, T Sr ×LSc, and T Sr ×T Sc. (B)

Schematic representation of CV on pairs: In this procedure, we

randomly divide the pairs of the learning sample into two groups :

we learn a model on the pairs from the white area, and test it on the

pairs from the blue area. The CV on pairs evaluates LS×LS

predictions. Pairs in gray represent unknown pairs that do not take

part to the CV. (C) Schematic representation of CV on nodes: In this

procedure, we randomly divide the nodes of each set (relative to the

rows and the columns) into two groups : we learn a model on the

pairs from the white area, and test it on the pairs from the blue area.

The CV on pairs evaluates LS×T S, T S×LS and T S×T S

predictions.

node represented in the learning sample and one unseen

node.

• TSr × TSc: predictions of pairs between two unseen

nodes.

These families of pairs are represented in the adjacency matrix

in Figure 2A. Thereafter, to simplify the notations, we denote

the four families as LS×LS, LS×TS, TS×LS and T S×TS.

In the case of an homogeneous undirected graph, only three

sets can be defined as the two sets LS× TS and T S× LS are

confounded.18

Prediction performances are expected to differ between

these four families. Typically, one expects that TS×TS pairs

will be the most difficult to predict since less information is

available at training about the corresponding nodes. These

predictions will then be evaluated separately in this work, as

suggested in several publications18,19. They can be evaluated

by performing two kinds of cross-validation (CV): A first CV

procedure on pairs of nodes (denoted “CV on pairs”) to evalu-

(A) (B) (C)

Fig. 3 Schematic representation of the training data. In the global

approach (A) the features vectors are concatenated, in the local

approach with single output (B) one function is learnt for each node,

and in the local approach with multiple output (C) one function is

learnt for one family of nodes and one function for the other one.

ate LS×LS predictions (see Figure 2B) and a second CV pro-

cedure on nodes (denoted “CV on nodes”) to evaluate LS×TS,

T S×LS and TS×TS predictions (see Figure 2C).18

2.2 Two different approaches

In this section, we present the two generic, local and global,

approaches we have adopted for dealing with classification on

pairs. We will discuss in Section 2.3 their practical implemen-

tation in the context of tree-based ensemble methods. In the

presentation of the approaches, we will assume that we have

at our disposal a classification method that derives its clas-

sification model from a class conditional probability model.

Denoting by f a classification model, we will denote by f p

(i.e., with superscript p) the corresponding class conditional

probability function. f (x) is the predicted class (0 or 1) as-

sociated with some input x, while f p(x) (resp. 1− f p(x)) is

the predicted probability (∈ [0,1]) of the input x being of class

1 (resp. 0). Typically, f (x) is obtained from f p(x) by com-

puting f (x) = 1( f p(x)> pth) for some user-defined threshold

pth ∈ [0,1], where pth can be adjusted to find the best tradeoff

between sensitivity and specificity according to the applica-

tion needs.

2.2.1 Global Approach. The most straightforward ap-

proach for dealing with the problem defined in Section 2.1 is

to apply a classification algorithm on the learning sample LSp

of pairs to learn a function fglob on the cartesian product of

the two input spaces (resulting in the concatenation of the two

input vectors of the nodes of the pair). Predictions can then be

computed straightforwardly for any new unseen pair from the

function. (Figure 3A)

In the case of an homogeneous graph, the adjacency ma-

trix Y is a symmetric square matrix. We will introduce two

adaptations of the approach to handle such graphs. First, for

each pair (nr,nc) in the learning sample, the pair (nc,nr) will

also be introduced in the learning sample. Without further
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constraint on the classification method, this will not ensure

however that the learnt function fglob will be symmetric in its

arguments. To make it symmetric, we will compute a new

class conditional probability model f
p
glob,sym from the learned

one f
p
glob as follows:

f
p

glob,sym(x1,x2) =
f

p
glob(x1,x2)+ f

p
glob(x2,x1)

2
,

where x1 and x2 are the input feature vectors of the nodes in

the pair to be predicted.

2.2.2 Local Approach. The idea of the local approach,2

is to build a separate classification model for each node, try-

ing to predict its neighbors in the graph from the known graph

around this node. More precisely, for a given node nc ∈ LSc,

a new learning sample LS(nc) is constructed from the learn-

ing sample of pairs LSp, comprising all the pairs that involve

the target node nc and the feature vectors associated to the

interacting nodes nr. It can then be used to learn a classifica-

tion model fnc , which can be exploited to make a prediction

for any new pair involving nc. By symmetry, the same strat-

egy can be adopted to learn a classification model fnr for each

node nr ∈ LSr. (Figure 3B)

These two sets of classifiers can then be exploited to make

LS×TS and T S×LS types of predictions. For pairs (nr,nc) in

LS×LS, two predictions can be obtained: fnc(nr) and fnr (nc).
We propose to simply combine them by an arithmetic average

of the corresponding class conditional probability estimates.

As such, the local approach is in principle not able to make

directly predictions for pairs of nodes (nr,nc) ∈ T S×TS (be-

cause LS(nr) = LS(nc) = /0 for nr ∈ T Sr and nc ∈ TSc). We

nevertheless propose to use the following two-steps procedure

to learn a classifier for a node nr ∈ TSr (see Figure 4):

• First, learn all classifiers fnc for nodes nc ∈ LSc (equiva-

lent to the completion of the columns in Figure 4),

• Then, learn a classifier f
f

nr from the predictions given by

the models fnc trained in the first step (equivalent to the

completion of the rows in Figure 4).

Again by symmetry, the same strategy can be applied to obtain

models f
f

nc for the nodes nc ∈ TSc. A prediction is then ob-

tained for a pair (nr,nc) in T S×TS by averaging the class con-

ditional probability predictions of both models f
f ,p

nr and f
f ,p

nc .

A related two-step procedure has been proposed by Pahikkala

et al.20 for learning on pairs with kernel methods.

Note that to derive the learning samples needed to train

models f
f

nc and f
f

nr in the second step, one requires to choose

a threshold on the predicted class conditional probability esti-

mates (to turn these probabilities into binary classes). In our

experiments, we will set this threshold in such a way that the

LSr × TSc

TSr × TScTSr × LSc

LSr × LSc

LSc

LSr

TSr

TSc

LSp

!"#

!"#$

!%#$

!"#$ !%#$

Fig. 4 The local approach needs two steps to learn a classifier for an

unseen node: (1) first, we predict LS×T S and T S×LS interactions,

and (2) from these predictions, we predict T S×T S interactions.

proportion of edges versus non edges in the predicted subnet-

works in LS×TS and T S×LS is equal to the same proportion

within the original learning sample of pairs.

This strategy can be specialized to the case of a homoge-

neous graph in a straightforward way. Only one class of clas-

sifiers fn and f
f

n are trained for nodes in LS and in T S respec-

tively (using the same two-step procedure as in the asymmetric

case for the second). LS×LS and T S×TS predictions are still

obtained by averaging two predictions, one for each node of

the pair.

2.3 Tree-based ensemble methods

Any method could be used as a base classifier for the two ap-

proaches. In this paper, we propose to evaluate the use of

tree-based ensemble methods in this context. We first briefly

describe these methods and then discuss several aspects re-

lated to their use within the two generic approaches.

2.3.1 Description of the methods. A decision tree21 rep-

resents an input-output model by a tree whose interior nodes

are each labeled with a (typically binary) test based on one

input feature and each terminal node is labeled with a value

of the output. The predicted output for a new instance is de-

termined as the output associated to the leaf reached by the

instance when it is propagated through the tree starting at the

root node. A tree is built from a learning sample of input-

output pairs, by recursively identifying, at each node, the test

that leads to a split of the nodes sample into two subsamples

that are as pure as possible in terms of their output values.

Single decision trees typically suffer from high variance,

which makes them not competitive in terms of accuracy. This

problem is circumvented by using ensemble methods that gen-

erate several trees and then aggregate their predictions. In this

paper, we exploit one particular ensemble method called ex-

tremely randomized trees (Extra-trees22). This method grows
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each tree in the ensemble by selecting at each node the best

among K randomly generated splits. In our experiments, we

use the default setting of K, equal to the square root of the total

number of candidate attributes.

One interesting features of tree-based methods (single and

ensemble) is that they can be extended to predict a vectorial

output instead of a single scalar output.23 We will exploit this

feature of the method in the context of the local approach be-

low.

2.3.2 Global approach. The global approach consists in

building a tree from the learning sample of all pairs. Each split

of the resulting tree will be based on one of the input features

coming from either one of the two input feature vectors, x(nr)
or x(nc). The tree growing procedure can thus be interpreted

as interleaving the construction of two trees: one on the row

nodes and one on the column nodes. Each leaf of the result-

ing tree is thus associated with a rectangular submatrix of the

graph adjacency matrix Y (reduced to the pairs in LSr ×LSc)

and the construction of the tree is such that the pairs in this

submatrix should be, as far as possible, either all connected or

all disconnected (see Figure 5 for an illustration).

2.3.3 Local approach. The use of tree ensembles in the

context of the local approach is straightforward. We will nev-

ertheless compare two variants. The first one builds a separate

model for each row and column nodes as presented in Sec-

tion 2.2. The second method exploits the ability of tree-based

methods to deal with multiple outputs (vector outputs) to build

only two models, one for the row nodes and one for the col-

umn nodes (Figure 3C). We assume that the learning sample

has been generated by sampling two subsets of nodes LSr and

LSc and that the full adjacency matrix is observed between

these two sets (as in Figure 2C). The first model related to the

column nodes is built from a learning sample LS(nc) compris-

ing all the observed pairs, and the feature vectors associated

to the row nodes nr. It can then be used to learn a classifi-

cation model, which can be exploited to make the predictions

of the interaction profiles of all nodes nc present in the learn-

ing sample of pairs LSp. By symmetry, the same strategy can

be adopted to learn classification model for the row nodes nr.

The two-steps procedure can then be applied to build the two

models required to make TS×TS predictions.

This approach has the advantage of requiring only four tree

ensemble models in total instead of one model for each poten-

tial node in the case of the single output approach. It can how-

ever only be used when the complete submatrix is observed

for pairs in LS×LS, since tree-based ensemble method cannot

cope with missing output values.

2.3.4 Interpretability. One main advantage of tree-based

methods is their interpretability, directly through the tree

structure in the case of single tree models and through fea-

! !
!!!

!!!

! !

!!!

!!!

!!!

(A)

(B)

Fig. 5 Both the global approach (A) and the local approach with

multiple output (B) can be interpreted as carrying out a biclustering

of the adjacency matrix. Each subregion is characterized by

conjunctions of tests based on the input features. In this graph, xc,i

(resp. xr,i) denotes the ith feature of the column (resp. row) node.

Note that in the case of the global approach, the representation is

only illustrative. The adjacency submatrices corresponding to the

tree leaves can not be necessarily rearranged as contiguous

rectangular submatrices covering the initial adjacency matrix.

ture importance rankings in the case of ensembles.24 Let us

compare both approaches along this criterion.

In the case of the global approach, as illustrated in Fig-

ure 5A, the tree that is built partitions the adjacency matrix

(more precisely, its LSr × LSc part) into rectangular regions.

These regions are defined such that pairs in each region are

either all connected or all disconnected. The region is further-

more characterized by a path in the tree (from the root to the

leaf) corresponding to tests on the input features of both nodes

of the pair.

In the case of the local multiple output approach, one of the

two trees partitions the rows and the other tree partitions the

columns of the adjacency matrix. Each partitioning is carried

out in such a way that nodes in each subpartition has a similar

connectivity profiles. The resulting partitioning of the adja-

cency matrix will thus follow a checkerboard structure with

also only connected or disconnected pairs in the obtained sub-

matrix, as far as possible (Figure 5B). Each submatrix will be

furthermore characterized by two conjunctions of tests, one

based on row inputs and one based on column inputs. These

two methods can thus be interpreted as carrying out a biclus-

tering25 of the adjacency matrix where the biclustering is how-

ever directed by the choice of tests on the input features. An

concrete illustration can be found in Figure 6 and in the sup-

plementary material.

In the case of the local single output approach, the partition-

ing is more fine-grained as it can be different from one row or

column to another. However in this case, each tree gives an in-
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Fig. 6 Illustration of the interpretability of multiple-output

decision-tree on a drug-protein interaction network. We zoomed in

the rectangular subregion with the highest number of interactions,

and presented the list of drug and protein features associated to this

region. See the supplementary material for more details about the

procedures.

Table 1 Summary of the six datasets used in the experiments.

Network Network size Number Number

of edges of features

Homogen. PPI 984×984 2438 325

networks EMAP 353×353 1995 418

MN 668×668 2782 325

Bipartite ERN 154×1164 3293 445/445

networks SRN 113×1821 3663 9884/1685

DPI 1862×1554 4809 660/876

terpretable characterization of the nodes which are connected

to the node from which the tree was built.

When using ensembles, the global approach provides a

global ranking of all features from the most to the less rele-

vant. The local multiple output approach provides two sepa-

rate rankings, one for the row features and one for the column

features and the local single output approach gives a separate

ranking for each node. All variants are therefore complemen-

tary from an interpretability point of view.

3 Experiments

In this section, we carried out a large scale empirical evalua-

tion of the different methods described in Section 2.2 on six

real biological networks, three homogeneous graphs and three

bipartite graphs. Results on four additional (drug-protein) net-

works can be found in the supplementary material. Our goal

with these experiments is to assess the relative performances

of the different approaches and to give an idea of the perfor-

mance one could expect from these methods on biological net-

works of different nature. Section 3.4 provides a comparison

with existing methods from the literature.

3.1 Datasets

The first three networks correspond to homogeneous undi-

rected graphs and the last three to bipartite graphs. The

main characteristics of the datasets are summarized in

Table 1. The adjacency matrices used in the experiments,

the lists of nodes and lists of features can be downloaded at

http://www.montefiore.ulg.ac.be/˜schrynemackers/datasets.html

3.1.1 Protein-protein interaction network (PPI). This

network26 has been compiled from 2438 high confidence in-

teractions highlighted between 984 S. cerivisiae proteins. The

input features used for the predictions are a set of expression

data, phylogenetic profiles and localization data that totalizes

325 features. This dataset has been used in several studies

before.13,14,27

3.1.2 Genetic interaction network (EMAP). This net-

work28 contains 353 S. cerivisiae genes connected with 1995

6 | 1–11
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negative epistatic interactions. Inputs29 consists in measures

of growth fitness of yeast cells relative to deletion of each gene

separately, and in 418 different environments.

3.1.3 Metabolic network (MN). This network30 is com-

posed of 668 S. cerivisiae enzymes connected by 2782 edges.

There is an edge between two enzymes when these two en-

zymes catalyse successive reactions. The input feature vectors

are the same as those used in the PPI network.

3.1.4 E. coli regulatory network (ERN). This bipartite

network31 connects transcription factors (TF) and genes of

E. coli. It is composed of 1164 genes regulated by 154 TF.

There is a total of 3293 interactions. The input features31 are

445 expression values.

3.1.5 S. cerevisiae regulatory network (SRN). This net-

work32 connects TFs and their target genes from E. coli. It is

composed of 1855 genes regulated by 113 TFs and totalizing

3737 interactions. The input features are 1685 expression val-

ues.33–36 For genes, we concatenated motifs features37 to the

expression values.

3.1.6 Drug-protein interaction network (DPI). This

network38 is related to human and connect a drug with a pro-

tein when the drug targets the protein. This network holds

4809 interactions involving 1554 proteins and 1862 drugs.

The input features are a binary vectors coding for the pres-

ence or absence of 660 chemical substructures for each drug,

and the presence or absence of 876 PFAM domains for each

protein.38

3.2 Protocol

In our experiments, LS×LS performances in each network are

measured by 10 fold cross-validation (CV) across the pairs of

nodes, as illustrated in Figure 2B. For robustness, results are

averaged over 10 runs of 10 fold CV. LS× TS, T S× LS and

TS × TS predictions are assessed by performing a 10 times

10 fold CV across the nodes, as illustrated in Figure 2C. The

different algorithms return class conditional probability es-

timates. To assess our models independently of a particu-

lar choice of discretization threshold Pth on these estimates,

we vary this threshold and output in each case the resulting

precision-recall curve and the resulting ROC curve. Meth-

ods are then compared according to the total area under these

curves, denoted AUPR and AUROC respectively (the higher

the AUPR and the AUROC, the better), averaged over the 10

folds and the 10 CV runs. For all our experiments, we use

ensembles of 100 extremely randomized trees with default pa-

rameter setting.22

As highlighted by several studies,39 in biological networks,

nodes of high degree have a higher chance to be connected to

any new node. In our context, this means that we can expect
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Fig. 7 Precision-recall curves for metabolic network: higher is the

number of nodes of a pair present in the learning set, better will be

the prediction for this pair.

that the degree of a node will be a good predictor to infer new

interactions involving this node. We want to assess the impor-

tance of this effect and provide a more realistic baseline than

the usual random guess performance. To reach this goal, we

evaluate the AUROC and AUPR scores when using the sum

of the degrees of each node in a pair to rank LS×LS pairs and

when using the degree of the nodes belonging to the LS to rank

T S×LS or LS×TS pairs. AUROC and AUPR scores will be

evaluated using the same protocol as hereabove. As there is no

information about the degrees of nodes in TS×TS pairs, we

will use random guessing as a baseline for the scores of these

predictions (corresponding to an AUROC of 0.5 and an AUPR

equal to the proportion of interactions among all nodes pairs).

3.3 Results

We discuss successively the results on the three homogeneous

networks and then on the three bipartite networks.

3.3.1 Homogeneous graphs. AUPR and AUROC values

are summarized in Table 2 for the three methods: global, lo-

cal single output, and local multiple output. The last row on

each dataset is the baseline result obtained as described in 3.2.

Figure 7 shows the precision-recall curves obtained by the dif-

ferent approaches on MN, for the three different protocols.

Similar curves for the two other networks can be found in the

supplementary material.

In terms of absolute AUPR and AUROC values, LS× LS
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Table 2 Areas under curves for homogeneous networks.

Precision-Recall (AUPR) ROC (AUC)

LS×LS LS×T S T S×T S LS×LS LS×T S T S×T S

PPI Global 0.41 0.22 0.10 0.88 0.84 0.76

Local so 0.28 0.21 0.11 0.85 0.82 0.73

Local mo - 0.22 0.11 - 0.83 0.72

Baseline 0.13 0.02 0.00 0.73 0.74 0.50

EMAP Global 0.49 0.36 0.23 0.90 0.85 0.78

Local so 0.45 0.35 0.24 0.90 0.84 0.79

Local mo - 0.35 0.23 - 0.85 0.80

Baseline 0.30 0.13 0.03 0.87 0.80 0.50

MN Global 0.71 0.40 0.09 0.95 0.85 0.69

Local so 0.57 0.38 0.09 0.92 0.83 0.68

Local mo - 0.45 0.14 - 0.85 0.71

Baseline 0.05 0.04 0.01 0.75 0.70 0.50

pairs are clearly the easiest to predict, followed by LS × T S

pairs and T S×TS pairs. This ranking was expected from pre-

vious discussions. Baseline results in the case of LS×LS and

LS× TS predictions confirm that nodes degrees are very in-

formative: baseline AUROC values are much greater than 0.5

and baseline AUPR values are also significantly higher than

the proportion of interactions among all pairs (0.005, 0.03, and

0.01 respectively for PPI, EMAP, and MN), especially in the

case of LS× LS predictions. Nevertheless, our methods are

better than these baselines in all cases. On the EMAP net-

work, the difference in terms of AUROC is very slight but the

difference in terms of AUPR is important. This is typical of

highly skewed classification problems, where precision-recall

curves are known to give a more informative picture of the

performance of an algorithm than ROC curves.40

All tree-based approaches are very close on LS × TS and

TS×TS pairs but the global approach has an advantage over

the local one on LS × LS pairs. The difference is important

on the PPI and MN networks. For the local approach, the

performance of single and multiple output approaches are in-

distinguishable, except with the metabolic network where the

multiple output approach gives better results. This is in line

with the better performance of the global versus the local ap-

proach on this problem, as indeed both the global and the local

multiple output approaches grow a single model that can po-

tentially exploit correlations between the outputs. Notice that

the multiple output approach is not feasible when we want to

predict LS×LS pairs, as we are not able to deal with missing

output values in multiple output decision trees.

3.3.2 Bipartite graphs. AUPR and AUROC values are

summarized in Table 3 (see the supplementary material for ad-

ditional results on four DPI subnetworks). Figure 8 shows the

precision-recall curves obtained by the different approaches

on ERN for the four different protocols. Curves for the 6

other networks can be found in the supplementary material.

10 times 10-fold CV was used as explained in Section 3.2.

Nevertheless, two difficulties appeared in the experiments per-

formed on the DPI network. First, the dataset is larger than

the others, and the 10-fold CV was replaced by 5-fold CV to

reduce the computational space et time burden. Second, the

feature vectors are binary and the randomization of the thresh-

old (in Extra-Tree algorithm) cannot lead to diversity between

the different trees of the ensemble. So we used bootstrapping

to generate the training set of each tree.

Like for the homogeneous networks, higher is the number

of nodes of a pair present in the learning set, better are the

predictions, i.e., AUPR and AUROC values are significantly

decreasing from LS×LS to T S×TS predictions. On the ERN

and SRN networks, performances are very different for the

two kinds of LS × T S predictions that can be defined, with

much better results when generalizing over genes (i.e., when

the TF of the pair is in the learning sample). On the other

hand, on the DPI network, both kinds of LS×TS predictions

are equally well predicted. These differences are probably due

in part to the relative numbers of nodes of both kinds in the

learning sample, as there are much more genes than TFs on

ERN and SRN and a similar number of drugs and proteins in

the DPI network. Differences are however probably also re-

lated to the intrinsic difficulty of generalizing over each node

family, as on the four additional DPI networks (see the sup-

plementary material), generalization over drugs is most of the

time better than generalization over proteins, irrespectively of

the relative numbers of drugs and proteins in the training net-

work. Results are most of the time better than the baselines

(based on nodes degrees for LS×LS and LS×TS predictions

and on random guessing for TS×TS predictions). The only

exceptions are observed when generalizing over TFs on SRN

8 | 1–11



Table 3 Areas under curves for bipartite networks.

Precision-Recall (AUPR) ROC (AUC)

LS×LS LS×T S T S×LS T S×T S LS×LS LS×T S T S×LS T S×T S

ERN (TF - gene) Global 0.78 0.76 0.12 0.08 0.97 0.97 0.61 0.64

Local so 0.76 0.76 0.11 0.10 0.96 0.97 0.61 0.66

Local mo - 0.75 0.09 0.09 - 0.97 0.61 0.65

Baseline 0.31 0.30 0.02 0.02 0.86 0.87 0.52 0.50

SRN (TF - gene) Global 0.23 0.27 0.03 0.03 0.84 0.84 0.54 0.57

Local so 0.20 0.25 0.02 0.03 0.80 0.83 0.53 0.57

Local mo - 0.24 0.02 0.03 - 0.83 0.53 0.57

Baseline 0.06 0.06 0.03 0.02 0.79 0.78 0.51 0.50

DPI (drug - protein) Global 0.14 0.05 0.11 0.01 0.76 0.71 0.76 0.67

Local so 0.21 0.11 0.08 0.01 0.85 0.72 0.72 0.57

Local mo - 0.10 0.08 0.01 - 0.72 0.71 0.60

Baseline 0.02 0.01 0.01 0.01 0.82 0.63 0.68 0.50
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Fig. 8 Precision-recall curves for E.coli regulatory network (TF vs

genes): a prediction is easier to do if the TF belongs to the learning

set than if the gene belongs to.

and when predicting T S×TS pairs on SRN and DPI.

The three approaches are very close to each other. Unlike

on homogeneous graphs, there is no strong difference between

the global and the local approach on LS×LS predictions: it is

slightly better in terms of AUPR on ERN and SRN but worse

on DPI. The single and multiple output approaches are also

very close, both in terms of AUPR and AUROC. Similar re-

sults are observed on the four additional DPI networks.

3.4 Comparison with related works

In this section, we compare our methods with several other

network inference methods from the literature. To ensure a

fair comparison and avoid errors related to the reimplemen-

tation and tuning of each of these methods, we choose to re-

run our algorithms in similar settings as in related papers. All

comparison results are summarized in Table 4 and discussed

below.

3.4.1 Homogeneous graphs. A local approach with sup-

port vector machines was developed to predict the PPI and

MN networks2 and showed to be superior to several previous

works13,27 in terms of performance. The authors only con-

sider LS×T S predictions and used 5-fold CV. Although they

exploited yeast-two-hybrid data as additional features for the

prediction of the PPI network, we obtain very similar perfor-

mances with the local multiple output approach (see Table 4).

Another method14 that uses ensembles of output kernel trees

also infers the MN and PPI networks with the same input data.

With the global approach, we obtain similar or inferior results

in terms of AUROC but much better results in terms of AUPR,

especially on the MN data.

3.4.2 Bipartite graphs. SVM have been used to predict

ERN with the local approach,3 focusing on the prediction of
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Table 4 Comparison with related works on the different networks.

Publication DB Protocol Measures Their results Our results
2 PPI LS×T S, 5CV AUPR 0.25 0.21

MN 0.41 0.43

14 PPI LS×T S, 10CV AUPR / ROC 0.18 / 0.91 0.22 / 0.84

T S×T S 0.09 / 0.86 0.10 / 0.76

MN LS×T S 0.18 / 0.85 0.45 / 0.85

T S×T S 0.07 / 0.72 0.14 / 0.71

3 ERN LS×T S, 3CV Recall 60 / 80 0.44 / 0.18 0.38 / 0.15

38 DPI LS×LS, 5CV AUROC 0.75 0.88

41 DPI LS×LS, 5CV AUROC 0.87 0.88

LS×T S & T S×LS 0.74 0.74

interactions between known TFs and new genes (LS × T S).

Authors evaluated their performances by the precision at 60%

and 80% recall respectively, estimated by 3-fold CV (ensuring

that all genes belonging to a same operon are always in the

same fold). Our results with the same protocol (and the local

multiple output variant) are very close although slightly less

good. The DPI network was predicted using sparse canoni-

cal correspondence analyze (SCCA)38 and with the global ap-

proach and L1 regularized linear classifiers41 using as input

features all possible products of one drug feature and one pro-

tein feature. Only LS×LS predictions are considered in the

first paper, while the second one differentiates “pair-wise CV”

(our LS×LS predictions) and “block-wise CV” (our LS×T S

and TS × LS predictions). As shown in Table 4, we obtain

better results than SCCA and similar results as in L1 SVM.

Additional comparisons are presented in the supplementary

material on the four DPI subnetworks.

Globally, these comparisons show that tree-based methods

are competitive on all six networks. Moreover, it has to be

noticed that (1) no other method has been tested over all these

problems, and (2) we have not tuned any parameters of the

Extra-Trees method. Better performances could be achieved

by changing, for example, the randomization scheme,7 the

feature selection parameter K, or the number of trees.

4 Discussion

We explored tree-based ensemble methods for biological net-

work inference, both with the local approach, which trains a

separate model for each network node (single output) or each

node family (multiple output), and with the global approach,

which trains a single model over pairs of nodes. We carried

out experiments on ten biological networks and compared our

results with those from the literature. These experiments show

that the resulting methods are competitive with the state of the

art in terms of predictive performance. Other intrinsic advan-

tages of tree-based approaches include their interpretability,

through single tree structure and ensemble-derived feature im-

portance scores, as well as their almost parameter free nature

and their reasonable computational complexity and storage re-

quirement.

The global and local approaches are close in terms of accu-

racy, except when we predict LS×LS interactions where the

global approach gives almost always better predictions. The

local multiple output method has the advantage to provide less

complex models and requires less memory at training time.

All approaches remain however interesting because of their

complementarity in terms of interpretability.

As two side contributions, we extended the local approach

for the prediction of edges between two unseen nodes and pro-

posed the use of multiple output models in this context. The

two-step procedure used to obtain this kind of predictions pro-

vides similar results as the global approach, although it trains

the second model on the first model’s predictions. It would be

interesting to investigate other prediction schemes and evalu-

ate this approach in combination with other supervised learn-

ing methods such as SVMs.20 The main benefits of using mul-

tiple output models is to reduce model sizes and potentially

computing times, as well as to reduce variance, and there-

fore improving accuracy, by exploiting potential correlations

between the outputs. It would be interesting to apply other

multiple output or multi-label SL methods42 within the local

approach.

We focused on the evaluation and comparison of our meth-

ods on various biological networks. To the best of our knowl-

edge, no other study has considered simultaneously as many of

these networks. Our protocol defines an experimental testbed

to evaluate new supervised network inference methods. Given

our methodological focus, we have not tried to obtain the best

possible predictions on each and every one of these networks.
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Obviously, better performances could be obtained in each case

by using up-to-date training networks, by incorporating other

feature sets, and by (cautiously) tuning the main parameters

of tree-based ensemble methods. Such adaptation and tuning

would not change however our main conclusions about rela-

tive comparisons between methods.

A limitation of our protocol is that it assumes the presence

of known positive and negative interactions. Most often in

biological networks, only positive interactions are recorded,

while all unlabeled interactions are not necessarily true neg-

atives (a notable exception in our experiments is the EMAP

dataset). In this work, we considered that all unlabeled ex-

amples are negative examples. It was shown empirically and

theoretically that this approach is reasonable.43 It would be in-

teresting nevertheless to design tree-based ensemble methods

that explicitly takes into account the absence of true negative

examples.44
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