G. AMAND
Y. ARDA
Y. CRAMA
D. KRONUS
Th. PIRONET
HEC•ULg

Table of contents

Main Message

ıdustrial Case

Rules and Manual

One-period

Multi-period

Deterministi

Scenario Samplin

Results

Conclusions and Perspectives

Scientific Committee 2009

"Vehicle loading optimization with stochastic supply"

Guillaume.Amand@ulg.ac.be

Yasemin.Arda@ulg.ac.be

Yves.Crama@ulg.ac.be

David.Kronus@ulg.ac.be

Thierry.Pironet@ulg.ac.be

University of Liège, HEC-Management School, QuantOM LIEGE-BELGIUM

Main Message

Industrial Case

Rules and Manual

One-period Deterministic

Multi-period Deterministic

Multi-period Stochastic

Scenario Samplin

Result

Conclusions at Perspectives

TABLE OF CONTENTS

- Main Message
- Industrial Case
- 3. Rules and Manual Optimization
- 4. One-period Deterministic
- 5. Multi-period Deterministic
- 6. Multi-period Stochastic
- 7. Scenario Sampling
- 8. Results
- 9. Conclusions and Perspectives

G. AMAND
Y. ARDA
Y. CRAMA
D. KRONUS
Th. PIRONET
HEC•ULg

Table of contents

Main Message

Industrial Case

Rules and Manual

One-period

Multi-period

Multi-perio

Scenario Samplin

Recult

Conclusions and Perspectives

1. Main Message

From manual optimization over decomposed deterministic sub-problems to a multi-period stochastic policy.

"Local optimima over available data vs global policy including uncertainty".

G. AMAND
Y. ARDA
Y. CRAMA
D. KRONUS
Th. PIRONET
HEC•ULg

Table of contents

Main Message

Industrial Case

Rules and Manual Optimization

One-period Determinist

Multi-period Deterministic

Multi-period Stochastic

Scenario Sampli

Result

Conclusions an Perspectives

2. Industrial Case

Coils to be loaded on truck: BIN-PACKING

Objective function *min cost* :

Truck (fixed + tons) + Penalty for double un/loadings

Constraints:

Weight constraint usually 1-2, sometimes 3 coils per truck

Data:

1 production site Liège (B) 800 customers in Europe (Germany and France) 350 trucks per day

MANUALLY UNTRACTABLE

Main Message

Industrial Cas

Rules and Manual Optimization

One-period

Multi-period

Multi-period Stochastic

Scenario Samplin

Results

Conclusions and Perspectives

3. Rules and Manual Optimization

Consequence : Problem decomposed over

- 1. Time = period per period with the actual stock
- 2. Space = ZIP code, lander or department
- 3. Customer = customer per customer

RULES : DIVIDE TIME AND SPACE TO GET SMALLER SUB-PROBLEMS

Results: Tractable instances manually optimized including up to 10 coils representing 7-8 trucks

G. AMAND
Y. ARDA
Y. CRAMA
D. KRONUS
Th. PIRONET
HEC•ULg

Table of contents

Main Message

ndustrial Case

Rules and Manual

One-period Deterministic

Deterministi

Multi-period Stochastic

Scenario Samplin

Result

Conclusions an Perspectives

4. One-period Deterministic: METHOD

- MIP approach to handle large instances
- Merge ZIP codes or departments (up to 10) to create large sizes instances up to 100 coils and act over

SPACE

Optimization technique: EXACT

Patterns Generation and Set Covering Problem
Generation of all feasible loaded trucks, their costs and selection of the cheapest composition (Cplex)

Main Message

Industrial Cas

Rules and Manual Optimization

One-period Deterministic

Multi-period Deterministic

Scenario Samol

Results

Conclusions an Perspectives

4. One-period Deterministic: MODEL

Indices: *i* for *M* coils, *j* for *N* patterns

Parameters:

- ► A_{ij} pattern j contains coil i
- $ightharpoonup C_j$ cost of shipping pattern j

Variables : $x_j \in \{0, 1\} \ \forall j = 1, ..., N$

Objective Function : $min Z = min \sum_{j=1}^{j=N} C_j x_j$

Constraints:

$$\sum_{j=1}^{j=N} A_{ij} x_j \ge 1 \forall i = 1, ... M \text{ every coil is sent}$$

Advantages : Pattern includes weight constraint, pattern costs penalties and complex truck cost function

Option: differents kinds of trucks and fleet size limits

Main Message

Industrial Cas

Rules and Manual Optimization

One-period Deterministic

Multi-period Deterministic

Multi-period Stochastic

Scenario Samplin

Result

Conclusions at Perspectives

4. One-period Deterministic: RESULTS

In Bavaria compare to individual optimization on ZIP Codes 80 to 89, over industrial instances,

- 1. the **number of trucks** is reduced by 16,9%
- 2. and the **cost** by 12,7 %

These are well-known techniques.

New dimension **TIME**: multi-period setting Creation of a new model that takes into account **production forecasts** over a rolling horizon.

Penalties related to time: Inventory and Time-Windows

G. AMAND
Y. ARDA
Y. CRAMA
D. KRONUS
Th. PIRONET
HEC•ULg

Table of contents

Main Message

Industrial Cas

Rules and Manual

One-period Deterministic

Multi-period

Deterministic

Sconorio Samplir

Results

Conclusions ar Perspectives

5. Multi-period Deterministic

	Periods				
Coils Weight	P1	P2	P 3	P4	P5
A 0.6	1	TW			
B 0.8		1		TW	
C 0.3				1	
D 0.2	1	TW	TW	TW	
E 0.4	1		TW		

Costs, penalties and limits

- inventory cost P-INV
- ▶ late or early delivery TW +/- 1 period P-EAR or P-LAT
- ▶ not allowed TW \geq +/- 2 periods
- one period delivery time
- P-INV < P-EAR < P-LAT < Truck cost</p>

DECISIONS: WAIT or SEND for coils in PERIOD 1

e.g. : AD(P1) + E(P2) + B(P3) vs AE(P1) + BD(P3)

TW (OK) + 1 P-INV + 1 P-INV vs P-EAR + 2 P-INV

Main Message

Industrial Cas

Rules and Manual Optimization

One-period

Multi-period Deterministic

Stochastic

Results

Conclusions an Perspectives

Multi-period Deterministic

Model formulation

Pattern generation and set covering problem

More efficient than alternative formulations

A pattern is a truckload of coils which are available at a given time *t*

It means from availability date to last TW + 1 P

Pattern cost indexed by *t* includes as a basis the truck cost based on the load + the penalties : inventory, earliness or lateness

The **set covering problem** is similar to the previous one with a new index *t*

Current implementation: patterns are generated off-line, no delayed column generation technique or dedicated set-covering algorithm

Tractable 100 coils over 3 periods

G. AMAND
Y. ARDA
Y. CRAMA
D. KRONUS
Th. PIRONET
HEC•ULq

Table of contents

Main Message

Industrial Case

Rules and Manual

One-period

Multi-period

Multi-period Stochastic

Scenario Samplin

Results

Conclusions an Perspectives

6. Multi-period Stochastic

Forecasts contain uncertainty on production availability

	Periods				
Coils Weight	P1	P2	P3	P4	P5
A 0.6	1	TW			
B 0.8		0.9	0.1	TW	
C 0.3			0.2	0.8	
D 0.2	1	TW	TW	TW	
E 0.4	1		TW		

New objective function: "Minimize expected cost" **Scenarios tree**: Deterministic equivalent with scenarios and non-anticipativity constraints

- e.g. : 4 scenarios
 - 1. B(P2) C(P3) Pr(0.18)
 - 2. B(P2) C(P4) Pr(0.72)* Most likely available
 - 3. B(P3) C(P3) Pr(0.02)
 - 4. B(P3) C(P4) Pr(0.08)

Policy: find solution for P1, implement, update data (remove P1, add a P) and repeat over the rolling horizon

G. AMAND
Y. ARDA
Y. CRAMA
D. KRONUS
Th. PIRONET
HEC•ULg

Table of contents

Main Message

Industrial Cas

Rules and Manual

One-period Determinist

Multi-period Deterministic

Stochastic

Scenario Sampling

Results

Conclusions an Perspectives

7. Scenario Sampling

Drawback: huge number of scenarios Limit for optimization over all scenarios 22 coils 3 periods Sample to solve over a subset of scenarios

SCENARIOS SELECTION

- 1. Monte-carlo random generation of scenarios
- 2. Stratified generation of scenarios

SAMPLE SIZE

use the largest sample size that we can handle
 x [N] e.g.: N = 1-20-50-100 scenarios

SOLUTION VALIDATION

- Variance due to scenario sampling
- Compare policies from a collection of results

optimization with stochastic supply' G. AMAND Y. ARDA Y. CRAMA D. KRONUS

Th. PIRONET

"Vehicle loading

HEC•ULg

Table of contents

Main Message

Industrial Cas

Rules and Manual Optimization

Deterministic

Deterministic

Multi-period

Scenario Samplir

Results

Conclusions an Perspectives

8. Results

5 solutions techniques or policies

- 1. One-period Deterministic repeated on every period
- 2. Multi-period Deterministic with most likely availability
- 3. Stochastic with all scenarios
- 4. Stochastic with sampling (Monte-Carlo generation)
- 5. Stochastic with stratified sampling

Cost function: coils sent and expected cost for not sent **Instances**: 22 coils, 6 periods, rolling horizon P1, P2, P3

Sample size: 10 - 50 compare to thousands

Computation time: including scenario generation

	Policies	Sample size	Value	Computation Time
One	e-period Deter.		6750	0.1 sec
Mult	ti-period Deter.	(1)*	6202	0.1 sec
Stoc	h. All Scenarios	All	6192	417 sec
Stoc	h. Samp. Rand.	10	6192	2.5 sec
Stoc	h. Samp. Rand.	50	6197	3.1 sec
Stoc	h. Samp. Strat.	10	6200	1 sec
Stoc	ch. Samp. strat.	50	√6 189 ₅	• 4.2 sec

Main Message

Industrial Cas

Rules and Manual Optimization

One-period Determinist

Multi-period

Stochastic

Scenario Sampi

Result

Conclusions and Perspectives

Conclusions and Perspectives

Conclusions

- New model Transportation/Production
- Pattern generation seems an appropriate formulation to include penalties

Perspectives

- Perform more computational tests to handle realistic instances
- Add a delayed column generation technique and a dedicated algorithm for the set-covering
- Compare the policies using larger instances
- Determine the value added by successive enrichments of the model from deterministic to multi-period to stochastic
- Use consensus functions which aggregate several solutions obtained from different scenario samples