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Abstract

The appearance of global Internet services like social networking, remote storage
and mobile computing into marketplace, is consistently influencing the way of
using the computing infrastructure. As systems become larger and more complex,
the need to optimise the infrastructure in favour of reliability and redundancy
becomes an imperative. Virtualisation technology seems to have partially fulfilled
the needs dictated by growth - first of all physical space and energy consumption
- by redefining the concept of infrastructure and paving the way for new business
models such as cloud computing.

One consequence of the aforementioned highly connected environment is that
software bugs and malicious attacks can spread much faster and more e↵ectively
than it was in the past. Attacks to operating systems are facilitated by the exis-
tence of devices that are permanently connected, such as smart phones, tablets
and mobile devices in general. In such conditions, infections can be easily taken
at a global scale.

Security researchers have been looking at virtualisation technology as an ap-
proach that can potentially find the solutions to the well known security problems
of operating system kernels. As a matter of fact, successful low level attacks can
circumvent or disable many of the traditional countermeasures in place within
the same target system.

Another trend that, according to the security research community, might be
a cause for concern in the near future, is the tendency to shift current computer
use to remote Internet services. This is making the web browser one of the most
considerable actors of today’s computer usage. As a consequence, the web browser
is gaining more and more attention from attackers, due to its prominent position
within user’s experience.

Despite the active contribution of researchers to mitigate the aforementioned
security issues, one major challenge to focus in the immediate future consists
in minimising the performance overhead, while guaranteeing the highest degree
of security. Such a task seems achievable only by the puzzling tradeo↵ between
performance and security that usually sacrifices the former in favour of the latter
or vice versa.

This dissertation contributes security mitigation techniques that address the
aforementioned challenges. First, we focus on virtualisation technology to tackle
the problem of operating system security. A countermeasure that relies on the co-
operation between the target system and the virtualisation architecture, protects
those critical memory locations within the target system that can be potentially
compromised. Within the same field, a more general framework that protects
operating systems by enforcing the execution of trusted code is presented.

Secondly, a security measure that improves web browser security against mem-
ory corruption attacks is provided. We also argue in favour of the role that vir-
tualisation technology can play within such environments and discuss a realistic



scenario for integrating our security countermeasure into similar software archi-
tectures delivered on demand, as in current cloud computing settings.



Abstract - Dutch

De introductie van globale Internetdiensten zoals sociale netwerken, externe op-
slag en mobile computing in de markt, benvloedt voortdurend de manier waarop
men de beschikbare computerinfrastructuur gebruikt. Naarmate systemen groter
en complexer worden, neemt ook het belang om de infrastructuur te optimalis-
eren voor betrouwbaarheid en redundantie toe. Virtualisatietechnologie lijkt de
behoeften voor groei - in de eerste plaats de benodigde fysieke plaats en het
energieverbruik - gedeeltelijk te hebben vervuld, door het concept van infrastruc-
tuur te herdefiniren en door de basis te leggen voor nieuwe bedrijfsmodellen zoals
cloud computing.

En van de gevolgen van een dergelijke alom verbonden omgeving is dat soft-
warefouten en -aanvallen zich veel sneller en e↵ectiever kunnen verspreiden dan in
het verleden. Aanvallen op besturingssystemen worden vergemakkelijkt door de
aanwezigheid van apparaten die voortdurend verbonden zijn, zoals smartphones,
tablets en mobiele apparaten in het algemeen. In zulke omstandigheden kun-
nen besmettingen op wereldschaal zich gemakkelijk voordoen. Omdat succesvolle
laag-niveau aanvallen vele van de traditionele beveiligingsmaatregelen voor com-
putersystemen kunnen omzeilen of uitschakelen, hebben beveiligingsonderzoekers
zich op virtualisatietechnologie gericht om oplossingen te vinden voor de welbek-
ende beveiligingsproblemen van besturingssystemen.

Een andere trend die volgens de gemeenschap van beveiligingsonderzoekers
verontrustend is, is het toenemend gebruik van externe Internetdiensten. Deze
trend maakt van de webbrowser een van de belangrijkste actoren van het heden-
daags computergebruik. Bijgevolg krijgt de browser steeds meer aandacht van
aanvallers, wegens zijn prominente positie in de gebruikerservaring.

Ondanks de actieve bijdragen van onderzoekers om de eerdergenoemde beveilig-
ingsproblemen tegen te gaan, blijft het een grote uitdaging om de performantiekost
van beveiligingsmaatregelen te minimaliseren, zonder afbreuk te doen aan hun
e↵ectiviteit. Een dergelijke taak lijkt enkel haalbaar door een afweging tussen
performantie en beveiliging te maken, waarbij het ene meestal ten koste gaat van
het andere, of vice versa.

Dit proefschrift handelt over beveiligingsmaatregelen die een antwoord kun-
nen bieden op de eerdergenoemde uitdagingen. Ten eerste concentreren we ons
op virtualisatietechnologie om het probleem van de beveiliging van besturingssys-
temen aan te pakken. Een beveiligingsmaatregel die steunt op de samenwerking
tussen het te beveiligen systeem en de virtualisatiearchitectuur beschermt kri-
tieke geheugenlocaties binnen het systeem die potentieel kunnen worden mis-
bruikt door een aanvaller. Binnen hetzelfde domein wordt een meer algemeen
raamwerk voorgesteld dat besturingssystemen beschermt door het afdwingen van
de uitvoering van vertrouwde code.

Ten tweede wordt een beveiligingsmaatregel die de webbrowser beschermt
tegen geheugencorruptieaanvallen voorgesteld. We bespreken de rol die virtual-



isatietechnologie kan spelen binnen dergelijke omgevingen en we behandelen een
realistisch scenario voor het integreren van onze beveiligingsmaatregel in geli-
jkaardige softwarearchitecturen die op aanvraag worden geleverd, zoals in op-
komende cloud computing omgevingen.
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Chapter 1

Introduction

A scientific truth does not triumph

by convincing its opponents and

making them see the light, but rather

because its opponents eventually die

and a new generation grows up that

is familiar with it.

Max Planck

The last years have witnessed a rapidly growing number of complex services
running on an increasing number of machines connected across the globe. Social
networking, remote storage, media services and mobile computing are only a few
examples of the enormous networked systems that made their appearance recently
into marketplace [1–3].

An immediate consequence of such a connected world is that damage caused
by bugs or malicious attacks can spread faster and more e↵ectively than in the
past [4–6]. In a more connected world, attackers have the option of resorting to far
more viable means of materialising their goals without the need to design attacks
specific to the di↵erent types of existing machines.

Despite the appearance of new Internet services and client side applications,
modern computing devices and the radical change of infrastructure technology,
the operating system is still the main target of attackers, due to its crucial role in
providing the needed interaction between a running process and the external world.
Essentially, the operating system controls directly hardware like the keyboard and
other human interaction devices, video or network cards and any other chipset via
device drivers; it executes critical operations like memory allocation and process
scheduling; it initialises network connections on behalf of the running processes
and provides the infrastructure required by multiple applications in order to be

1



2 Introduction

executed on the same physical hardware. Moreover, the operating system provides
the security mechanisms aimed at protecting the private address space of each
application running in a less privileged level. Being, by necessity, part of the
trusted computing base (TCB) of a system, it is not surprising that the number
of attacks targeting such a critical component has never decreased over the years.

As a matter of fact, the increasing number of successful attacks on operating
system kernels is yet another indicator of a more suitable environment for malicious
activities. A software bug in the kernel of a widely used operating system can give
rise to activities such as spamming, keylogging or stealth of private data, all of
which can have immense global impact, as was the case with Storm Worm [7]
and other bank fraud cases [8] or as in a more recent attack deployed with the
cooperation of the kernel and the web browser [9, 10].

Moreover, in the era of mobile computing, devices tend to be permanently
connected. For mobile phone users constantly connected to the internet, it is at
times easy to forget that they are, in e↵ect, always on the Internet. A mobile
device that has been compromised, and is thus capable of executing malicious
code locally, could take advantage of this permanent connection and infect other
peers much more easily than ever before [11–13].

Another e↵ect of the growth of internet services is the influence they have on
the computing infrastructure. Modern Internet services need a greater level of
reliability and redundancy [14–16].

As expected, the constant growth of complex internet services is followed by
another phenomenon: a greater demand for improvement in reliability and opti-
misation of physical space and energy consumption [17–19]. As systems become
larger and more complex, the need to optimise resources becomes an impera-
tive [20]. New technologies appear to have partially, but nonetheless e�ciently,
addressed the needs dictated by growth [21–25] .

Virtualisation is one such technology which arrived in the late 1990s1. The
technology, however, started to gain popularity only in the mid 2000s, when ven-
dors like Intel and AMD extended the instruction set of their processors in order to
provide hardware support with the purpose of lowering the performance overhead
of the new technology. This fact allowed an extensive deployment to production
systems. Moreover, hardware support allowed the parallel execution of a number
of operating systems on the same physical hardware in complete isolation from
each other, a feature that gave rise to an entirely new computing era. Virtualisa-
tion has, in fact, redefined the concept of infrastructure and is paving the way for
new business models, one of which is cloud computing [27].

In this new paradigm, computing resources or even entire virtual infrastruc-
tures can be purchased and allocated at a moment’s notice. A branch of cloud

1Virtualisation was first developed in the 1960s to better utilise mainframe hardware. In
the late 1990s virtualisation was introduced to the x86 architecture as it became the industry
standard [26] and was designed to execute several operating systems simultaneously on the same
physical processor.



1.1 Problem statement 3

computing, usually referred to as desktop virtualisation, exploits the benefits of
this new technology to deliver entire desktop environments, applications and user
data on demand. Requirements like performance, easy management and mobility
can be fulfilled in a straightforward way since they are fully supported by the
design.

Yet the numerous benefits of virtualisation are not limited to the industry and
the IT business world. The field has also captured the attention of the security
research community. Security researchers have been looking at virtualisation tech-
nology as an alternative approach for finding solutions to the familiar problems
of the past decade and to provide mitigations to unresolved challenges. One such
challenge involves the protection of operating system kernels. When a suspicious
program is running at a privilege level as high as that of the operating system
kernel, it may be extremely di�cult to detect its malicious intent. In such a sce-
nario, both trusted and malicious code are granted the same access to available
resources. Therefore the likelihood of malicious code disabling or circumventing
any countermeasure becomes extremely high.

One possible way to overcome the execution of trusted and malicious code with
the same privileges, involves the isolation of the system in need of protection from
the code that implements the countermeasure. As we shall demonstrate in Chapter
2, hardware-supported virtualisation technology accommodates such a demand.

1.1 Problem statement

Based on our belief that virtualisation technology will increasingly take over tra-
ditional systems, starting from internet services and desktop computing to mobile
devices, we examine the possibility of using the new technology to solve issues that
are closer to the security world rather than energy and space optimization. Here,
we briefly discuss the di↵erent types of attacks that security researchers have been
responding to thus far and for which we provide security mitigations. Although
the research community has responded quite actively with many solutions that
use di↵erent technologies, far greater e↵ort should be dedicated to incorporating
these solutions for production systems. Despite the aforementioned solutions, ker-
nel attacks are still common and e↵ective against the protection mechanisms that
are usually in place in commodity operating systems. On the other side, consid-
erable usage of the web browser in modern digital life is making its architecture
more complicated, increasing the chances of discovering vulnerabilities that might
be exploited. In the course of this thesis we provide security mitigations for two
kinds of attacks: attacks that compromise operating system kernels and attacks
through modern web browsers and applications delivered on demand.

Attacks to the kernel Due to their prominent position amongst user appli-
cations and hardware, operating system kernels have been a common target for
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attackers attempting to circumvent and modify protections to the best of their
advantage. Such attacks appear quite often in the form of device drivers that
are supposed to extend the kernel with a new feature or to control a particu-
lar type of device connected to the rest of the hardware, but are revealed to be
malicious [28–31].

Even a software bug in the kernel can be exploited to inject and execute mali-
cious code. Regardless of the way in which the kernel is compromised, the result
is malicious code running at the highest privilege level. This can not only make
the attack stealthy but also has the potential to circumvent any countermeasure
in place.

Attacks through web browsers In order to provide better web experience,
modern web browsers are supported by a richer environment and more complex
software architecture. It is common to extend the functionality of modern web
browsers with plug-ins or script language engines that interact via an API. This
higher complexity has also led to numerous security problems [32, 33]. Moreover,
the browser is often written in unsafe languages for performance reasons. This
exposes it to the memory corruption vulnerabilities that can occur in programs
written in these languages, such as bu↵er overflows and dangling pointer references.
The presence of interpreters, plugins and extensions that can easily be embedded
to the core of the browser made these environments an appealing target for the
most recent attacks [33–36].

1.2 Contributions

The first part of our work tackles the problem of attacks to operating system
kernels. Virtualisation technology fits very well in such scenarios due to a number
of interesting features that come by design, such as isolation and hardware support.
Therefore, we argue that a logical place where security ought to be increased is at
the level of the hypervisor, the layer that is interposed between the virtual machine
and the physical hardware.

In Chapter 2 we describe virtualisation technology and we provide details re-
garding the interposition of the hypervisor during execution of the operating sys-
tems running on top. In the same chapter we also explain the drawbacks of vir-
tualisation technology - in terms of performance overhead - with the aid of a case
study that involves the mitigation of stack based bu↵er overflows - and provide
our conclusion about the reasons of such a performance impact.

A countermeasure against kernel attacks, which relies on the cooperation be-
tween the target system and the hypervisor, is described in Chapter 3. A mit-
igation that we found to be e↵ective against the corruption of kernel code at
runtime consists in checking the integrity of potential targets, independently from
the execution of the virtual machine, namely the target system. We identify the
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hypervisor as a suitable place in which implementing the aforementioned check-
ings.

A more general purpose framework that protects an operating system kernel
running within a virtual machine is explained in Chapter 4. This protection is
achieved by enforcing the execution of secure code into the target machine. While
maintaining target code and secure code isolated, our solution also provides a
minimal overhead, due to the fact that secure code executes within the same
system to be protected.

Another environment that needs attention from the security research commu-
nity, due to its prominent position in everyday computer usage is the web browser
and applications delivered on demand. We focus on these other environments in
the second part of our work. Although security of web browsers is a very active
field of research, very little has been done to protect browsers with virtualisation
in mind.

Therefore, we provide a security measure that improves web browser security
and we explore the benefits of virtualisation technology in this area. A recent
heap-based attack, by which attackers can allocate malicious objects to the heap
of a web browser, by loading a specially forged web page that contains Javascript
code, has drawn the attention of security researchers who operate in the field of
browser security. We explain the details of a lightweight countermeasure against
such attacks, known as heap-spraying. We also argue in favour of the role that
virtualisation technology can play within this environment and discuss a possible
strategy for integrating such a countermeasure into web browsers and applications
with a similar architecture, delivered on demand. Details are provided in Chapter
5.

Conclusions are given in Chapter 6. Future work and research opportunities
are discussed in the same chapter.

The work presented in this dissertation has led to the following publications:

• Francesco Gadaleta, Yves Younan, Bart Jacobs, Wouter Joosen, Erik De
Neve, Nils Beosier, Instruction-level countermeasures against stack-based
bu↵er overflow attacks, Eurosys, Nuremberg, 1-3 April 2009

• Francesco Gadaleta, Yves Younan, Wouter Joosen, Bubble: a Javascript
engine level countermeasure against heap-spraying attacks, ESSoS, Pisa, 3-4
February 2010

• Francesco Gadaleta, Nick Nikiforakis, Yves Younan, Wouter Joosen, Hello
rootKitty: A lightweight invariance-enforcing framework, ISC Information
Security Conference, Xi’an China, 2011

• Francesco Gadaleta, Raoul Strackx, Nick Nikiforakis, Frank Piessens, Wouter
Joosen, On the e↵ectiveness of virtualization-based security, IT Security,
Freiburg (Germany), 07-10 May 2012
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• Francesco Gadaleta, Nick Nikiforakis, Jan Tobias Mhlberg, Wouter Joosen,
Hyperforce: hypervisor-enforced execution of security-critical code, IFIP
Advances in Information and Communication Technology, Heraklion, 04-06
June 2012



Chapter 2

Virtualisation: a new
paradigm

Without deviation progress is not

possible.

Frank Zappa

The cloud is probably the most widely used technological term of the last
years [27]. Its supporters present it as a complete change in the way that companies
operate that will help them scale on-demand without the hardware-shackles of the
past. CPU-time, hard-disk space, bandwidth and complete virtual infrastructure
can be bought at a moment’s notice. Backups of data are synced to the cloud and
in some extreme cases, all of a user’s data may reside there. Cases of this kind
already occur in frameworks such as Chromium OS, IBM Smart Business Desktop
Cloud and other commercial products like eyeOS, CloudMyO�ce, Dincloud, etc.

On the other hand, opponents of the cloud treat it as a privacy nightmare that
will take away the users control over their own data and place it in the hands
of corporations, resulting in great risk to the privacy, integrity and availability of
user data [37,38].

Regardless of one’s view of the cloud, one of the main technologies that makes
the cloud-concept possible is virtualisation [39]. Unsurprisingly, the concept of
virtualising hardware resources is not new. It first made its debut back in the 70s.
However, all the conditions for e�cient system virtualisation, such as those intro-
duced by Popek and Goldberg in [40], could be fulfilled only with virtualisation-
enabled processors. A more detailed explanation of hardware-supported virtuali-
sation is given in Section 2.1.

7
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Once newer hardware met acceptable requirements of e�ciency and perfor-
mance, the new virtualisation paradigm found its way in several scenarios that
shared common needs: decoupling services from the infrastructure and optimising
utilisation of physical resources.

The trend of server consolidation, virtualisation of storage, networking and en-
tire machines, paved the way for an entirely new business model in which changing,
adding, removing, or migrating infrastructure components could be achieved eas-
ily with a dramatic drop in operational costs. Considering the costs required to
switch to a new technology such as hiring and training, a cost reduction of ap-
proximately 55% can be obtained [41]. From another perspective, virtualisation
technology reduces data center energy consumption by 10% to 40% [42].

The reduced performance impact that comes with hardware support is con-
stantly accelerating the adoption of virtualisation technology and facilitating the
migration from traditional infrastructure to the new paradigm.

The success of virtualisation technology, which was first noticed in the large
computing environments of the industry, is influencing other types of users with
more use cases every day, such as those provided by desktop virtualisation. Bring-
ing virtualisation technology to mobile devices seems to be a logical step that
might come next in a world with a constantly growing need to innovate.

The important features of virtualisation technology, which were discovered to
be unavoidable for hardware design, also attracted security researchers whose in-
terests fall in areas such as the study of malware, application-sandboxing and
protection of operating system kernels, as explained more extensively in Chapter
3.

2.1 Virtualisation technology

Virtualisation is the set of software and hardware technologies that together allow
for the existence of more than one running operating system on top of a single
physical machine. While initially all of the needed mechanisms for virtualisation
were emulated by software, the sustained popularity of the new technology and
the desire for speed and reduced performance impact led to their implementation
in hardware [43, 44]. Today, both Intel1 and AMD2 support a set of instructions
whose sole purpose is to facilitate the virtualisation of operating systems.

We report the list of instructions added to the standard Intel instruction set to
enable hardware-supported virtualisation in Table 2.1. Although we will refer to
the Intel architecture, as this is the hardware used for our prototypes, throughout

1Intel-VT architecture http://www.intel.com/technology/virtualization/
technology.htm

2AMD-SVM architecture http://sites.amd.com/us/business/it-solutions/
virtualisation
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this work, the concepts introduced here can be applied to equivalent hardware,
supported by AMD and other vendors.

Generally speaking, the main components of a virtualisation system are:

• the Hypervisor (also referred to as Virtual Machine Monitor - VMM), which
directly controls the hardware and o↵ers an abstraction of the physical pro-
cessor, memory, interrupt mechanisms, etc., to a higher level where the guest
software usually executes. Despite the di↵erences between hypervisors for
commercial, experimental and academic purposes, we will refer to their com-
mon architecture and to the general aspects of hardware support.

• theGuest (also referred to as Virtual Machine - VM) represents the operating
system and its applications that are running on top of a hypervisor. In the
virtualisation setting we will be referring to in this work, the guest operating
system normally executes without any modification. The hypervisor exposes
an abstract version of the real hardware that matches3 the physical one. This
stratagem is essential to the execution of commodity operating systems that
have been designed to execute on bare metal, for instance, on real physical
hardware.

A former classification of hypervisors, provided in [40], makes a distinction be-
tween hypervisors that run directly on physical hardware, called Type 1 hypervisors
or native, from those that run within a commodity operating system environment,
called Type 2 hypervisors or hosted. The classification is depicted in Figure 2.1.
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Figure 2.1: Schema of Type 1 (native) hypervisor executing directly on physical
hardware and Type 2 (hosted) hypervisor running on top of a commodity operating
system

3Although the guest will execute as it were running on bare metal there are some mechanisms
that cannot be reproduced and therefore will act di↵erently, such as timers.
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Despite the place where an hypervisor is executing, a separation mechanism is
required to run the guest operating system in a distinct software level.

In order to guarantee separation between the kernel and regular applications,
traditional processors support two execution modes: operating system code runs
in root mode and applications usually run in non-root mode. In the same way,
the guest and the hypervisor need to be completely isolated from each other.
This isolation is guaranteed by the virtualisation-enabled processor architecture.
To allow the execution of the hypervisor at a higher privilege level and of the
guest without modifying its code with hypervisor awareness, virtualisation-enabled
processors have been extended with a new mode, called VMX mode. In this newer
architecture, the hypervisor will execute in VMX-root mode and the guest kernel
will run in VMX non-root mode.

The processor executing in VMX non-root has a restricted behaviour. Conse-
quently, if the guest kernel executes specific instructions, a trap will be generated
and control will be returned to the hypervisor. The transition from VMX non-root
(guest) to VMX root (hypervisor) is usually referred to as VM exit. The transition
in the other direction, from VMX root to VMX non-root, is called VM entry.
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Figure 2.2: Lifecycle of a general virtual environment with two guests. When the
guest executes a privileged instruction, control returns to the hypervisor by VM
exit. The hypervisor executes the instruction on behalf of the guest, updates its
VMCS and returns to guest’s space using VM entry.

Both Intel and AMD architectures do not provide any hardware setting that is
visible from the guest and that might reveal the current processor’s mode. This is
an e↵ective solution to prevent guest code from detecting whether it is running on
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physical or virtual hardware. However, measuring the delay of specific operations
with external timers4 has been found to be a viable way to detect the execution
of code in virtualised environments rather than on real hardware [45, 46].

As a recurrent mechanism exploited by the countermeasures described in the
proceeding chapters, we will briefly explain the lifecycle of a virtualised operating
system running on top of a general purpose hypervisor.

Upon execution of the VMXON instruction, which enables the hardware-assisted
virtualisation instruction set, the hypervisor enters the guest using a VM entry.
At this point guest code executes until the next VM exit, and thus transfers con-
trol to a specific entry point in hypervisor space. An appropriate action is taken
depending on the reason that caused the VM exit. The hypervisor usually per-
forms the requested operation on behalf of the guest. After the execution of the
privileged instruction, the hypervisor updates the context of the guest and returns
using VM entry. The aforementioned mechanism is illustrated in Figure 2.2.

Another event that requires the hypervisor’s intervention occurs when exe-
cuting several virtual machines at the same time. In this case the hypervisor
must restore the context of the next virtual machine to execute using instructions
like VMRESUME and VMLAUNCH. The procedure resembles the save-and-
restore mechanism typical of task switching in traditional operating systems.

In both scenarios the context of the virtual machine is saved into a special data
structure called Virtual Machine Control Structure (VMCS). The aforementioned
data structure is defined special in the sense that it is not saved into memory that
is normally accessible from the guest. Moreover, special hardware instructions are
needed for reading and writing to this memory area.

In general the VMCS data are organised as follows5:

• Guest-state area is the location in which the guest processor’s state (i.e.
control registers, debug registers, segment selectors, instruction pointer, but
also activity and interruptibility state) is saved before returning control to
the hypervisor and restored upon VM entry.

• Host-state area is the location where the processor state of the host is
loaded from, upon VM exit

• VM-execution control fields determine the causes of VM exits and limit
processor behaviour when the guest is executing, in VMX non-root mode

• VM-entry control fields govern the behaviour of VM entries by specifying
the list of MSR to be loaded or determine event injection by specifying the
type of interrupt, length of instruction etc.

4Within a virtual machine, time is shared with the hypervisor and a number of virtual ma-
chines. Each virtual machine can be preempted at any time, even when interrupt sources are
disabled. This is possible because in reality only virtual interrupts are disabled. This preemption
can cause a desynchronisation between virtual time and real time.

5This layout is specific to the Intel-VT architecture
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Instruction Opcode Description
VMXON 0xF30FC7 Enter VMX Operation
VMXOFF 0x0F01C4 Leave VMX Operation
VMCALL 0x0F01C1 Call to VM Monitor
VMLAUNCH 0x0F01C2 Launch Virtual Machine
VMRESUME 0x0F01C3 Resume Virtual Machine
VMPTRLD 0x0FC7 Load Pointer to Virtual-Machine Control Structure
VMPTRST 0x0FC7 Store Pointer to Virtual-Machine Control Structure
VMREAD 0x0F78 Read Field from Virtual-Machine Control Structure
VMWRITE 0x0F79 Write Field to Virtual-Machine Control Structure
VMCLEAR 0x660FC7 Clear Virtual-Machine Control Structure

Table 2.1: Intel VT-x hardware-supported virtualisation instruction set

• VM-exit information fields provide basic information about VM exits
such as the exit reason to be handled accordingly by the hypervisor

The hypervisor is the only component that can shut down the virtualisation
machinery and leave VMX mode by calling the VMXOFF instruction. After
such an event, the processor will operate with the standard instruction set.

As mentioned before, when the guest operating system is executing and the
processor is in VMX non-root mode, several events can lead to control being
returned to the hypervisor. These events are treated like faults. As for any type
of fault, the instruction that caused it is not executed, the processor state is
not updated and an action is taken by a fault handler, depending on a flag that
determines the fault reason.

It should be clear that in a virtualisation setting, the fault handler is repre-
sented by code running in hypervisor space. Therefore the hypervisor is responsible
for the execution of additional code on behalf of the guest and for updating the
guest’s processor state.

A list of instructions that cause VM exit when the processor is in VMX non-
root mode is reported in Table 2.2. Other events that are handled with the same
trapping mechanism are exceptions, external interrupts (otherwise served by the
guest Interrupt Descriptor Table), non-maskable (NMI) and system-management
(SMI) interrupts and task switches. For a more detailed description about how to
handle VM exits and other architecture specific features of virtualisation-enabled
processors we encourage the reader to examine the architecture developer’s man-
ual, usually provided by the hardware vendor.
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Instruction Opcode Description
Unconditionally VMExit
CPUID 0x0A20F Returns processor type and features
INVD 0x0F08 Flushes CPU internal cache
MOV from CR3 Move from Control Register 3
VM* insn All instructions in the

VM extended instruction set
Conditionally VMExit
CLTS 0x0F01C2 Clear Task-Switched Flag in CR0
HLT 0x0F01C3 Halt
IN,INS* Input from Port to String
OUT,OUTS* Output String to Port
INVLPG 0x0F017 Invalidate TLB Entry
LMSW 0x0F016 Load Machine Status Word
MONITOR 0x0F01C8 Set Up Monitor Address
MOV from CR8 Move from Control Register 8
MOV to CR0/CR3/CR4/CR8 Move to Control Register 0,3,4,8
MOV DR 0x660FC7 Move to Debug Register
MWAIT 0x0F01C9 Monitor Wait
PAUSE 0xF390 Spin Loop Hint
RDMSR 0x0F32 Read from Model Specific Register
RDPMC 0x0F33 Read Performance-Monitoring Counters
RDTSC 0x0F31 Read Time-Stamp Counter
RSM 0x0FAA Resume from System Management Mode
WRMSR 0x0F30 Write to Model Specific Register

Table 2.2: List of privileged instructions that cause a VMExit event
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2.1.1 Performance

The high complexity of the trapping mechanism has an impact on the overall
performance of the system. Even for hardware-assisted virtualisation, VM exits
are expensive. If regular instructions are a↵ected by a latency in a range from 1
to 50 clock cycles, transitions between a virtual machine and the hypervisor can
take thousands of cycles each [47].

Para-virtualisation has been introduced as a way to reduce the latencies of the
trapping mechanism. Para-virtualisation is a technique in which the hypervisor
provides an API to the guest operating system. A guest using the API, instead
of the regular trapping mechanism, will result in an increase in the overall perfor-
mance due to the reduced number of traps. In fact, some mechanisms that usually
need the interposition of the hypervisor could be executed directly from the guest.
In work such as [48–50] it is shown how to para-virtualise device drivers in order
to considerably improve I/O-intensive tasks.

Para-virtualisation, however, usually requires guest kernel code to be modified.
This last requirement cannot always be fulfilled, especially when source code is
not available, as is the case of proprietary operating systems. On the other hand,
hardware-supported virtualisation can rely on entirely unmodified guest operating
systems, something that usually involves many more VM traps and thus higher
CPU overheads.

One of the main issues of memory virtualisation is that in order to guarantee
isolation, guests cannot access physical memory directly. Therefore, in addition
to virtualising the processor unit, memory virtualisation is also required. This is
a critical component that influences the performance impact of memory-intensive
virtualised applications.

In a standalone operating system, the hardware Memory Management Unit
(MMU) is used to map logical page addresses (LPA) to the physical page addresses
(PPA). To achieve faster lookups, the Translation Lookaside Bu↵er (TLB) caches
the most recently used LPA ! PPA mappings, for future access.

This mechanism holds in a virtualised environment, but an additional layer is
necessary in order to map a PPA to a machine page address (MPA). The two-level
translation mechanism is illustrated in Figure 2.3.

Prior to the advent of hardware-supported virtualisation, the hypervisor had
to maintain PPA ! MPA mappings and had to store LPA ! MPA mappings in
shadow page tables6. Faster lookups could be achieved by caching LPA ! MPA
mappings into the TLB. Unfortunately, whenever the guest re-mapped its memory

6Shadow paging is a memory protection mechanism performed by the hypervisor to isolate
guests’ memory space and keep guest memory accesses updated. Specifically the hypervisor keeps
the real LPA ! MPA mapping updated in order to maintain a representation of the page tables
that the guest thinks it is using. The update occurs whenever a page faut is generated within
the guest and handled by the hypervisor. Due to the usually high number of page faults, the
aforementioned mechanism is a↵ected by consistent overhead.
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Figure 2.3: Schema of two-level translation from LPA (Logical Page Address) to
PPA (Physical Page Address) and MPA (Machine Page Address). Red arrows in-
dicate the mappings from guest to host that the hypervisor must keep synchronised
in its shadow pages.

addresses, the hypervisor had to keep the shadow pages synchronised. This task
was recognised as the factor responsible for most of the performance impact of the
technology.

Lately, vendors like AMD and Intel included hardware support for memory
virtualisation, called AMD Nested Page Tables (NPT) and Intel Extended Page
Tables (EPT) respectively.
In this second scenario (Figure 2.4), any access to a logical page from within
the guest triggers the composite translation of both LPA ! PPA and PPA !
MPA. Therefore no shadow pages are needed and data will be kept synchronised
without additional overhead. Clearly, the cost of a page walk needed for the double
translation is slightly higher with respect to the one performed with traditional
page tables7.

The non-negligible performance impact introduced by the technology should
always be taken into consideration for correctly designing infrastructures that rely
heavily on virtualisation.

A mechanism that allows the guest operating system to return control to the
hypervisor synchronously is referred to as hypercall. A hypercall is the equivalent
of a system call in traditional operating systems. For instance, in order to invoke

7The use of large pages when NPT/EPT is enabled reduces the overall impact inflicted by
the higher cost of page walks from 50% to 70% (depending on the type of benchmark), as it has
been measured in [51,52]
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Figure 2.4: Intel’s Extended Page Table hardware-supported translation mecha-
nism to map guest addresses to host physical addresses without shadow paging. An
equivalent method has been developed by AMD, with the name of NPT (Nested
Page Tables)

a system call on UNIX systems, the program in user space pushes the value of the
system call in register EAX and then raises an interrupt. A sequence of instructions
that explain the mechanism is shown in Listing 2.1

Listing 2.1: A simple system call in traditional UNIX

mov eax , 1
push eax
int 80h

When interrupt 80h is raised the kernel interrupt handler will read the value of
register EAX, which in turn jumps to the handler of the system call (in the example
above it will be system call 1) and executes it with the parameters popped from
the stack. The mechanism of hypercalls is very similar to the one of a system call.
The main di↵erence is that an interrupt di↵erent from 80h is raised. The interrupt
number depends on the hypervisor’s design. Hypercalls are commonly used in
para-virtualised systems in which execution jumps directly from the application
(Ring 3) to the hypervisor, which then passes control to the guest kernel (Ring 0).

However, hypercalls are also used in systems that are not hypervisor aware,
whenever it is required to return control to the hypervisor explicitely. In fact, hy-
percalls are handled by the hypervisor synchronously, which means that execution
of the guest operating system will be paused until the handler terminates. Despite
the performance penalty of the hypercall mechanism, it revealed to be extremely
useful in several cases presented throughout this work.
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2.2 Benefits and drawbacks

The numerous advantages introduced by virtualisation are influencing several as-
pects of designing modern computing infrastructure. Hardware engineers are im-
proving virtualisation-supported processors at a constant pace, reducing what used
to be a considerable gap between the performance of software running on real hard-
ware and those in virtualisation environments.

Despite ample room for the improvement of the latency of complex virtualisation-
related instructions, server consolidation, one of the most frequent applications of
virtualisation technology in the industry, is contributing to a much more e�cient
usage of computing resources. Server consolidation addresses the reduction of ex-
isting infrastructure [53]. Therefore, significant reduction of energy consumption
is a benefit that comes as a direct consequence. Moreover, less physical hardware
also leads to lower management costs, such as the costs of regular wearing, faulty
hardware, etc. It goes without saying that it is the reduction of these types of
costs that triggered the migration to virtualised data centres in the early days and
encouraged other users to follow later on.

The natural course of hardware development and the popularity of virtualisa-
tion technology promoted the replacement of traditional processors with new hard-
ware. Today, virtualisation-supported processors are o↵-the-shelf components reg-
ularly installed on general purpose computers. Therefore, virtualisation-friendly
solutions meet their requirements with much more ease than in the past when they
could be deployed only when accompanied with special hardware.

Despite the benefits described above, which might be interpreted more as
business-related advantages, a feature that is rendering virtualisation technology
even more attractive from a more technical view point, is the inherent isolation
of virtual machines from themselves and the hypervisor. The need for execut-
ing several guests at the same time and preventing any type of interference are
requirements that cannot be fulfilled without isolation.

As explained in Section 2.1, it should be clear that hardware-support is not only
beneficial to the overall performance impact8 but also to security. In a hardware-
assisted virtualisation framework it is substantially hard - sometimes not practi-
cally feasible - to break the isolation constraint from within a virtual machine.
This particular feature, which comes by design, is broadening the horizon of those
researchers who provide security solutions based on sandboxes or similar isolation
environments.

Apart from the use of virtualisation as a way to host di↵erent operating systems
on a single physical machine, virtualisation is currently also being used to provide
greater security guarantees for operating system kernels. This specific scenario

8The benefit becomes consistent when hardware-supported virtualisation is compared to soft-
ware emulation. But compared to a native system, a virtualisation solution continues to have
non-negligible impact in the range between 10% and 30%, depending on the type of bench-
mark [54].
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will be described extensively in Chapter 3 and Chapter 4.
However, moving the direct control of physical hardware to the lower level of

the hypervisor, and delegating to this only component all critical operations with
the purpose of arbitrating the execution of the guests, might lead to security issues.
Obviously, a bug within hypervisor code might a↵ect the entire virtualisation plat-
form. A general strategy to avert such an issue involves keeping the hypervisor’s
code size as small as possible in order to increase the chances to discover bugs and
provide fixes at the earliest.

Formal verification techniques can be considered, in order to prevent possible
faults or unexpected behaviour from hypervisor space. However, these solutions
are feasible only under simple assumptions, most of the times when hypervisor
code has been written with verification in mind. The challenging part of the veri-
fication task becomes more evident since hypervisors are usually written in unsafe
languages (such as C and assembly code for performance reasons) with an easily
circumvented type system and explicit memory allocation. For such systems, mem-
ory safety has to be verified explicitly. Moreover, the hypervisor is usually formed
by code that runs concurrently and address translations occur asynchrounously
and non-atomically [55, 56]. Last but not least, virtualisation strategies that can
fully exploit the hardware to execute a multitude of guest operating systems with
high performance, require the hypervisor to execute directly on physical hardware.
This can increase the size of the hypervisor (a large code base is usually repre-
sented by device drivers) and make verification a non-tractable task. However,
there have been attempts to formally verify hypervisors with a small codebase, a
task that is more accessible than verifying commodity operating systems [56,57].

Figure 2.5: Latency of VM exit, VMREAD, VMRESUME instructions across Intel
processors

Despite the performance improvements claimed by works like [58, 59] and by
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Intel itself, as shown in Figure 2.5, the gap of the performance between native and
virtualised operating systems remains consistent. It is clear that the performance
impact is mainly caused by the latency of virtualisation-based instructions, which
is mainly architecture dependent. The frequency of trapped events from the guest
to the hypervisor is also important and it has been measured to have a consider-
able impact on the overall performance of a virtualised system, specially a↵ecting
Input/Output intensive tasks. In [59], this frequency has been minimised using
software techniques. In the same work it is claimed that the overall transition
costs are reduced up to 50%. However, the aforementioned latency seems to be
improvable up to a lower bound imposed by the technology.

2.3 Drawbacks of virtualisation: a case study

The types of countermeasures proposed in this work have been designed to work
together with the operating system. The very nature of virtualisation technology
relies on the regular mechanisms of guest operating system kernel such as task
switching, changes to control registers and other specific events that trigger the
hypervisor’s intervention. According to the benchmarks of each virtualisation-
based countermeasure explained in this work, their performance impact is, in
general, relatively low. One of the keys of this limited performance impact consists
in the fact that the countermeasure’s code is executed at a specific time, taking
advantage of the regular delays imposed by virtualisation technology. Setting the
performance penalty of the countermeasure aside, for instance, the VM exit - VM
entry mechanism contributes to maintain the overall performance impact close to
the lower bound introduced by the technology.

As we show later in this section, when such a strategy is not applied, the
performance impact of the countermeasure will likely be summed up as the per-
formance impact of the virtualisation technology. We observe that if hypervisor’s
intervention is triggered whenever required, without synchronizing with the oper-
ating system, the overall performance impact will be dramatically increased. One
such scenario occurred when we examined the possibility of using virtualisation
technology to implement a countermeasure that protects against bu↵er overflows,
specifically return-address attacks.

Despite a plethora of available research in the field, the bu↵er overflow is still
one of the most insidious vulnerabilities a↵ecting software nowadays. According
to the NIST’s National Vulnerability Database [60], 587 (10% of all reported vul-
nerabilities) bu↵er overflow vulnerabilities were reported in 2008. Almost 90% of
those vulnerabilities had a high severity rating. A bu↵er overflow is the result of
stu�ng more data into a bu↵er than it can handle and may allow an attacker to
control the execution flow of the attacked program. In a return-address attack the
attacker exploits a bu↵er overflow vulnerability to change the return address of
a function. It is often performed together with code injection through shellcode.
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The execution of arbitrary code is what results in the high severity rating of most
of the reported vulnerabilities. These types of attacks are known as stack-based
bu↵er overflow attacks.

A typical function that is vulnerable to a bu↵er overflow is given in Listing 2.2

Listing 2.2: A function that is vulnerable to bu↵er overflow

char⇤ vu ln f oo (char ⇤msg) {
char ⇤p ;
char bu f f e r [ 3 0 ] ;
p=bu f f e r ;
s t r cpy (p , msg ) ;

}

The compiler translates this code and provides a standard prologue that saves
the frame pointer (FP) to the stack and allocates space for the local variables and
a standard epilogue that restores the saved frame and stack pointer (SP), as shown
in Listing 2.3.

Listing 2.3: The standard prologue and epilogue of vuln foo()

pro logue :
pushl %ebp
mov %esp , %ebp
// l o c a l v a r i a b l e s

( vu ln f oo body )

ep i l o gue :
l e ave // cop i e s %ebp in to %esp

// r e s t o r e s %ebp from s tack
r e t

// jump to address on
// top o f the s t a c k

Our approach to prevent the exploitation of such a vulnerability consists in
extending the architecture with few extra instructions, which are emulated by the
hypervisor.

These instructions are designed to save and restore the return address from a
protected memory area.

Listing 2.4: Instrumented assembly code of vuln foo()

main :
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c a l l i n i t c a l l r e t x
. . .

vu ln f oo :
pro logue :

pushl %ebp
mov %esp , %ebp

// l o c a l v a r i a b l e s
c a l l x

( vu ln f oo body )

ep i l o gue :
r e tx
l eave // cop i e s %ebp in to %esp

// r e s t o r e s %ebp from s tack
r e t // jump to address on

// top o f the s t a c k

At the beginning of every program, from its main function, a 4KB page is cre-
ated and protected via the mprotect system call. For each function to be protected
the two hardware instructions are called at a specific time in order to prevent an
attacker to tamper with the return address of the function.

In the proof-of-concept we provide the hardware9 instruction

• callx

has been added before the call instruction, that will execute the body of the
function. It will save the return address onto the protected memory page

while instruction

• retx

has been added right before the assembler leave instruction in the func-
tion’s epilogue. It will restore the return address from the protected memory
page onto the stack.

Return addresses of nested functions are stored at higher addresses within the
page with the aid of a counter that permits to handle return addresses in a Last-In-
First-Out order. This order will be preserved until the maximum number of nested
functions is reached. Clearly this number depends on the size of the mprotected
page, which is 4KB in our implementation. Since the x86 architecture handles

9This is hardware instruction with respect to the program to be protected. From a more
general view point the added instructions are not implemented by special purpose hardware
since they will be emulated by the hypervisor.
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32-bit addresses and a counter of the same size is required, our countermeasure
can handle up to 1023 nested functions.

We implemented this concept in the Xen hypervisor [61] and optimized the
most time consuming task of writing to the protected memory area. Our idea
consists in clearing the write protection bit (WP) in Control Register 0 (CR0)
10 before any write operation to a read-only memory and then set it again. The
Xen hypervisor, which runs in supervisor mode, needs to be able to write to a
read-only page from the user space memory. By unsetting the WP in CR0, the
memory management unit (MMU) does not check whether the page is read-only
or not, allowing the new instruction to write directly. This strategy leads to a
performance impact that is dramatically reduced when compared to the usual
mechanism that rely on the MMU11.

Since we need to save the return address from the current stack to memory
(callx) and from memory back to the stack (retx), we need two functions that move
data from one space to the other. As in a regular Linux kernel the copy_to_-
user and copy_from_user functions perform this task. A counter is needed
to handle nested functions. This variable is incremented in callx and copied to
the read-only memory and decremented in retx and copied back to the stack, in
order to preserve a LIFO order.

A check if the return address has been altered may be performed before over-
writing it with the saved value. However this will lead to a higher overhead in the
overall test result.

2.3.1 Evaluation

To test the performance overhead we ran several integer benchmarks from the
suite SPEC CPU2000 [62]. We collected results running programs instrumented
with the code that implements the countermeasure and without.
All tests were run on a single machine with the hardware specifications reported
in Table 3.2. As mentioned before, the hypervisor used for our implementation is
Xen 3.3.0. The GCC 4.2.3 compiler has been modified to instrument assembler
code with the new instructions.

10CR0 has control flags that modify the basic operation of the processor. WP bit is normally
set to prevent supervisor from writing into read-only memory.

11Although Xen has the necessary code to capture illegal instructions, some setup is required
to handle the new instructions’ opcodes. New code that checks if the opcode we want to emulate
occurred has been added. When the new instruction’s opcode occurs, the user space program
context (ctxt structure) is updated. This is required before calling x86_emulate which will
take the context structure as parameter and performs the emulation. Before calling this function,
the WP bit of CR0 must be unset. Thus when x86_emulate is called, all writes to memory
can happen without any fault. New code to emulate the callx and retx instructions in the
hypervisor has been added to x86_emulate.c.
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Program Base r/t(s) Instr. r/t(s) Overhead
164.gzip 223 3203 +1336.32%
175.vpr 372 2892 +677.42%
176.gcc 225 2191 +873.78%
181.mcf 640 3849 +501.41%
186.crafty 114 3676 +3124.56%
256.bzip2 307 5161 +1581.11%
300.twolf 717 4007 +458.86%

Table 2.3: SPEC CPU2000 benchmark results of Xen implementation

Despite the aforementioned optimization strategy, the benchmarks show that
this implementation experiences a slow-down between 5x and 30x, depending on
the number of functions to be protected in the program. This latency is definitely
not acceptable to consider this type of countermeasure in production systems
(Table 2.3.1).

Moreover, our countermeasure does not detect if a bu↵er overflow has occurred
since it overwrites the return address of the protected function, without checking
if it has been altered.
Our implementation allows the protected function to recover its caller’s return ad-
dress and continue its normal execution flow. We are aware that there are cases in
which it is better to terminate the attacked program and log that a bu↵er overflow
has occurred. Checking that the protected return address has been tainted on the
stack might be implemented with more overhead.

2.3.2 Discussion

The main reason for which virtualisation technology inflicts such a significant
overhead is given by the high number of context switches from the guest to the
hypervisor and back. These transitions are needed for the hypervisor to perform
the emulation of the special instructions callx and retx. While, at operating sys-
tem level, these transitions occur a limited number of times (ie. I/O operations,
privileged instructions like the ones reported in Table 2.1), in this specific case
they will occur an additional number of times that depends on how many func-
tions the program is formed by (or equivalently how many times the function to
be protected is called).

Therefore, while our implementation is technically feasible and even faster than
RAD [63], a compiler-based countermeasure that provides an equivalent protec-
tion, we conclude that it does not have a realistic chance of deployment, except in
higher security environments.
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2.4 Rethinking security

One of the immediate e↵ects of the advent of virtualisation into marketplace is the
new way of thinking about security. The desire to exploit this new environment and
deal with challenging and unsolved problems - mainly related to operating system
kernel security - is so intense that several security solutions promptly appeared in
the literature [64–67]. However, protecting operating system kernels from being
compromised is challenging and still an open problem. Virtualisation o↵ers viable
ways to mitigate these types of threats. However, due to the significant overhead
introduced by the technology, any security solution needs to be designed with
performance in mind.

We provide a realistic model of attack to operating system kernels and a strat-
egy to detect attacks of this type when the operating system has been virtualised,
in Chapter 3.

Still in the field of kernel security, a more general framework that enforces the
execution of monitoring code within a virtualised operating system is described
in Chapter 4. It will be shown that the performance impact of our solutions is
negligible and limited by the lower bound of the technology.

The role of virtualisation technology to improve the security of web browsers
and applications delivered on-demand is described in Chapter 5.



Chapter 3

Hypervisor-based
invariance-enforcing
framework

Prediction is very di�cult, espe-

cially if it’s about the future.

Niels Bohr

Operating systems consist of trusted code that executes directly on top of a
host’s hardware. This code usually provides several functionalities [68] such as

• abstraction, essential to develop programs that use the system functions
o↵ered by the operating system

• arbitration, to allocate resources to more than one concurrently running
program in a collision-free fashion and

• isolation, that prevents one program from addressing the memory space of
another

Due to their prominent position, operating systems become a common target
of attackers who regularly try to circumvent their protection mechanisms and
modify them to their advantage. In the past, a malicious program that allowed
a user to elevate his access and become a system administrator, or root, was
called a rootkit. Today the meaning of rootkits has changed and is used to
describe software that hides the attacker’s presence from the legitimate system’s
administrator. Kernel-mode rootkits target the core of an operating system. It

25



26 Hypervisor-based invariance-enforcing framework

goes without saying that they are the hardest to detect and remove. Such rootkits
appear very often in the form of device drivers (Windows platform) or Loadable
Kernel Module (Linux kernel). In other cases, a kernel-mode rootkit may be
introduced by a software bug in the kernel and triggered by a malicious or a
benign but-exploitable process. Regardless of the way the rootkit is introduced,
the result is malicious code running with operating system privileges which can
add and execute additional code or modify existent kernel code. The activities
resulting from a successful attack can range from spamming and key-logging to
stealing private user-data and disabling security software running on the host. In
the past, rootkits have also been used to turn their targets into nodes of a botnet
as with Storm Worm [7] or to perform massive bank frauds [8]. An even more
subtle type of rootkits does not introduce new code at all, but rather makes use of
existing fragments of operating system code - that will be considered trusted by any
active monitor - to fabricate their malicious functionality. The execution of these
fragments in a specific order, chosen by the attacker has give birth to an entirely
new way of compromising the kernel called return-oriented rookits [69].

Generally speaking, changing the control flow of the operating system kernel
involves either changing the content of specific kernel objects such as existing frag-
ments of code with new code or overwriting kernel function pointers. Several ap-
proaches that mitigate rootkits have been developed by security researchers who
consider modified kernel-data structures an evidence of attack. Unfortunately,
many of these approaches are a↵ected by substantial overhead [70, 71] or miss a
fundamental security requirement such as isolation [72]. Isolation is needed to
prevent a countermeasure in the target system from being disabled or crippled by
a potential attack. When malicious code is running at the same privilege level as
the operating system kernel, no isolation mechanism is in place and the attacker’s
code is capable of accessing arbitrary memory locations or hardware resources.
The property that makes virtualisation particularly attractive in the field of secu-
rity research is that isolation is guaranteed by the current virtualisation-enabled
hardware.

Other countermeasures have been presented in which operating system kernels
are protected against rootkits by executing only validated code [66, 71, 73]. But
the aforementioned type of rootkit [69] that doesn’t introduce new kernel code and
basically re-uses fragments of validated code can bypass such countermeasures.
In [74] a countermeasure to detect changes of the kernel’s control flow graph is
presented; Anh et al. [75] uses virtualisation technology and emulation to perform
malware analysis and [76] protects kernel function pointers. Another interesting
work is [77] which gives more attention to kernel rootkit profiling and reveals key
aspects of the rootkit behaviour by the analysis of compromised kernel objects.
Determining which kernel objects are modified by a rootkit not only provides an
overview of the damage inflicted on the target but is also an important step to
design and implement systems to detect and prevent rootkits. In this chapter
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we present an invariance-enforcing framework that mitigates rootkits in common
operating system kernels. Our protection system runs inside a hypervisor and
protects operating systems that have been virtualised. Some practical constraints
that led to the relaxation of the original problem, impose negligible performance
overhead on the virtualised system. Moreover it does not require kernel-wide
changes, making it an attractive solution for production systems.

The remainder of this chapter is structured as follows. Section 3.1 describes the
problem of rootkits and presents the attacker model. In Section 3.2, we present the
architectural details of our countermeasure, followed by its implementation. We
evaluate our prototype implementation in Section 3.3 and present its limitations
in Section 3.4. We discuss related work on rootkit detection in Section 3.5 and
conclude in Section 3.6.

3.1 Motivation

In this section we describe common rootkit technology and we also present the
model of the attacker that our system can detect and neutralise.

3.1.1 Rootkits

Rootkits are pieces of software that attackers deploy in order to hide their presence
from a system. Rootkits can be classified according to the target and consequently
to the privilege-level which they require to operate. The two most common rootkit
classes are: a) user-mode and b) kernel-mode.

User-mode rootkits run in the user-space of a system without the need of
tampering with the kernel. In the Microsoft Windows platform, user-mode rootkits
commonly modify the loaded copies of the Dynamic Link Libraries (DLL) that
each application loads in its address space [78]. More specifically, an attacker can
modify function pointers of specific Windows APIs and execute their own code
before and/or after the execution of the legitimate API call. In Linux, user-mode
rootkits hide themselves mainly by changing standard Linux utilities, such as ps
and ls. Depending on the privileges of the executing user, the rootkit can either
modify the default executables or modify the user’s profile in a way that their
executables will be called instead of the system ones (e.g. by changing the PATH
variable in the Bash shell).

Kernel-mode rootkits run in the kernel-space of an operating system and are
thus much stronger and much more capable. The downside, from an attacker’s
perspective, is that the user must have enough privileges to introduce new code
in the kernel-space of each operating system. In Windows, kernel-mode rootk-
its are loaded as kernel extensions or device-drivers and target locations such as
the call gate for interrupt handling or the System Service Descriptor Table
(SSDT). The rootkits change these addresses so that their code can be executed
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Rootkit Description

Adore, afhrm, Rkit, Rial, kbd,
All-root, THC, heroin, Synapsis,
itf, kis

Modify system call table

SuckIT Modify interrupt handler
Adore-ng Hijack function pointers

of fork(), write(),
open(), close(),
stat64(), lstat64()
and getdents64()

Knark Add hooks to /proc file system

Table 3.1: Hooking methods of common Linux rootkits

before specific system calls. This capability is usually referred to as hooking.
In Linux, rootkits can be loaded either as a Loadable Kernel Module (LKM),
the equivalent of Windows device-drivers, or written directly in the memory of
the kernel through device files that provide access to system’s memory such as
/dev/mem and /dev/kmem [79]. These rootkits target kernel-data structures in
the same way that their Windows-counterparts do. Although we focus on Linux
kernel-mode rootkits, the concepts we introduce here apply equally well to Win-
dows kernel-mode rootkits. An empirical observation is that kernel-mode rootkits
need to corrupt specific kernel objects, in order to execute their own code and add
malicious functionality to the victim kernel. Studies of common rootkits [74, 80]
show that most dangerous and insidious rootkits change function pointers in the
system call table, interrupt descriptor table or in the file system, to point to ma-
licious code. The attack is triggered by calling the relative system call from user
space or by handling an exception or, in general, by calling the function whose
function pointer has been compromised. We report a list of rootkits which com-
promise the target kernel in Table 3.1. Due to the high number of variant rootkits
that attackers design in order to evade current security mechanisms, the following
list is not meant to be exhaustive.

3.1.2 Threat Model

In order to describe the environment in which our mitigation technique will oper-
ate, we make some assumptions about the scenario that an attacker might create.
We assume that the operating system to be protected and which is being attacked
is virtualised. This means that it runs on top of a hypervisor which executes at
a higher privilege level than the operating system itself. Virtualisation-enabled
hardware guarantees isolation. Thus we assume that the guest operating system
cannot access the memory or code of the hypervisor. Moreover, no physical ac-
cess to the host machine is granted. We have designed a system that detects the
presence of a rootkit after it has been deployed, a fact that allows our model to
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include all possible ways of introducing a rootkit in a system.
A rootkit can be introduced either by:

• A privileged user loading the rootkit as a Loadable Kernel Module

• A privileged user loading the rootkit by directly overwriting memory parts
through the /dev/ memory interfaces

• An unprivileged user exploiting a vulnerability in the kernel of the running
operating system which will allow him to inject and execute arbitrary code

Finally, our system does not rely on secrecy. Therefore, our threat model
includes the attacker being aware of the protection system.

3.2 Approach

In this section we describe the architectural details of the countermeasure and
explain our choices in the implementation of our proof of concept. By studying the
most common rootkits and their hooking techniques one can realize that they share
at least one common characteristic. In order to achieve execution of their malicious
code, rootkits overwrite locations in kernel memory which are used to dictate, at
some point, the control-flow inside the kernel. Most of these locations are very
specific (see Table 3.1) and their values are normally invariant, i.e. they don’t
change over the normal execution of the kernel. Since these objects are normally
invariant, any sign of variance can be used to detect the presence of rootkits. We
use the terminology of critical kernel objects to name objects that are
essential to change the control-flow of the kernel and thus likely to be used by an
attacker.

Given a list of invariant critical kernel objects, our approach consists of period-
ically checking them for signs of variance. When our countermeasure detects that
the contents of an invariant critical kernel object have been modified, it will report
an ongoing attack. Such a strategy might be a↵ected by false positives, when vari-
able objects are erroneously considered invariants. Considering the modification of
invariant critical kernel objects as evidence of rootkit attack is not entirely novel to
the literature. These types of objects have been identified in several contributions,
such as [76, 81–83]. The need for special hardware and the performance overhead
of such contributions motivated our research in this area.

The methods to detect invariance di↵er depending on the type of critical kernel
object and are summarized in the following list:

1. Static kernel objects (type 1) at addresses that are hardcoded and not de-
pendent on kernel compilation
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2. Static kernel objects (type 2) dependent on kernel compilation (e.g., provided
by /boot/System.map in a regular Linux kernel)

3. Dynamic kernel objects (type 3) allocated on the heap by kmalloc, vmalloc
and other kernel-specific memory allocation functions

Identifying and protecting static kernel objects (type 1 and type 2) is straight-
forward. During the installation of the operating system to be monitored, a virtual
machine installer would know in advance whether the guest is of Windows or Unix
type. This is the minimal and su�cient information required to detect kernel
objects whose addresses have been hardcoded (type 1). Moreover, the Linux op-
erating system, that we used for our prototype, provides System.map, where
compilation-dependent addresses of critical kernel objects are stored (type 2).

In contrast, identifying dynamic kernel objects (type 3) needs much more ef-
fort since the heap changes at runtime depending on the program’s execution. The
identification of invariant objects of type 3 relies on the invariance detection algo-
rithm in place. Part of our countermeasure is trusted code which operates in the
guest operating system at boot time. Boot time is considered our root of trust.
We are confident this to be a realistic assumption that does not a↵ect the overall
degree of security of the approach. 1

From this point on, the system is considered to operate in an untrusted envi-
ronment and a regular integrity checking of the protected objects is necessary to
preserve the system’s safety. Given a list of invariant kernel objects, the trusted
code communicates this data (virtual address and size) of the kernel objects to
observe after boot, and stores them in the guest’s address space. When data of
the last object have been gathered, the trusted code will raise a hypercall in or-
der to send the collected entries to the hypervisor. The hypervisor will checksum
the contents mapped at the addresses provided by the trusted code and will store
their hashes in its address space, which is isolated and not accessible to the guest.
The trusted code is then deactivated via a end-of-operation message sent by the
hypervisor. No objects are accepted after the kernel has booted. In fact, at this
point, an attacker who is aware of the presence of our security measure could give
rise to a Denial-Of-Service attack.

It is important to point out that our system must be provided with a list of
kernel objects on which it will enforce invariance. This list can be either generated
by invariance detection systems like the ones described in [76,81–83] or manually
compiled by kernel and kernel-module developers (for objects of type 1 and type
2).

As already stated, the most beneficial aspect of implementing countermeasures
in a separated virtual machine or within the hypervisor is the increased degree of

1Specifically related to the Linux kernel, boot time ends right before calling kernel thread

which starts init, the first userspace application of the kernel. At this stage the kernel is booted,
initialized and all the required device drivers have been loaded.
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security via isolation. Unfortunately, it often leads to higher performance overhead
than the equivalent implementation in the target system. A challenging task is
that of checking integrity outside of the target operating system while limiting the
performance overhead. We achieve this by exploiting the regular interaction of a
hypervisor and the guest operating system.

As described in Chapter 2.1, in a virtualised environment the guest’s software
stack runs on a logical processor in VMX non-root operation [84]. This mode
di↵ers from the ordinary operation mode because certain instructions executed by
the guest kernel may cause a VMExit that returns control to the hypervisor.

Our countermeasure performs integrity checks every time the guest kernel
writes to a control register (MOV CR* event) which is a privileged instruction
of the type listed in Table 2.2 that in-turn causes a VMExit. Figure 3.1 depicts
a high-level view of the approach described above. Trapping this type of event is
strategic because if virtual addressing is enabled (as in the case of modern com-
modity operating systems), the upper 20 bits of control register 3 (CR3 ) become
the page directory base register (PDBR). This register is fundamental to locate the
page directory and the page tables for the current task. Whenever the guest kernel
schedules a new process, a task usually referred to as process switching, the
guest CR3 is modified. The mechanism explained above is typical of the Intel
IA-32 and higher architectures. Since other processor architectures are equipped
with equivalent registers, most of our descriptions can be easily applied. We found
that performing integrity checks on the MOV CR* events is a convenient way to
keep detection time and performance overhead to a minimum while guaranteeing
a high level of security on protected objects. Moreover, this choice revealed to be
suitable for constraint relaxations that dramatically improve performance with a
small cost in terms of detection time. More details of the aforementioned relax-
ation are provided further in this section. We are aware of an alternative approach
in which integrity-checking code running in hypervisor’s space is randomly inter-
posed to code running in the guest, without relying on the trapping mechanism.
According to our experiments, ignoring modifications to guest control registers
would not scale with the guest system load as our current approach does.

Another instruction that, when executed by the guest kernel, causes a VMExit
and that might have been used as an alternative to the MOV CR* instruction is
INVLPG. This instruction, invalidates a single page table entry in the TLB (Intel
architecture). Invalidating part of the TLB is an optimization that replaces the
complete flushing when the number of entries that need to be refreshed is below
a certain treshold. In the Linux kernel this does not occur often. Therefore trap-
ping on this instruction would have resulted in very few VMExit events, giving an
attacker enough time to compromise an object and set its value back to the orig-
inal, without being detected. Moreover, a MOV CR* instruction is also executed
upon raising a system call from userspace. Although the number of VMExits can
increase consistently, we believe that system calls, as task switches represent a
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sound heuristic measure of system activity.

We developed a prototype of our countermeasure by extending BitVisor, a tiny
Type-I hypervisor [85] which exploits Intel VT and AMD-V instruction sets. Our
target system runs a Linux kernel with version 2.6.35. The trusted code has been
implemented as a loadable kernel module for the Linux kernel [86].

What made BitVisor our choice to implement a proof-of-concept is not only the
availability of the source code but also its memory address translation mechanism.
In BitVisor, the guest operating system and the hypervisor share the same physical
address space. Hence, in this specific case, the hypervisor does not need any
complex mechanism to provide translations from guest to host virtual addresses.
As a consequence, its size results consistently reduced, when compared to other
Type-I hypervisors. The guest operating system will rely on its private guest
page table to perform translations from virtual to physical addresses. The only
drawback of this software architecture is that the hypervisor can not directly use
the guest page table, otherwise the guest could access hypervisor’s memory regions
by mapping physical addresses to the page table. BitVisor uses shadow paging to
verify page table entries right before they are used by the processor, to prevent
such attacks.

Although hypervisor’s and guest’s memory is shared on the same physical ad-
dress space, isolation is still guaranteed by hiding hypervisor’s memory regions
from the guest via BIOS functions (function e820h) that fake that the memory
region is reserved. Being on the line to this memory architecture, translations of
guest virtual addresses to host virtual addresses are performed by the cooperation
of the trusted module and the hypervisor, as explained later in this section.

Our system detects illegal modifications of invariant critical kernel objects in
three distinct phases which are described below.

Communicating phase The trusted module executes in the guest’s address
space and communicates the addresses and sizes of critical kernel objects to be
protected. In order to test and benchmark our system in a realistic way, we created
an artificial list of critical kernel objects by allocating synthetic kernel data. For
each critical object the trusted module in the guest will retrieve its physical address
by calling pa(virtual address), a macro of the Linux kernel. If the kernel object
is stored in one physical frame the trusted module will immediately collect the
start address and the size. Otherwise, if the kernel object is stored on more
than one physical page frame the trusted module will store the relative list of
physical addresses. For some critical kernel objects it is possible to communicate
their original content for the reasons explained in paragraph Repairing phase.
A memory area shared with the hypervisor is allocated for storing the object-
related data and control flags. When the virtual addresses of all objects have been
translated, a hypercall is raised which signals the hypervisor to start the integrity
checking.

Detection phase In order to detect changes the hypervisor needs to access
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Figure 3.1: High level view of trusted module-hypervisor interaction

the contents at the guest physical addresses collected by the trusted module. This
is achieved by mapping the physical address and size of each object in its private
memory in order to compute the signature of its actual contents. When all ob-
jects have been checksummed an end-of-operation flag is set in the memory area
shared with the trusted module, which in turn will be unloaded. The checksum is
performed by a procedure which implements the MD5 algorithm [87]. This cryp-
tographic hash function provides the integrity guarantees needed for our purposes.
While stronger hash functions exist, we believe that the security and collision rate
provided by MD5 adequately protect our approach from mimicry attacks.

Repairing phase When the hypervisor detects that the signature of a pro-
tected object is di↵erent from the one computed the first time, two di↵erent be-
haviours are allowed:

a) the system will report an ongoing attack or

b) the system attempts to restore the contents of the compromised object if a
copy has been provided by the trusted module.

Since the hypervisor and the guest share the same physical address space, the
hypervisor can restore the original content by mapping the physical address of the
compromised object in its virtual space. The untampered value is then copied and
control returns to the guest. The restoration of modified critical data structures
means that, while the rootkit’s code is still present in the address space of the
kernel, it is no longer reachable by the kernel control-flow and thus it is neutralised.
One drawback of the repairing phase is data inconsistency: if a process in the guest
is using the data structure that is being repaired by the hypervisor, on the next
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Component Description
Processor Intel Core 2 Duo
Model E6750 @ 2.66GHz
Speed [MHz] 2667.000
Virtualisation enabled Intel VT
Memory 4GB
NPT/EPT not enabled
OS Linux 2.6.36

Table 3.2: Testing machine specification

VM Entry an inconsistency might be raised. However, switching from VMX-root
to VMX-non-root causes a flush of the Translation Lookaside Bu↵er (TLB). Any
code in the guest that was using the compromised object will perform the address
translation and memory load again and will thus load the restored value.

As previously mentioned, whenever task switching, the CR3 register’s contents
are changed. A trap of the MOV CR* event occurs and integrity-checking is
performed. This checking occurs outside of the guest operating system and thus
cannot be influenced nor delayed by any other event that occurs in the guest.

Since the number of kernel objects is usually high, a relaxation of the former
problem consists in performing the integrity checking of only a subset of objects.
Therefore, the overall list of objects will be checked in number of MOV CR* events
that depends on the total number of objects to be protected and the number of
objects checked each time. Finally, control is returned to the guest kernel and
another subset of critical kernel objects will be checked at the next MOV CR*
event. While considerably improving the performance overhead, this relaxation
obviously comes at a cost in terms of security and detection time. We do believe
however, that the resulting detection ability of our method remains strong, a belief
which we explore further in Section 3.3.

3.3 Evaluation

In order to evaluate whether our approach would detect a real rootkit we installed
a minimal rootkit [88] which hijacks a system-call entry, specifically the setuid
systemcall, from the system-call table. Although the aforementioned rootkit is a
simplified version of real-world kernel rootkits, it belongs to the family of rootkits
that target system calls and other operating system invariant function pointers.

Whenever the setuid system call is invoked with the number 31337 as an
argument, the rootkit locates the kernel structure for the calling process and el-
evates its permissions to root. The way of hijacking entries in the system-call
table is very common among rootkits (see Table 3.1) since it provides the rootkit
a convenient and reliable control of sensitive system calls.

The critical kernel object that the rootkit modifies is the system-call table
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which normally remains invariant throughout the lifetime of a specific kernel ver-
sion. The Linux kernel developers have actually placed this table in read-only
memory, however the rootkit circumvents this by remapping the underlining phys-
ical memory to new virtual memory pages with write permissions.

Before installing the rootkit, we gave as input to our trusted module, the
address of the invariant system-call table and its size. In a real-life scenario, our
mitigation would work in concert with an external source that detects the memory
locations of the invariant critical kernel-objects and their size. This source can
either be automatic invariance-discovering systems or kernel programmers who
wish to protect their data structures from malicious modifications. Once our
system was booted we loaded the rootkit in the running kernel. When the next
MOV to control-register occurred, the system, trapped into the hypervisor, was
capable of detecting changes on the invariant system-call table. After reporting
the attack, the system repaired the system-call table by restoring the system-call
entry with the original memory address. In this specific case although the rootkit’s
code was still loaded in kernel-memory it was no longer reachable by any statement
and thus inactive.

A list of synthetic kernel objects has been created to run a set of benchmarking
utilities and evaluate the performance impact. The size of each of these objects has
been chosen according to slabtop, a Linux utility which displays kernel slab cache
information. Approximately 15,000 kernel objects are allocated during system’s
lifetime, 75% of which smaller than 128 bytes. Moreover, these numbers are never
exceeded in other detection systems. The trusted module has been instrumented
to create a set of objects with the aforementioned characteristics.

Checking the integrity of 15,000 kernel objects at a time, and only then re-
turning control to the guest operating system is not a practical solution and it is
a↵ected by a considerable overhead that dramatically penalises the usability of the
overall system. Moreover this solution would not scale with the number of objects
that can arbitrarily grow if the goal is to minimise the attack surface. Therefore
at each VMExit we check each time a di↵erent subset of the object set. This pa-
rameter is configurable and its value depends on the priorities of each installation
(performance versus detection time). In our proof of concept the hypervisor will
check the integrity of 100 objects of 128 bytes each every time a MOV CR event
is trapped. Needless to say, 150 VMExit events must occur in order to check the
integrity of the entire list. The choice of the aforementioned numbers of objects
to be protected is based on empirical observations that try to keep the user’s ex-
perience within the guest as smooth as possible for the general tasks of every day
computing.

Measuring timings in a virtualised environment di↵ers from the usual procedure
used with traditional systems. The guest’s timers might be paused when the
hypervisor is performing any other operation. Therefore we measure real (wall-
clock) timings in the guest to compensate for any inaccuracy that might occur.
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Figure 3.2: Schema of integrity checking 15000 objects in 150 VMExit trapped
events

For the sake of completeness, three distinct benchmarks have been performed
on our system, that measure three di↵erent aspects for a better evaluation of the
performance impact. We collected results from ApacheBench [89] sending requests
on a local webserver running lighttpd (Table 3.4) and from SPECINT 2000 as
macrobenchmarks in order to estimate the delay perceived by the user (Table
3.6). Lastly, we collected accurate timings of microbenchmarks from lmbench
(Table 4.3.2). The macrobenchmarks show that our system imposes neglibible
overhead on the SPEC applications (0.005%) allowing its widespread adoption as
a security mechanism in virtualised systems.

As expected, microbenchmarks show a consistent overhead on process fork-
ing. In Table 4.3.2 we do not report measurements of context switching latencies
because the numbers produced by this benchmark are inaccurate [90,91]. An im-
provement of local communication bandwidth is due to the slower context switch-
ing which has the side e↵ect of slightly increasing the troughtput of file or mmap
re-reading operations.
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Processes - times in microsecs - smaller is better
open clos slct TCP sig inst sig hndl

w/o counterm. 16.6 3.08 0.48 2.41
w counterm. 16.5 3.09 0.48 2.47
overhead (%) 0.6% 0.3% 0% 2.5%

fork proc exec proc sh proc
w/o counterm. 1222 4082 16.K
w counterm. 1724 5547 18.K
overhead 41.0% 35.8% 12.5%

File and VM system latencies in microsecs - smaller is better
0K File create 0K File delete 10K File create 10K File delete

w/o counterm. 26.0 21.5 99.9 28.2
w counterm. 26.4 21.3 99.8 27.8
overhead (%) 1.53% -0.93% -0.1% -1.43%

Mmap latency Prot fault Page fault
w/o counterm. 62.2K 4.355 9.32010
w counterm. 66.5K 4.444 9.84780
overhead (%) 6.9% 2.0% 5.5%

Local Communication bandwidth in MB/s - bigger is better
TCP File reread Mmap reread Bcopy(libc)

w/o counterm. 2401 313.0 4838.1 617.5
w counterm. 2348 313.2 4885.0 619.7
overhead (%) 2.2% -0.06% -0.93% -0.32%

Bcopy (hand) Mem read Mem write
w/o counterm. 616.1 4836 698.7
w counterm. 618.8 4842 697.8
overhead (%) -0.43% -0.12% 0.12%

Table 3.3: Performance overhead of our countermeasure in action measured with
lmbench benchmark suite. IO tasks and file system operations can show better
performance when the countermeasure is active, due to the longer time spent in
hypervisor space. While user experience is generally slower, DMA operations can
show slightly better throughput.
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Benchmark w/o counterm. w counterm. Perf.overh.[%]
Time [sec] 7.153 7.261 1.50%
Req/sec[num/sec] 13981.10 13771.43 1.52%
Time/req [ms] 3.576 3.631 1.54%
Time/concurrent req [ms] 0.072 0.073 1.4%
Transfer rate [KB/sec] 52534.36 51746.51 1.52%

Table 3.4: Results of ApacheBench sending 100000 requests, 50 concurrently on
local lighttpd webserver

Benchmark w/o counterm.[ms] w counterm.[ms] Perf. overh.[%]
compression 21.32 21.40 0.4%
decompression 6.73 7.33 8.9%

compiling 394.3 421.2 7.0%

Table 3.5: Performance overhead of our countermeasure in action on compres-
sion/decompression (bzip/bunzip) and compilation of kernel code

Benchmark w/o counterm.[sec] w counterm.[sec] Perf. overh.[%]
164.gzip 204 204 0%
175.vpr 138 142 2.8%
176.gcc 88.7 89.0 0.3%
181.mcf 86.4 86.7 0.34%
197.parser 206 207 0.5%
256.bzip2 179 179 0%
300.twolf 229 229 0%
Average 161.6 162.4 0.005%

Table 3.6: Performance of our countermeasure running SPEC2000 benchmarks
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Memory overhead Naturally, memory overhead is proportional to the number
of objects to be protected. The data structure needed to store information for
integrity checking is 32 bytes long for each object (64-bit kernel object physical
address, 32-bit kernel object size, 128-bit checksum, 32-bit support flags used by
the hypervisor)2. Therefore, protecting 15,000 objects costs 469KB in terms of
memory space when the original content has not been provided and 2344 KB
otherwise.

Moreover, every time a subset of the list of objects is checked the hypervisor
needs to map each object from the guest physical space to its virtual space. As
explained, the hypervisor will map 100 objects of 128 bytes each every time a
MOV CR event is trapped. This adds an additional cost of 13KB. Thus the
overall cost in terms of memory is approximately 306KB (2181KB if a copy of
the original content is provided for each object). Since the regular hypervisor
allocates 128MB at system startup, the overall memory impact amounts to 1.7%.
The trusted module needs exactly the same amount of memory. After raising the
hypercall and sending object data to the hypervisor, that memory will be freed
and will be made available to the guest kernel. Moreover guest virtual machines
are equipped with an amount of memory that is higher than the one allocated by
the hypervisor. For the reasons explained above we consider the memory overhead
negligible for the guest operating system.

Detection Time Due to the relaxation of integrity checking introduced in the
earlier sections, it is possible that the modified critical kernel object will not be
in the current subset of objects to be checked. In the considered case study, the
list of objects will be checked in 150 process switches. In the worst case scenario
a compromised object will be detected after 149 trapped events. This delay has
been measured to approximately 5 seconds of wall-clock time, on a machine with
hardware specification reported in Table 3.2.

Although this is a considerable time lag, we believe that it is an acceptable se-
curity trade-o↵ for the performance benefits that the relaxation o↵ers. An analysis
of the chances for an attacker to circumvent the countermeasure with resorting to
randomness is provided in the next section.

3.4 Limitations

In this section we describe the limitations and possible weak points of our coun-
termeasure. One possible way to circumvent the countermeasure is compromising
the scheduler of the operating system in order to avoid task switching, the regular
mechanism that triggers integrity checking. The problem with such an attack is

2In order to repair the compromised object, the hypervisor needs to store the object’s original
content too. This may increase the memory overhead.
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that it e↵ectively freezes the system, since the control cannot be returned back
from the kernel to the running applications. A rootkit’s main goal is to hide itself
from administrators. Thus, any rootkit behaving this way will clearly reveal that
there is something wrong in the kernel of the running operating system. Moreover,
a kernel compromised in this way will never be able to intercept system calls of
running processes. These facts suggest that while the attack is possible, it is not
probable.

A more probable attack might occur as a consequence of the relaxation ex-
plained in Section 3.3. Since only a subset of objects will be checked at any
MOV CR event, a group of malicious processes in the guest might compromise
the kernel and restore the original contents before the hypervisor performs the
checking (Figure 3.2). We consider such an attack hard to accomplish because,
although the list of objects is checked until completion, in a deterministic fashion,
the attacker has no knowledge of the position of the compromised object in the
hypervisor’s memory space nor within the list. An immediate mitigation for this
kind of attack might be the randomisation of the sequence in which blocks are
checked.

An analytical explanation of the scenario in which our method operates is
explained by solving a simple combinatorial problem.

Given N the total number of objects and k the number of objects checked after
one trapped event, the number of subsets of k objects containing the compromised
one is given by

s =

✓
1

1

◆✓
N � 1

k � 1

◆

and the probability that the compromised object will be detected after t trapped
events is given by

Pt(detect) = s

✓
N

k

◆�1

= t
(N � 1)!

(N � k)!(k � 1)!
= t

k

N

In the scenario described above, where N = 15000, k = 100 this probability is

Pt=1 =
100

15000
= 0.6%

Although it seems there might be a very small chance for the hypervisor to
detect whether one object has been compromised after one task switch, some con-
siderations must be made to show that, from a practical point of view, this is not
a consistent limitation. Rootkits that are capable of inflicting a high damage to
their target system, usually have a quite complex behaviour and need to compro-
mise more than just one object. Moreover the e↵ectiveness of a rootkit depends on
whether or not it can stay resident and keep target objects in their compromised
state.
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A 64-bit Linux rootkit [9] that attacks browsers of clients to do iFrame in-
jections has been found recently. After loading into memory via loadable kernel
module, the rootkit retrieves kernel symbols with their physical address and writes
them into a hidden file

cat /proc/kallsyms > /.kallsyms_tmp
cat /boot/System.map-‘uname -r‘ > /.kallsyms_tmp

After extracting the memory addresses of several kernel functions and variables
it hides the created file and the startup entry in order to make the attack stealthy.
At least five kernel functions are needed to be compromised and complete the
attack successfully. The addresses of the functions reported below are replaced by
pointers to their malicious equivalent [9, 10]

• vfs readdir

• vfs read

• filldir64

• filldir

• tcp sendmsg

These kernel objects must stay compromised within the attacked system to
hide files that otherwise would make it observable and for the time needed to
connect to a Command and Control server. This delay will definitely allow our
countermeasure to detect this rootkit. Moreover, the number of objects to be
compromised at the same time reduces the window of detection time so much that
it becomes extremely di�cult for an attack of this type to stay unnoticed to our
mitigation technique.

The probabilistic nature of selecting a subset of kernel objects to be checked
each time, makes our technique susceptible to probabilistic attacks. To confirm
what we claimed about the e↵ectiveness of the described approach, we provide a
Monte Carlo simulation to study the probability of successful attacks in several
conditions.

In Figure 3.3 we plot 1000 runs of our method when 1 to 11 objects are com-
promised and restored after 100 task switches. If an object stays compromised
for a time longer than the one required for 150 task switches, it will certainly be
detected (Pr(detect) = 1) by the hypervisor. Therefore we provide an analysis
under condition that is favourable to the attacker.

In Figure 3.4 the probability of successful attacks has been estimated for three
cases that consist in restoring the original content of the compromised objects
after 75, 90 and 120 task switches respectively. This probability rapidly decreases
as the number of compromised objects increases, as in rootkits with more complex
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Figure 3.3: Monte carlo simulations for the analysis of the probability of attack,
compromising from 1 to 11 objects and restoring their original content after 100
task switches
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Figure 3.4: Probability of successful attack compared to restoring rate of 75, 90
and 120 task switches
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behaviour. As expected, this probability is very small (<< 0.65%) when the
number of compromised objects is greater than 4 and the number of task switches
TS > 100.

A third possible way to compromise the guest kernel would be by corrupting
critical kernel objects whose values legitimately change during the kernel’s lifetime.
Such objects are not invariant and thus cannot be included in the list of objects
that this approach checks since this system is unable to di↵erentiate legitimate
from non-legitimate changes. The majority though of existing kernel-mode rootkits
modify invariant data structures. Thus our system reduces considerably the rootkit
attack surface and prevents most rootkits from performing a successful attack.

Lastly, our method relies on invariance inference engines to provide an accurate
list of invariant critical kernel objects. In the worst case scenario, if the designated
inference engine does not provide all the invariant critical kernel objects that are
interesting targets for attackers (false negatives), this approach will be unable to
detect attacks that occur in the non-reported kernel objects.

3.5 Related work

Due to the constant development of malicious software and active research in the
field, a number of e↵orts exist on detecting and preventing kernel-mode rootkits.
In this section we explore related work that attempts to protect a kernel using dif-
ferent technologies such as virtualisation and special-purpose hardware in Section
3.5.1, kernel code integrity in Section 3.5.2 and code profiling in Section 3.5.3.

3.5.1 Hardware-based countermeasures

Copilot Copilot [92] is a kernel integrity monitor which detects illegal modi-
fications to a host kernel by fetching the physical memory pages where kernel
data and code have been stored. The detection strategy of the monitor is based
on checking the integrity of kernel data structures with the aid of MD5 hashes.
The above detection is performed by a dedicated PCI card, equipped of a co-
processor that fetches kernel pages at regular intervals. Although the measured
performance impact is relatively negligible, this mitigation technique is a↵ected
by several limitations. Since the detection mechanism is running within the same
kernel to protect, the aforementioned detection will fail when the target kernel is
su�ciently modified. As the authors claim in their work, when the kernel itself lies
about its integrity, all other system utilities will receive this information and con-
sider it trustworthy. Even in the presence of dedicated hardware, the fact that it
is controlled by the target operating system can influence the overall e↵ectiveness
of the countermeasure. In a testbed similar to the one we propose in our solution,
which consists in performing checking of kernel data every 5 seconds, the overall
performance impact has been measured to 3.80% (WebStone throughput results)
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compared to the performance of a native system. Another shortcoming of Copilot
is represented by access limited to main memory: there is no way for Copilot to
inspect CPU registers, since it is not possible to pause the CPU’s execution of the
target system. In our solution, whenever control is returned to the hypervisor,
which performs kernel integrity checking, the guest system is paused. A snapshot
of the register set of a paused system can be inspected in hypervisor space rela-
tively easily. In our prototype we check the integrity of the Interrupt Descriptor
Table Register (IDTR). It goes without saying that the entire register set of the
guest machine can be checked with the same mechanism. Because Copilot accesses
host memory via the PCI bus, there are chances to find kernel data structures in
an inconsistent state whenever the monitor performs a DMA access (direct access
to physical memory) and a process is modifying them at the same time. Our
solution avoids race conditions of this type by invalidating the virtual to physical
mapping in the TLB (Translation Lookaside Bu↵er) upon returning control to the
guest operating system. Specifically, when the hypervisor is repairing (writing)
a compromised kernel structure, a process that was using that data before will
find an inconsistency. However, invalidating the virtual-physical address mapping
will force the process to remap the new content stored at the physical address.
The strategy of checking integrity every 30 seconds makes the Copilot monitor
susceptible to timed attacks. A rootkit that compromises kernel data and rapidly
repairs it will stay unnoticed. Although our mitigation technique is a↵ected by
the same problem, we provide a probabilistic analysis that shows the chances of
successful timed attacks under several conditions.

Gibraltar A system that, similarly to the one described in the previous sections,
detects violation of kernel data structures integrity is Gibraltar [81]. Gibraltar
executes on a separate machine, called the observer, and monitors the integrity
of the kernel running in another machine, physically separated, called the target.
Both the observer and the target are connected by the Myrinet PCI intelligent
network card. Within such an architecture the observer can remotely access the
physical pages of the target kernel. Gibraltar is formed by three main components:
the page fetcher, the invariant generator engine and the monitor. The page fetcher,
which executes on the observer, fetches the page of a given memory address of the
target, where the PCI card has been installed. The PCI device initiates a DMA
request for the requested page and send the content back to the observer. The
invariant generator engine, which executes in the observer, generates a list of
invariants that conform to several templates, such as membership (x 2 a, b, c),
nonzero (x 6= 0), bounds (x � c, x  c), etc. The monitor ensures that the
list of observed data structures in the memory of the target system satisfy the
invariants inferred by the invariant generator engine. One limitation of Gibraltar
is represented by the fact that pages are fetched and monitored asynchronously.
Due to the consistent delay between fetching and monitoring, the chances of timed
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attacks are considerably high. However, the main limitation is represented by the
isolation requirement which is fulfilled by executing the monitor and the target
systems within two physically separated machines. The need of special hardware
and the overall performance penalty, make Gibraltar not suitable for production
systems.

3.5.2 Kernel code integrity

SecVisor A countermeasure specifically designed to prevent the execution of
unauthorized code is described in [73]. For the reasons explained in the previous
sections, malicious code executing in kernel mode can be extremely dangerous.
SecVisor ensures that only approved code can be executed in kernel mode. It comes
in the form of a tiny hypervisor that operates at VMX root mode, exploiting the
virtualisation capabilities of modern hardware architectures like AMD and Intel.
By validating kernel code before executing it, SecVisor prevents the execution
of injected code, as is the case of kernel rootkits. Existing kernel code is also
protected in order to prevent any illegal modification from unauthorised parties.
In order to achieve the aforementioned goals, SecVisor virtualises the physical
memory to set CPU-based memory protections over the kernel, the IO Memory
Management Unit (IOMMU) to protect code from DMA writes, and the CPU
Memory Management Unit (MMU) in order to check any modification to the MMU
from the protected kernel. The very limited amount of changes that need to be
applied to port an operating system like Linux to execute on SecVisor makes it
an attractive solution against rootkits. Unfortunately, the overhead of virtualising
memory and shadowing several components of the CPU is very high, compared to
other solutions that can achieve the same degree of security. Another limitation
arises from the security evaluation of SecVisor: since control flow integrity is not
guaranteed, return-to-libc3 type attacks are still possible. For instance, an attacker
can pass control to a kernel function of his choice by overwriting the return address
of another function within the same kernel space. Such a behaviour is considered
totally legal by SecVisor.

NICKLE A system that prevents the execution of rootkits by detecting the
presence of malicious code before its execution is NICKLE [66]. It comes in the
form of a minimal hypervisor which prevents unauthorised kernel code execution.
One of the main advantages of such a solution consists in the fact that no changes
to the guest OS kernel are required. Therefore commodity OSes can be supported
without recompilation or reinstallation. To overcome the problem of single mem-
ory space for kernel code and user code, NICKLE implements a memory shadowing

3This type of attacks usually overwrites the return address on the call stack, replacing it with
the address of a function that is already loaded in the binary and that provides the functionality
required by the attacker, otherwise implemented by injecting new code.
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system that is controlled by the virtual machine monitor and that is not acces-
sible to the guest. The hypervisor maintains a shadow physical memory to store
authenticated guest kernel code. Upon the startup of the VM, that is assumed
to be in a untampered trusted state, authenticated guest kernel instructions will
be copied from the guest’s standard memory to the shadow memory controlled
by NICKLE. Another specific event that triggers NICKLE’s intervention is the
loading/unloading of loadable kernel modules. Loading a module is considered
injecting code, that needs to be authenticated and validated before execution. At
system startup the guest’s shadow memory is expected to be empty. At this stage,
the system bootstrap code will be verified and copied into the shadow memory.
After the kernel has been loaded and decompressed, a cryptographic hash is used
to verify its integrity. The kernel code is then copied from standard memory to
shadow memory. If the hash values do not match with the values computed pre-
viously, the code will not be copied to the shadow memory. An administrator
or distribution maintainer is supposed to perform such computations beforehand.
The actual protection occurs after validation, when the virtual machine is about
to execute a kernel instruction. At this point NICKLE will redirect the instruc-
tion fetch to the shadow memory rather than standard memory, after verifying
that the current instruction is authenticated. Memory accesses to user code, user
data and kernel data will proceed without any intervention. Kernel rootkit at-
tacks would be detected and prevented since invalidated code would attempt to
run in kernel mode. A recent attack to bypass countermeasures against code
injection attacks, such as the Non-Executable stack countermeasure, is Return
Oriented Programming (ROP) [93]. This method of attacking has been used to
create return-oriented rootkits which re-use fragments of authorized kernel code
for malicious purposes [69]. Such rootkits can bypass countermeasures like the
ones proposed in [66,73].

Hookscout Yin et al. [72] focus on kernel function pointers and protect them
from being compromised by rootkits. They developed a function pointer protec-
tion system called Hookscout. The main observation of the authors is that, in
many cases, access to the source code of the operating system to be protected is
not available. Therefore, they provide a binary-centric solution that can gener-
ate a hook detection policy without accessing the OS kernel source code. Their
approach is also context-sensitive. This allows detection of kernel hooks even in
the presence of polymorphic data structures. The approach consists of an analysis
and a detection phases. The idea of Hookscout consists in performing dynamic
binary analysis of the target system in order to monitor kernel memory objects
and keep track of function pointers propagating in kernel space. Since kernel func-
tion pointers are the main target of kernel rootkits, the aforementioned analysis
can detect how function pointers are created, distributed and used. Moreover, all
memory objects allocated statically or dynamically are monitored. The analysis
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is performed by TEMU, a dynamic binary analysis platform based on QEMU.
Therefore, the target system needs to be run within an emulator. This is the main
cause of the overall performance impact. During the analysis, the emulated oper-
ating system is tested with common test cases, while the monitor engine collects
system information such as the state of memory objects and function pointers.
Given this information as input to an inference engine, context-sensitive analy-
sis is performed in order to generate the policy for hook detection. During the
detection phase, the detection engine, located within the target system, enforces
the policy generated during the analysis phase and detects hooks in the kernel
space at runtime. It goes without saying that Hookscout’s e↵ectiveness can be
compromised by a rootkit capable of disabling the protection since the detection
system resides within the same target machine.

HookSafe Another system that can protect thousands of kernel hooks from
being compromised is HookSafe [76]. Commodity hardware can provide protection
with page-level granularity, meaning that protection flags can be set for a page,
not for a byte. Since protection of kernel objects needs byte-level granularity, the
authors of HookSafe consider the former type of protection not su�cient against
rootkits. HookSafe is a hypervisor-based system that relocates kernel hooks to be
protected to a dedicated page and then exploits the regular page-level protection
of the MMU to protect that page. This is doable due to the fact that a kernel
hook, once initialised, will be frequently read-accessed and rarely write-accessed.
Therefore, a relocation of those pointers will not a↵ect the functionality of the
overall system. The concept of shadow memory is used to copy the kernel hooks
in a centralised location. Attempts to modify the shadow copy will be trapped by
the hypervisor which will verify if the caller has enough permissions to modify the
protected area. Read accesses will be redirected without any intervention to the
shadow copy. A layer between the guest and the hypervisor will handle read and
write accesses accordingly. Since the hypervisor is the only component that can
write to the memory pages of the protected kernel, control needs to be transferred
from the guest to the hypervisor, which will modify on guest’s behalf, and then
back to the guest kernel. Kernel rootkits can target areas di↵erent from regular
memory-based function pointers, such as hardware registers like GDTR, IDTR,
SYSENTER and MSR. Being HookSafe a hypervisor-based countermeasure, access
to hardware registers can be regulated. Any attempt to write to these registers is
intercepted and validated. The main limitation of HookSafe consists in the fact
that it does not protect non-control kernel data. Therefore, rootkits that target
this type of data structures would not be prevented.

SBCFI An approach that dynamically monitors operating system kernel in-
tegrity is described in [94]. In this work the authors argue that enforcing control
flow integrity can e↵ectively protect against a large class of kernel rootkits. The
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Hardware-based countermeasures
protect nc data special hw protect ROP Overhead

Copilot Yes Yes No High
Gibraltar No Yes No High

Kernel code integrity
protect nc data special hw protect ROP Overhead

SecVisor No No No High
NICKLE No No No Low
Hookscout No No No High
Hooksafe No No No Low
SBCFI No No No Low

Table 3.7: Comparison of existent countermeasures that protect commodity oper-
ating systems against kernel mode rootkits. Column protect nc data indicates
whether non-control data are protected; special hw indicates whether special-
purpose hardware is required; protect ROP indicates whether the countermea-
sure protects against Return-Oriented Programming attacks; Overhead indicates
whether the overhead of the countermeasure is low or high

main observation consists in the fact that, despite the specific behaviour of rootk-
its (such as injecting code, compromising function pointers, changing the value of
specific registers, etc.), the execution flow of a compromised system will di↵er from
the execution flow determined before the attack. Therefore, control flow integrity
can be considered a valuable measure of the integrity of the overall system. Due to
the persistent nature of rootkits, monitoring control flow integrity continuously is
not required. Infrequent monitoring can still e↵ectively protect the system and re-
duce the performance overhead consistently. SBCFI enforces an approximation of
control flow integrity, called state-based control flow integrity. While control flow
integrity checks each branch of a precomputed control flow graph in step with the
program’s execution, SBCFI periodically examines the kernel’s state and validates
it as a whole. The target kernel code is first checked for any modification, then all
static branches are validated. In a subsequent phase, all usable function pointers
of the heap are verified that they target valid code. The approximated nature
of control flow integrity makes the overhead of SBCFI negligible. Moreover, the
control flow integrity monitor can be isolated from the target operating system.
Both the implementations of SBCFI on top of the Xen hypervisor and the VMware
Workstation virtual machine monitor have a similar performance impact.

3.5.3 Analysis and profiling systems

Although not specifically designed to protect against rootkits, malware analysis
can reveal important information about the way rootkits can compromise kernel
data structures or how private information is stolen, allowing researchers to un-
derstand rootkit’s behaviour and design e↵ective countermeasures against them.
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Most state-of-the-art analysis approaches share the same execution space of the
malware that is being analysed. This can reduce the value and e↵ectiveness of
the analysis because some malware can detect the analysis platform and behave
di↵erently than in the real target system. The isolation capability of virtualisa-
tion technology and the ability to save and restore the state of a guest operating
system are o↵ering new tools to shed light on the complex techniques of malware
development. General purpose hypervisors are usually not suitable for the purpose
of analysing malware because they provide access to an emulated version of the
hardware making the entire virtualisation platform visible to complex malicious
software. Recent malware like Storm and Conficker are known to detect they are
running inside a virtual machine and behave di↵erently [95, 96].

MAVMM MAVMM [75] is a virtual machine monitor specifically designed for
malware analysis. It can extract useful information for a complete profile of the
investigated malware such as memory pages, system calls and accesses to disks and
network devices. Contrarily to other hypervisors, MAVMM lets most hardware
access requests go through without interception. This feature makes the entire
platform invisible to the malware while still controlling accesses to the aforemen-
tioned areas of the system. The analysis platform only intercepts guest execution
at a few places, in order to protect its own integrity and log the guests’ behaviours
for further analysis. Hardware supported Nested Page Tables (NPT) are used
to protect its memory from being compromised by the guest, while an IOMMU
unit is used to prevent any tamper by external hardware devices via DMA. The
execution trace of a guest program is recorded by single stepping its execution at
each instruction. This is implemented by virtualising the TF flag that will raise
a debugger exception, which will in turn be intercepted by MAVMM. A log of
executed system calls can give a good picture of what the malware under investi-
gation is trying to do. MAVMM can record all system calls that a guest system
invokes during its lifetime. Selective analysis of specific processes in the guest is
also possible by notifying MAVMM each time a process switch occurs in the guest.
A known issue to deal with consists of choosing the safest location to which log
files can be stored and subsequently analysed. Using the same disk device would
expose collected data to the attacker. Therefore, an USB flash drive or a separate
disk unit controlled by di↵erent device drivers is an approach preferred by the
authors.

Hookmap Wang et al. [97] proposed Hookmap, an analysis tool against per-
sistent rootkits. Hookmap is based on the observation that rootkits try to hide
their presence within the target kernel and they usually install kernel hooks on the
corresponding kernel-side execution path invoked by the target program. There-
fore, given a security program, the authors argue that an analysis of its kernel-side
execution path would be su�cient to detect and investigate a rootkit’s behaviour.
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As a consequence, the user-side execution path might be neglected. Linux util-
ity programs like ls, ps and netstat have been analysed and their relative kernel
hooks identified. For instance, Hookmap found 35 kernel hooks mapped to the ls
utility, 85 kernel hooks for ps and so forth. As a result, this approach uncovers
those kernel hooks that can be potential targets of attacks. By recording possible
control-flow transfer instructions in the kernel-side execution paths, Hookmap is
able to derive all related kernel hooks and search for abnormalities at runtime. The
authors exploit virtualisation technology and system emulation software QEMU
to perform their analysis in complete isolation.

HookFinder An approach that does not rely on any prior knowledge of hooking
mechanisms is HookFinder [98]. Therefore it represents a suitable tool to identify
novel hooking mechanisms. To overcome the limitation of static analysis, that
can be easily circumvented by malicious programs equipped with code obfuscation
techniques, HookFinder relies on dynamic analysis. This means that malware
programs are analysed while being executed within a controlled environment. A
whole-system emulator is used for the purpose. All the information collected by
the three main components of HookFinder, namely the impact engine, the hook
detector and the semantics extractor, is used to derive how the rootkit implants the
hook and how the hook is activated by the operating system. When the malware
starts executing, the initial impacts, that is data written directly by malicious code
(and by external components, on behalf of malicious code) are added to a list to be
monitored. Then HookFinder keeps track of the impacts propagating through the
whole system. For instance, if it is observed that the instruction pointer is loaded
with the address of a monitored impact, and the execution jumps immediately into
the malicious code, a hook has been identified. Once a hook has been identified,
HookFinder logs into a trace the details about its behaviour within the system.
By combining the information of the trace and operating system level semantics,
HookFinder can provide an intuitive graphical representation that might be useful
to malware analysts for a better understanding of the hooking mechanism under
investigation.

PoKer Another virtualisation-based rootkit profiler is described in [77]. PoKer
can log the rootkit hooking behaviour, it can monitor targeted kernel objects,
extract kernel rootkit code and infer the potential impact on user-level programs.
Poker is deployed in systems that can tolerate non negligible performance impact
such as honeypots, for which correctly profiling a rootkit has a higher priority
than performance. The overall system with PoKer enabled executes 3.8 times
slower then the equivalent system without PoKer. The profiler will be enabled
after the first malicious instruction has been executed. The techniques described
by NICKLE and SecVisor are considered by PoKer to ensure that all actions
are logged after this specific event. At this point, PoKer switches to a rootkit
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profiling mode, by activating a separate virtual machine, and starts to determine
the static and dynamic objects that are being targeted by the rootkit. In order
to accurately profile compromised objects, PoKer needs to access the source code
of the operating system kernel or debugging symbols and type information of a
compiled kernel binary. Gathered information is stored outside the target virtual
machine, to prevent any tamper with the rootkit under investigation. Interpreting
the traces and resolving read and write target addresses is considered a challenging
task, due to the di�culty of identifying the corresponding kernel object, given an
arbitrary memory address. Since virtualisation technology does not support such
a reverse lookup, an address-to-dynamic object table map is used to translate
memory addresses into kernel objects. An initial map of static objects, combined
to the rootkit’s reads is a su�cient information to build the aforementioned map
at runtime.

The countermeasure described in the previous sections can be integrated with
the systems described above in order to perform integrity checking and detect
illegal changes to those kernel objects collected by the aforementioned analysis
tools.

3.6 Summary

In this chapter we showed the e↵ectiveness of the isolation between a hypervisor
and a guest operating system and demonstrated how to build a non-bypassable
invariance-enforcing framework that takes advantage of this feature. We realised
our idea by designing and implementing a lightweight countermeasure that miti-
gates the problem of kernel-mode rootkits in common operating system kernels.

Upon detection of a change of an invariant kernel object, our countermeasure
alerts the administrator of the guest operating system and proceeds to repair the
kernel by restoring the data structure to its original values. Due to this change,
the rootkit’s injected code is usually no longer reachable by any statements in the
kernel and thus can no longer a↵ect the running kernel’s operations.

The performance impact that usually a↵ects virtualisation technology has been
consistently reduced by relaxing the problem of protecting a high number of ker-
nel data structures, without limiting the security degree of the countermeasure.
A probabilistic analysis has been provided in order to assess the impact of the
aforementioned relaxation, in terms of security. Moreover, our prototype has been
evaluated on synthetic and real rootkits (such as the ones described in [88, 99]4)
and it has been showed that it can detect control-flow changes with negligible per-
formance and memory overhead, making it a viable countermeasure for protecting
operating systems in virtualised environments.

4The rootkits considered in the aforementioned prototype belong to a family of rootkits de-
signed to compromise the system call table and kernel function pointers that perform operations
like process forking and opening/closing/writing file descriptors, among other tasks.
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The limit of 15000 critical kernel objects holds only in the prototype. How-
ever we consider this number large enough to protect a large surface that will
make the system much harder to compromise with the aid of those kernel mode
rootkits known at date. Although the attack surface results dramatically reduced,
attacks to variant data structures are still possible. However, a di↵erent strategy
and system’s design must be investigated in order to overtake such a limitation.
We believe that research in that direction is needed as more virtualisation-based
systems are making their appearance on the scene.
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Chapter 4

Hypervisor-enForced
Execution of
Security-Critical Code

La semplicitá é l’estrema perfezione

(Simplicity is the ultimate sophisti-

cation)

Leonardo da Vinci

Leveraging virtualisation technology to mitigate attacks to operating system
kernels with a very low impact is a challenging task because of the high overhead
caused by the context switch between the guest and the hypervisor. An important
goal for any framework employing virtualisation as a security tool, is to guarantee
the execution of critical code in the kernel-space of the virtualised operating system
regardless of the state of the kernel, i.e. code that will run identically in both clean
and compromised kernels.

By critical code we refer to code that, in general, monitors the state of the
system and that it is desirable, mainly from a security point of view, to maintain
its execution. Examples of such code include the integrity checking of sensitive
kernel-level data structures that are usually abused by rootkits or the scanning
of files and memory areas for known malware signatures, as in the case of com-
mon antivirus systems. Given our assumption of a kernel-level attacker, it is also
needed to ensure the integrity of the critical code itself to protect it from mali-
cious modifications which might compromise its e�cacy or completely deactivate
its operations. As explained in Chapter 3, a way of achieving such a goal is to

55
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implement and execute security-critical code within the hypervisor. Alternative
approaches monitor the target system from a separate virtual machine in order
to take advantage of isolation between the hypervisor and any virtual machine
as well as isolation among multiple virtual machines [70,100,101]. Unfortunately,
both approaches are known to be a↵ected by a consistent performance overhead.
Moreover, when integrity checking methods are considered, the amount of guest
memory to be checked can be so large that the overhead might become prohibitive
for adoption in production systems. Designing approaches in which guest oper-
ating systems cooperate with the hypervisor can lead to high degrees of security,
even comparable to the ones guaranteed by completely isolated systems, while
significantly reducing the overall performance impact.

4.1 Problem description

Despite the number of publications in the field of kernel level security ( [76, 102,
103]), the consistent presence of kernel-level malware is a sign of how complicated
kernel protection really is. Fortunately, virtualisation technology may facilitate
the design of countermeasures that usually reveal to be e↵ective.

The chief di↵erence between these systems that operate within the hypervisor,
(in-hypervisor), and those that operate within the target system, (in-guest), is
that the latter are part of the system’s attack surface. Researchers have already
proposed various systems that use virtualisation primitives that all fall in this
category [66,92,104–106].

In-hypervisor security systems, in contrast, can utilize the isolation guarantees
of virtualisation technology to make sure that they will be active regardless of the
state of the system that they protect. Unfortunately, these security benefits do
not come for free. The constant transition from the virtualised operating system
to the hypervisor (known as VMExit) and back (VMEntry), negatively a↵ects the
overall performance of the guest forcing one to choose between better security or
better performance.

In this chapter we present a framework that facilitates the implementation
of countermeasures to protect virtualised operating systems, with security and
integrity comparable to those provided by in-hypervisor systems but at the per-
formance cost of in-guest systems. The system described here follows a hybrid
approach by maintaining the security-critical code within the guest, protecting
its instructions and data and forcing its execution from the hypervisor. For the
reasons explained above we called this framework HyperForce.

Taking advantage of the aforementioned framework, we re-implement the coun-
termeasure described in Chapter 3 since that functions as a typical in-hypervisor
rootkit-detection system. An evaluation of the countermeasure in HyperForce
shows that it significantly outperforms the original version while maintaining com-
parable security guarantees.
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The rest of the chapter is structured as follows. In Section 4.2 we explain
the core idea of our approach followed by its design details. In Section 4.3 we
evaluate the performance benefits introduced by this framework and measure its
performance impact. Related work is discussed in Section 4.4 and Section 4.5
concludes.

4.2 Approach

The core idea of HyperForce is to combine the best features of the in-guest and
in-hypervisor defence systems into a hybrid solution which performs as an in-guest
countermeasure while providing security comparable to in-hypervisor countermea-
sures. We achieve this by deploying the functional part of the countermeasure
within the guest operating system while maintaining its integrity and enforcing its
execution with the assistance of the hypervisor. Since the functional part of the
security-critical code, i.e. its instructions and data, is running within the virtu-
alised operating system, the main advantage of such approach is that it has native
access to the resources of the virtualised operating system such as the memory,
disk and API of the virtualised kernel. This provides a great performance benefit
for code that needs to access a high number of memory locations within the virtu-
alised operating system since it alleviates the costly need of introspection usually
required by in-hypervisor systems, i.e. the discovery of the corresponding physical
memory pages of the guest’s virtual memory pages and their remapping within
hypervisor’s space or another virtual machine’s.

Enforcement of Execution. Given an arbitrary piece of security-critical code,
HyperForce needs to ensure its execution at regular time intervals. A complete
reliance for its execution on the virtualised operating system, could potentially
allow a kernel-level attacker to intervene and inhibit the code’s execution through
the modification of the appropriate kernel-level data-structures. For instance, an
attacker could locate the function address pointing to the security-critical code
and overwrite it with a pointer towards their own code.

From a high-level view, HyperForce changes the execution flow of the guest
kernel whenever the installed monitoring code has to be executed and restores
the original execution flow upon code termination. The advances of virtualisa-
tion technology allows one to implement this transition in a multitude of ways.
Our decision has been influenced by the desire of minimizing the amount of in-
strumentation code in the hypervisor and of keeping performance overhead to a
minimum.

In our framework, the security-critical code is encapsulated within a function
that is loaded in the virtualised operating system in the form of Loadable Kernel
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System Emulator QEMU
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Guest Kernel
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Host user space
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Figure 4.1: Schema of HyperForce. Highlighted components indicate parts of the
system that need instrumentation/modification. The trusted module within the
guest is never unloaded.

Module (LKM)1. This allows the code to have native access to all of the guest
operating system’s resources. The key component of HyperForce is a virtual device,
created by the hypervisor’s infrastructure, that is detected and treated as a regular
hardware device by the guest operating system. Virtual devices are supported by
all modern hypervisors to simulate real hardware, such as sound-cards, graphic
cards, storage units, etc. and to allow the execution of unmodified guest code,
as it has been designed to run on bare metal. Once the aforesaid virtual device
has been created and loaded into the virtualised operating system, HyperForce
registers the address of the memory location where the security-critical code has
been stored to as an interrupt handler for the aforementioned virtual device. A
schema is illustrated in Figure 4.1 in which the additional virtual device within
the system emulator QEMU [107] and the trusted module within the guest are
highlighted.

The interrupt handler, and consequently the security-critical code, will be
called whenever the virtual device generates an Non-Maskable Interrupt (NMI).
Hence the cooperation of the hypervisor and the trusted module is based on this
call-and-respond mechanism. Since the virtual device is fully controlled by the
hypervisor, it is the hypervisor that decides when interrupts must be generated

1Although the proof-of-concept has been developed specifically for the Linux kernel, the
method can be easily applied to other commodity operating systems such as Windows
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and not the virtualised operating system. Due to this fact, the eventually com-
promised guest kernel has no possibility to anticipate or delay the execution of
the security-critical code. The logic behind is hidden from it through the isolation
mechanism guaranteed by virtualisation-enabled processors. This fact stops any
attackers’ e↵orts to evade detection by mimicking a non-compromised operating
system just before the execution of the critical-code and restoring their malicious
activities after it.

Integrity of Code. Since the code is loaded in the guest as a LKM, it executes
with the privileges of the virtualised kernel. While this is desired, it also opens
up the code to attacks, e.g. modifications of its code and data, from an attacker
who is in control of the virtualised kernel. Traditionally, the module could not
be protected from the rest of the kernel since they both operate within the same
protection ring, namely Ring 0. Due to virtualisation however, the hypervisor has
more power than the virtualised operating system’s kernel (signified as Ring -1)
and can thus protect any resources from the virtualised kernel, including memory
pages.

HyperForce takes advantage of the paging system provided by the Linux kernel
(extended with hypervisor capabilities) to write-protect the memory pages holding
the instructions and data of the security-critical code. In order to allow the code
to make changes to its data, HyperForce can unlock the memory pages before it
triggers an interrupt of its virtual device and lock them back immediately after the
code’s execution. Most of the performance penalty is due to the task of trapping
an access violation from the guest to the hypervisor. As explained in Section
2.1.1, hardware-supported extended page tables (Intel EPT or AMD NPT) for the
memory management unit consistently reduces this performance impact.

Another way to circumvent the protection mechanism in place consists in com-
promising the Interrupt Descriptor Table (IDT), where pointers to interrupt han-
dlers are stored. When an exploitable kernel-level vulnerability is found, it can be
relatively easy to compromise the IDT. Therefore HyperForce write-protects the
memory page holding the Interrupt Descriptor Table (IDT) of the protected guest.
Lastly, HyperForce protects the Interrupt Descriptor Table Register (IDTR) that
contains the address of the IDT, by checking its integrity at regular intervals. The
aforementioned protection will prevent any attempt to use an Interrupt Descriptor
Table that is di↵erent from the one observed within the untampered system. The
task of protecting the IDTR is straightforward since the IDTR is not supposed to
change during operating system lifetime. A schema of the selection of the interrupt
gate via the IDTR is showed in Figure 4.2.
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Figure 4.2: Selection of Interrupt Gate via Interrupt Descriptor Table Register in
the IA32 architecture. Dashed rectangles indicate that any attempt to write to
these areas is trapped and handled by the hypervisor.

4.3 Evaluation

A proof-of-concept of HyperForce has been implemented in Linux-KVM [108], an
extension of the Linux kernel that adds hypervisor capabilities. KVM is formed by
a system emulator (formerly QEMU [107]) and a Linux device driver. The former
emulates all hardware devices that the guest operating system expects to detect
after boot and executes as a regular process in user space. The latter executes in
kernel-space and uses the new instructions of virtualisation-enabled processors to
run virtual machines with increased performance. A virtual device has been added
in the form of a PCI card to the set of devices emulated by QEMU. As a physical
PCI card, our virtual device can raise interrupts and can access physical memory
within the guest system. A device driver executing in the guest will handle the
interrupts raised by the virtual device and will execute the code implemented in
the interrupt handler. Since the device driver is an extension of the target kernel,
the monitoring code will be executed with (guest) kernel privileges.

In order to show the improvements that have been claimed above we re-
implemented a pure in-hypervisor countermeasure, namely the one described in
Chapter 3. A re-implementation has been necessary also due to the di↵erent hy-
pervisor technology used in the original version. This allowed us to fairly compare
the two.

A schema of the aforementioned integrity checking method implemented in
Linux/KVM is provided in Fig. 4.3. It can be observed that while the imple-
mentation of the in-hypervisor approach needs instrumentation code to be added
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Figure 4.3: Schema of in-hypervisor approach implemented in Linux KVM. High-
lighted components indicate parts of the system that need instrumentation/mod-
ification. The trusted module installed in the guest is unloaded after boot.

to the host kernel, the HyperForce framework requires only the system emulator
to be modified (Fig. 4.1). In Linux/KVM, each virtual machine runs a regular
process in user space. An instance of QEMU provides the required emulation of
the overall system. A trusted module within the guest kernel to be protected is
needed, regardless the choice of the hypervisor.

Results of macro and micro-benchmarks have been collected from the guest and
from the host machine and an explanation of these is given in Section 4.3.1 and
Section 4.3.2. In order to provide reliable results, all tests have been repeated 10
times and their mean value has been reported. Experiments have been performed
on a machine with the hardware specification reported in Table 3.2.

4.3.1 Macro-benchmarks

We run two macro benchmarks with the iperf utility, that measures TCP and
UDP bandwidth performance and bunzip that extracts the Linux kernel source
code from a compressed file. The original in-hypervisor version of the integrity
checking method is denoted as in-hyper while the version using the HyperForce
framework is denoted as HF.

While the in-hypervisor approach, due to the slower context switching, has
a slightly better throughput of network performance in the host machine Ta-
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(a) In-host measurements

iperf [Gb/s] overhead

in-hyper 6.36 -
HF 6.29 +1.1%

(b) In-guest measurements

iperf [Gb/s] bunzip [sec]
native KVM 5.97 32.04
in-hyper 5.26 (+12%) 33.73 (+5%)
HF 5.71 (+4.3%) 32.88 (+2.5%)

Table 4.1: Macro benchmarks (in-host OS and in-guest OS) evaluating the in-
tegrity checking method implemented with and without HyperForce

ble 4.1(a), benchmarks in the guest machine show a considerably better perfor-
mance with HyperForce. iperf and bunzip have also been executed on a native
KVM system and compared against the same system running in-hypervisor and
then in HyperForce. The performance overhead of our approach is about half of
the in-hypervisor approach, as shown in Table 4.1(b). The original approach im-
plemented using HyperForce performs with 4.3% overhead compared to a native
KVM guest while when implemented within hypervisor shows 12% overhead. The
second column reports overhead of bunzip measured in seconds. Again, Hyper-
Force outperforms the in-hypervisor approach, showing an overhead of only 2.5%
compared to the native KVM guest.

4.3.2 Micro-benchmarks

Micro benchmarks show a more detailed picture of the two approaches. We use
LMbench [109]2 to measure the overhead of operating system specific events such
as context switch, memory mapping latency, page fault, signal handling and fork
latency. Within the host machine, HyperForce shows substantial improvement
against the in-hypervisor alternative. In Table 4.3.2 we report only the tests where
this improvement is consistent. In all other tests the in-hypervisor approach and
the one using HyperForce show negligible performance overhead.

The picture in the guest machine shows a similar trend in which HyperForce
outperforms the original in-hypervisor method in every test (Table 4.3.2).

To interpret the results shown in Table 4.3.2, we recall that the original in-
hypervisor approach performs integrity checks whenever the guest kernel writes
to a control register (MOV_CR* event). In contrast, the implementation within
the HyperForce framework employs interrupt events to trigger in-guest integrity

2We use version 3 of LMbench as available at http://lmbench.sourceforge.net/.
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ctx switch mmap lat page flt mem lat
in-hyper 2.020 6148 1.57 114.7
HF 1.48 4950 1.46 101.7
speedup +26% +19% +7% +11%

Table 4.2: Overhead of kernel integrity checking using the HyperForce frame-
work (HF) is measured against in-hypervisor alternative with LMbench micro-
benchmarks within the host machine. Operations are measured in microseconds.

null call null IO open/close sig inst
in-hyper 0.30 0.32 2.32 0.74
HF 0.14 0.21 2.10 0.45
Speed increase +53% +34% +10% +39%

sig handl fork proc exec proc ctx switch
in-hyper 5.37 1923 4087 5.58
HF 2.60 1788 3984 5.00
Speed increase +51% +8% +2.5% +10%

Table 4.3: Overhead of HyperForce is measured against in-hypervisor approach
with LMbench micro-benchmarks within the guest machine. Operations are mea-
sured in microseconds.
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checks. This eliminates overheads with respect to switching execution context and
address mapping between the hypervisor and the guest OS, while the remaining
computational overhead a↵ects guest operations more evenly. As can be seen in
Table 4.3.2, the above changes imply significant speedups on system call invoca-
tions (53%) and context switches (10%). Although LMbench is often considered
as insu�cient for evaluating system performance [91], our example shows that the
benchmark suite can be used to neatly distinguish the actual increase of speed on
system call invocations (“null call”) from the impact on a particular system call
execution (e.g. “open/close”).

One may think that our approach to trigger security checks through interrupts
in HyperForce reduces the security of the protected system compared to the orig-
inal in-hypervisor: in the latter case an attacker increases their chance of being
detected with every system call raised or process switch. However for a total of
15,000 protected kernel objects, the worst-case detection time reported in Chap-
ter 3.3 is about 6 seconds. HyperForce improves on that by checking the same
amount of kernel objects in less time. An essential di↵erence between the two
approaches is that while the original method relies on the activity of the system
as a trigger that checks the integrity of protected objects, HyperForce performs
the checking independently of system activity every 4 seconds. This is the time
lag of HyperForce measured while checking the entire list of objects in the guest.

Our results indicate that the HyperForce framework could be used to re-
implement other in-hypervisor applications, enhancing their performance and main-
taining their e↵ectiveness.
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4.4 Related work

In this section we review related work in the domain of kernel code integrity assur-
ance. We identify three main areas of active research. Two methods that, similarly
to the approach described above, inject security agents within a target system are
described in Section 4.4.1. Protection of commodity operating systems by secure
code that is executed in isolation with the aid of the regular protection mecha-
nisms, is described in Section 4.4.2. Finally, work related to formal verification of
commodity operating systems and hypervisors is provided in Section 4.4.3.

4.4.1 Security Agent Injection

Closely related to the approach described in this chapter is work by Lee et al. [110]
and Chiueh et al. [111] on deploying agents by means of code injection from a
hypervisor. Both approaches are applicable to guest operating systems that have
not been previously prepared by loading a special driver or similar. In [110], Lee
et al. proposes to protect agent code that is executing in a compromised guest OS
kernel by the use of cryptography and by injecting this code on demand from the
hypervisor. As there is no implementation and no experimental evaluation given,
a comparison with our solution is not feasible.

SADE Similarly, work on SADE [111] by Chiueh et al. uses VMWare’s ESX
server API to inject and execute code in a guest OS so as to disable and remove
a previously detected malware infection from that guest. In di↵erence to our ap-
proach, the agent code in SADE is not protected from malicious interference on
the guest. Chiueh et al. argue that on-demand injection leaves a relatively short
time span for such interference. SADE is used by a virtual appliance that imple-
ments out-of-guest monitoring of VMs’ memory, scanning for malware signatures.
The paper presents experimental data on the code injection process but does not
discuss the overhead implied by mapping memory pages between the virtual ap-
pliance and the VMs. We expect in-guest memory inspection, as implemented by
our kernel integrity detection method, to outperform SADE.

Kernel heap bu↵er overflow monitoring The primary goal of Kruiser, a
security countermeasure explained in [112], consists in detecting heap based bu↵er
overflows in kernel space. The authors argue that those countermeasures that
try to detect a bu↵er overflow before any write operation are usually a↵ected by
considerable performance overhead. As a consequence, the monitored process will
slow down consistently whenever the monitoring system is under heavy load. Other
systems perform detection occasionally, for instance whenever the bu↵er to be
protected is deallocated. This strategy usually allows the attacker to compromise
the system relatively easily, due to the large time window between corruption and
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detection. If a bu↵er is deallocated much later its corruption has occurred there
are no viable ways for the countermeasure to detect and interrupt any malicious
intent coming from that bu↵er. Finally, approaches that rely on special hardware
are e↵ective but less practical for wide deployment, as we discuss in Section 3.5.1.

Due to the challenging nature of protecting operating system kernels, the au-
thors take advantage of virtualisation technology. The high-level idea of Kruiser
consists in placing canaries into kernel heap bu↵ers and lately check their integrity.
When a canary is found to be tampered, an alarm, indicating the detection of an
overflow, is raised. In order to guarantee isolation between the monitoring and
target systems, a separate process, running concurrently with the kernel, performs
the checking of the canaries. While canaries are attached at the end of each heap
bu↵er via an in-guest interposition mechanism, the task of checking their integrity
is decoupled and it is performed by a process running in a separate virtual machine.
This is an essential requirement to strengthen self protection.

We argue that using our framework in such a scenario would allow the execution
of the integrity checking process inside the guest, with native performance and
without the requirements of allocating resources for any additional virtual machine.
The hypervisor can be instrumented from the trusted module about the checking
frequency and the physical memory address of the protected area where canaries
will be stored at runtime. The non-maskable interrupt mechanism of Hyperforce,
triggered by the virtual PCI device installed within the guest, will ensure that
there are no chances for the attacker to interfere with the security measure.

As a result, Kruiser implemented in Hyperforce would become a security coun-
termeasure that executes entirely in the target kernel, still keeping the same degree
of security of the equivalent out-of-guest approach.

4.4.2 Hardware-based techniques

Flicker An infrastructure that allows the execution of security critical code, in
complete isolation from the rest of the system is described in [113]. In order to
guarantee such isolation, Flicker takes advantage of hardware support such as
AMD SVM or the equivalent Intel Trusted eXecution Technology. These chips
allow the launch of a virtual machine monitor or a security kernel at any time,
still protecting their code from malicious software. Contrarily to hypervisor’s
development, that even in the case of minimal hypervisors, usually adds thousands
of lines of code to the trusted computing base (TCB), the TCB of Flicker is as
small as 250 lines of code. The programmer can add only the code that implements
her particular application in a bottom-up approach. One of the most advantageous
peculiarities of Flicker consists in the fact that isolation and code attestation can
be guaranteed even in the presence of compromised BIOS, DMA devices and the
operating system itself. When the processor receives an init instruction, it disables
DMA, system interrupts and debugging access, enters at 32-bit protected mode
and jumps to the provided entry point in order to start the execution of the
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isolated application. There is no possibility for other software executing before
Flicker to monitor or interfere with Flicker’s code. An example that sheds light
on the potential of the aforementioned isolation property consists in a piece of
code that handles a user’s password, that will stay isolated from all other software
running on the same machine. In the same scenario, the hardware can guarantee
that the secrecy of the password has been preserved. The authors implemented a
rootkit detector in the Flicker architecture. In this other scenario, the hardware
can guarantee that no other software, the rootkit included, could tamper with the
detection code. Any piece of code that needs to be executed in isolation should
be included in a Piece of Application Logic (PAL). A Flicker session will then
be initialised to begin execution of the Secure Loader Block (SLB). At the end
of PAL’s execution, a cleanup procedure will erase its secret values and control
will return to the operating system or other untrusted components. Flicker o↵ers
strong security and isolation properties. But current hardware performance o↵ered
by commodity processors is not enough to consider this architecture for every day
computing.

TrustVisor Another work aimed at providing the same goals of Flicker with
reduced performance penalty is TrustVisor [114]. TrustVisor is a specially crafted
hypervisor, designed to provide code and data integrity, secrecy of portions of
an application (PAL) in isolation from a legacy untrusted operating system and
DMA-capable devices. The granularity of the protected code is as fine as in Flicker,
although the code base is one order of magnitude higher, but still small compared
to general-purpose hypervisors. The two main capabilities of TrustVisor that use
the trusted computing mechanisms o↵ered by AMD and Intel are sealed storage
and remote attestation. The former allows a particular Piece of Application Logic
to encrypt data according to a policy such that the ciphertext can only be de-
crypted by the PAL specified in the policy. The latter is the mechanism that
allows a remote party to be guaranteed that a particular PAL ran on a specific
platform protected by TrustVisor. TrustVisor can operate in host mode, which
is the highest privilege level that controls hardware devices; legacy guest mode,
where a commodity x86 operating system and its applications usually execute;
secure guest mode, dedicated to the execution of PALs in an isolated environ-
ment. The TrustVisor architecture is implemented taking advantage of hardware
virtualisation support, in order to provide memory isolation and DMA protection
for each PAL. The virtualisation mechanisms are also used by TrustVisor to pro-
tect its own code. Specifically, TrustVisor virtualises the guest operating system’s
memory using Nested Page Tables (NPT) and IOMMU to prevent DMA-capable
devices to access arbitrary physical memory addresses. PALs are isolated from
each other with the same memory virtualisation mechanisms. The execution of
PALs follows a registration event that must be requested explicitely by the devel-
oper. Both registration and unregistration are implemented by using a hypercall
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that is intercepted and handled directly by TrustVisor. The performance penalty
of TrustVisor is much smaller than the one of Flicker and the security guarantees
are comparable. The code base, around 6000 lines of code, is small enough to
verify TrustVisor implementation using software model checking methods, that is
what authors plan to achieve in the future.

Fides The goal of Fides [115] is to protect trusted modules from malware capable
of exploiting vulnerabilities in the surrounding components of an operating sys-
tem. The isolation properties of Fides make a vulnerable module exploitable only
if other modules explicitly place trust in the former. In all other cases in which, for
instance an attacker introduces malicious modules that are disconnected from the
rest of the system, as is the case of rootkits, there are no viable ways to compro-
mise the entire operating system. Fides combines a run-time security architecture
that protects fine-grained software modules within a commodity operating system
and a compiler that compiles modules written in the C language to exploit the
security capabilities of the architecture on which they will execute. The software
components that execute in isolation from the rest of the system are called Self
Protecting Modules (SPM). They are basically a chunk of memory, formed by
a secret section, that contains the module’s sensitive data and a public section
that contains information for which only integrity must be guaranteed. The three
main components that form Fides are: the legacy kernel with its applications that
run without interruption and intervention of the security system; the hypervisor
that manages the hardware and provides coarse grained memory isolation of the
legacy and the secure virtual machines; the security kernel that manages the iso-
lated software entities (SPM). The legacy kernel and the security kernel execute
respectively in two separated virtual machines. Isolation and scheduling of the
virtual machines are performed by the hypervisor, as in a regular virtualisation
system. The isolation among SPMs is guaranteed by the security kernel. When
a module is invoked, the security kernel receives a request in which the virtual
address of the entry point of the module is specified. This address is translated to
its physical equivalent with the aid of Nested Paging (NPT) in the legacy virtual
machine. According to the Fides architecture, when the processor is executing
outside the boundaries of the SPM, it has limited access to the module’s memory.
Also the destruction of the SPM follows a protocol that will leave no trace of
its secret values to other components. The overall performance impact has been
measured to 3.22%, but for applications that make heavy usage of SPMs it can
grow up to 14%. The abilities of Fides such as confidentiality and integrity of
module data, authentication and secure communication between modules, makes
this architecture a suitable solution only for high security environments.
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4.4.3 Formally verified systems

Formally verifying software means that it becomes possible to guarantee the ab-
sence of bugs and, taking security even further, to predict exactly how the verified
piece of software will behave under any condition. Formal verification has al-
ways been an appealing goal for security researchers since, in theory, it can lead
to operating system kernels that never crash and that will never perform unsafe
operations [116].

The verification process takes place in the form of a mathematical proof that
the software to be verified is bug-free and consistent with its specification [117].
Unfortunately, the complexity of the verification, the code size of commodity oper-
ating systems and the complexity of the hardware mechanisms on which they are
executed, make the complete verification of such systems more an illusion rather
than a goal that can be achieved in the immediate future. However, consistent
simplifications and initial assumptions can make the task of verification slightly
easier.

In light of virtualisation technology, seeking for a formal verification of hyper-
visors makes more sense than verifying the single guest operating systems because
1) hypervisors have a much simpler architecture than commodity operating sys-
tems and 2) the hypervisor is becoming the bottleneck of a virtualisation platform
in terms of performance and security. In order to shed light on the two di↵er-
ent fields in which formal verification practitioners have to deal with, we report
a formal verification of a simplified operating system and two studies conducted
towards the verification of a hypervisor.

seL4 The first formal proof of functional correctness of a general-purpose oper-
ating system kernel is achieved by [118]. The authors provide a machine-checked
verification of the seL4 microkernel from an abstract specification to its implemen-
tation in the C programming language. Correctness of the compiler, assembly code
and hardware are some of the assumptions that anticipate the formal proof. Al-
though the seL4 kernel is directly usable on ARMv6 and x86 architectures, a proof
on the latter is missing. The model assumes that all memory allocations occurring
in the kernel are explicit and authorised. While operating system development
follows a bottom-up approach to kernel design, formal verification practitioners
have the tendency to verify in a top-down fashion, in order to control the level
of complexity of the overall system. seL4 is verified using an approach that is
somewhere in between the two extremes. The functional programming language
Haskell is used to provide a programming interface for operating system develop-
ers and, at the same time, provide code that can be translated directly into the
theorem proving tool. The technique used to formally verifying the microkernel is
interactive, namely it needs human intervention. Each unit of proof has a set of
preconditions that must hold prior to execution and a set of post-conditions that
must hold afterwards. The level of complexity depends on the statement being
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verified. Strong simplifications are required to lower the di�culty of the verifica-
tion process. Many of them do not apply to operating systems that are commonly
used. Proofs about concurrent systems are extremely hard. The authors do not
consider verification of their kernel executing on multiprocessor systems. Moreover
the complexity of interrupts, in the form of non-deterministic execution of han-
dlers and preemption, is solved by disabling interrupts most of the time except in a
small number of interrupt points. Although exceptions occur synchronously, their
e↵ects are similar to the ones of interrupts. Exceptions are avoided completely in
the verification of seL4. Due to the aforementioned oversimplifications, it is hard
to believe that commodity operating systems that executes on architectures like
x86, will be formally verified soon.

Hyper-V One of the first attempts to verify an hypervisor has been conducted
in [56] on the Microsoft Hyper-V hypervisor. Hyper-V is relatively small and runs
directly on x64 hardware. The code is divided in the kernel stratum that includes
a minimal operating system, a hardware abstraction layer, the kernel, the memory
manager and the scheduler (device drivers are not included) and the virtualisation
stratum, that simulates the x64 machine for the guest operating systems. The
hypervisor is written in C, which has a weak type system. But the main challenge
in verifying such a piece of code is due to the presence of assembly code snippets,
which leads to an integrated verification of the two languages. The authors use
VCC, an industrial-strength verification suite that specifically addresses the formal
verification of low-level C code. Due to the static modular analysis that VCC can
perform, each function is verified in isolation. Moreover, before the verification
process, the original codebase is annotated. One of the authors’ goals is to let
these annotations evolve with the core development and to maintain them within
the codebase. An interesting stratagem to tackle with the problem of verifying
programs that deal with shared knowledge (e.g. a program that is acquiring a
spin lock should know that the spin lock has been initialised and it still exists)
consists in using ghost objects, called claims, rather then preconditions. Claims
are associated with many objects and they guarantee, among other properties,
that the objects stay allocated as long as a claim to them exists. Ghost data and
code are visible only to the verifier. The verification chain consists in translating
the code with annotations into the Boogie language, then the Boogie tool gener-
ates the verification conditions to be passed to the theorem prover. The model
of the processor core is entirely implemented with ghost functions. Specific ghost
functions specify the e↵ects of executing single x64 instructions. The aforemen-
tioned model is used to provide verification of assembly code and to prove that
Hyper-V simulates x64 instructions correctly for the guest operating systems. De-
spite the relatively small codebase size of Hyper-V and the expected complexity
of the verification process, the authors argue that several hundred functions have
been verified and that the VCC-based approach is powerful enough to verify them
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all.

Xenon A more recent attempt to formally verify a widely used hypervisor like
Xen [61] is Xenon [57]. In the aforementioned work, a formal security policy model
is defined, starting from the original version of the Xen hypervisor. The authors
argue they provide a robust information flow control, tamper-resistance and self-
protection of the virtual machines (called execution environments) running on top
of their hypervisor. Their basic approach consists in confining each user commu-
nity in its own execution environment and limiting the information flow between
two environments to a restricted form of replication. Namely, an execution envi-
ronment that is reading data from another environment, will only get access to a
local copy of the data. The policy that allows or denies information flow between
two execution environments is called security domain lattice. The Xenon formal
security model is written in CSP, an algebra used to model non-interference and
other trace-based information flow security policies. Moreover, CSP is well suited
for reasoning about communication patterns between multiple threads of computa-
tion. These patterns are defined as sets of traces of instantaneous events and their
duration is not modelled. The Xenon model has been decomposed in subsystems
that are modelled separately. Three subsystems have been identified, namely the
boundary controller, the guest process and the virtual machine monitor process.
The complete model that results from the parallel combination of the guest and the
virtual machine monitor is deadlock free. Some peculiarities of the Xenon model
consist in the fact that hypercalls, interrupts, traps, privileged and unprivileged
instructions are considered Xenon events. Moreover the virtual machine monitor
interface provides data structures such as virtual memory, virtual machine con-
trol structures (VMSC) and device driver front ends the e↵ects of which can be
mapped as Xenon events. Processes are used to model data structures, as a con-
ventional CSP technique. When data have been transformed into CSP processes,
the overall complexity of the verification process is reduced because it is possible
to interchangeably refer to the interface data structures as though they were pro-
cesses. Although the formal model does not support non-deterministic interrupts,
a simplification represents them as signal events that arise deterministically within
the virtual machine monitor. Due to the structure of the policy model that results
close to the structure of an implementation, the authors of Xenon argue that they
will implement it on the 64-bit x86 architecture.

4.5 Summary

In this chapter we briefly discuss the di↵erences between security mechanisms
deployed within an operating system (in-guest) and the ones deployed within a
hypervisor (in-hypervisor) and bring attention to the, seemingly exclusive, choice
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between the performance benefits of the former versus the security benefits of the
latter.

We tackle this choice by developing a hybrid framework, allowing security
mechanisms to be developed in a way that provides them with performance analo-
gous to in-guest systems while maintaining the security of in-hypervisor systems.

Using this new concept, we re-implemented an in-hypervisor rootkit detec-
tion system and show how the new version significantly outperforms the original
without compromising the security or integrity of the detection system.

We conclude that hybrid security systems that are built on top of the described
framework can provide e↵ective and e�cient alternatives to mitigate the overhead
of techniques that exclusively operate in-hypervisor. An interesting type of ap-
plications that might be designed with our framework in mind, is represented by
malware detection and removal software, for which both isolation from the target
system and performance must be guaranteed, in order to take full advantage of
the protection capabilities that these systems usually claim.

Another constraint we tackle with consists in the size of instrumentation code
required by our approach. We believe that smaller instrumentation code size will
ease the adoption of that security countermeasure and facilitate its deployment
within production systems.



Chapter 5

Secure web browsers with
virtualisation

Computers are useless. They can

only give you answers.

Pablo Picasso

Although virtualisation technology appeared to fulfil the needs of server consol-
idation and to optimise energy consumption within data centers, another growing
trend that has been observed into marketplace is known as virtual desktop. It
seems that the tendency of centralising data has been extended to the desktop
environment. Desktop virtualisation is taking advantage of hypervisor-based tech-
nology for delivering applications, data and entire desktop environments to users.
Traditional countermeasures that have been designed for those applications that
are now delivered on-demand do not benefit of the diverse execution context. We
are confident that hypervisor-awareness can lead to stronger security measures,
better user experience and, above all, minimal performance impact.

5.1 Motivation

One of the most considerable actors in today’s computer use is the web browser.
Companies like GoogleTMand Yahoo are evidence of this trend since they o↵er
full-fledged software inside the browser. This has resulted in a very rich environ-
ment that is being used by web programmers too. Unfortunately, an immediate
side e↵ect of this tendency is the growth of security problems like cross site script-
ing and cross site request forgeries (CSRF) [119–121]. Moreover, the browser is
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often written in unsafe languages. As in any other software of this type, the web
browser is exposed to the various vulnerabilities that can a↵ect programs written
in such languages, such as bu↵er overflows, dangling pointer references, format
string vulnerabilities, memory corruption, etc. One of the most often exploited
type of C/C++ vulnerability of the last decade has been the stack-based bu↵er
overflow [122]. Countermeasures like StackGuard [123], ProPolice [124] and other
tools like those explained in [125, 126] that protect areas of potential interest for
attackers from being modified, have made bu↵er overflows harder to exploit. As
a consequence, in the constantly animated attacker-researcher world, attackers
have focussed on other types of vulnerabilities, targeting the heap rather than the
stack. This has massively increased the number of heap-based bu↵er overflows
and memory corruption attacks.

However, due to the changing nature of the heap, these types of vulnerabilities
are notoriously harder to exploit. Specifically to the web browser, the heap can
look completely di↵erent depending on which and how many web sites the user has
been visiting. It will be hard for attackers to figure out where in the heap space
an exploitable overflow has occurred in order to locate and execute their injected
code. Countermeasures like ASLR (Address Space Layout Randomisation) [127]
specifically designed to protect the heap have made it even harder to reliably
exploit these types of vulnerabilities. In fact, ASLR is a technique by which
positions of key data areas in a process’s address space, such as the heap, the
stack or libraries, are re-arranged at random locations in memory. All attacks
based on the knowledge of target addresses (e.g. return-to-libc attacks in the case
of randomised libraries or attacks that execute injected shellcode in the case of
a randomised heap/stack) may fail if the attacker cannot guess the exact target
address.

Recently a new attack emerged that combines the richer environment found
in the browser to facilitate exploits of vulnerabilities based on unsafe languages,
sometimes even resulting in the successful bypass of countermeasures like ASLR,
which are supposed to protect against these types of vulnerabilities. One such at-
tack is known as heap-spraying. The name depicts its nature of using the Javascript
engine, usually embedded within modern web browsers, to replicate the code that
attackers want executed, a large number of times inside the heap memory. As
a result, the chances that a particular memory location in the heap will contain
their code will dramatically increase.

Back in 2009 a cyber attack called Operation Aurora [128] targeted several or-
ganisations such as Google, Adobe, Yahoo, Symantec, Morgan Stanley and others,
with the sole purpose of stealing intellectual property. The attack achieved many
of its goals by a coordinated set of operations that included the execution of ma-
licious Javascript which included a zero-day exploit within the Internet Explorer
web browser. The exploit downloaded a binary, executed its payload to set up a
backdoor and connected to command and control servers. After such attack was
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publicly disclosed, code snippets with similar behaviour a↵ected a series of appli-
cations that, equally to the web browser, are equipped with script environments
and are thus vulnerable to the same type of attack [35,36,129].

In the first part of this chapter we focus on modern web browsers and describe a
countermeasure against a memory corruption attack such as heap-spraying. In the
second part we discuss how the aforementioned countermeasure can be integrated
and benefit of the virtualisation-based environment that delivers the protected
application on-demand.

The rest of the chapter is organised as follows: Section 5.2 discusses the prob-
lem of heap-based bu↵er overflows and heap-spraying in more detail. Section 5.3
discusses our approach while in Section 5.4 we describe our prototype implementa-
tion. We evaluate our approach in Section 5.5. A discussion about the integration
within hypervisor-aware systems is given in Section 5.6. We compare our approach
to related work in Section 5.7. Section 5.8 concludes.

5.2 Problem description

Heap-based bu↵er overflows The first step to deploy a heap-spraying attack
successfully consists in the injection of malicious code at an arbitrary memory
location. Designing security countermeasures assumes that an exploitable vulner-
ability might exist. This is considered the minimal condition for an attacker to
change the execution flow of the program and jump to the injected code. Because
a memory corruption is required, heap-spraying attacks are considered a special
case of heap-based attacks. Exploitable vulnerabilities for such attacks normally
deal with dynamically allocated memory. A general way of exploiting a heap-
based bu↵er overflow is to overwrite management information that the memory
allocator stores next to the actual data. General purpose memory allocators, as
the ones present in commodity operating systems, allocate memory in chunks.
These chunks are usually located in a doubly linked list and contain both memory
management information (referred to as chunkinfo) and real data (referred to as
chunkdata). Several allocators have been attacked by overwriting the chunkinfo
section [130].

Since the heap memory area is much less predictable than the stack it would
be di�cult to predict the memory address to jump to and execute the injected
code. Some countermeasures have contributed to making these vulnerabilities even
harder to exploit [131,132].

Heap-spraying attacks As mentioned before, an e↵ective countermeasure against
attacks based on heap-based bu↵er overflow is Address Space Layout Randomisa-
tion (ASLR) [127]. ASLR is a technique which randomly arranges the positions of
key areas in a process’s address space. This would prevent the attacker from eas-
ily predicting target addresses. However, attackers have developed more e↵ective
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strategies that can even bypass these countermeasures. Heap spraying [34] is a
technique that will increase the probability to land on the desired memory address
even if the target application is protected by ASLR. Heap spraying is performed
by populating the heap with a large number of objects containing the attacker’s
injected code. The act of spraying simplifies the attack and increases its likelihood
of success. This strategy has been widely used by attackers to compromise security
of web browsers, making attacks to the heap more reliable than in the past while
opening the door to bypassing countermeasures like ASLR [35,36,129,133,134].

A heap-spraying attack attempts to increase the probability to jump to the
(shellcode). To achieve this, a basic block of NOP1 instructions is created.
The size of this block is increased by appending the block’s contents to itself,
building the so called NOP sled. Alternatively, a code semantically equivalent to
No Operation might be used and have the same e↵ect of increasing the size of
the block. This technique can also circumvent trivial countermeasures that rely
on simple NOP code detection. Finally shellcode is appended to the block of
instructions. Therefore a jump to any location within the NOP sled will sooner or
later transfer control to the shellcode appended at the end. Clearly, the bigger
the sled (or, equally, the higher the number of sleds) the higher the probability to
land in it (or to land in one of them) and the attack to succeed.

A schema of the object described above is provided in Fig.5.1.

NOP NOP

NOP NOP

NOP NOP

NOP NOP

NOP NOP

shellcode

Figure 5.1: Schema of NOP sled and shellcode appended to the sequence

The second phase of the attack consists in populating the heap by exploiting
the legal constructs provided by the scripting language embedded in the browser.
Figure 5.2 shows the schema of a heap-spraying attack while populating the heap.

Although we will refer to spraying the heap of a web browser, this exploit
can be used to spray the heap of any process that leaves to the user the ability
to allocate objects into memory. For instance a popular PDF viewer has been

1Short for No Operation Performed, is an assembly language instruction that e↵ectively does
nothing at all [135]
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Figure 5.2: A heap-spraying attack: heap is populated of a large number of NOP�
shellcode objects. The attack may be triggered by a memory corruption. This
could potentially allow the attacker to jump to an arbitrary address in memory.
The attack relies on the chance that the jump will land inside one of the malicious
objects.

found vulnerable to heap-spraying attacks. In that case, a forged PDF file was the
medium to execute arbitrary code [136].

What makes heap-spraying an unusual security exploit is the fact that the
action of spraying the heap is considered legal and should be permitted by the
application. In our specific scenario, memory allocation may be the regular be-
haviour of the browser while surfing benign web pages. Modern web sites that use
AJAX (Asynchronous Javascript And XML) technology or plain Javascript (i.e.
facebook.com, economist.com, ebay.com, yahoo.com and many others) appear as
they are spraying the heap since a large number of objects is usually downloaded
and allocated during their normal operation. We are aware that a security coun-
termeasure should not prevent an application from allocating memory. This makes
heap-spraying detection a challenging problem to deal with.

Listing 5.1: A Javascript code snippet to perform a basic heap-spraying attack
usually embedded in a HTML web page

1 . var s l e d ;
2 . var spraycnt = new Array ( ) ;
3 . s l e d = <NOP instruction >;
4 . while ( s l e d . l ength < s i z e )
5 . {
6 . s l e d+=s l ed ;
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7 . }
8 . for ( i =0; i< v e r y l a r g e ; i++)
9 . {
10 . spraycnt [ i ] = s l e d+sh e l l c o d e ;
11 . }

Because the layout of the heap depends on how often the application has allo-
cated and freed memory, triggering an attack without any knowledge of the exact
location to jump to, is utterly di�cult. The attacker’s strategy would be reduced
to merely guessing the address where the malicious objects have been injected to.
Unfortunately, by using a client-side scripting language, such as Javascript, it is
possible to arrange the heap to the desired layout, making the attack more reliable
as described in [137,138].

Code in Listing 5.2 shows a basic heap-spraying attack in Javascript (without
any attempt of arranging the heap layout in order to better locate the injected
code).

5.3 Approach

An important property of a heap-spraying attack is that it relies on homogeneity
of memory. This means that it expects large parts of memory to contain the same
information. It also relies on the fact that landing anywhere in the nopsled will
cause the shellcode to be executed. The key of our countermeasure consists in
introducing diversity on the heap, breaking the assumption of homogeneity and
making it much harder to reach the shellcode and thus trigger the attack.

The first known heap-spraying attack used the Javascript string type to build
sleds. We explain our approach accordingly. The assumption is broken by inserting
special interrupting values at random positions whenever the string is stored into
memory and removing them whenever the string is used by the application. If
these special interrupting values are executed as an instruction, the program will
generate an exception that will be served by an interrupt handler that has been
previously installed.

Because these special values interrupt the strings inside the memory of the ap-
plication, the attacker can no longer depend on the NOP sled or even the shellcode
being intact. If these values were placed at fixed locations, the attacker could at-
tempt to bypass the code by inserting jumps over specific possible locations within
the code. Such an attack, however is unlikely, because the attacker does not know
exactly where inside the shellcode control has been transferred.

To make the attack even harder, the special interrupting values are placed at
random locations inside the string. Since an attacker does not know at which
locations in the string the special interrupting values are stored, he can not jump
over them in his NOP-shellcode. This lightweight approach thus makes heap-
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spraying attacks significantly harder at very low cost. We have implemented this
concept in the Javascript engine of Mozilla Firefox, an open source web browser.

The internal representation of Javascript strings has been modified in order
to add the interrupting values to the contents when in memory and remove them
properly whenever the string variable is used or when its value is read. The
amount of interrupting values can be tuned via a parameter that is set at browser
build time. The highest degree of security of our approach can be guaranteed by
setting to s = 25 bytes the maximum interval at which interrupting. The smallest
useful shellcode found in the wild [139] at the time of writing would not fit in this
interval. For less strict security requirements, larger values can be assigned to the
parameter s.

Given the length n of the string to transform i = d n
25e intervals are generated

(where n > 25). A random value is selected for each interval. These numbers will
represent the positions within the string to modify. The parameter sets the size
of each interval, thus the number of positions that will be modified per string.
Obviously by choosing a lower value for the parameter s the amount of special
interrupting values i that are inserted will be increased and so will the overall
performance impact. However, setting the size of each interval to the length of the
smallest shellcode does not guarantee that the positions will be at a distance of
25 bytes. It may occur that a position p is randomly selected from the beginning
of its interval ip and the next position q from the end of its interval iq. In this
case (q� p) could be greater than 25, allowing the smallest shellcode to be stored
in between. Nevertheless what makes heap-spraying attacks reliable is the large
amount of homogeneous data, not simply the insertion of shellcode. Thus being
able to insert shellcode will not simply allow an attacker to bypass this approach.

When the string characters at random positions have been changed, a support
data structure is filled with metadata in order to keep track of the original values
and their locations within the string. The modified string is then stored into
memory. Whenever the string variable is used, the engine will perform an inverse
function, to restore the original content of the string and return it to the caller.
This task is achieved by reading the metadata from the data structure bound to the
current Javascript string and replacing the special interrupting values with their
original content on a copied version of the string. With this approach di↵erent
strings can be randomised di↵erently, giving the attacker even less chances to
figure out the locations of the interruptions. When the function processing the
string stores the result back to memory, the new string is again processed by
our countermeasure. If the function discards the string, it will simply be freed.
Moreover the Javascript engine considered here implements strings as immutable
type. This means that string operations do not modify the original value. Instead,
a new string with the requested modification is returned.
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5.4 Implementation

In this section we discuss the implementation details of our countermeasure and
the strategy we considered to tailor it on the Javascript engine of Mozilla Firefox
web browser. An attacker performing a heap-spraying attack attempts to arrange
a contiguous block of values of his choice in memory. This is required to build
a sled that would not be interrupted by other data. To achieve this, a mono-
lithic data structure is required. Javascript o↵ers several possibilities to allocate
blocks in memory. The types supported by the Javascript engine in our prototype
are numbers, objects and strings. An overview about how the Javascript engine
represents Javascript objects in memory is given in [140].

The string type represents a threat and can be used to perform a potentially
dangerous heap-spraying attack. Figure 5.3 depicts what a JSString, looks like.
It is a data structure composed of two members: the length member, an integer
representing the length of the string and the chars member which points to a
vector having byte size (length + 1) * sizeof(jschar). When a string
is created, chars will be filled with the real sequence of characters, representing
that contiguous block of memory that the attacker can use as a sled.

JSStringstruct JSString {

    size_t  length;

    jschar  *chars;

};

524

length

0D0D0D0D0

D0D0D0D0D

0D0D0D0D0

........

D0D0D0D0D

0D0D0D0D0

D0D0D0D0D

chars

Figure 5.3: Javascript engine’s JSString type is considered a threat for a heap-
spraying attack since member chars is a pointer to a vector of size (length + 1)*
sizeof(jschar)

We have instrumented the JSString data structure with the fields to store
the metadata: a flag transformed will be set to 1 if the character sequence has
been transformed and an array rndpos is used to store the random positions of
the characters that have been modified within the sequence.

Our countermeasure will save the original value of the modified character to
rndpos, change its value (at this point the string can be stored into memory) and
will restore the original value back from rndpos whenever the string is read.

This task is performed respectively by two functions:
js_Transform(JSString*) and js_Restore(JSString*).
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0D0D0D0D0D0D0D0D0D0D0D0D0D0D0D0D0D0D0D0D0D SHELLCODE

0D0D0D0D0D    0D0  D0D00D0D0D0D0D0    D0D0D0D S H E     L L C O    D E

js_Transform()

Figure 5.4: Representation of the transformed string in memory: characters at
random positions are changed to special interrupting values. The potential execu-
tion of the object’s contents on the heap would be interrupted by the special value
(in blue).

The value of the character to modify is changed to the 1-byte value 0xCC. This
is the assembly language instruction for x86 processors to generating a software
breakpoint. If a heap-spraying attack has been successfully triggered2 and the byte
0xCC at a random position has been executed, an interrupt handler will detect
and report the attack. This alert usually results in exposing a visible popup that
encourages the user to close the application and notify the browser’s vendor of the
detected issue.

As mentioned in Section 5.3, the number of characters to randomise depends
on the s parameter. This parameter was chosen based on the length of the smallest
shellcode found (to date, 25 bytes long3), but can be tuned to select the level of
security and the overhead that will be introduced by the countermeasure. If size
is the length of the string to transform, the number of intervals is given by d size

24 e.
A random value for each interval will represent the position of the character that
will be changed. For reducing the impact of the countermeasure, 50 random values
in the range (0, 24) are generated at browser startup. These values are used as
o↵sets to add to the first index of each interval to compute the random position
within that interval. The random values are regenerated whenever the Garbage
Collector reclaims memory. This prevents an attacker from learning the values
over time as they may already have changed.

The value of the ith random position is stored at rndpos[2i], while the original
value of the ith character is stored at rndpos[2i + 1], with i = 0, 1, 2 . . . . Figure
5.5 provides a schema of how these (position, character) pairs are stored.

2The instruction pointer has been forwarded to an arbitrary location within one of the sprayed
NOP-sleds

3The smallest setuid and execve shellcode for GNU/Linux Intel x86 to date can be found at
http://www.shell-storm.org/shellcode/files/shellcode-43.php
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"E"507..."0"52"D"28"0"4rndpos =

0 1 2 3 4 5 21 22

Figure 5.5: How metadata is stored to array rndpos: index i within the array
contains the value of the position in the string; index (i+ 1) contains its original
value

Finally, function js_Transform(str) will use the values stored in the
str ! rndpos[] array to restore the string to its original content.

5.5 Evaluation

In this section we discuss the performance overhead measured by executing our
proof-of-concept on a machine with hardware specifications reported in Table 3.2.
The reference environment consists of Mozilla Firefox (Ver. 3.7 Beta 3) browser
[141] equipped with ECMA-262-3-compliant Javascript engine, Tracemonkey (Ver.
1.8.2) [142].

We report results of macro benchmarks in order to assess the impact on user
experience and micro benchmarks for measuring the real overhead. An analytical
study of the memory overhead in the worst case scenario is provided too. By worst
case we mean the case in which it is guaranteed that the smallest shellcode cannot
be stored on the heap without being interrupted at least once by the 0xCC byte.
Last but not least, we made a probabilistic analysis to evaluate the chances of an
attacker who can execute shellcode without being detected.

5.5.1 Performance benchmarks

Macro-benchmarks To collect timings of the overhead in a real life scenario,
a performance test similar to the one used in Nozzle [143] has been used. Nozzle
is the first countermeasure that has been specifically designed to mitigate heap-
spraying attacks. We downloaded and instrumented the HTML pages of eight
popular web sites by adding the Javascript newDate() routine at the beginning
and at the end of the page, and computed the di↵erence between the two val-
ues. This number represents the time it takes to load the page and execute the
Javascript code. Since the browser caches the contents of the web page, that value
is a good approximation of the time needed for executing the Javascript. We
perform the benchmark 20 times for each website, 10 times with countermeasure
disabled and 10 times with countermeasure in place. Table 5.1 shows that the
average performance impact over these websites is below 5%.

We consider the aforementioned performance overhead small and the overall
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Site URL Load w/o [ms] Load w [ms] Perf. overh.
economist.com 17304 18273 +5.6%
amazon.com 11866 12423 +4.7%
ebay.com 7295 7601 +4.2%

facebook.com 8739 9167 +4.9%
maps.google.com 15098 15581 +3.2%
docs.google.com 426 453 +6.3%

cnn.com 12873 13490 +4.8%
youtube.com 12953 13585 +4.9%
Average +4.82

Table 5.1: Performance overhead of countermeasure in action on 8 popular mem-
ory demanding web sites.

countermeasure fast enough for every day computing, due to the fact that the time
for loading a web page is usually relatively short to have a noticeable impact on
user experience.

Micro-benchmarks Micro-benchmarks can o↵er a better evaluation of the real
performance impact. We performed three di↵erent benchmarks: the SunSpider
Javascript Benchmarks [144], the Peacekeeper benchmarks [145] and the V8 bench-
marking suite [146].

SunSpider is used by the Mozilla Firefox developers team to benchmark specif-
ically the core Javascript language, without the DOM or other browser dependent
APIs. The tests are divided into multiple domains: testing code that performs 3D
calculations, math, string operations, etc. Table 5.2 contains the runtime in mil-
liseconds of running the various benchmarks that are part of the SunSpider suite.
The results for each domain are achieved by performing a number of subtests. We
do not report those subtests in which the overhead is close to 0%. However, as
we modify the way strings are represented in memory and perform a number of
transformations of these, we consider only the subtests that specifically measure
the performance of string operations.

The results in Table 5.2 show that the overhead in tests other than string
manipulation are negligible. The overhead for string operations on the other hand
vary from 3% to 27%. This higher overhead of 27% for base64 is due to the way the
base64 test is written: the program encodes a string to base64 and stores the result.
When the program starts, it generates a character by adding a random number,
multiplying it by 25 and adding 97. This character is converted to a string and
added to an existing string. This is done until a string of 8192 characters is created.
Then to do the encoding, it will loop over every 3rd character in a string and
perform the encoding of those three characters to 4 base64 encoded characters. In
every iteration of the loop, it will do 7 accesses to a specific character in the original
string, 4 access to a string which contains the valid base64 accesses and finally it
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Test w/o (ms) w counterm (ms) Perf. overh.
3d 568.6 +/- 1.4% 569.0 +/- 1.2% +0.17%

bitops 66.4 +/- 1.8% 67 +/- 1.8% +0.89%
controlflow 13.8 +/- 1.9% 14.0 +/- 1.6% +1.44%

math 63.2 +/- 1.0% 63.6 +/- 1.7% +0.62%
regexp 84.2 +/- 2.0% 84.4 +/- 2.9% +0.23%

string ops
base64 74.8 +/- 2.9% 102.2 +/- 1.9% +27.3%
fasta 280.0 +/- 1.5% 283.4 +/- 0.7% +1.24%

tagcloud 293.2 +/- 2.6% 299.6 +/- 0.8% +2.20%
unpack-code 352.0 +/- 0.8% 363.8 +/- 3.1% +3.24%
validate-input 119.8 +/- 2.4% 132.2 +/- 1.0% +9.30%

1119.8 +/- 0.9% 1181.2 +/- 1.0% +5.19%

Table 5.2: Microbenchmarks performed by SunSpider Javascript Benchmark Suite

will do 4 more operations on the result string. Given that our countermeasure will
need to transform and restore the string multiple times, this causes a noticeable
slowdown in this application.

Benchmark Score w/o Score w Perf. overh.
Rendering 1929 1919 +0.5%

Social Networking 1843 1834 +0.5%
Complex graphics 4320 4228 +2.2%

Data 2047 1760 +14.0%
DOM operations 1429 1426 +0.2%
Text parsing 1321 1298 +2.0%
Total score 1682 1635 +2.8

Table 5.3: Peacekeeper Javascript Benchmarks results (the higher the better).

Peacekeeper is currently used to tune Mozilla Firefox. It will assign a score
based on the number of operations performed per second. The results of the
Peacekeeper benchmark are located in Table 5.3: for most tests in this benchmark,
the overhead is negligible, except for the Data test which has an overhead of 14%.
The Data test is a test which will do all kinds of operations on an array containing
numbers and one test which performs operations on an array containing strings of
all the countries in the world. The operations on the strings of the aforementioned
array heavily contribute to slowdown the program: whenever a country is read, the
string is restored, whenever one is modified the resulting new string is transformed.

The V8 Benchmark Suite is used to tune V8, the Javascript engine of Google
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Benchmark Score w/o Score w Perf. overh.
Richards 151 143 +5.6%
DeltaBlue 173 167 +3.6%
Crypto 110 99.6 +10.4%

Ray Trace 196 193 +1.5%
EarlyBoyer 251 242 +3.7%
RegExp 174 173 +0.6%
Splay 510 501 +1.8%

Total score 198 193 +2.6

Table 5.4: V8 Benchmark Suite results (the higher the better).

Chrome. The scores are relative to a reference system (where this score is 100)
and as with Peacekeeper, the higher the score, the better. Again, most overheads
are negligible except for Crypto, which has an overhead of 10.4%. Crypto is a
test that encrypts a string with RSA. The application does a significant number
of string operations, resulting in transformation and restoration occurring quite
often. These benchmarks show that for any string intensive Javascript application
that do little else besides just performing string operations, the overhead can be
significant, but not a show stopper. In all other cases the overhead was negligible.

5.5.2 Memory overhead

This section discusses the memory overhead of our countermeasure. This is done
by providing both an analytical description of the worst case scenario (in terms
of memory requirements) and providing a measurement of the memory overhead
that the benchmarks incur.

An analytical study of memory usage has been conducted in the case of the
highest level of security. As mentioned before this is achieved when we want to
prevent the execution of the smallest shellcode by changing at least one char-
acter every 24 bytes. Given s the length of the smallest shellcode, the js_-
Transform() function will change the value of a random character every (s� k)
bytes, k = 1...(s� 1). In a real life scenario k = 1 is su�cient to guarantee a lack
of space for the smallest shellcode. If the length of the original string is n bytes,
the number of positions to transform will be i = dn

s e. The array used to store
the positions and the original values of the transformed characters will be 2i bytes
long.

Memory usage: a numerical example Given the following data:

original string length: n = 1MB = 1.048.576bytes

smallest shellcode length: s = 25bytes
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and the size for each field in the support data structure

number of interruptions t = 2bytes

position of changed character p = 1byte

injected sequence length: r = 1byte

The number of interruptions is i = dn
s e = d 1MB

25 e = 43691 and the total size
ds of the support data structure, in the worst case, is given by Equation 5.1

ds = t+ i⇥ (p+ r) (5.1)

Referring to the above numerical example, the total size of the data structure
is given in Equation 5.2

ds = 2 + 43691⇥ 2 = 87384[bytes] = 86[KB] (5.2)

Therefore, the memory overhead is ( 1024+86
1024 � 1) ⇤ 100 = 8.3%

Benchmark Used mem w/o (MB) Used mem w (MB) Overh.
Sunspider 88 93 +5.6%

V8 219 229 +4.2%
Peacekeeper 148 157 +6.5%
Average +5.3%

Table 5.5: Memory overhead of countermeasure in action on three Javascript
benchmarks suites.

Memory overhead for the benchmarks Table 5.5 contains measurements of
the maximum memory in megabytes that the benchmarks used during runtime.
These values have been measured by starting up the browser, running the bench-
marks to completion and then examining the VmHWM entry in /proc/ < pid >
/status. This entry contains the peak resident set size which corresponds to the
maximum amount of RAM the program has used during its lifetime. Our tests
were run with swap turned o↵, so this is equal to the actual maximum memory
usage of the browser. These measurements show that the overhead is significantly
less than the theoretical maximum overhead.

5.5.3 Security evaluation

In this section we give a security evaluation of the approach described in the pre-
vious section. The Javascript code snippet of Fig 5.2 can populate the heap with
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malicious objects. As mentioned before, spraying the heap means allocating mem-
ory and, in our opinion, this should not be considered an action to be detected.
However, when the countermeasure is in place and an exploitable memory cor-
ruption vulnerability exists, any attempt to execute the contents of the sprayed
objects will be very likely to fail. As the instruction pointer lands within a sled,
the execution of a byte instruction 0xCC located at a random position, will call
the interrupt procedure that will halt the program. The execution of the 0xCC
sequence is a su�cient condition to consider the system under attack. In fact,
a legal access to the same object would purge all 0xCC interruption bytes and
de-randomise its content.

One limitation of the proof-of-concept we provided, not the approach in itself,
is that heap-spraying attacks can still be performed by using languages other than
Javascript (i.e. Java, C#, ActionScript, etc. . . ). We are confident that the design
in itself gives a reasonably strong security guarantee against heap-spraying attacks
to be considered for other browser supported languages.

Another way to store malicious objects to the heap of the browser would be by
loading images or media directly from the Internet. However, this strategy would
make the attack clearly observable. The e↵ectiveness of spraying the heap is due
to the fact that large amounts of data are allocated. If, in order to circumvent
content randomisation, this data has to be downloaded from the Internet, the
attack would result discoverable because of tra�c of hundreds of MBs.

Probabilistic analysis In order to quantify the chances of an attacker who in-
jects shellcode under several conditions, we provide a simple probabilistic analysis
and results obtained from numerical simulation. We recall that the highest level of
security is guaranteed when an interruption is inserted every 25 bytes, which de-
termines a lack of physical space in memory even for the smallest shellcode known
at date. The probability of hitting one special interruption byte in a chunk of 25
bytes is 1

25 = 0.04.
In the numerical simulation which confirms this probability, sprayed memory

is interrupted according to the parameters of the countermeasure described above.
For each variation of parameters such as size of injected code and interruption
rate, the simulation has been run several times and the final number of detections
is obtained by averaging across 1000 experiments. We believe this strategy to be
capable of returning robust results.

In Figure 5.6 we show a graph of the probability of detection versus the size
of the injected code, at the highest level of security. When the injected code is
smaller than 10 bytes the probability of interrupting it and detecting the attack
upon code execution, is less than 40%. Fortunately, this probability increases very
quickly for codes of larger sizes and goes practically to 100% (certain detection)
when the attacker injects a code larger than 42 bytes.

Another variable that not only determines the level of security but also the
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Figure 5.6: Probability of detection versus size of injected code.
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overall performance impact of the countermeasure is the interruption rate. In
order to achieve better performance this variable can be set to higher values, at
the cost of decreasing the level of security. In Figure 5.7 we show the probability
of detection for injected code of several sizes versus the interruption rate. We
are confident this to represent a better picture that should be considered before
tuning the interruption rate in order to have a countermeasure with a smaller
performance impact.

Figure 5.7: Probability of detection compared to detection rates for injected code
of several sizes

An interesting scenario would arise if an attacker breaks the 25-byte shellcode
in smaller chunks, not only to fit in the limited interrupted space but also to
decrease the probability of detection. Therefore, he concatenates each chunk by
using JMP relx instructions4. Clearly, each chunk can be stored in the memory
space interrupted every 25 bytes and, according to the aforementioned simulation,
the probability of successful execution of that code would be 1 � P (detection) =
1�0.4 = 0.6. Assuming the attacker is concatenating chunks of 10 bytes using JMP
rel8 instructions (2 bytes on the Intel architecture), there will be space for only
10� 2 = 8 bytes of shellcode per chunk. Therefore, the number of chunks needed

4On the Intel architecture JMP relx indicates an instruction that sets the Instruction Pointer
to a relative o↵set of 8,16 or 32 bits.
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to form the complete 25 byte shellcode amounts to d 25
8 e = 4. The assumption of

independency between chunks and special interruption bytes provides an estimate
of the probability of executing 4 adjacent chunks equal to 0.64 = 0.13. This
represents the best case scenario for the attacker who has complete knowledge of
the memory layout and can jump directly to the beginning of his shellcode without
the aid of NOP sleds. In realistic conditions this knowledge is not present.

As already mentioned, the reliability of heap-spraying attacks is due to the
usage of code sleds that drive the Instruction Pointer from inaccurate memory
locations to the shellcode. The use of NOP sleds dramatically increases the size
of injected code. Therefore, although we consider these attacks feasible from a
probabilistic point of view, they are quite hard to be realised in practice with
reasonable reliability.

5.6 Hypervisor integration

Despite the numerous possibilities that virtualisation technology can o↵er to the
end user, we will focus on a specific case of virtualised desktop. The environment
we refer to in this section is the one used to deliver web browsers on demand.

A virtual machine for each web browser is deployed in order to guarantee
mobility, consistency of view and security. Mobility allows the user to access his
own private desktop from anywhere, using any device and maintaining a consistent
look and feel among them. It should be clear that, in such an environment, security
by isolation is achieved by design. In fact, all the virtual machines are running on
top of a hypervisor executing on virtualisation-enabled hardware.

However, considering an application more secure and shielded just because it
is running within a virtual machine is a type of misunderstanding that is becom-
ing more and more common, specially in the industry [147]. Specifically to the
environment we described, isolating virtual machines would not prevent attacks
to the single web browser. Executing an instance of the web browser within a
virtual machine does not make it immune to common attacks. Therefore, if that
web browser loads a malicious page where a heap-spraying attack has been im-
plemented, the chances of successful attack are equivalent to those of a browser
running within a physical machine.

However, if a countermeasure like the one described before is in place, precious
information about the attack can be collected and used to reduce the risk of attacks
to the rest of the infrastructure. The other virtual machines running on top of the
same hypervisor can be informed of the malicious address that caused the attack.

As mentioned before, executing the 0xCC byte should be a convincing evidence
of an on-going heap-based attack on the browser’s heap. Moreover, when the
operating system has been virtualised, the 0xCC interrupt handler implemented
in the guest kernel can interact with the hypervisor in a straightforward way, via
the raise of a hypercall as described in Chapter 2. This mechanism is used not
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only to notify an attempt of execution of malicious code to the hypervisor, but
also to update a blacklist of URLs that caused such an attack. A schema of such
an environment is provided in Figure 5.8.

Once a heap-spraying attack has been detected, two main strategies might be
considered:

• deliver the blacklist of malicious URLs to the virtual machines that will, in
turn, update their network filters and prevent the local web browsers from
navigating to these addresses or

• keep the aforementioned blacklist in the hypervisor’s space.

Since the hypervisor has access to physical network devices and it opens net-
work connections on behalf of the virtual machines running on top, we believe that
the second choice is to be preferred. A centralised blacklist results easier to keep
up to date. Moreover, the isolation mechanism will even protect this information
from any attempt of compromising or deleting it from the guest kernel.

Clearly, in those cases in which virtual machines need to be migrated to other
hypervisors, for the reasons that are out of the scope of this work, decentralising
the blacklist and delivering it to the single guest machines will be essential to keep
the guests protected even after their migration has occurred.

Regardless the choice of strategy, further access to malicious network address
will be denied to browsers running within the virtualised environment.

5.7 Related work

In this section we provide some of the most e↵ective countermeasures related
to web browser security developed so far. Several countermeasures, like the ones
described in Section 5.7.1, have been designed and implemented to specifically pro-
tect against heap-spraying attacks. Others have been designed to prevent memory
corruption in general, like those in Section 5.7.2. Two architectures that take
advantage of virtualisation technology to provide coarse grained isolation of user
applications are described in Section 5.7.3.

5.7.1 Heap-spraying defences

Nozzle Nozzle is the first countermeasure specifically designed against heap-
spraying attacks via web browsers [143]. It uses emulation techniques to detect
the presence of malicious objects. This is achieved by the analysis of the contents
of any object allocated by the web browser. The countermeasure is in fact imple-
mented at the memory allocator level. This has the benefit of protecting against
a heap-spraying attack by any scripting language supported by the browser. Each
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Figure 5.8: Schema of hypervisor integration: upon loading malicious content from
malicious.com (1) and local detection of heap-based attack, the guest notifies the
hypervisor (2) sending the malicious URL that caused the attack. The hyper-
visor will deliver this information to all virtual machines running on top (3) or,
alternatively will update a blacklist in its private space.
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block on the heap is disassembled and a control flow graph of the decoded in-
structions is built. A NOP-shellcode object may be easily detected because one
basic block in the control flow graph will be reachable by several directions (other
basic blocks). For each object on the heap a measure of the likelihood of landing
within the same object is computed. This measure is called attack surface
area. The surface area for the entire heap is given by the accumulation of the
surface area of individual blocks. This metric reflects the overall heap health. This
countermeasure is more compatible than DEP and would help to detect and re-
port heap-spraying attacks by handling exceptions, without just crashing. This
approach has although some limitations. Because Nozzle examines objects only
at specific times, this may lead to the so called TOCTOU-vulnerability (Time-Of-
Check-Time-Of-Use). This means that an attacker can allocate a benign object,
wait for Nozzle to examine it, then change it to contain malicious content and
trigger the attack. Moreover, Nozzle examines only a subset of the heap, due
to performance reasons. But this approach will lead to a lower level of security.
The performance overhead of Nozzle examining the whole heap is unacceptable for
every day computing. Another limitation of Nozzle comes from the assumption
that a heap-spraying attack allocates a relatively small number of large objects. A
design based on this assumption would not protect against another type of heap-
spraying attack which allocates a large number of small objects instead, which is
known to have the same probability to succeed.

Shellcode detection Another countermeasure specifically designed against heap-
spraying attacks to web browsers is proposed by [148]. This countermeasure is
based on the assumptions that (1) a heap-spraying attack may be conducted by
a special crafted HTML page instrumented with Javascript and (2) Javascript
strings are the only way to allocate contiguous data on the heap. Thus all strings
allocated by the Javascript interpreter are monitored and checked for the presence
of shellcode. All checks have to be performed before a vulnerability can be abused
to change the execution control flow of the application. If the system detects the
presence of shellcode, the execution of the script is stopped. Shellcode detection is
performed by libemu, a small library written in C that o↵ers basic x86 emulation.
Since libemu uses a number of heuristics to discriminate random instructions from
actual shellcode, false positives may still occur. Moreover an optimised version
of the countermeasure that achieves accurate detection with no false positives is
a↵ected by a significant performance penalty of 170%.

5.7.2 Alternative countermeasures

Probabilistic countermeasures Many countermeasures make use of random-
ness when protecting against attacks. Canary-based countermeasures [149,150] use
a secret random number that is stored before an important memory location: if
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the random number has changed after some operations have been performed, then
an attack has been detected. Memory-obfuscation countermeasures [151, 152] en-
crypt (usually with XOR) important memory locations or other information using
random numbers. The memory layout is usually randomised as in [127, 153, 154],
by loading the stack and heap at random addresses and by placing random gaps
between objects. Another type of randomisation consists in encrypting the en-
tire instruction set of an architecture [155] before fetching the instructions and
decrypting them before they are executed. While these approaches are often e�-
cient, they rely on keeping memory locations secret. Unfortunately, programs that
contain bu↵er overflows could also be a↵ected by bu↵er overreads vulnerabilities
(e.g. a string which is copied via strncpy but not explicitly null-terminated could
leak information) or format string vulnerabilities, which allow attackers to print
out memory locations. Such memory leaking vulnerabilities could allow attackers
to bypass this type of countermeasure. Another drawback of these countermea-
sures is that, while they can be e↵ective against remote attackers, they can be
easily bypassed locally, via brute force attacks on the secret areas.

DEP Data Execution Prevention [125] is a countermeasure designed to prevent
the execution of code in memory pages. It is implemented either in software
or hardware, via the NX bit. With DEP enabled, pages will be marked non-
executable and this will prevent the attacker from executing shellcode injected on
the stack or the heap of the application. If an application attempts to execute code
from a page marked by DEP, an access violation exception will be raised. This will
lead to a crash, if not properly handled. While the aforementioned hardware-based
countermeasure is recognised as e↵ective against code injection attacks, its main
limitation consists in the fact that several applications attempt to execute code
from memory pages. Due to these types of compatibility issues, the deployment
of DEP is less straightforward than it should be [156].

Separation and replication of information Countermeasures that rely on
separation or replication of information will try to replicate valuable control-flow
information [63,157–159] or will separate this information from regular data. This
makes it harder for an attacker to overwrite these critical memory areas using
an overflow. Some countermeasures will simply copy the return address from the
stack to a separate stack and will compare it to or replace the return addresses
on the regular stack before returning from a function. These countermeasures are
easily bypassed using indirect pointer overwriting by which an attacker overwrites
a di↵erent memory location instead of the return address exploiting a pointer
from the stack. More advanced techniques try to separate all control-flow data
(like return addresses and pointers) from regular data, making it harder for an
attacker to use an overflow to overwrite this type of data. While these techniques
can e�ciently protect against bu↵er overflows that try to overwrite control-flow
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information, they do not protect against attacks where an attacker controls an
integer that is used as an o↵set from a pointer, nor do they protect against non-
control-data attacks.

Virtual Browser A work that borrows the concepts of virtualisation technology
and applies them to the development of secure web browsers is provided in [160].
Virtual Browser is a browser-level virtualised environment that executes third
party Javascript code in isolation from the rest of the system, namely other com-
ponents of the web browser itself and the host system. The isolated components
can still communicate with each other through data flows that have been care-
fully examined with security in mind. The idea of Virtual Browser is very similar
to that of virtual machines. It provides its own HTML and CSS parsers and
a Javascript interpreter. Therefore, untrusted Javascript code is parsed and ex-
ecuted within the isolated environment, preventing the exploitation of bugs in
the main Javascript interpreter of the browser. For the same reason, trusted
Javascript can execute within the native Javascript engine, improving the overall
performance of the countermeasure. The performance overhead is comparable to
the Microsoft Web Sandbox, but the degree of security is higher and a more com-
plete Javascript language is supported. An important feature that makes Virtual
Browser readily deployable is that it is written in a language that is supported by
the native browser (a Javascript implementation is provided). Therefore, no mod-
ification to the browser codebase is required. Virtual Browser provides isolation
of the Javascript interpreter, leaving all other means to attack web browsers un-
protected. Although a direct comparison with Web Sandbox shows that Virtual
Browser outperforms it in some cases, the overhead compared to web browsers
running natively is not negligible.

5.7.3 Virtualisation-based countermeasures

QubesOS The development of a virtualisation-based Linux distribution like
QubesOS [106] has been driven by the inability of traditional operating systems to
provide isolation among di↵erent applications running within the same machine.
This is the main reason for which current operating systems are usually not capa-
ble of protecting other user’s applications and data from being compromised when
an application, for instance the web browser, has been attacked by a malicious
website. This concept has been extended to the other components of the operat-
ing system. Exploiting a bug in the network stack can a↵ect the security of other
applications and their data, without the operating system to notice and defend
potential targets. Virtualisation is the chief technology QubesOS is based on, due
to its security isolation properties. The main idea of QubesOS is to execute a
number of guests, also called disposable virtual machines, in which applications
that need to stay isolated during their lifetime are executed. The entire system is
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based on disposable virtual machines such as the social virtual machine, in which
applications like the email client or any other web social service will be executed,
the shopping virtual machine, used for those applications to purchase goods from
the Internet with a credit card, or the corporate virtual machine, where the corpo-
rate email client or VPN connections will take place. If one of the aforementioned
virtual machines gets compromised, applications and data running in the other
ones will stay isolated and their code untampered. Disposable virtual machines
are not only used for regular applications but also for system services such as the
network system, the graphical or the storage subsystems. A bug in one of those
subsystems will stay isolated for the same reasons explained above. QubesOS is
a hybrid architecture that takes the concept of isolation, typical of microkernel
systems, in which device drivers are not part of the core kernel and run in un-
privileged mode, and the flexibility of monolithic systems. The challenging task
of QubesOS consists in allowing virtual machines to share data among each other
and still maintain the overall system safe. For instance, those applications that
are being run in di↵erent virtual machines might need their data to be shared; the
web browser isolated in the social virtual machine will certainly use the network
system, provided by the network virtual machine in which the NIC driver, the
TCP/IP stack and 802.11 stack are running; most of the applications running in
their own virtual machines will need the graphical subsystem for basic human-
computer interaction, provided by the GUI virtual machine. All the required
inter-connectivity is provided by the Xen hypervisor that takes advantage of hard-
ware supported virtualisation technology. Despite the high demand in terms of
hardware resources and the performance impact that depends on the number of
virtual machines running simultaneously, QubesOS is one of the few systems that
can guarantee strong isolation at application level.

Invincea A commercial product originally designed to isolate web browsers
in virtual execution environments within a virtualisation platform is presented
in [161]. Due to the proprietary nature of Invincea software, no details about its
technical implementation are provided. However, the main goal of the product is
to protect the host operating system from malware that targets mainly the web
browser as a spreading medium. Whenever the browser protection detects a mal-
ware threat, the user is informed and the virtual environment in which the browser
is executing is shut down. At this point a new disposable virtual machine is started
in order to minimise user interruption. Hardware-supported virtualisation is used
to provide the required separation. The main feature of Invincea consists in the
fact that it relies on unusual behaviour of an application in the virtual environment
rather than on malware signature. Moreover, the data collected during a malware
attack is sent to centralised data servers to be analysed and to build a collective
intelligence database that may protect other clients. This type of protection has
been extended to PDF file readers, o�ce suite, compressed and executable files,
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in a more recent release of the product.

5.8 Summary

A recent heap-based attack to web browsers revealed to be e↵ective and capable of
circumventing countermeasures that have been specifically designed against these
types of threats. Heap-spraying attacks expect to have large parts of the heap to
be homogeneous, a requirement that is fulfilled a number of times in a complex
application like the web browser. In this chapter we show that, by introducing
heterogeneity where attackers expect this homogeneity, we can make heap-based
bu↵er overflows a lot harder.

We provide a proof-of-concept, by modifying the Javascript engine internal
representation of the string data type of a widely used web browser. We show how
e↵ective is introducing diversity against such attacks. This is done by inserting
special values at random locations in the string, which will cause a breakpoint ex-
ception to occur if they are executed. Benchmarks show that this countermeasure
has very limited impact, both in terms of performance at runtime and memory
overhead.

In addition to the single-browser scenario we explain the case in which the
target application is running in a virtualised operating system. We show how this
countermeasure can be easily integrated with the virtualisation infrastructure and
take advantage of hypervisor capabilities to protect other peers in a attack-once-
protect-everywhere fashion.

Although we implemented a prototype for a widely adopted web browser, the
concepts described in this chapter hold to many other scenarios like those in which
interpreted language engines are embedded in user space applications and that are
vulnerable to the same type of attack.
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Chapter 6

Conclusions

People fear death even more than

pain. It’s strange that they fear

death. Life hurts a lot more than

death. At the point of death, the pain

is over. Yeah, I guess it is a friend.

Jim Morrison

Protecting operating system kernels from malware that executes with the same
privilege level is an extremely challenging task for which, at the moment, there is
no winner either from the community of security researchers nor attackers. This
fact is mainly due to the nature of the shared environment in which both trusted
and malicious code operate. A mitigation to attacks with kernel level malware
can be achieved when trusted code has been isolated and any external attempt to
tamper with it will fail.

Virtualisation technology o↵ers the aforementioned required isolation capa-
bilities, but at the cost of an additional layer referred to as hypervisor, on top
of which regular operating systems can be executed. Although we are aware of
attacks to the hypervisor that can compromise the entire virtualisation infrastruc-
ture [162–165], we believe that such attacks can occur under assumptions that are
stronger than the ones explained in this work, such as physical access or faulty
hardware. We demonstrated how the isolation between a hypervisor and a guest
operating system can be used to build a non-bypassable protection system against
kernel-level malware. Despite some limitations of the described protection sys-
tem, regarding the type of kernel code that can be protected, the overall attack
surface of the target system results dramatically reduced, giving the attacker very
few chances to launch malicious operations. In general, isolation is a common
requirement of all protection strategies dealing with kernel security. In traditional
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systems in which the countermeasure and the code to be protected share the same
space and privileges, it is highly unlikely that trusted code will still be executed
even after the kernel has been compromised. The claims made by researchers or
secure software vendors about the e↵ectiveness of these types of security measures
can be achieved if and only if the isolation requirement is fulfilled.

We have contributed to this end by designing a framework that sets a protected
environment within the target system and enforces the execution of trusted code
from the hypervisor. The aforementioned enforcement of trusted code results de-
coupled from the target system. Therefore, there are no viable ways for an attacker
to tamper with the countermeasure in order to postpone security checkings or to
circumvent them completely. In our opinion, two important features, both present
in the proposed framework, make it suitable for production systems: isolation and
performance.

Isolation allows the execution of the trusted code even after the operating
system has been compromised. Any countermeasure in place within a compromised
kernel cannot be guaranteed to provide the functionality it has been designed for.
This was not the case in our framework.

Moreover, by setting most of the secure environment within the target system,
our framework can operate with an almost native performance impact. The coun-
termeasures related to kernel attacks we propose in this work have been designed
with performance and size of instrumentation code in mind. Despite the improve-
ments in hardware supported virtualisation technology, we believe that another
fundamental property that can impede a security measure’s chances of competing
in the marketplace is the complexity of integrating it into existing solutions. The
hybrid approach - extensively used in the countermeasures presented in this work -
of extending the target kernel with a trusted module that bridges communication
to the hypervisor is revealed to be an e↵ective strategy that can be considered
even for those systems that cannot be modified for intellectual property reasons or
because their source code is not available. Once the trusted module is no longer
needed, it is unloaded from the target kernel in order to remove it from the attack
surface and to reduce the chances of circumvention even further. Despite the re-
current mechanism provided by virtualisation technology by which the execution
of the guest can be arbitrated by the hypervisor, finding a common pattern to
the plethora of attacks that might compromise virtualised operating systems is
challenging.

Another area we focus on belongs to the field of web browser security, a topic
discussed in the second part of the thesis. Owing to the recent transformation
of the web browser into one of the most important elements in today’s computer
usage and a recent heap-based attack that can circumvent some of the most e↵ec-
tive countermeasures, we developed a lightweight security measure that not only
revealed to be e↵ective but it is also a↵ected by negligible performance impact.
We focused on heap-spraying attacks, by which objects of malicious content can
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be allocated on the browser’s heap via script languages such as Javascript. An
essential requirement to deploy heap-spraying attacks successfully is homogeneity
of data. When the malicious object has been allocated in the form of a homoge-
neous array, it becomes relatively easy for an attacker to forward the instruction
pointer of the running system to a location within the aforementioned array and
start execution of its content. By introducing diversity via random interruptions
of special bytes we can successfully prevent the execution of malicious code stored
on the heap.

Another challenging aspect when shifting to a newer technology involves de-
signing countermeasures that can take advantage of the new features and can be
easily integrated with the purpose of improving both performance and security. We
contributed to this end by providing a strategy to integrate secure web browsers
with hypervisor technology. This might have an impact in those cases in which
applications are delivered on demand, as in a desktop virtualisation setting.

6.1 Future work

Despite the numerous contributions to tackling kernel malware, we believe that
further research is needed in this area. In the virtualisation-based rootkit pro-
tection system described in Chapter 3, we are aware of a consistent limitation
that restricts integrity checking to those kernel objects that stay invariant during
the system lifetime. Although the proposed countermeasure provides an e�cient
protection against kernel mode rootkits, we believe that there is still room for
improvement. We expect that rootkits with higher complexity might target vari-
able data structures not only to circumvent a countermeasure like the one we
described, but also to achieve a more complex behaviour and inflict further dam-
age. Therefore, we suggest further research that leads to protecting critical kernel
objects that are permitted to change during operating system lifetime, such as
task structures created at runtime, structures that can be assigned to multiple
values, dynamic kernel pointers, etc. as reported in [67]. The reader is likely to
notice that protecting dynamic kernel data is a much more di�cult task for which
an approach di↵erent from the one proposed for static objects must be considered.

The trusted code enforcement framework proposed in this thesis can be used
to perform the di�cult task of rootkit prevention in a more dynamic way. This
major flexibility is due to the fact that, despite the isolation layer, the trusted
code is executing within the target operating system. The number of applications
that may take advantage of such a framework is limited by the needs and reader’s
imagination. For instance, traditional signature-based anti-malware systems are
e↵ective only against known rootkits [166] and any attempt to protect against
rootkits coded with a di↵erent style or targeting unprotected areas of the kernel
might fail. Moreover, in case of attack, these systems can be deactivated by the
malware itself since they are executing within the same system to be protected.
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Such anti-malware systems can thus benefit from the secure framework we propose
in order to operate within the target system and to stay isolated at the same time,
making any attempt to be circumvented extremely di�cult or not feasible at all.

To conclude, we identify an area that needs the attention of security researchers
in light of virtualisation technology, namely mobile computing. The trend of mo-
bile devices outselling traditional computers is a consistent evidence of the drift of
computing experience in general [167–169]. Moreover, this popularity is stimulat-
ing the spread of malware specifically designed for operating systems that execute
on mobile devices [13, 170–173].

We expect that virtualisation technology will a↵ect the mobile arena in the near
future. Hardware support to virtualisation might provide an entirely new way of
thinking about security for mobile devices, similarly to what has been observed
so far. For instance, the technology for executing corporate and personal identity
on top of the same physical mobile device is already present [174]. The nature
of mobile devices, usually equipped with limited hardware resources (such as less
computational power, smaller storage capacity, finite battery life, etc), may place
additional constraints on the design of those security countermeasures that will
take advantage of mobile virtualisation technology.
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