

Bayesian approach integrating correlated foreign information into a multivariate genetic evaluation

J. Vandenplas^{1,2}, N. Gengler¹

¹ University of Liege, Gembloux Agro-Bio Tech, Belgium

² National Fund for Scientific Research, Brussels, Belgium

Introduction

- ✓ For some traits (e.g., fatty acids, dry matter intake)
 - Phenotypes are unavailable or difficult to collect internally

- ✓ Most situations
 - Low accuracy of internal evaluations
 - □ Accurate external evaluations for correlated traits (e.g., milk productions evaluations)

Introduction

- ✓ Multivariate genetic evaluations
 - □ Correlations among traits
 - □ Prediction of EBV of a trait for which phenotypes are unavailable or difficult to collect internally
 - Improvement of accuracy

Aim

- ✓ To develop and test a simultaneous combination of
 - □ pedigree
 - □ internal phenotypes
 - correlated external information (i.e. EBV and REL)

with a multivariate evaluation using a Bayesian approach

Methods

✓ Regular mixed model equations

$$\begin{bmatrix} \mathbf{X'}\mathbf{R}^{-1}\mathbf{X} & \mathbf{X'}\mathbf{R}^{-1}\mathbf{Z} \\ \mathbf{Z'}\mathbf{R}^{-1}\mathbf{X} & \mathbf{Z'}\mathbf{R}^{-1}\mathbf{Z} + \mathbf{G}^{-1} \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{\beta}}_{\mathbf{I}} \\ \hat{\boldsymbol{u}}_{\mathbf{I}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'}\mathbf{R}^{-1}\mathbf{y}_{\mathbf{I}} \\ \mathbf{Z'}\mathbf{R}^{-1}\mathbf{y}_{\mathbf{I}} \end{bmatrix}$$

- $\begin{tabular}{ll} \square $G^{-1} = A^{-1} \otimes G_0^{-1} $: inverse of additive genetic \\ (co)variance matrix \end{tabular}$
- \Box $\mathbf{y}_{\mathbf{I}}$: vector of internal observations
- \Box $\hat{\beta}_{\tau}$: vector of estimated internal fixed effects
- \Box $\hat{\mathbf{u}}_{\tau}$: vector of internal EBV

Assumption

✓ Prior distribution of u_I

$$\mathbf{p}(\mathbf{u}_{\mathbf{I}}) = MVN(\mathbf{0}, \mathbf{G}) \longrightarrow \mathbf{p}(\mathbf{u}_{\mathbf{I}}|\mathbf{y}_{\mathbf{E}}) = MVN(\hat{\mathbf{u}}_{\mathbf{E}}, \mathbf{D}_{\mathbf{E}})$$

- y_E: unavailable vector of correlated external phenotypes
- $oldsymbol{\hat{u}}_{\scriptscriptstyle E}$: vector of external EBV
- $f D_E$: prediction error (co)variance matrix of $\hat{f u}_E$

Methods

✓ Integration of correlated external information

$$\begin{bmatrix} \mathbf{X'}\mathbf{R}^{-1}\mathbf{X} & \mathbf{X'}\mathbf{R}^{-1}\mathbf{Z} \\ \mathbf{Z'}\mathbf{R}^{-1}\mathbf{X} & \mathbf{Z'}\mathbf{R}^{-1}\mathbf{Z} + \mathbf{G}^{-1} \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{\beta}}_{\mathbf{I}} \\ \hat{\mathbf{u}}_{\mathbf{I}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'}\mathbf{R}^{-1}\mathbf{y}_{\mathbf{I}} \\ \mathbf{Z'}\mathbf{R}^{-1}\mathbf{y}_{\mathbf{I}} \end{bmatrix}$$

$$\begin{bmatrix} X'R^{-1}X & X'R^{-1}Z \\ Z'R^{-1}X & Z'R^{-1}Z + D_E^{-1} \end{bmatrix} \begin{bmatrix} \hat{\beta}_I \\ \hat{u}_I \end{bmatrix} = \begin{bmatrix} X'R^{-1}y_I \\ Z'R^{-1}y_I + D_E^{-1}\hat{u}_E \end{bmatrix}$$

Issue

✓ External information only available for external animals

- $\rightarrow \hat{\mathbf{u}}_{\mathrm{E}}$ and $\mathbf{D}_{\mathrm{E}}^{-1}$: partially unknown
- → Estimations for internal animals

Estimation of $\hat{\mathbf{u}}_{\mathbf{E}}$

- ✓ Available
 - \Box External EBV of external animals ($\hat{u}_{\rm E_{\rm E}}$)
- ✓ Internal animals
 - \square Prediction of external EBV ($\hat{\mathbf{u}}_{\mathbf{E_{T}}}$)

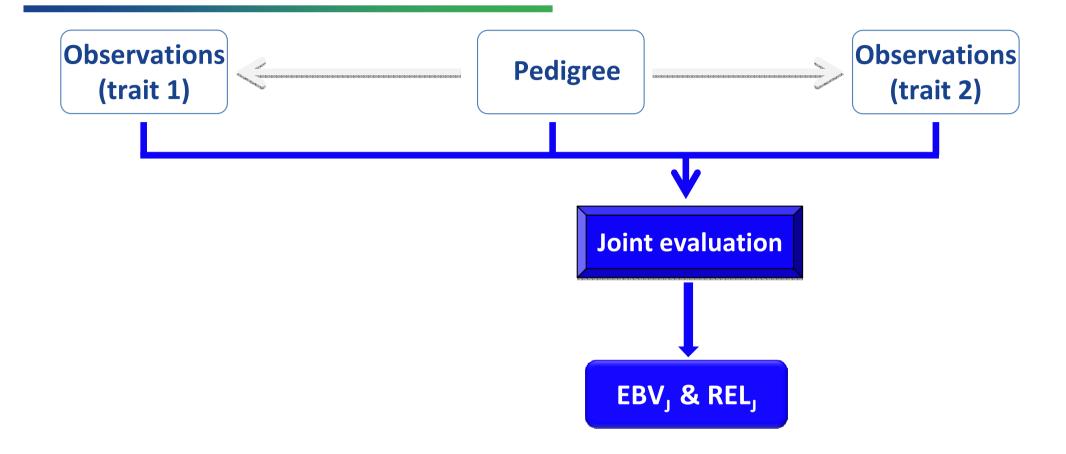
$$p(\hat{\mathbf{u}}_{\mathbf{E}_{\mathbf{I}}}|\hat{\mathbf{u}}_{\mathbf{E}_{\mathbf{E}}}) = MVN(\mathbf{G}_{\mathbf{E}_{\mathbf{I}\mathbf{E}}}\mathbf{G}_{\mathbf{E}_{\mathbf{E}\mathbf{E}}}^{-1}\hat{\mathbf{u}}_{\mathbf{E}_{\mathbf{E}}},(\mathbf{G}^{\mathbf{E}_{\mathbf{I}\mathbf{I}}})^{-1})$$

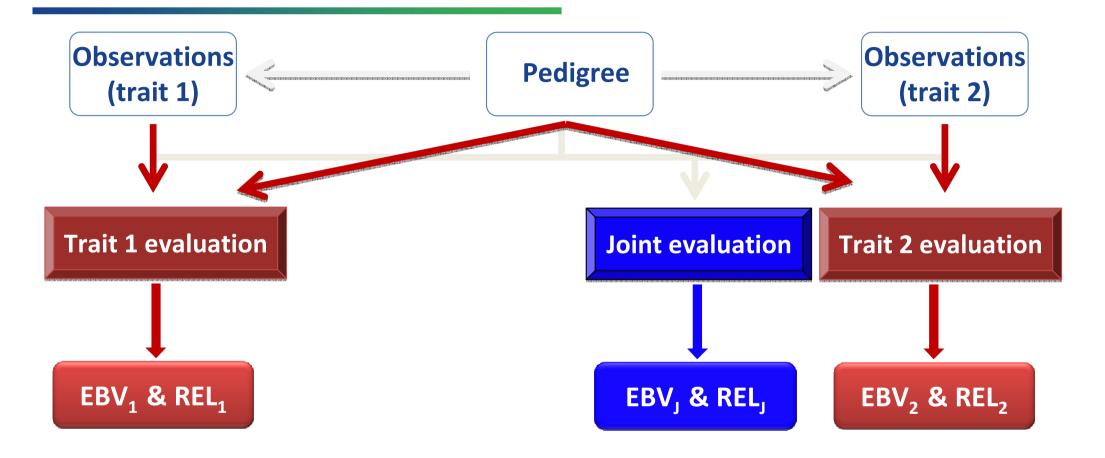
- $\rightarrow \hat{\mathbf{u}}_{\mathbf{E}} = \begin{bmatrix} \hat{\mathbf{u}}_{\mathbf{E}_{\mathbf{E}}} & \hat{\mathbf{u}}_{\mathbf{E}_{\mathbf{I}}} \end{bmatrix}'$
- Correct propagation of external information

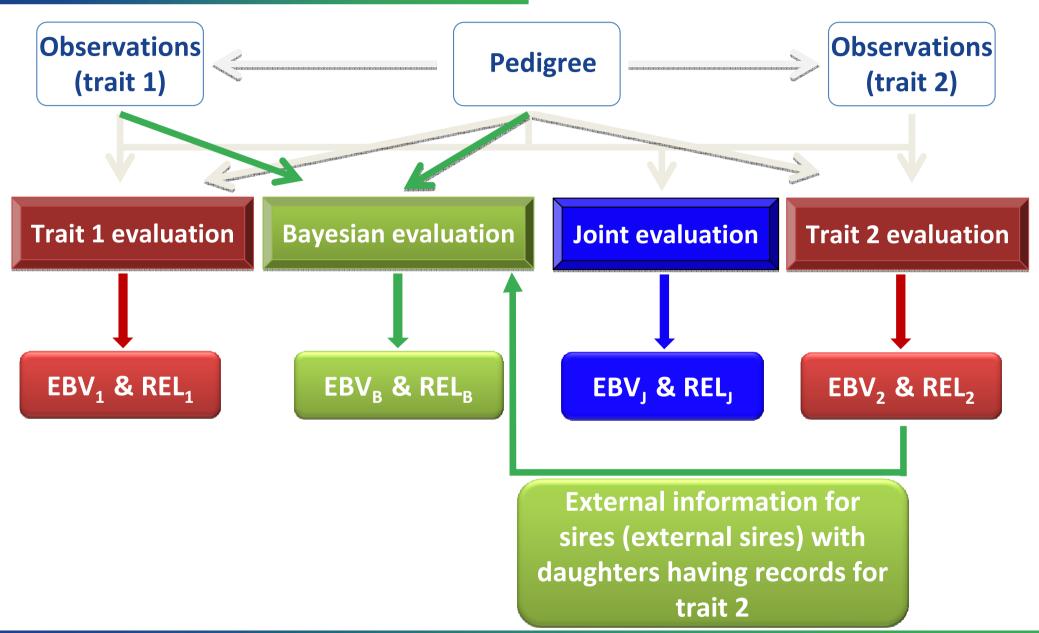
Estimation of D_E^{-1}

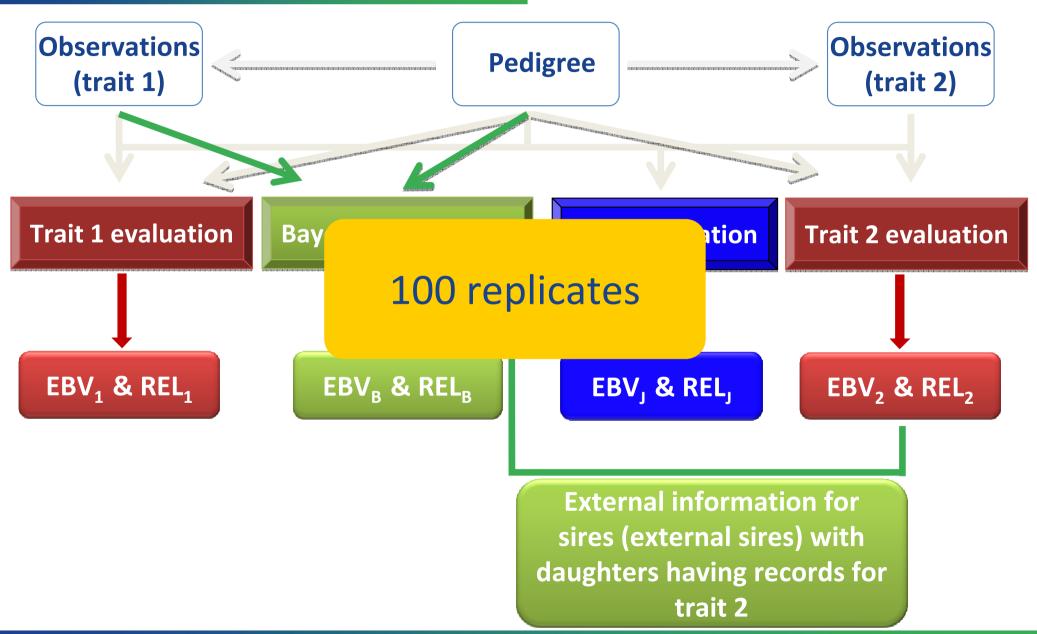
$$\mathbf{D}_{\mathrm{E}}^{-1} = \mathbf{G}^{-1} + \mathbf{\Lambda}_{\mathrm{E}}$$

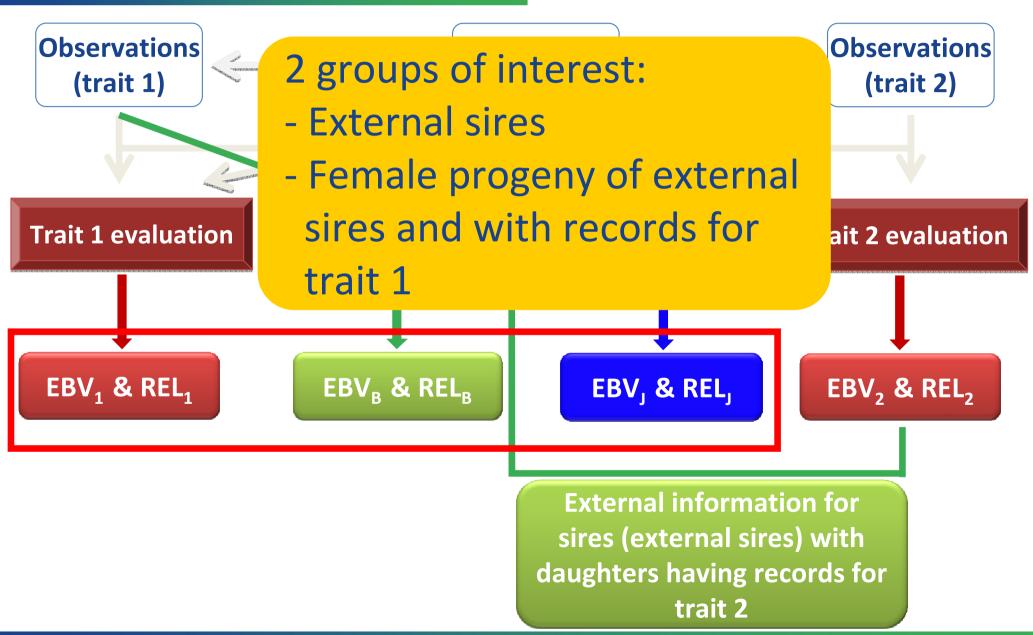
$$\begin{split} & \boldsymbol{\Lambda}_{\mathbf{E}} = block \; diag \left(\boldsymbol{\Delta}_{\mathbf{j}} \mathbf{R}_{\mathbf{0}}^{-1} \boldsymbol{\Delta}_{\mathbf{j}} \right); \; j = 1, ..., n \; \text{animals} \\ & \text{For external animals} : \boldsymbol{\Delta}_{\mathbf{j}} = diag \left(\sqrt{RE_k} \right); \; k = 1, ..., t \; \text{traits} \\ & \text{For internal animals} : \boldsymbol{\Delta}_{\mathbf{j}} = \mathbf{0} \end{split}$$


Pedigree

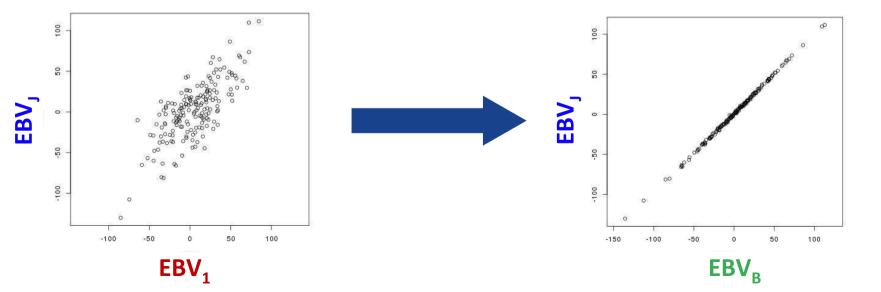

- **➤QMSim** (Sargolzaei and Schenkel, 2009)
 - **▶10** generations
 - >2240 animals
 - > Random selection and matings




Observations (trait 1) Pedigree Observations (trait 2)

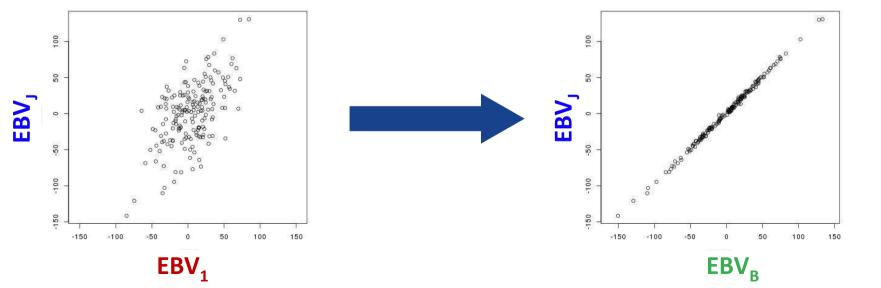

- **≻**Observations
 - **≥2 traits**
 - **≻Only for females**
 - > Fixed effect: herd effect (randomly attributed)
 - **≻**Residual correlation: 0.00
 - **→** Genetic correlations: 0.10, 0.25, 0.50, 0.75 and 0.90
 - ➤ Trait 1 ➤ Trait 2
 - **≻**Trait of interest **≻**3 herds
 - > 2 herds > h² = 35%
 - $h^2 = 10 \%$

✓ Average rank correlations of EBV_J with EBV₁ or EBV_B for external sires (N = 181.0 ± 1.1)


Evaluations		Gene	etic correlatior	าร	
Evaluations	0.10	0.25	0.50	0.75	0.90
Trait 1	0.987 (0.004)				
Bayesian	>0.999 (0.000)				
-100		100	EBV,	-100 -50 0	50 100
	EBV ₁			EBV	, D

✓ Average rank correlations of EBV_J with EBV₁ or EBV_B for external sires (N = 181.0 ± 1.1)

Evoluations		Gene	tic correlation	าร	
Evaluations	0.10	0.25	0.50	0.75	0.90
Trait 1	0.987 (0.004)	0.927 (0.020)			
Bayesian	>0.999 (0.000)	>0.999 (0.000)			
EBV,		100	EBV, -100 -50 0 50 100	O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 100
	EBV _p				


✓ Average rank correlations of EBV_J with EBV_1 or EBV_B for external sires (N = 181.0 ± 1.1)

Evaluations	Genetic correlations					
	0.10	0.25	0.50	0.75	0.90	
Trait 1	0.987 (0.004)	0.927 (0.020)	0.777 (0.053)			
Bayesian	>0.999 (0.000)	>0.999 (0.000)	0.999 (0.000)			

✓ Average rank correlations of EBV_J with EBV_1 or EBV_B for external sires (N = 181.0 ± 1.1)

Evaluations	Genetic correlations					
	0.10	0.25	0.50	0.75	0.90	
Trait 1	0.987 (0.004)	0.927 (0.020)	0.777 (0.053)	0.634 (0.079)		
Bayesian	>0.999 (0.000)	>0.999 (0.000)	0.999 (0.000)	0.999 (0.000)		

✓ Average rank correlations of EBV_J with EBV₁ or EBV_B for external sires (N = 181.0 ± 1.1)

Evaluations		Genetic correlations					
Evaluations	0.10	0.25	0.50	0.75	0.90		
Trait 1	0.987 (0.004)	0.927 (0.020)	0.777 (0.053)	0.634 (0.079)	0.563 (0.091)		
Bayesian	>0.999 (0.000)	>0.999 (0.000)	0.999 (0.000)	0.999 (0.000)	0.998 (0.000)		
EBV ₁	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	150	EBV, FROM THE PARTY OF THE PART		50 100 150		
	EBV ₁			EBV			

✓ Average rank correlations of EBV_J with EBV₁ or EBV_B for external sires (N = 181.0 ± 1.1)

Evaluations	Genetic correlations					
	0.10	0.25	0.50	0.75	0.90	
Trait 1	0.987 (0.004)	0.927 (0.020)	0.777 (0.053)	0.634 (0.079)	0.563 (0.091)	
Bayesian	>0.999 (0.000)	>0.999 (0.000)	0.999 (0.000)	0.999 (0.000)	0.998 (0.000)	

→ Rankings of Bayesian evaluations similar to rankings of joint evaluations

✓ Average REL

Evaluations	Genetic correlations					
	0.10	0.25	0.50	0.75	0.90	
Trait 1	0.10 (0.00)	0.10 (0.00)	0.10 (0.00)	0.10 (0.00)	0.10 (0.00)	
Bayesian	0.10 (0.00)	0.12 (0.00)	0.17 (0.00)	0.26 (0.00)	0.34 (0.00)	
Joint	0.10 (0.00)	0.12 (0.00)	0.17 (0.00)	0.26 (0.00)	0.33 (0.00)	

- → Retrieving almost all correlated information
- → Still some double counting

Results: female progeny

✓ Average rank correlations of EBV_J with EBV_1 or EBV_B for female progeny (N = 241.2 ± 47.1) of external sires

Evaluations	Genetic correlations					
	0.10	0.25	0.50	0.75	0.90	
Trait 1	0.992 (0.002)	0.954 (0.009)	0.844 (0.029)	0.721 (0.048)	0.652 (0.057)	
Bayesian	0.997 (0.001)	0.983 (0.003)	0.946 (0.010)	0.910 (0.017)	0.892 (0.021)	

→ Rankings of Bayesian evaluations more similar to rankings of joint evaluations

Results: female progeny

✓ Average REL

Evaluations	Genetic correlations					
	0.10	0.25	0.50	0.75	0.90	
Trait 1	0.14 (0.00)	0.14 (0.00)	0.14 (0.00)	0.14 (0.00)	0.14 (0.00)	
Bayesian	0.14 (0.00)	0.14 (0.00)	0.15 (0.00)	0.18 (0.00)	0.20 (0.00)	
Joint	0.14 (0.00)	0.14 (0.00)	0.17 (0.00)	0.21 (0.00)	0.25 (0.00)	

→ Propagation of sires' external information to progeny

Perspectives

- ✓ Combination of information for traits having different
 - variance components heritabilities
 - Milk yields in different countries
 - units of measurement
 - Milk yields expressed in kg or lb

Perspectives

- ✓ Combination of information for traits having different
 - variance components heritabilities
 - Milk yields in different countries
 - units of measurement
 - Milk yields expressed in kg or lb
 - □ models
 - Random regressions test-day or lactation models

Perspectives

- ✓ Combination of information for traits having different
 - variance components heritabilities
 - Milk yields in different countries
 - units of measurement
 - Milk yields expressed in kg or lb
 - □ models
 - □ Random regressions test-day or lactation models
 - genotype by environment interactions

Conclusions

- ✓ Good integration of correlated external information
 - even with low genetic correlations
- ✓ Rankings of the Bayesian evaluations more similar to rankings of the joint evaluations
 - for animals with external information
 - for their progeny
- ✓ Numerous possible applications

Acknowledgments

C. C.E.C.I C.E.C.I C.E.C.I for computational resources

✓ Animal and Dairy Science Department, University of Georgia Athens, USA

✓ Animal Science Department, University of Ljubljana, Slovenia

- ✓ Financial supports
 - National Fund for Scientific Research
 - Wallonie Brussels International
 - University of Liege

