

Creation of universal MIR calibrations by standardization of milk spectra: example of fatty acids Cra-W

C. Grelet¹, J.A. Fernández Pierna¹, H. Soyeurt², F. Dehareng¹, N. Gengler², P. Dardenne¹

¹ Walloon Agricultural Research Center (CRA-W), 24 Chaussée de Namur, 5030 Gembloux, Belgium ; ² University of Liège, Gembloux Agro-Bio Tech, Passage des Déportés 2, 5030 Gembloux, Belgium ;

Context and objectives

- Fatty acid content of cow milk can be predicted by Mid-Infrared, however to build robust MIR equations, a large spectral dataset with samples covering the maximum chemical variability is needed
- The sharing of data is a potential solution, but due to the differences existing between each MIR instruments, a step of spectral standardisation is necessary
- Then the goal of this research is to bring the spectra from different types and brands of MIR instruments in the same format, by using a standardisation method, in order to build and use common MIR calibrations predicting fatty acids content of milk

Fatty acids analysis and standardisation of MIR instruments

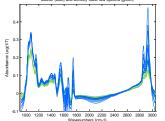
Finland: 50 samples

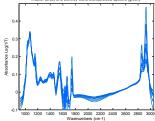
Foss instruments

Bentley and Foss instruments

Germany: 423 samples

- 1827 milk samples selected on spectral variability and analyzed in MIR (2 brands, Foss and Bentley) and in GC to obtain fatty acid profile (since 2006).
- Dataset covering large variability of breeds (17), seasons, feeding systems and geographical areas:




UK: 106 samples Foss instruments

Ireland: 144 samples Foss instruments

France: 150 samples Bentley and Foss instruments Method used: Piecewise Direct Standardisation

Milk MIR spectra from all "slaves" instruments are mathematically corrected to be in the format of the "Master" instrument via analysis of common milk samples

- Partial Least Square method (PLS) used to build calibrations
- **1371** samples used as calibration dataset (including 66 Bentley)
- 456 samples used as validation dataset (including 22 Bentley)

Results and discussion

- Standardisation allows to bring all the spectra from different instruments into the "master" spectral format, and to group them into a common database
- Common FA equations where created for all instruments, including Foss and Bentley
- Validation results (with Foss and Bentley) are comparable to calibration results, showing good ability of the equations to be used on all instruments (even on Bentley standardized spectra)

Legend

terms = number of terms (latent variable) SD = standard deviation of reference values SEC = standard error of calibration R²c = R² of calibration SEP = standard error of prediction

 $R^2p = R^2$ of prediction

RPDp = ratio of SD/SEP. See RPD class

	Class	Application	Symbol	
ว	Very poor	Allows to compare groups of cows,		
		distinguish high or low values	_	
3	Poor	Screening	0	
5	Fair	Qualitative screening	+	
6.5	Good	Quality control	++	
+	Excellent	As precise as reference value	+++	
	3	3 Poor 5 Fair 5.5 Good	distinguish high or low values Poor Screening Fair Qualitative screening Good Quality control	

	Calibration using 1371 samples					Validation (456 sample			
Constituents (g/100 ml milk)	#terms	Mean	SD	SEC	R ² c	SEP	R²p	RPDp	
Fat	7	3.906	0.981	0.007	1.00	0.007	1.00	140.11	
Total of Saturated FA	8	2.694	0.757	0.072	0.99	0.082	0.99	9.23	
Total of Mono-unsaturated FA	10	1.073	0.344	0.059	0.97	0.066	0.97	5.20	
Total of Poly-unsaturated FA	11	0.159	0.045	0.021	0.79	0.023	0.75	1.97	
Total of Unsaturated FA	10	1.233	0.379	0.064	0.97	0.076	0.96	4.99	
Total of Short chain FA	9	0.348	0.097	0.025	0.93	0.027	0.92	3.59	
Total of Mid chain FA	11	1.988	0.606	0.104	0.97	0.123	0.95	4.93	
Total of Long chain FA	10	1.579	0.498	0.110	0.95	0.126	0.95	3.95	
Total of branched FA	9	0.091	0.026	0.013	0.77	0.015	0.64	1.74	
Total of odd FA	10	0.156	0.041	0.016	0.84	0.019	0.76	2.14	
Total of trans FA	13	0.159	0.068	0.029	0.82	0.036	0.76	1.90	
C4:0	11	0.104	0.029	0.008	0.93	0.009	0.90	3.21	
C6:0	8	0.072	0.021	0.006	0.91	0.007	0.89	2.97	
C8:0	9	0.047	0.014	0.004	0.91	0.005	0.88	2.78	
C10:0	12	0.111	0.035	0.010	0.92	0.011	0.89	3.17	
C12:0	12	0.134	0.043	0.011	0.93	0.013	0.90	3.29	
C14:0	9	0.447	0.123	0.030	0.94	0.036	0.91	3.42	
C14:1 cis	10	0.038	0.014	0.008	0.71	0.009	0.63	1.59	
C16:0	10	1.192	0.400	0.091	0.95	0.106	0.92	3.77	
C16:1 cis	10	0.065	0.024	0.013	0.73	0.016	0.63	1.51	
C17:0	8	0.027	0.008	0.003	0.81	0.005	0.67	1.60	
C18:0	12	0.394	0.137	0.056	0.84	0.064	0.84	2.14	
C18:1 cis9	9	0.744	0.261	0.061	0.95	0.068	0.95	3.84	
Total C18:1 trans	13	0.125	0.056	0.025	0.80	0.032	0.73	1.75	
Total C18:1 cis	9	0.801	0.286	0.063	0.95	0.070	0.95	4.09	
Total C18:1	10	0.931	0.314	0.060	0.96	0.071	0.96	4.42	
C18:2 cis9, cis12	10	0.061	0.022	0.011	0.75	0.014	0.65	1.56	
C18:2 cis 9, Trans 11	10	0.028	0.020	0.010	0.74	0.013	0.69	1.54	
Total C18:2	9	0.096	0.026	0.014	0.71	0.017	0.63	1.55	
C18:3 cis9, cis12, cis 15	11	0.020	0.008	0.004	0.69	0.005	0.60	1.56	
Total of omega 3	11	0.026	0.010	0.006	0.68	0.006	0.64	1.68	
Total of omega 6	11	0.103	0.028	0.014	0.74	0.018	0.66	1.57	

Conclusion

Standardisation allows to merge MIR milk spectra from different instruments in the same format. >Common equations were built and can be used by all MIR instruments participating to the standardisation

