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June 2014





Members of the Examination Committee

Olivier Brüls (Co-supervisor)
Professor - University of Liège

Frédéric Cugnon
PhD, Research Engineer - Siemens PLM Software

Wim Desmet
Professor - Katholieke Universiteit Leuven

Pierre Duysinx (Supervisor)
Professor - University of Liège

Michel Géradin
Emeritus Professor - University of Liège

Gaëtan Kerschen (President of the Committee)
Professor - University of Liège

Robert Seifried
Professor - Universität Siegen, Germany

Olivier Verlinden
Professor - University of Mons





Abstract

Automotive drivetrain devices are subjected to complex phenomena, e.g., backlash between
gear teeth or contact with friction, which significantly influence the dynamic behaviour of the
vehicle. Because of the current requirements in the automotive industry to make lighter vehicles
and improve the comfort of the passengers, these phenomena can no longer be neglected during
the design proces. However, the modelling of these nonlinear and discontinuous effects is not
trivial and can lead to numerical problems during simulation. Therefore, the development of
specific formulations is needed in order to manage these particular effects.

This thesis is dedicated to the development of new methodologies to simulate efficiently
the dynamics of mechanical transmission devices. The various contributions are formulated
within the framework of the nonlinear finite element method for flexible multibody systems.
The latter allows the modelling of complex mechanisms composed of rigid and flexible bodies,
kinematic joints and force elements.

The modelling of TORSEN differentials has been selected as representative industrial ap-
plication to demonstrate the developments. In the first part of the thesis, global models of the
TORSEN differential have been constructed in the flexible multibody software SAMCEF/ME-
CANO and validated with experimental data. The modelling assumptions introduced and the
drawbacks observed during the numerical simulation of this complex industrial application have
guided the further developments to be performed to achieve the work.

The modelling of contact conditions is a central question in this work. The contact models
developed are formulated following a global approach with the aim to include the transmission
component into a vehicle model and perform integrated simulations of the vehicle dynamics.
They are based on a continuous approach so that a smooth solver of the generalized-α family
can be used.

The second part of the thesis addresses the modelling of contact conditions between rigid
bodies. A general kinematic description is proposed to model the contact between two nodes
rigidly attached to the contact surfaces. The magnitude of the contact forces is computed by a
continuous impact law which uses a restitution coefficient to represent the loss of kinetic energy
inherent to impact. The geometric shapes of the contacting surfaces are particularized to the
contact between two planar rings and to a non-ideal cylindrical joint where the clearance and the
tilting are accounted for. A squeeze film model is also proposed to represent the damping effect
produced by the presence of lubricant between approaching bodies. Thanks to this new element,
the resulting TORSEN differential model has gained robustness and computational efficiency
so that it can be included in a full vehicle model in order to simulate various manoeuvres.

Finally, a new contact formulation is developed between flexible components modelled as
superelements. A major originality of the model lies in the determination of the spatial con-
figuration of the potential contact zones from the superelement generalized coordinates. The
contact forces computed in the 3D space are reformulated and directly applied upon the su-
perelement generalized coordinates. This approach leads to very compact models of contacting
bodies. The primal and the dual versions of the Craig-Bampton method are investigated to
formulate the superelement model which includes in both cases a mixed set of static and vibra-
tion modes. The relevance of this contribution is demonstrated through the simulation of 3D
flexible gear pairs.
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Chapter 1

Introduction

1.1 General context

Nowadays in the automotive industry the requirements to reduce fuel consumption and
environmental pollution are greatly increasing. Reducing the weight of the vehicle,
lowering the mechanical losses and developing new hybrid electric propulsion systems
are needed in order to reach this goal. Nevertheless, these new vehicle designs should
not downgrade the security and the comfort of the passengers. For instance, elec-
tronic control systems such as ABS or ESP involve additional automotive components
and therefore tend to increase the global weight, but they highly improve the vehicle
handling and allow to avoid accidents in a lot of situations. The mass reduction of
structural parts can also lead to higher flexibility, which can generate vibrations and
alter the driving pleasure. Moreover, the comfort in the passenger cell can be affected
by the reduction of acoustic isolation due to thinner structural panels.

In order to find a compromise between these antagonist criteria, the current trend
addresses the development of reliable simulation tools to enhance the automotive design
process. The virtual prototyping approach is very useful during the pre-design phase
since it allows to get numerous data about a mechanical device without having to
construct a costly real prototype. Numerical simulations can also be used to detect
the origin of problems occurring on a car already on the market. It is indeed often
difficult to proceed by measurements especially with the increasing complexity and
interdependence of automotive components. Once the problem is understood, various
modifications in the system can be easily tested thanks to the numerical model in order
to find a solution to it.

Usually, in mechanical engineering, two types of numerical studies are carried
out. On one side, the multibody system simulations allow studying the kinematics
of mechanisms made of rigid bodies and evaluate dynamic loads. On the other side,
the structural analyses are performed to compute the stresses and strains in individual
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2 Chapter 1. Introduction

flexible components. These models are often based on the finite element method and
allow to verify that the magnitude of strains and stresses have a reasonable magnitude
even locally.

However, due to the alleviation requirements, the flexibility effects become a major
concern in the design of many automotive components as it has always been the case
for aeronautical structural parts. Therefore, the flexible behaviour can no longer be
neglected in dynamic multibody simulations. Indeed, if large deformations appear, the
rigid body assumption adopted in the MBS model leads to unrealistic prediction of the
dynamic response of the system. The interconnection loads between the various bodies
are computed with a significant error which will affect the detailed structural analyses
if these forces are used as load cases for the finite element model.

Multibody simulation techniques are frequently used to model complex automotive
systems [76, 141]. For instance, dynamic simulations of crankshaft or connecting rods
have been carried out in [107] to analyse the mechanical losses. Refs. [25, 90] deal with
deformations and stresses in multicylinder engines. The suspensions are also widely
modelled using multibody tools [11]. Their models are composed of a mixed set of
rigid and flexible bodies and enable to analyse the vehicle dynamic behaviour in case
of manoeuvres or braking (see for example [30] and [49]).

Models of transmission components are less mature because several complex phys-
ical phenomena are involved such as stick-slip, backlash between gear teeth, contact
with friction, impact or hysteresis. The modelling of these nonlinear and discontinuous
effects is not trivial and can lead to numerical problems during simulation. The devel-
opment of specific formulations is needed in order to manage these particular effects.

The driveline devices such as the clutch, the gear box or the differential highly
interact together. They influence the driveline behaviour but also the whole vehicle
performance. For instance, the differential features can have a direct influence on
the sizing of the anti-roll bar and the suspensions. The vibrations generated by the
backlash between gear teeth can be transferred to the car body and induce noise in
the passenger cell if they are not enough damped. Therefore, individual models of
transmission components are often not sufficient and there is a need to have global
drivetrain or even full vehicle models. Indeed, some physical phenomena can hardly
be captured with isolated device models. In this way, the development of efficient
formulations dedicated to transmission devices would enable to close the loop between
the engine and the suspension models. Besides, the driveline modelling enhances the
performance not only of the transmission devices, but also of the other subsystems of
the vehicle. Such global vehicle models are currently conceivable owing to the huge
computational resources available but were unthinkable a few decades ago.

Modern vehicles include new technologies such as electric motors, active suspen-
sions, electronic active safety systems. Thus, there is also a need to develop multiphysic
modelling methods. In addition to the mechanical behaviour, the other physical effects
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(e.g. electric, thermal, acoustic) have to be taken into account whereas they were ig-
nored in the past. For instance, the very compact assembly structure in the engine
compartment or high voltage in battery systems can lead to a high temperature envi-
ronment and the thermal expansion can no longer be neglected. The coupling between
these different sources of energy has to be managed with care since their respective
characteristics can be very different. For instance, the dynamics of the electric part is
generally much faster than the dynamics of the mechanical system. Co-simulation tech-
niques can then be considered to adopt different time scales to describe each physical
phenomenon.

1.2 Objectives of the thesis

The present thesis is dedicated to the development of new methodologies to simulate
efficiently the dynamics of automotive transmission devices. The various models de-
veloped have been formulated within the framework of the nonlinear finite element
method for flexible multibody systems [42]. The latter allows the modelling of com-
plex mechanical systems composed of rigid and flexible bodies, kinematic joints and
force elements. Based on absolute finite element coordinates, the description of flexi-
ble structural components naturally accounts for large rigid-body motions and elastic
deflections.

In a first step, an industrial drivetrain component is fully modelled by using
the tools available in the commercial software SAMCEF/MECANO. This preliminary
study has the objective to point out the needs for enhanced or new modelling capabil-
ities in the field of automotive driveline.

TORSEN differentials, which are representative driveline components, have been
selected for that numerical study. Their models have been developed with the support
of the car part manufacturer JTEKT TORSEN. These limited slip differentials are fully
mechanical devices in which the locking effect and the torque transfer are only due to
friction inside the differential. The TORSEN differentials are mainly composed of a
set of gear pairs and thrust washers (see Fig. 1.1). The frictional contacts occurring
between the latter are fundamental to their working principle.

The modelling assumptions introduced and the drawbacks observed during the
numerical simulation of this complex industrial application have inspired the further
developments achieved in this PhD thesis. However, all claimed contributions are
formulated with a sufficient level of generality to be applied to other transmission
mechanisms in the automotive industry or even in other fields of mechanics (energy,
robotics, etc).

The contact modelling is a central question in this thesis. The finite element
software SAMCEF allows to perform dynamic analysis of multibody systems including
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(a) type B (b) type C

Figure 1.1: Main application: TORSEN differentials.

contact conditions. Nevertheless, the contact models available are only suited to study
the local effects between detailed 3D finite element meshes. Therefore, more global
contact modelling techniques are proposed in this research work to formulate unilateral
contact conditions between rigid bodies or superelements. A major characteristic of
the developed contact models is related to the fact that they are formulated in a finite
element context. A special attention is put on the modelling of impact and friction
forces because these phenomena significantly influence the dynamic response of the full
drivetrain but they are rarely accounted for in standard models of kinematic joints. All
the contact models presented in this dissertation are based on a continuous approach
so that a smooth solver of the generalized-α family can be used.

The final goal is to include the transmission component in a vehicle model in
order to perform integrated simulations with the vehicle dynamics. Thus the various
models are developed by keeping in mind this requirement. For instance, the number
of generalized coordinates needed to model each contact condition has to remain small
in order to keep the computational time and the memory allocation in a reasonable
range.

Although the first TORSEN differential models exhibit numerical results in good
agreement with experimental data, we propose to replace the rigid/flexible contact
conditions by purely rigid contact models in order to reduce the model size. Based on
the same contact modelling method, a non-ideal cylindrical joint is developed where
clearance and friction are accounted for.

A squeeze film model is also proposed to represent the damping effect produced
by the presence of lubricant between approaching bodies. Thanks to this new element,
the resulting TORSEN differential model is more robust and computationally efficient
and can be included in a full vehicle model in order to simulate various manoeuvres.
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The last contribution of this thesis addresses the development of a new contact
modelling approach defined between superelements. This innovative formulation en-
ables to account for the flexibility of the contacting bodies while keeping a model size
much smaller than a 3D finite element model. The main application of this contact
model is the 3D simulation of gear pairs with meshing defects. The contact model
between superelements is implemented in MATLAB whereas the others models are
implemented in the software SAMCEF/MECANO.

1.3 Outline of the dissertation

The present manuscript is divided into eight chapters as follows. After this introductory
chapter, the Chapter 2 starts with the state of the art in multibody system dynamics
(Section 2.1). The nonlinear finite element method for flexible multibody systems is
presented (Section 2.2) since all the models developed in the present thesis are formu-
lated following this modelling approach. A brief review of the various topics tackled
in the next chapters is given in Sections 2.3-2.6: the model reduction techniques, the
modelling of contact, the non-ideal kinematic joints, the squeeze film modelling and
the gear pair models.

Chapter 3 presents the TORSEN differentials models constructed by using only
tools already available in the software SAMCEF/MECANO. First of all, in order to
clearly understand the working principle of TORSEN differentials, a technical descrip-
tion is given in Section 3.1. Afterwards, the formulations used to model the two main
kinematics joints are looked over: a global gear pair element (Section 3.2) and an unilat-
eral contact condition (Section 3.3). The modelling assumptions introduced are listed
in Section 3.4 where the numerical results are presented too. This chapter enables to
emphasize the difficulties inherent to simulate the dynamics of driveline mechanisms.

The modelling of contact between rigid bodies is studied in Chapters 4 and 5.
The continuous impact modelling method is described in section 4.2. This continuous
contact approach is assessed by means of the simulation of the bouncing ball benchmark
(see Section 4.2.2). Then, the kinematic description of a 3D contact element is proposed
for frictional contacts between two planar rings (Sections 4.3-4.4). This new element
is used to model the contact between the thrust washers and the lateral faces of gear
wheels (Section 4.4.1). Using the same kind of contact force law, a cylindrical joint with
defects is developed (Section 4.5). This joint accounts for the clearance, the tilting and
the friction and is applied to represent the connection between the planet gears and
the housing of the type C TORSEN differential (Section 4.5.3).

In Chapter 5, the film of lubricant between two planar bodies is considered. The
proposed squeeze film model is based on a set of simplifying assumptions which en-
ables to keep a compact formulation (Section 5.2). After having introduced this simple
squeeze film contribution in the TORSEN differentials models, the latter become more
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robust during the transient phases between two different working modes (Section 5.4).
In the second part of the chapter (Section 5.5), the TORSEN differential models have
been included in three different vehicle models in order to analyze the interactions
between the differential and the vehicle dynamics. Several manoeuvres have been re-
produced.

A new contact formulation defined between two superelement is detailed in chap-
ters 6 and 7. Firstly, the basic principles of the Craig-Bampton’s substructuring tech-
nique are reminded in Sections 6.2-6.3. The corotational formulation of a superelement
based on this linear reduced model is presented in Sections 6.4-6.5. Then, the various
steps of a simple contact detection algorithm are summarized (see Section 6.6). The
formulation of the internal force vector related to each point in contact is described
in Section 6.8 and is the major originality of the proposed model. Finally, the rele-
vance of the approach for the dynamic analysis of transmission devices is demonstrated
through simulation results of simple examples first, and then on a gear pair model
(Sections 6.9-6.11).

Chapter 7 is also focused on a compact contact formulation between superelements.
The main difference with the previous chapter lies in the superelement model used
(Section 7.3). The latter is based on the dual Craig-Bampton method which is detailed
in Section 7.2. The expression of the kinematic constraints needed to connect the dual
superelement to its environment are described in Section 7.4. The chapter ends with
the presentation of numerical results for the simulation of flexible gear pairs.

Finally, the conclusions of the PhD thesis and the perspectives for future works
are summarized in Chapter 8.



Chapter 2

State of the art

Contents
2.1 Multibody systems . . . . . . . . . . . . . . . . . . . . . . . . . 8
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In order to position the various contributions of the present work against the
state of art of their research field, a brief review of the main leading methodologies is
presented is this chapter. We do not intend to provide an extensive survey of all the
theories available in the literature, but the objective is rather to give an overview of
existing methods and explain the choices adopted for the developments of this work.

At first, the principles of the multibody system formalism are introduced in sec-
tion 2.1 where the different types of coordinates, reference frames and rotation variables
are reminded. Then, the nonlinear finite element method for flexible bodies is presented
in section 2.2 because it is the basic framework for all claimed contributions of this PhD
dissertation. The contact modelling being the core of several developments of this the-
sis, an overview of frequently encountered contact models is given in section 2.4. The
main methods to represent the defects in kinematic joints are looked over in section 2.5.
Finally, Chapters 6 and 7 address a novel gear pair model taking advantage of contact
between superelements. To this end, model reduction techniques and gear pair models
are reviewed in sections 2.3 and 2.6 respectively.

7
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2.1 Multibody systems

A multibody system (MBS) is an assembly of several elements such as bodies (rigid
or flexible), joints or force elements (see Fig. 2.1). The relative motion between inter-
connected structural components is restrained by force elements (e.g., spring, damper,
actuator) whereas joints (hinge, prismatic, etc) enable a relative motion in a given direc-
tion and prevent the other degrees of freedom. The motion of a multibody system can
also be influenced by externally applied forces or torques as well as motion-dependent
forces developed through specific elements such as tyre models or controllers.

rigid body 

flexible body 

kinematic 

joint 

force element 

external force 

Figure 2.1: Block diagram of a basic multibody system.

The simulation of simple rigid multibody models is based on the fundamental
principles of Classical Mechanics (e.g., Newton-Euler equations, Lagrange equations,
Hamilton principle). Owing to the spectacular growth of computational resources,
reliable and accurate simulations of large and complex industrial system composed of
flexible bodies have become feasible over the last decades.

Multibody systems appear in numerous fields of mechanical engineering. Artic-
ulated mechanisms are typical applications of multibody systems. For instance, the
trajectory of single or multiple arm robots [27] as well as the performance of ma-
chine tools [148] can be efficiently simulated using multibody models. As described in
Ref. [11], detailed multibody models of automotive suspension systems are developed
to study the dynamics of vehicles. One can also find many other application fields of
MBS in aeronautics (e.g., landing gear mechanism [78]), spacecrafts (e.g., deployment
of solar panels and antennas [84]), railway systems (e.g., wheel-rail contact [94], pan-
tograph dynamics), etc. For a couple of years, the biomechanics expands dramatically
the research works based on multibody system theory, see for instance Ref. [117] where
the dynamics of the human walking is simulated or Ref. [110] in which the shoulder
kinematics is modelled in order to develop new artificial prostheses. More recently, the
call for sustainable energy systems also motivates accurate multibody models of wind
turbines [55].
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The literature mentions various formalisms to describe mathematically a multi-
body system (see Refs. [7, 143] for a detailed review of existing formulations in flexible
multibody dynamics and Ref. [119] for rigid mechanisms). However, no matter the
adopted approach, the analysis of a multibody system can be decomposed into a few
steps (Fig. 2.2):

1. definition of modelling assumptions;

2. formulation of behaviour laws for components;

3. generation and integration of motion equations;

4. visualisation and interpretation of the results.

Physical system

1. Modelling assumptions

rigid body
flexible body

2. Element formulations 

3. Generation and integration 

of motion equations

4. Results analysis

universal joint

tyre

bushing

gear pair

spring

Figure 2.2: Various steps of a MBS analysis.

Modelling assumptions

Firstly, the mechanism under study has to be examined in order to determine the
elements to be used in the model and the related assumptions. The model designer
has to consider a couple of questions according to the application considered. Can
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the system be represented as a planar mechanism or should the 3D spatial motion be
accounted for? For each individual body, is the rigidity assumption acceptable? Are
the strains in flexible structures sufficiently small to allow using a linear reduced order
model (see section 2.3)? Can the kinematic joints be described with an idealized model
in which friction and defects such as clearance are neglected?

Element formulations

This step consists in describing the kinematics of each element (body, joint, etc) with
a set of coordinates. All the forces generated inside an element have to be expressed
as functions of these coordinates and their time derivatives. In case of external forces
or elements such as actuators, the forces can explicitly depend on time.

The type of coordinates adopted to define the system has a strong influence on
the element formulation. The main types of coordinates will be briefly presented in
section 2.1.1.

Generation and integration of motion equations

Once all elements are defined, the equations of motion are constructed using the classical
equations and principles of mechanics: Newton-Euler, Lagrange, d’Alembert, Hamilton,
etc. The number of differential equations of motion is equal to the total number of
coordinates. If the system includes kinematics constraints, a set of equations is added to
the ordinary differential equations (ODE) and leads to a differential-algebraic equation
(DAE) system. Either symbolic or numerical methods can be used to formulate the
equations of motion. The symbolic tools allow generating automatically and efficiently
the equations in a symbolic format, which has the advantage of portability as well
as avoiding the computation of some expressions by the model designer. Their use
is, however, limited to systems of low to medium complexity. The numerical methods
enable to build the equations of motion in a more systematic way for large and complex
dynamic models including flexible bodies and are suitable for all types of systems.

Because of large amplitude body motions and joint kinematic constraints, most
multibody models are nonlinear. Moreover, the equations of motion are often stiff,
especially in the presence of flexible bodies which introduce a wide range of eigenfre-
quencies [42] or for multiphysic problems generally exhibiting dynamic time constants
of different orders of magnitude between the various physical subsystems (hydraulic,
electronic, structure, etc). To ensure the stability of the time integrator, an implicit
integration scheme is required to solve constrained flexible multibody systems in a
DAE form. Numerical damping is also often needed to avoid the amplification of high
frequency numerical noise.

The nonlinear equations resulting from in single step or multistep implicit numer-
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ical integrator such as Newmark, generalized-α [23], Adams, BDF, Runge-Kutta [96],
are generally solved using a Newton-Raphson iterative process.

Result analysis

At the end of the simulation, the model analyst has to verify the consistency and ac-
curacy of the mechanical response provided by the numerical model. The acceptability
of the modelling assumptions adopted has also to be checked. For example, if a slender
structural component has been modelled as a rigid body, it cannot be submitted to a
high speed motion neither to significant loads. Otherwise, the simulation results can ex-
perience significant discrepancies compared with the actual physical system behaviour.
The numerical results can sometimes be validated by comparison with experimental
results or with more detailed numerical models or analytical models.

Much information can be acquired from a FE based multibody simulation, for
instance: stress and strain in flexible bodies, contact pressures, constraint forces in
kinematic joints, wear, ... These numerous valuable pieces of data are stored during
the computation and can be figured out after the simulation during the post-processing
phase.

The various simulation steps presented hereabove are not completely independent.
Indeed, the choice of the type of coordinates describing the system strongly influences
the formulation of all elements and the procedure to generate the equations of motion.
The form of the equation system as well as the characteristics of the integrator scheme
also depend directly on the type of coordinates. In order to get a computationally
efficient simulation of a multibody system, the different steps have to follow each other
in a natural way.

The multibody system approach enables to achieve static, kinematic or dynamic
simulations of mechanical systems. Simulation is a direct problem which means that
the time evolution of the position and the orientation of all bodies is computed from
given applied forces/torques or a set of prescribed positions/velocities. Nevertheless,
inverse problems can also be solved with the help of multibody models. The latter
consist in finding a set of driving forces and torques in actuated joints allowing to yield
a given global motion. Feedforward control and trajectory tracking in robotics are
typical applications of inverse problems, see Ref. [6].

2.1.1 Main types of coordinates in MBS

The number of degrees of freedom is an intrinsic feature of a multibody system and can
be interpreted as the minimal number of independent coordinates needed to describe
unequivocally the spatial configuration of the whole model. The generalized coordinates
are a set of variables allowing to express the position and the orientation of each body of
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the system. They often represent positions or displacements in translation or rotation
but other kinds of variable can also be used, e.g., the modal amplitudes of superelements
(see Section 6.2). These coordinates are not necessarily independent, which means that
an arbitrary variation does not automatically induce an admissible configuration of
the system. In this case, kinematic constraints are needed to express the dependence
between some coordinates so that the MBS model still has the correct number of degrees
of freedom (see for instance the Grübler formula in Ref. [13]).

Several approaches are available to select the vector of coordinates describing each
element of a multibody system. A global overview of the common type of coordinates
is given in the sequel of this section and the differences are illustrated in Figure 2.3 for
the modelling of a planar slider-crank mechanism. This simple 2D multibody system
is composed of three rigid bodies (crank, connecting rod, piston), three hinges and one
prismatic joint.

The choice of the type of coordinates is fundamental because it determines the
form and the dimension of the equation system that describe the physical system and
therefore influences the computational efficiency and the simplicity of the implementa-
tion. However, there is no universal choice: the most appropriate type of coordinates
depends on the application considered, each approach having its own advantages and
drawbacks.

(a) minimal
coordinates

(b) relative
coordinates

(c) reference point
coordinates

(d) natural
coordinates

(e) finite element
coordinates

Figure 2.3: Description of the slider-crank mechanism with different types of coordi-
nates.

Minimal coordinates

With the minimal coordinates approach, the number of generalized coordinates corre-
sponds to the number of physical degrees of freedom of the mechanism. Therefore, all
coordinates are independent and no algebraic constraint is needed. The equation sys-
tem has a minimal dimension and only includes ordinary differential equations (ODE),
which an important advantage. For instance, a unique equation of motion enables to
simulate the one DOF slider-crank mechanism (Fig. 2.3(a)). The sole coordinate θ
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represents the angular position of the crankshaft.

However, the kinematic description of the system and the generation of the motion
equations can be quite complicated even though symbolic tools allow an automatic
processing. Moreover, for some closed-loop systems such as the well-known four-bar
mechanism, multiple configurations may arise for the same numerical values of the
generalized coordinates, and singular configurations may also occur.

The minimal coordinates are not commonly used in commercial softwares because
this method is not sufficiently systematic to treat a large range of applications. Nev-
ertheless, very efficient simulations of complex rigid multibody systems have been per-
formed using minimal coordinates as presented in Ref. [58].

Relative coordinates

The relative coordinate method is based on the concept of kinematic chains. The posi-
tion and orientation of each body is computed from the position and orientation of the
previous body in the kinematic chain. Hence, the generalized coordinates correspond to
the relative DOFs between interconnected bodies. Relative coordinates are particularly
well adapted for open-tree mechanisms, i.e., systems for which each joint can be sub-
mitted to an arbitrary relative motion without restriction due to the other kinematic
joints. Indeed, this choice has the advantage to account for the kinematic joints in an
implicit way, i.e., no algebraic constraint is needed to represent the joints. In the case
of a closed-loop system, at least one joint has to be cut in order to get a virtual open
kinematic chain. The loop closure is then imposed by kinematic constraints which add
algebraic equations to the equations of motion.

The slider-crank (Fig.2.3(b)) includes one kinematic loop. The three coordinates
(θ1, θ2, θ3) express the relative rotation angle of the three hinges. Consequently, two
constraints are needed to impose the correct kinematics of the system. For example,
the first constraint can consist in avoiding the displacement of the piston in the x-axis,
while the second constraint could express the fixed orientation of the piston.

The use of relative coordinates leads to a small number of differential equations
of motion and even to a minimal ODE-system matching the number of degrees of
freedom in case of open-tree structures. Nevertheless, the computation of velocities
and accelerations is far from being trivial. Recursive algorithms allow to construct a
full kinematic description of the system and the generation of motion equations in a
symbolic form enables many simplications in the expressions in order to obtain compact
and efficient models [118].

However, for complex systems, the choice of loop closure constraints and their for-
mulation can be complicated. Moreover, the modelling of flexible bodies often requires
to decompose the motion into rigid body motion and elastic local deformation, which
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leads to a complex and non compact form of inertia forces which can hardly capture
nonlinear phenomena such as geometric stiffening.

The relatives coordinates, also called Lagrangian or joint coordinates, were the
first kind of coordinates adopted since the early applications of multibody models were
dedicated to robot manipulators and spacecraft systems. Many research works (see
Refs. [31, 74, 100, 146]) have proven the efficiency and reliability of the method which
is now used in several commercial software packages (SIMPACK, RECURDYN,etc).

Reference point coordinates

The reference point coordinates enable a highly systematic formulation of multibody
systems. This approach is extensively described in the scientific literature [40, 54] for
the modelling of large systems including numerous rigid bodies and is often referred to
absolute or cartesian coordinates. The software MSC ADAMS, frequently used in the
automotive industry, is based on this type of coordinates.

With this approach, each body is considered as an independent entity whose spa-
tial motion is described by the position and orientation variables of the center of mass
expressed in an inertial frame. In 3-dimensional analysis, each rigid body is represented
by 6 coordinates: 3 in translation and 3 in rotation (only 3 coordinates in 2D models).
All joints are modelled by separate elements and are accounted for by adding alge-
braic constraints to the set of differential equations of motion. In contrast to relative
coordinates, even open-tree structures involve kinematic constraints.

The main drawback of reference point coordinates results from the large number of
equations in the DAE-system. For instance for the simple 2D slider-crank mechanism
(Fig. 2.3(c)) no less than 17 coordinates are introduced. In addition to the 9 coordinates
(3 per body), 8 Lagrange multipliers related to the kinematic constraints are needed
(2 contraints for each of the 3 hinges and 2 constraints for the prismatic joint as well).

However, the equations take a simple form and the resulting system of equation
is sparse. Besides, unlike relative coordinates, it is not needed to reformulate the
equations in case of modification of the topology of the system and the pre-processing
work to determine the cutting of closed-loops is avoided. Therefore, even if a large set
of equations are generated, efficient simulations can be performed with this choice of
coordinates.

Initially developed to simulate the dynamics of rigid bodies, this approach has
been extended to the modelling of flexible bodies, see Ref. [123] where the absolute
motion is decomposed into a global rigid body motion and small elastic deformations
in a frame attached to the rigid motion. The nonlinear finite element method presented
hereafter permits a more accurate modelling of the flexible and nonlinear effects and
can be seen as an extension of reference point coordinates.
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Natural coordinates

The concept of natural coordinates has been developed by Garcia de Jalón [39, 40].
It can been seen as a variant of reference point coordinates in order to reduce the
dimension of the equation system. The generalized coordinates represent the absolute
nodal positions of some specific points (e.g., interconnection nodes between bodies) and
the direction of unit vectors attached to the elements (bodies, joints,...). In contrast to
the pure reference point coordinates method, it is not necessary to have a node located
at the center of mass of each body. Moreover, only translation coordinates are used and
therefore the difficult choice of angular coordinates with their inherent singularities is
avoided (see Section 2.1.3). The rotation matrices are expressed by means of the unit
vectors which can be computed from the position of two arbitrary points.

The formulation of kinematic joints is simplified and often consists in a trivial
identification of nodes or unit vectors attached to the bodies constrained by joints.
For example, a 2D revolute joint does not involve any algebraic constraint if a node is
located on the rotation axis and is shared by the two bodies. Another advantage of
natural coordinates is the constant nature of the mass matrix and the absence of Coriolis
and centrifugal forces. Nevertheless, to model a rigid body, algebraic constraints have
to be introduced to enforce the non-deformability conditions between its various points.

As illustrated in Figure 2.3(d), 12 coordinates are used to describe the planar slider-
crank system. However, fixing the mechanism to the ground is achieved by introducing
3 boundary nodal constraints which allows to impose the value of three coordinates (x1,
y1, x6) and transform these variables into constant parameters. Moreover, the hinge
joints defined between the connection points attached to the bodies permit to eliminate
4 more coordinates (x3, y3, x5, y5). Since this mechanism has one DOF, the 5 active
coordinates (x2, y2, x4, y4, y6) are constrained by 4 algebraic constraint equations: 1
constraint for each of the three rigid bodies and 1 constraint for the prismatic joint.

Finite element coordinates

The finite element coordinates can be considered as an evolution of reference point
coordinates particularly suited to model flexible structural components. The vector of
generalized coordinates is composed of position and/or angular absolute coordinates
of various nodes. As for the natural coordinates, some nodes are located at the at-
tachment points between bodies, that allows to simplify the expression of kinematics
joints, e.g., simple boolean identifications are sometimes sufficient. Rigidity constraints
are prescribed between the various nodes of rigid bodies to satisfy the undeformability
assumption. In case of flexible bodies, the absolute coordinates of the nodes of the
finite element mesh are included in the set of coordinates. The displacement field of
any point of a flexible body is computed according to shape functions defined from the
nodal coordinates.
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With finite element coordinates, the generalized coordinates are often numerous
which leads to large systems of differential-algebraic equations. However, the matrices
describing the latter are generally sparse. Fifteen coordinates are introduced in a first
step to describe the spatial configuration of the 2D slider-crank system (Fig. 2.3(e)).
The boundary nodal constraints and the assembly nodal constraints enable to eliminate
several coordinates (x1, y1, x3, y3, x5, y5) through Boolean identification of node com-
ponents located at the connection point with the ground or with another body. The
rigid body constraints involve two additional identifications (θ1 = θ2, θ3 = θ4). The
active set of generalized coordinates is reduced to 7 coordinates which are submitted
to 6 kinematic constraints: 4 constraints to ensure the rigidity of the crank and the
connecting rod, 2 constraints for the prismatic joint of the piston.

The nonlinear finite element method for multibody systems is described in Ref. [42]
and is implemented in the module MECANO of the commercial software SAMCEF [88].
The models developed in this doctoral thesis are based on this method. More details
about the simulation of flexible multibody systems with the finite element approach
are given in section 2.2.

The Absolute Nodal Coordinate Formulation (ANCF) described in [123] is also
based on finite element coordinates but replaces the angular variables by slope vari-
ables to represent the rotations. That allows to avoid the singularities inherent to the
parameterization of large angular motion in 3D (see section 2.1.3) but leads to others
drawbacks such as locking or accuracy problems (see Ref. [114]).

Mix of various coordinates

A disadvantage of the natural coordinate method is the absence of coordinates describ-
ing explicitly the relative motion of the joints (e.g., relative rotation angle in hinge
joint). Therefore, driving actuated joints is more complicated than with the relative
coordinate approach. To circumvent this drawback, translational or rotational relative
coordinates associated with the DOFs of joints can be added to the vector of natural
coordinates. Obviously, the same number of algebraic constraints needs to be intro-
duced. This hybrid set of coordinates is described in [40] and is commonly called mixed
coordinates. Two different types of coordinates can also be used to model efficiently
a system including a mix of rigid and flexible bodies as described in Ref. [38]. The
natural coordinates stand for the rigid bodies whereas the absolute nodal coordinates
are used to describe the flexible bodies. The formulation of kinematics joints benefits
from the common characteristics of both types of coordinates.

The computational efficiency of each multibody system formulation is not only
dependent on the dimension of the equation system to be solved. The nature of the
equation system has a strong influence: ODE or DAE solver, sparse or full matrices.
For instance, a system described with absolute coordinates is often represented by more
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equations than using relative coordinates. However, the generation of the equations of
motion is easier with absolute coordinates, the computation of the iteration matrix
involves more compact and simpler expressions and the matrices are sparse. Conse-
quently, a simulation based on absolute nodal coordinates is not necessarily less efficient
than one based on relative coordinates since the numerical implementation has a strong
influence on the computational efficiency of the solution.

2.1.2 Reference frame of flexible bodies

The simulation of multibody systems including flexible bodies requires to compute
simultaneously their global motion and their deformation at each time step. The defor-
mation field of each flexible body is determined by means of shape functions (vibration
modes or finite element shape functions) associated with a finite set of coordinates
(amplitude of modes, position of nodes) arising from the spatial discretization of the
flexible body. Several approaches are available according to the reference frame used
in which the deformations are computed.

The floating frame of reference method is a frequently used approach (see for
instance Refs. [101, 118, 142]). The motion of a flexible body is decomposed into a
global rigid body motion represented by the floating frame and a deformation with
respect to this reference frame. Rigid body coordinates correspond to the position and
the orientation of the floating frame. A set of flexible coordinates allows to determine
the deformations in this floating frame.

In case of small deformations, a linear elastic model can be used in the floating
frame and leads to compact and simple expressions of elastic forces. Nevertheless, the
computation of inertia forces is not trivial because the rigid and elastic coordinates are
coupled by nonlinear terms. Furthermore, geometric stiffening phenomena due to high
velocities can not be captured unless a non-constant geometric stiffness matrix is taken
into account.

The nonlinear finite element method (see Ref. [42] and section 2.2) is based on an
inertial frame to describe the position and rotation variables of each node. When
this approach is adopted, the motion is not decomposed into global rigid body motion
and deformations. The coordinates of a flexible body are absolute nodal coordinates
expressed in a unique inertial frame. Even if the deformations are small, a nonlinear
elastic model is needed owing to the geometric nonlinearities involved by large ampli-
tude motions. However, the expression of inertia forces is more compact and easier to
obtain than with the floating frame of reference approach.

The corotational frame approach can be seen as a mix between the floating
frame and the inertial frame ones. The absolute position of all the nodes of a flexible
body is used to determine its spatial configuration. Nevertheless, a reference frame,
called corotational frame, is attached to each element of the finite element mesh and
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follows its gross motion.

This intermediate frame at the element level enables to use a linear elasticity
model in case of small deformations but large displacements of flexible bodies. In
this way, the computation of elastic forces is greatly simplified compared with the
nonlinear finite element method based on an inertial frame. Unlike in the floating
frame approach, the set of generalized coordinates is not explicitly partitioned in rigid
body coordinates on one hand and flexible coordinates on the other hand. Besides,
the position and orientation coordinates of the corotational frame are not necessarily
generalized coordinates but are intermediate variables which can be interpreted as the
gross motion of the flexible body. The corotational frame variables are determined
according to the absolute coordinates of body nodes. The superelement formulation
presented in section 6.4 of this document uses a corotational description of a linear
reduced-order model.

Multibody simulation software packages initially developed to model rigid bodies
and thereafter enhanced to account for body flexibility often use a floating frame of
reference. The corotational and inertial frame simulation codes generally come from
the finite element community.

2.1.3 Rotation representation

In the general case of 3-dimensional motion, the representation of large rotations is
intricate because finite rotations are not additive quantities. It is one of the delicate
aspects of multibody system theory which has lead to numerous discussions in the
scientific community.

The first MBS models were limited to small rotation angles and velocities in order
to avoid the singularities due to large amplitude motion as well as the complex expres-
sions of geometric stiffness or centrifugal and gyroscopic forces. During the last decades,
on the one hand, specific formalisms have been elaborated to efficiently and rigorously
manage finite rotations and, on the other hand, methods such as the ANCF [123] or
the natural coordinates approach have been developed to circumvent the problems by
excluding the rotation variables from the set of generalized coordinates.

The orthogonality property of the rotation matrix allows to fully describe this
3 × 3 matrix with only 3 independent variables. The geometric parameterization
of rotations consists in expressing the rotation around an arbitrary axis as a sequence
of three rotations along particular axes. Euler angles and Bryant angles have both the
advantage to provide a convenient physical interpretation of rotation parameters but
they are subject to singularities due to the trigonometric functions involved.

The literature also mentions various vector parameterizations (e.g. Ref. [8, 43])
which are based on the rotation invariants (rotation angle and direction of the rotation
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axis). The well known Euler parameters have been successfully used for the simulations
of large rotations in rigid or flexible multibody systems. They consist of 4 parameters
linked by a normalization constraint leading to a quadratic expression of the rota-
tion operator. The redundancy in the Euler parameters prevents from the singularity
problems encountered with geometric parameterization and with the other vector pa-
rameterization methods such as the cartesian rotation vector, Rodrigues parameters
and the conformal rotation vector.

Each approach for the representation of rotations has its own advantages and
drawbacks. The best set of rotation parameters depends on the system modelled and
on the formalisms adopted for the other modelling stages (type of coordinates,...).
An enhanced version of the Cartesian rotation vector (section 2.2.1) is used in the
nonlinear finite element method [42] which is the basis of the models presented in this
dissertation. As an exception, in the superelement formulation described in Chapter 6,
the rotations are not parametrized but rather considered as objects belonging to a
non-linear manifold: a Lie Group (see Ref. [15, 125, 127]).

2.1.4 Kinematic joints

Kinematic joints are one of the main distinctive features of computer-aided analysis of
multibody systems. These joints permit to connect the various bodies of the system
modelled. Owing to the large range of applications of multibody systems, numerous
effective joint formulations are available in the scientific literature. No matter the type
of coordinates used to describe the system (Section 2.1.1), a library of kinematic joints
is embedded in each multibody simulation software.

A distinction can be made between lower pairs and higher pairs kinematic joints.
The lower pairs are limited to a set of six joints which can be expressed from the coor-
dinates of one node and the direction of one axis. These basic joints (hinge, prismatic,
cylindrical, screw, spherical, plane) detailed in Ref. [42] are characterized by contacts
occurring over a surface. In contrast, the higher pairs present point or line contacts
such as in bearings, universal joints, gear pairs, etc. The relative motion in higher pairs
is more complicated so that the latter can sometimes be replaced by a superposition of
lower pair joints.

The displacements prevented or prescribed by kinematic joints are often expressed
by means of algebraic constraints added to the differential equations of motion. A
Lagrange multiplier related to each algebraic equation allows to couple the con-
straints with the motion equations through the constraint forces. The algebraic equa-
tions have to be satisfied at each time step to get the equilibrium of the system.

The kinematic constraints are usually implicit nonlinear expressions of the coor-
dinates of the bodies connected by the kinematic joint. Holonomic kinematic con-
straints are generally expressed as Φ(q, t) = 0. If other variables than the coordi-
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nates are needed to formulate a constraint, this constraint is called non-holonomic
(Φ(q, q̇, t) = 0). This occurs, e.g., in joints with friction, rolling motion without slip-
ping where velocities coordinates have to be used. In unilateral contact problems, the
equality constraint is replaced by an inequality constraint (Φ > 0). If a constraint
is explicitly time dependent, it is qualified as rheonomic, otherwise, it is qualified as
scleronomic. Additional coordinates are sometimes introduced to simplify the con-
straint formulations, e.g., relative rotation angle of the gear pair model described in
section 3.2).

The kinematic constraints can be expressed at different levels: position level, ve-
locity level or acceleration level. This choice strongly influences the index of the DAE
system which corresponds to the number of differentiation with respect to time needed
to transform the DAE into a ODE system. The integration schemes required to com-
pute the numerical response are different if the initial DAE system is solved (direct
methods) or if the system is transformed into a lower index DAE or an ODE system
(index reduction methods [4]).

As described in Ref. [42], various methods are available to formulate a constrained
problem: the Lagrange multiplier method, the penalty function method, the augmented
Lagrangian method or the perturbed Lagrangian method. The constraint elimination
method enables to transform the constrained problem into a unconstrained one. To this
end, the coordinates are split in dependent and independent coordinates. The equations
of motion can be expressed in function of the independent coordinates only and have
the advantage to form an ODE system rather than a DAE system. Nevertheless, the
identification of independent coordinates is not always easy even if symbolic tools are
used. Moreover, this approach is not systematic. In contrast, the generality of the finite
element coordinates sometimes allows to reduce some constraint equations by simple
boolean identification of node coordinates at the joint location.

The kinematic joints are often confused with force elements by misuse of language.
Indeed, purely kinematic joints, such as hinge or prismatic joints, prevent any relative
motion between bodies in some directions whereas force elements as springs, bushings
or the contact model developed in section 4.5 oppose a resistance to relative motions.
Elements such as tyre models [135] or the gear pair model presented in section 3.2 rely
on a mixed formulation including constraint equations and internal forces.

2.2 Nonlinear finite element method for flexible multi-
body systems

The contributions proposed in this doctoral dissertation have been developed in the
framework of the nonlinear finite element method for flexible multibody systems as
described in Ref. [42]. In order to set the context of this approach, the basic principles
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are briefly presented in this section.

The nonlinear finite element representation adopted here emerged from the fi-
nite element community. The classical finite element theory extensively used for the
analysis of individual components has been generalized to nonlinear dynamic systems
composed of flexible bodies interconnected by kinematic joints. Unlike the floating
frame approach, the motion is not decomposed in a global rigid body motion and local
deformation. The absolute position of each node of the finite element mesh is
expressed in a unique inertial frame, that involves a nonlinear formulation
of elastic strains. In this way, the flexibility and the resulting nonlinear effects are
accounted for in a natural way. Various types of flexible components can be represented
and combined: beams, shells, membranes, volumes.

The inertia forces have simple expressions due to the adoption of finite element
coordinates. Moreover, the topology of the system is implicitly included in the model,
which is convenient in case of a structural optimization process based on the model.

The kinematics of each element and its contribution to the equations of motion
are expressed independently, and a systematic process enables to assemble all elements
whatever their type (bodies, joints).

Within this nonlinear finite element formulation of flexible multibody systems, the
algebraic constraints are expressed at position level using the Augmented Lagrangian
method. The set of equations is necessarily large since numerous generalized coordi-
nates are involved, but the global system matrices are sparse. In order to reduce the
size of the equation system, substructuring methods such as the superelement method
(see Section 6.2) can be used to simplify the detailed finite element mesh of a flexible
body. The finite element coordinates allow mixing finite element modelling, superele-
ment formulation and rigid body representation in a same global model in order to get
the best compromise between accuracy and computational efficiency.

2.2.1 Rotation parameterization

With vector parameterization of rotations, the rotation of each body in a multibody
system is completely represented by two invariants: the rotation axis n and the rotation
angle ϕ about this axis. Both quantities are invariants under a frame transformation.
According to [42], the rotation matrix is parameterized using the Cartesian rotation
vector. The rotation matrix is thus expressed as the exponential of the Cartesian
rotation vector which is simply defined as the product of the two invariants (Ψ = ϕ n):

R = exp(
~
Ψ) (2.1)

However, such rotation parameterization is only valid in the range ] − 2π, 2π[ and it
encounters a singularity whenever the rotation angle passes through a multiple of 2π.
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One solution to circumvent the singularity and allow rotations larger than two
complete revolutions consists in combining the Cartesian rotation vector with an up-
dated Lagrangian approach. This method is based on a decomposition of the global
rotation into the rotation describing the reference configuration corresponding to the
previous converged time step, and the increment with respect to this reference config-
uration.

The rotation matrix is thus split in three contributions (Fig. 2.4):

R = R1 Rref Rinc (2.2)

where R1 is the rotation matrix at initial time (t = 0 s), Rref and Rinc are the
rotation matrices associated with the reference configuration and with the increment
respectively. The resulting set of generalized coordinates q consists thus of the nodal
position coordinates x and the increments of rotation parameters Ψinc.
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Figure 2.4: Decomposition of the global rotation matrix in 3 contributions.

The tangent operator, T (Ψinc), enables to compute the material variation of ro-
tations (δΘ) from the variation of the incremental Cartesian rotation vector (δΨinc).

δΘ = T (Ψinc) δΨinc (2.3)

with

T (Ψinc) =
sin ∥Ψinc∥
∥Ψinc∥

I +

(
1 +

sin ∥Ψinc∥
∥Ψinc∥

)
nnT − 1

2

sin ∥Ψinc∥
2

∥Ψinc∥
2


2

~
Ψ (2.4)

2.2.2 Dynamic equations of motion

The dynamics of a flexible multibody system can be expressed from the Hamilton
principle. This variational principle allows to generate the equations of motion like the
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d’Alembert principle which is based on the virtual work principle. It states that the
trajectory of a system submitted to kinematic constraints can be found by solving a
constrained minimization problem:

min
q

(
A =

∫ t2

t1

(L+Wnc) dt
)

subjected to Φ(q) = 0 (2.5)

where the Lagrangian L = K − V is the difference between the kinetic energy K(q, q̇)

and the potential energy V(q), Wnc is the virtual work of non-conservative forces and
Φ(q) is a set of algebraic equations describing the holonomic bilateral kinematic con-
straints.

The introduction of an additional unknown, a Lagrange multiplier λi, related to
each algebraic equation Φi enables to transform the constrained minimization problem
into an unconstrained one. By expressing the stationarity condition (δA∗ = 0), Eq. 2.5
can be reformulated as:

δ

∫ t2

t1

(
L+Wnc − λTΦ

)
dt = 0 (2.6)

After integration by parts of the variation of the Lagrangian (δL), the Lagrange
equations are easily obtained (see [13]). The equations of motion governing the dy-
namics of a multibody system constrained by kinematic joints can thus be expressed
in matrix form as: {

M(q) q̈ + g(q, q̇, t) +ΦT
qλ = 0

Φ(q, t) = 0
(2.7)

where q, q̇ and q̈ are the generalized displacements, velocities and acceleration coor-
dinates, M(q) is the mass matrix and g(q, q̇, t) = ggyr(q, q̇) + gint(q, q̇) − gext(t) is
a vector collecting all the system forces, with ggyr the vector of the complementary
inertia forces, gint the vector of the internal forces, e.g., elastic and dissipations forces,
and gext the vector of the external forces. ΦT

qλ are the constraint forces applied on
the generalized coordinates. The set of Lagrange multipliers λ can be seen physically
as the reaction forces needed to impose the algebraic constraints Φ = 0. The notation
Φq is a compact form to express the constraint gradient ∂Φ/∂q.

The equations of motion form a set of n nonlinear differential equations with n+m
unknowns, supplemented with m algebraic equations associated with the kinematic
joints and rigidity constraints. The nonlinearities can have of various origins: geometry,
nonlinear material behaviour, nonsmooth phenomena such as contact forces, etc. Even
if the multibody system only includes rigid bodies, the large rotations induce nonlinear
terms in the equation of motion. Therefore, the equation system which has to be
solved at each simulation time is a nonlinear DAE-system of m + n equations with
n+m unknowns.

The form of the equation system (Eq. 2.7) is slightly modified if the augmented
Lagrangian method is used (see Eq. 2.8). The latter constraint formulation improves



24 Chapter 2. State of the art

the numerical conditioning by means of a scaling factor and a penalty term. The
multiplication of the constraint equations by a scaling factor k allows to obtain matrices
with terms of the same order of magnitude and in this way avoid the ill-conditioning of
the iteration matrix (see Eq. 2.27). The penalty term pΦTΦ added in Eq. 2.6 facilitates
the convergence of the Newton-Raphson iterative process when Φ → 0. Since this term
vanishes at convergence, the response of the system is independent of the choice of the
penalty factor p. In a general way, the value of both numerical parameters can be
adapted individually for each constraint.{

M(q) q̈ + g(q, q̇, t) +ΦT
q (pΦ+ kλ) = 0

k Φ(q, t) = 0
(2.8)

2.2.3 Numerical time integration of a DAE-system

The second-order DAE system (Eq. 2.7 or 2.8) representing the dynamics of a multi-
body system modelled with the nonlinear finite element method is usually composed
of a large set of strongly nonlinear equations with coupled differential and algebraic
equations. These equations have generally wide physical frequency content mainly
due to the high frequency modes generated by the spatial discretization of the finite
element mesh. Moreover, the kinematic constraints introduce infinite frequencies of
mathematical origin which render automatically the system of equations stiff.

Therefore, unless some regularization method is used to transform the algebraic
equations into differential ones, an implicit time integrator is recommended to en-
sure the stability of the numerical solution. Indeed, the main characteristic of implicit
time integrators is that the choice of the time step size is governed essentially by accu-
racy considerations since the high frequencies present in the model can be filtered out
by numerical damping.

With implicit integration schemes, the computation of the generalized coordinates
at each time step requires the knowledge of accelerations at the current time instant
and therefore confers to the algorithm its implicit nature. At each time step of the
numerical simulation, the residual equation has to be solved:

res ≡ Mq̈ + g +ΦT
q (pΦ+ kλ) = 0 (2.9)

k Φ = 0 (2.10)

The generalized-α scheme [5, 23] is an implicit time integration algorithm able to
solve second order differential equations. It is an extension of the Newmark scheme [98]
which is well-suited to be very efficient for dynamic simulation of flexible multibody
systems. In order to have the same number of equations as the number of unknowns (q,
q̇, q̈, λ), the equations of motion are completed by integration formulae which result
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from a Taylor series expansion of the displacement and velocity fields:

qt+h = qt + hq̇t + h2(0.5− β)at + h2βat+h (2.11)
q̇t+h = q̇t + h(1− γ)at + hγat+h (2.12)

(1− αm)at+h + αmat = (1− αf )q̈t+h + αf q̈t (2.13)

where β, γ, αm, αf are algorithmic parameters, h is the time step size and a is an
auxiliary variable vector with can be considered as a pseudo acceleration averaging the
actual acceleration q̈ between time instants t and t + h. The integration formulas are
linear and implicit with respect to the acceleration variables.

In order to solve the implicit equation system formed by Eqs. 2.9 to 2.13, an iter-
ative Newton-Raphson procedure is used which consists in splitting the generalized
coordinates q, the velocities q̇ and the accelerations q̈ as well as the Lagrange multi-
pliers λ into an approximate solution (q∗, q̇∗, q̈∗, λ∗) and a correction (∆q, ∆q̇, ∆q̈,
∆λ):

q = q∗ +∆q (2.14)
q̇ = q̇∗ +∆q̇ (2.15)
q̈ = q̈∗ +∆q̈ (2.16)
λ = λ∗ +∆λ (2.17)

The corrections are then computed owing to the linearized form of the residual
equation around the approximate solution:{

reslin(q∗ +∆q, q̇∗ +∆q̇, q̈∗ +∆q̈,λ∗ +∆λ, t)

k Φlin(q∗ +∆q, t)

}
=

{
res(q∗, q̇∗, q̈∗,λ∗, t)

k Φ(q∗, t)

}

+

[
M 0

0 0

]{
∆q̈

∆λ

}
+

[
Ct 0

0 0

]{
∆q̇

∆λ

}
+

[
Kt kΦT

q

kΦq 0

]{
∆q

∆λ

}
(2.18)

where the tangent stiffness matrix Kt and tangent damping matrix Ct are defined
respectively by:

Kt =
∂ res
∂q

=
∂ g

∂q
+
∂
(
Mq̈ +ΦT

q (pΦ+ kλ)
)

∂q
≃ ∂ g

∂q
+ p ΦT

qΦq (2.19)

Ct =
∂ res
∂q̇

=
∂ g

∂q̇
(2.20)

The Newton-Raphson iterative procedure is based on a predictor-corrector
scheme. At each time step, a prediction of the system response (noted by a ′′0′′ su-
perscript) is computed from the integration formulas by assuming a null acceleration
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q̈0t+h = 0 as initial guess:

a0
t+h =

1

1− αm
(αf q̈t − αmat) (2.21)

q0t+h = qt + hq̇t + h2(0.5− β)at + h2βa0
t+h (2.22)

q̇0t+h = q̇t + h(1− γ)at + hγa0
t+h (2.23)

In order to verify the integration formulas (Eq. 2.11-2.13), the successive correc-
tions of velocities and accelerations have to satisfy:

∆q̈ =
1− αm

1− αf

1

βh2
∆q (2.24)

∆q̇ =
γ

βh
∆q (2.25)

Since the corrections ∆q̇ and ∆q̈ can be explicitly expressed according to ∆q using
Eqs. 2.24-2.25, the number of unknowns in the linearized equation system {reslin ; kΦlin} =

0 (see Eq. 2.18) can be easily reduced. The equation system to be solved at each iter-
ation can thus be formulated as:

St

{
∆q

∆λ

}
= −

{
res∗
k Φ∗

}
(2.26)

where the iteration matrix St is defined as:

St =

Kt +
γ

βh
Ct +

1− αm

1− αf

1

βh2
M kΦT

q

kΦq 0

 (2.27)

The stiffness matrix can sometimes involve cumbersome expressions whose com-
putation can be costly. However, only a reasonable approximation to it is needed, it is
not mandatory to determine the exact full stiffness matrix. If some terms are neglected,
the iterative scheme can often still converge to the actual solution. A compromise has
to be found between the exact computation of the stiffness matrix and the approxi-
mation of some terms which may imply one or several additional corrections to reach
convergence. A usual simplification that works generally well in the presence of mild
nonlinearities consists in computing the stiffness matrix only once per time step rather
than at each Newton-Raphson iteration.

The numerical parameters γ can be selected from αm and αf according to

γ =
1

2
+ αf − αm (2.28)

so that second-order accuracy is guaranteed.

The generalized-α scheme is a generalization of several well-known integrators often
used in structural dynamics. For instance, the full generalized-α algorithm summarized
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in Algorithm 1 is equivalent to the Newmark scheme if αf = αm = 0. The HHT
(Hilbert-Hughes-Taylor) method is recovered when αm = 0, αf ∈ [0, 1/3]. Chung and
Hulbert [23] proposed to express the numerical parameters αm, αf according to a third
parameter which is a measure of the numerical damping:

αm =
2ρ∞ − 1

ρ∞ + 1
(2.29)

αf =
ρ∞

ρ∞ + 1
(2.30)

where ρ∞ ∈ [0, 1] is the spectral radius at infinite frequencies. The choice ρ∞ = 0

means annihilation of high frequencies whereas ρ∞ = 1 corresponds to no numerical
damping. The unconditional stability of the Chung-Hulbert scheme is ensured by
Eqs. 2.29-2.30 together with the following definition of the numerical parameter β:

β =
1

4

(
γ +

1

2

)2

(2.31)

The generalized-α method is an implicit one step integration scheme, i.e. the
computation of system response at each time step is based on the values of the system
variables at the current and the previous time steps only (see Eqs 2.11-2.12). Unlike the
Newmark scheme, the generalized-α scheme keeps the second order accuracy even
when numerical damping is introduced. In practice, due to the presence of kinematic
constraints and spurious high frequency modes induced by the finite element discretiza-
tion, a small amount of numerical damping is always needed to ensure the stability of
the numerical solution.

2.3 Model reduction techniques in flexible multibody dy-
namics

The finite element method is a general and accurate technique to take the flexibility in
multibody systems into account. Indeed, working with a FE discretization of the flexible
body, complex geometries as well as nonlinear material behaviour can be considered.
Besides, the FEM is based on the use of local shape functions at the element level, rather
than on global ones, which allows to capture the deformation field for any configuration
of the boundary conditions.

However, a large number of elastic DOFs are needed to describe the deformation
field properly using a finite element model. Therefore, the size of the resulting equation
system can become very large and the numerical model may lead to a high computa-
tional cost. Several decades ago, solving such huge problems, as industrial applications
with millions of elements, was impossible due to the limited CPU and memory re-
sources. Nowadays, static analysis of cumbersome models has become frequent but
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Algorithm 1 Generalized-α time integration scheme
Initial values q0, q̇0, q̈0
a0 := q̈0
for t = 0 to tf − h do

Computation of prediction
a0
t+h = 1

1−αm
(αf q̈t − αmat)

q0t+h = qt + hq̇t + h2(0.5− β)at + h2βa0
t+h

q̇0t+h = q̇t + h(1− γ)at + hγa0
t+h

q̈0t+h = 0

λ0
t+h = 0

for k = 1 to kmax do
Computation of residuals res and Φ

if ∥res∥ < tolres and ∥Φ∥ < tolΦ then
break

end if
Computation of correction{
∆q

∆λ

}
= −S−1

t

{
res∗
k Φ∗

}
Incrementation
qk+1
t+h = qkt+h +∆q

q̇k+1
t+h = q̇kt+h +

γ
βh ∆q

q̈k+1
t+h = q̈kt+h +

1−αm
1−αf

1
βh2 ∆q

λk+1
t+h = λk

t+h +∆λ

end for
at+h = a0

t+h +
1−αf

1−αm
q̈t+h

end for
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transient dynamic studies have remained highly time consuming since the resulting
large equation system has to be solved iteratively at each time step.

The objective of model reduction techniques is to reduce the model size while
keeping an accurate representation of the flexible behaviour in the frequency range of
interest. Various methods are available in the literature [10, 24, 77] and are commonly
called Model Order Reduction methods (MOR). The latter methods can be classified
according to different criteria: body-level or system-level reduction methods; applica-
bility to linear or nonlinear system; modes shapes constructed by means of experimental
or numerical results (FEM); free or fixed interface vibration modes,... The basic prin-
ciple of each MOR method is to find a projection of the initial coordinates into a modal
basis where the non-dominant modes are neglected.

In linear structural dynamics, modal truncation is the easiest way to define the
global shape functions. It simply consists in neglecting the contribution of the high-
frequency modes. Then, the modal matrix is formed by the first eigenvectors of the
free structure.

Static condensation is a linear substructuring technique based on a partitioning of
the set of DOFs into interface and internal DOFs. In that case, the modes represent
the static response of the system, when the boundary nodes are submitted to unit
displacements (see the Guyan-Irons method [61]). Contrary to the modal truncation,
the static behaviour at the interface is exactly represented.

The Craig-Bampton method [24] is based on the dynamic impedance concept [44]
and combines both aforementioned linear reduction methods: the static modes related
to the boundary nodes are superimposed with a reduced set of dynamic vibration
modes with clamped boundary. This substructuring technique, which opened the way
to the Component Mode Synthesis (CMS), offers a convenient way to connect the
superelement to the rest of the system. The new contact model developed in Chapter 6
is based on the Craig-Bampton method to construct the superelement models used as
support for the proposed contact condition.

The reduction methods derived from the dynamic admittance concept are also
based on a superimposition of static modes and vibration modes [42]. As for the modal
truncation method, the vibration modes are the first eigenmodes of the free structure.
However, a correction is introduced through attachment modes to get a statically cor-
rect response at the boundary nodes. The Mac Neal [92] and Rubin [116] methods
enforce the assembly of the superelement with boundary displacements, whereas the
dual Craig-Bampton method [113] uses interface forces to connect the superelement to
its environment. The latter method is presented in detail in Section 7.2 and is also
used to model the flexibility of bodies submitted to contact forces.

The previously mentioned MOR methods preserve the second-order nature of the
initial full model. The reduction of the model size consists in condensing or neglect-
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ing some DOFs. Other linear reduction techniques such as Krylov subspaces [51] or
balanced truncation [81] methods deal with first order Linear Time Invariant (LTI)
systems. These MOR methods originate from the domain area of system control and
some of them have been extended to second-order systems. Unfortunately, they do not
allow to keep boundary node coordinates in the reduced model so that the assembly of
substructures within a finite element framework becomes difficult to perform.

Worth also mentioning is the Proper Orthogonal Decomposition (POD) method [71],
a reduction technique based on a statistical treatment of simulation results to find the
best projection on a modal basis built according to a least-square criterion.

The kinematics of flexible multibody systems subjected to large amplitude mo-
tion has a nonlinear behaviour. However, under certain circumstances (small strain
assumptions), a linear elastic model can be used to account for the flexibility in a coro-
tated or floating frame. Regardless of the MOR method adopted, the reduced model is
embedded in the multibody system in the form of a superelement, which can be inter-
preted as a macro-element interconnected to the other entities of the system modelled.
In addition to the time saving, the model reduction approach facilitates work sharing
between different engineer teams. In this context, the portability and the size of the
resulting reduced model can influence the choice of the MOR method.

The application of MOR methods is not limited to structural components. Real-
time control of complex mechatronic systems requires efficient reduced models such
as state-space reduction methods. Likewise, optimization algorithms extensively use
reduced models, called metamodels, to avoid solving the full problem a huge number
of times. This concept is the basis of the response surface theory [115].

2.4 Contact modelling

In automotive engineering and in other fields of mechanics, many transmission com-
ponents include contacts between different parts. These contacts restrain the relative
motion in one or several directions but they leave the motion free in the other directions.
Several complex physical phenomena can appear in contact situations. For instance,
if the relative velocity is high when a unilateral contact occurs, the impact produced
can generate vibration waves in the entire structure. Furthermore, permanent plastic
deformation can be induced (see Ref. [122]). The friction can also lead to stick-slip due
to the difference between static and dynamic friction coefficients in Coulomb’s law.

Accurate and efficient contact models are essential in order to get reliable drivetrain
models. Gear boxes or differentials include numerous contacts which play a key role
in the working principle of these mechanisms. It cannot be expected to set up a
realistic dynamic model of such transmission components without a suitable and reliable
mathematical formulation of contacts.
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The contact models available in the literature can be classified according to their
distinctive features: bilateral or unilateral, frictional or frictionless, between rigid or
flexible bodies, etc. Some contact formulations are formulated in a general way and can
cover several contact configurations: rigid-rigid contact [122], flexible-rigid contact [75]
or flexible-flexible contact [147]. Several categories can also be identified concerning the
geometrical configuration adopted during the contact detection phase: the projection
method can be performed between two nodes, a node and a surface or between two
element faces. The last configuration is often related to the use of mortar algorithms [53,
108] and enables a reliable computation of contact pressures and contact stresses.

The literature on contact modelling is vast since a wide range of disciplines in
mechanics is spanned from the field of material mechanics where the stress distribution
in the contact path is accurately computed by means of static FE simulations [130],
to the dynamics of numerous collisions between small rigid granular bodies [97]. Many
research works about contact modelling are dedicated to impact due to the difficulty to
simulate numerically such complex and fast events depending on material and geometric
properties as well as on the relative velocity level [45].

In the field of multibody system dynamics, two different approaches are often used
to formulate a contact condition. Continuous contact modelling consists in assuming
that the contact has a finite duration during which the displacements and velocities
are supposed to vary in a continuous way. With the hypothesis of the instantaneous
contact modelling, the contact duration is assumed to be zero, the positions of the
contacting bodies remain continuous but their velocities undergo jumps.

The continuous contact formulations are often associated with penalty methods
where a small penetration is allowed between the contacting bodies. This penetration
is related to the compression of one or several equivalent local springs which enables to
determine the magnitude of the contact force [34, 82]. Thereby, the impact is modelled
at the acceleration-force level. The contact force law can be linear or nonlinear with
respect to the local penetration length and a damper can be added in parallel with the
penalty spring in order to introduce energy dissipation. The latter is often required in
case of impacts between rigid bodies (see Section 4.2 for more details). Reference [91]
gives a survey of nonlinear contact laws derived from the Hertz theory dedicated to
contacts between rigid bodies having a spherical shape near the contact point. These
various compliance force laws mainly differ from the definition of the damping factor
which often depends on a restitution coefficient [122].

The choice of the penalty factor has a strong influence on the resulting accuracy,
which is a drawback of this kind of contact model since it is sometimes not trivial
to determine its value from the material and geometric data of contacting bodies.
Indeed, a compromise has to be found between a too low value which involves a large
and unrealistic indentation, and a too high one which induces a very stiff behaviour
and raises numerical difficulties when a contact occurs. In case of a contact between
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flexible bodies, the penetration is a side-effect which has no physical meaning but
allows to regularize the complementary condition inherent to the contact condition. In
this way, no algebraic equation is added to the set of differential equations of motion
and each contact only has a contribution to the vector of internal forces. Besides the
simplicity of implementation, an other advantage of continuous contact models resides
in the fact that no specific transient solver is needed to manage the impact phenomena.
A standard time integration scheme can be used to solve the full system. Indeed,
positions and velocities of all bodies vary continuously and it is not necessary to stop
the time integration at each impact time (see Ref. [80]). Moreover, these contact models
naturally authorize multiple contacts.

An alternative method to formulate contacts in the special case where the bodies
are flexible within the continuous framework consists in using kinematic constraints to
enforce the non-penetrability between the bodies in contact. For each contact, an alge-
braic constraint is added to the set of equations of motion. The Lagrange multipliers
method or the augmented Lagrangian method are often used to express the contact
constraints (see Section 3.3.1). The latter are often expressed at the position level and
represent the gap distance between the contacting bodies. The Lagrange multipliers
associated with the kinematic constraints have the meaning of the magnitude of the
normal contact force (eventually scaled by the scaling factor). In case of a unilateral
contact condition, an activation/deactivation criterion has to be used in order to intro-
duce or remove the constraint associated with each potential contact. The latter can
be a source of discontinuities and lead to convergence complications.

In contrast to penalty methods, there is no explicit relationship between the local
penetration and the normal contact force. The main advantage of the contact modelling
by constraints lies in the exact contact condition enforcement that avoids unphysical
penetration between the bodies in contact and keeps closer to the actual behaviour.
This continuous contact formulation can only be used between flexible bodies but is
not applicable for rigid contact.

Instantaneous contact formulations, also called discrete contact models, consider
that unilateral contacts can occur in a infinitely short time [1, 47, 63, 149, 105]. There-
fore, the simulation is divided in two periods: before and after the impact [45]. The
contact constraints are often expressed at the velocity/impulse level and the Signorini’s
condition is modelled by means of differential inclusions or variational inequalities.

In order to account for the energy dissipation during each impact, these nons-
mooth dynamic models use a coefficient of restitution. There exist several forms of
the restitution coefficient according to the hypothesis adopted [122]. The Newton’s
model defines this coefficient as the ratio of relative velocities before and after the im-
pact. The well-known Moreau-Jean scheme [63] is based on the kinetic coefficient of
restitution proposed by Poisson. The Stronge’s model [129] relies on the ratio of defor-
mation energies during the compression and restitution phases. These three versions
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of the restitution coefficient provide similar numerical results in case of basic contact
configurations but significant differences can be observed for eccentric or frictional con-
tacts [129]. For instance, Newton’s or Poisson’s models can lead to too high post-impact
velocities.

The sudden velocity changes require the use of specific integration methods [22,
59, 83] since the classic smooth integrators are not able to deal with velocity disconti-
nuities. Amongst all integration schemes available in the literature, two classes stand
out: time-stepping schemes and event-driven schemes. Event-driven approaches re-
quire the interruption of the time integration when an impact is detected, then the
contact problem is solved and a new set of initial conditions is determined to restart
the integrator. Besides, the time step size has to be adjusted in order that each impact
instant corresponds to a time step. Conversely, time-stepping methods discretise in
time the complete multibody system dynamics including the unilateral constraints and
the impact forces and the integration keeps a fixed time step size and is not interrupted.

Event-driven schemes have the advantage to provide a second or higher order of
accuracy but they are not able to manage large multibody systems undergoing inter-
mittent or multiple contacts. Time-stepping methods are more robust and enable the
simulation of complex system subjected to multiple impact. However, their accuracy
is limited to order one even during free flight motion. The two major time-stepping
schemes are the Moreau-Jean scheme [63] and the Schatzman-Paoli scheme [103] which
have lead to many divert forms. The nonsmooth contact models were initially dedi-
cated to impacts between rigid bodies. Their extension to flexible bodies and multiple
or closed contacts is not straightforward, owing notably to the very concept of the
restitution coefficient [45].

The differences between continuous and instantaneous contact models can be sum-
marized by stating that the continuous approach regularizes the nonsmoothness of the
complementarity condition associated with unilateral constraints. The discontinuity
produced by impact is replaced by a stiff but compliant behaviour.

Other works address the development of enhanced integration schemes to cir-
cumvent the lack of robustness and the numerical blow-up of classical integrators (e.g.
generalized-α family) as for instance, the energy conserving schemes [12, 83, 126]. More
recently, a research work led at the University of Liège in parallel to this PhD thesis,
has resulted in the development of a non-smooth generalized-α scheme in order to
model impact arising in flexible multibody systems [14, 20]. The founding principle of
this new integration method consists in combining the nonsmooth Moreau-Jean scheme
with the classical generalized-α scheme.

The addition of the frictional behaviour in the tangential directions is often easy
for continuous contact models provided that a smooth transition is also ensured from
sticking to sliding friction. Indeed, Coulomb’s friction law can lead to either no feasible
solution at all or to multiple solutions. In contrast, the extension of nonsmooth contact
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models to friction models other than Coulomb’s law is not straightforward at all (see
Ref. [45]).

The influence of the lubrication is often neglected in the contact models used to
simulate the dynamics of multibody models. Indeed, the numerical models achieved
in multibody dynamics represent only the solid mechanical part of the system. The
simulation of fluid flows is based on quite different concepts compared with those used
in multibody systems. Therefore, the coupling of both effects is sometimes difficult.
Besides, the fluid models are often cumbersome since numerous variables are involved
to represent complex phenomena such as heat transfer, etc. However, the presence of
oil between the contacting bodies can significantly influence the contact properties, for
instance the friction coefficient is completely different in case of a dry or a lubricated
contact.

Nevertheless, recent works bridge the gap and introduce simple lubrication models
in multibody system analysis [29, 104]. For instance, the damping effect of oil film is
studied in [29, 65]. As in the squeeze film model developed in Chapter 5, the Reynolds
equation is often the basis to represent the global behaviour of the lubricating oil in
particular within geometrical configurations such as spherical joints [35, 138], cylindrical
joints [137] or gear pairs [70, 136]. The wear is also strongly dependent on the presence
of lubrication (see Ref. [72]).

Due to their implementation simplicity and ability to be employed with smooth
integration schemes, only continuous contact force models have been used in the various
multibody systems simulated in this work (see Sections 3.3.1, 3.3.2, 4.2, 5.2.5, 6.7).
These contact models are generally satisfactory to represent the interactions between
bodies, so that complex multibody systems composed of rigid or flexible bodies and
friction forces can be accounted for without a great effort.

2.5 Non-ideal kinematic joints

Kinematic joints are key components in multibody simulation tools. Most of the time,
the joints are represented by idealized models which restrain the motion of the entire
system by a set of kinematic constraints. Such formulation often considers the joints
as perfect rigid elements without any default but has the advantages to be simple
to implement and computationally efficient. However, physical phenomena such as
clearance, misalignment, flexibility, friction, lubrication or impact can highly influence
the dynamic response of the joints and have a non negligible effect on the accuracy and
reliability of the full multibody model. For instance, in vehicle dynamics, the modelling
of the joints between the suspension arms and the car body with bushing elements
strongly influences the numerical response (see Ref. [3]). The dynamic performance of
automotive transmission devices is sensitive to the imperfections of kinematic joints.
Indeed, these undesirable side effects can introduce discontinuities on the transferred
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torque and produce vibrations which can affect the security and comfort of the vehicle
passengers.

The representation of kinematic joints taking account of their actual geometry and
their material flexibility properties is with no doubt the most accurate approach. Con-
tact conditions defined between finite element models of bodies connected by spherical
joints are used in [3]. Such detailed models are able to capture a lot of disruptive factors
but they are often quite complex to achieve and they highly increase the computational
time.

Other models of joints are defined at an intermediate level of complexity between
the two aforementioned categories [33]. These global joint representations account for
some disruptive effects without increasing too much the number of degree of freedom.
In [9], the influence of clearance and lubrication is studied for the hinge and spher-
ical joints within the framework of energy preserving and decaying time integration
schemes. A planar revolute joint model with clearance based on a continuous contact
model is described in [32]. In that paper, the influence of clearance on the dynamic re-
sponse of a planar slider-crank mechanism is compared to simulations with ideal joints.
Similar continuous revolute joint models have been proposed by [111] and applied to
the simulation of a double pendulum impacting a rigid plate with a study of the noise
level generated by impact. The nonsmooth dynamic approach can also be used to
represent kinematic joints with defects, see for example [26, 36].

2.6 Gear pair models

The literature about the dynamic modelling of gear pairs is vast since numerous me-
chanical transmission devices are impacted by the gear noise. The flexibility of the gear
wheels, the inaccuracy of the manufacturing process, the wear or the meshing defects
can lead to non-conformal contacts between the tooth flank profiles, which results in
the appearance of gear noise.

Dedicated models have been developed to study the frequency response of gear
pairs, see for instance Ref. [68] for a spur gear pair or Ref. [67] for a planetary gear
train. Other detailed models are focused on the detailed analysis of meshing defects
such as the loaded transmission error [89] or the misalignment [66]. The mechanical
efficiency of gear pairs is addressed in Refs. [93, 120, 121].

In the multibody system framework, gear pairs are usually modelled as specific
kinematic joints allowing to transfer force and motion between different components
of a mechanism. The models proposed in Refs. [17, 28, 102] consider the gear wheels
as rigid bodies and account for the tooth flexibility in a global way by using a spring
along the line of pressure to determine the gear contact force. Reference [151] points
out that for compliant gear bodies the flexibility of the gear web modifies significantly
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the contact forces applied on teeth as well as the motion of the whole gear pair system.
With rigid body models, such dynamic behaviour can not be reproduced.

The use of contact conditions between finite element models of the gear wheels
allows to accurately account for the flexibility effects but it requires a very fine mesh
of the whole skin [85]. Therefore, global dynamic analyses of several revolutions are
highly expensive from a computational point of view and not feasible in practice.

Thus, there is a need to develop new multibody gear pair models accounting for
the flexibility while keeping a reasonable model size. In this context, Refs. [133, 151]
propose to prescribe contact conditions between reduced models of the gear wheels.
This approach will be investigated in Chapters 6 and 7 of this dissertation thesis.
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The topic of this PhD thesis is the modelling of driveline devices as multibody
systems. In order to identify the needs for new developments in this context, an au-
tomotive transmission component, the TORSEN differential, has been modelled using
the tools available in the commercial software SAMCEF/MECANO.

The proposed models of the TORSEN differentials enable to emphasize the difficul-
ties inherent to dynamic simulation of driveline mechanisms. The resulting observations
will guide the new element formulations that will be developed in the next chapters.

The present chapter is organized as follows. In order to understand the global
working principle of the system under study, a technical description of TORSEN dif-
ferentials is provided in section 3.1. The two main kinematic joints presented in this
mechanical system being the gear pair and the contact conditions, so sections 3.2 and 3.3
describe the formulation used to model these joints.

After enumerating the various assumptions adopted in the multibody model of
type B and C TORSEN differentials, numerical results are shown in a test bench
configuration as well as in a vehicle operation (Section 3.4). Finally, in section 3.5

37
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the three differentials of a four-wheel drive vehicle have been assembled with rigid
driveshafts. The motion of a simple vehicle equipped with this driveline is simulated.

3.1 Working principle of TORSEN differentials

The two basic functions of any differential are to transmit the motor torque to the two
output shafts and to allow a difference of rotation speed between these two outputs. In
a vehicle, this mechanical device is particularly useful in turn when the outer wheels
have to rotate quicker than the inner wheels to ensure good handling [52, 112].

The differentials can be used either to divide into equal parts the drive torque
acting on the traction wheels of the same axle, or to divide the output torque from the
gearbox between the two axles of four-wheel drive vehicles. This second application is
often called the transfer box differential or central differential [57].

The main drawback of a conventional differential, also called open differential, is
that the total amount of driving torque is always split between the two output shafts
with the same constant ratio. This is a limitation, in particular when the driving wheels
have different conditions of adherence. If the tractive torque exceeds the maximum
transferable torque limited by road friction on one driving wheel, this wheel starts
spinning. Although they do not reach their limit of adherence, the other driving wheels
are no longer able to transfer torque because the input torque is equally split between
the two output shafts.

The limited slip differential significantly reduces this drawback by allowing a
variable distribution of the motor torque according to the available adherence of each
driving wheel. For a vehicle with asymmetric road friction between the driving wheels,
it is possible to transfer extra torque to the wheels having the better grip. For instance,
Figure 3.1 depicts the central differential behaviour of a four-wheel drive vehicle crossing
a slippery surface (snow, mud, ice, ...). In straight line, with equivalent road adherence
on all wheels (Figs. 3.1(a), 3.1(d)), the motor torque is equally distributed between
the two axles. If one wheel comes to the slippery area, the central differential reduces
the torque provided to the front axle (Fig. 3.1(b)) or to the rear axle (Fig. 3.1(c)) and
increases the torque applied on the other axle by the same amount.

The TORSEN differentials are limited slip differentials which are sensitive to
torque imbalances between the two output shafts (TORSEN is a contraction of torque
sensing). As soon as a difference of resisting torque applied by the ground on the
wheels appears, a TORSEN differential locks up and behaves like a rigid axle, i.e.,
the wheels rotate at the same speed but they can be submitted to unequal torques in
order to exploit the larger potential of adherence (see the vertical part of the curve in
Fig. 3.2). However, the overall driving torque cannot be applied on one output shaft
while no load is transferred to the second shaft of a TORSEN differential. When the



3.1 Working principle of TORSEN differentials 39

(a) Same adherence proper-
ties on each wheel

(b) A front wheel
on a slippery
surface

(c) A rear wheel on a
slippery surface

(d) Identical grip on each
driving wheel

Figure 3.1: The TORSEN central differential transfers the torque between the two
axles according to wheels adherence (courtesy of JTEKT TORSEN S.A.).

difference between the two output torques becomes too large, the differential unlocks
and allows a difference of output rotation speeds but keeps the same constant torque
ratio (horizontal parts in the Figure 3.2).

Figure 3.2: Locking effect of TORSEN differentials (when the total torque is constant).

Unlike viscous coupling (speed sensing) or electronic differentials, the TORSEN
principle is an instantaneous and pro-active process which acts before wheel slip, i.e., the
torque biasing is always a precondition before any difference of rotation speed between
the two output shafts. The wind-up phenomenon is avoided, i.e., the differential opens
before antagonistic torques appear.

TORSEN differentials are fully mechanical devices without any mechatronic com-
ponents. The locking effect is only due to friction forces inside the differential. The
operating principle of the TORSEN differential was invented and patented by Vernon
Gleasman in 1958 [46]. The primary TORSEN differential (type A, see Fig. 3.3) is
based on the irreversibility of worm gears. Indeed, the worm can easily drive the wheel
but the wheel can hardly lead the worm because of the friction forces produced by high
sliding. Later on, other configurations of gear pairs were adopted in order to reduce
the size and the weight of differentials as well as to permit a wider range of torque
bias ratio. The type B and type C TORSEN differentials use helical gear pairs with
parallel axes complemented with several thrust washers to generate internal friction
torques. The twin-diff differential combines a front open differential with a central
type C TORSEN differential in the same unit.
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In this research work, the type B and type C TORSEN differentials are studied.
The type B is a front or rear axle differential whereas the type C is a central differential
(see Sections 3.1.1 and 3.1.2). These components are manufactured by the JTEKT
TORSEN S.A. company and equip for instance the AUDI QUATTRO.

Figure 3.3: The type A TORSEN differential (courtesy of JTEKT TORSEN S.A.).

The torque transfer between driving wheels is not only an advantage in case of a
variable road adherence. The handling of the vehicle can also be greatly improved in
cornering. Indeed, the friction inside the differential tends to prevent the inner wheels
to rotate slower than the outer wheels. Consequently, the inner wheel is submitted to
a higher torque than the outer wheel, extending thus the cornering ability by reducing
understeering and oversteering. Due to the weight transfer produced by the lateral ac-
celeration, the vertical load applied on the inner wheel is reduced and the transmitted
torque could exceed the available adherence of the inner wheel. In this case, the dif-
ferential can lock and provide more torque to the outer wheel whereas the inner wheel
slightly spins.

The variable torque distribution enhances the stability of the vehicle during brak-
ing and the operation of electronic active safety systems such as ABS1, ESP2, ASR3.
Compared to a classical open differential, the installation of a TORSEN differential
often needs to adjust some components like the suspensions or the anti-roll bars to
ensure a proper comfort and a better driving accuracy.

Although a lot of friction occurs inside TORSEN differentials, their mean mechan-
ical efficiency remains comparable to open differentials. In straight line motion with
similar adherence on each driving wheel, the TORSEN differential is locked and there

1ABS: Anti-lock braking system
2ESP: Electronic Stability Program
3ASR: Acceleration Slip Regulation
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is no relative motion between its parts and then there is no energy loss. In contrast, an
open differential undergoes small relative sliding displacements between conical gear
wheels. Difference in tyre pressures or road irregularities are sufficient to induce differ-
ent resisting torques on the two differential output shafts. The friction encountered by
these small slidings leads to energy losses. When a TORSEN differential is unlocked
(cornering, different grip conditions), the important friction forces decrease significantly
the mechanical efficiency. As a conclusion, compared with classic open differentials,
the mechanical efficiency of TORSEN differentials appears to be better when there are
locked but worse when there are unlocked. Thus, the global efficiency in a mix set of
conditions is similar for both types of differentials.

The maximum ratio of torque imbalance permitted by a TORSEN differential is
defined by the Torque Distribution Ratio (TDR) which is a constant characteristic of
each differential design:

TDR =
Thigh
Tlow

(3.1)

where Thigh and Tlow are the highest and lowest output torques respectively.

For instance, TDR = 4 means that up to 80% of the driving torque can be provided
to one output shaft whereas the second output shaft receives only 20% of the torque.
Let us consider that the ground under one driving wheel has a low adherence. If the
wheel with the lower grip reaches its limit of adherence (e.g. 100 Nm), any additional
torque provided to the differential is exclusively transferred to the wheel with the good
grip condition. If the torque ratio between the two output shafts raises up to the TDR
value, i.e. 400 Nm on the second wheel, any further motor torque opens the differential
and result in wheel spinning.

3.1.1 Type C

The type C TORSEN differential is always used as central differential and distributes
the motor torque between the front and the rear axle of a four-wheel drive vehicle. As
depicted in Figures 3.4-3.5, this differential is composed of 15 parts: 7 gear wheels, 5
thrust washers and a housing in 3 parts. The basic properties of the three materials
used are summarized in Table 3.1 and the geometric parameters of gear wheels are
detailed in Table 3.2 .

Cast iron GGG60 Steel AISI 8620H Steel 42CrMo4
Young’s modulus [GPa] 175 200 210
Poisson’s ratio [-] 0.3 0.3 0.3
Volumic mass [kg/m3] 7200 7800 7830
Parts housing, case gear wheels thrust washers

Table 3.1: Material properties of TORSEN differential parts.
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Figure 3.4: The type C TORSEN contains 15 parts: gear wheels (7), thrust washers
(5), housing (3).

(a) interior of housing (b) assembled

Figure 3.5: Type C TORSEN differential.

Sun Gear Planet Gear Internal Gear
Number of teeth Z [-] 26 5 36
Helix angle β [deg] 33 -33 33
Normal pressure angle αmn [deg] 30 30 30
Normal modulus Mn [mm] 2.2 2.2 2.2
Pitch diameter [mm] 68.203 13.116 94.435
Face width [mm] 30.25 27.9 27.4

Table 3.2: Gear wheel geometric data of the type C TORSEN differential.

The various gear wheels are assembled in a compact epicyclic gear train (Fig. 3.6)
which allows a non-symmetric distribution of the torque due to the different number of
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teeth on the internal and sun gears. In a static situation, the differential under study
tends to provide more torque (58%) to the rear axle than to the front axle and therefore
favour a rear wheel drive behaviour.

Figure 3.6: Kinematic diagram, exploded view and cut-away view of type C TORSEN
differential.

The housing is connected to the case by a screw ring and can be interpreted as
a planet carrier. The four planet gears do not rotate with respect to the housing
when the differential is locked. The assembly of the planet gears on the planet carrier
is particular in this mechanical device. Indeed, the planet gears are inserted in the
housing cylindrical cavities without any physical rotational axis. The clearance between
crater and planet gear diameters enables the planet gears to tilt which involves some
contact between the top of gear teeth and the external surface of crater. The friction
generated by these contacts tends to slow down the relative rotation and significantly
contributes to the locking effect. The transient behaviour at the switching time between
two working modes is also highly influenced by this specific assembly. However, this
configuration allows to obtain a compact mechanism.

The motor torque coming out from the gear box is transmitted to the housing
through splines with a hollow propeller shaft. The sun gear is linked to the output
shaft which transmits the power to the front axle. The drive shaft towards the rear
wheels is connected to the coupling.
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Due to the axial force produced by the helical mesh, several gear wheels can move
axially and enter in contact with the various thrust washers fixed on the case or the
housing. The friction experienced by this relative sliding is at the origin of the locking
effect of TORSEN differentials. The second important contribution to the limited slip
behaviour is due to the friction between the planet gears and the housing holes in which
they are inserted. When one axle tends to speed up, all encountered friction forces
slows down the relative rotation and generate a variable torque distribution between
the output shafts. The biasing on the torque only results from the differential gearing
mechanical friction.

This limited slip differential has four working modes (Fig. 3.7) which depend on
the direction of torque biasing and on the drive or coast situation. According to the
considered mode, the gear wheels rub against one or the other thrust washers which
can have different friction coefficients and contact surfaces. The friction torques change
for each working mode and influence the TDR as it will be shown in section 3.4.1.

Figure 3.7: The four working modes of the type C TORSEN differential (courtesy of
JTEKT TORSEN S.A.).

3.1.2 Type B

The type B TORSEN differential (Fig. 3.8) is used as front or rear differential and
transfers the driving torque to the left and right wheels of a same axle. It also includes
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Figure 3.8: Cut-away view of a type B TORSEN differential.

thrust washers and gear pairs with helical meshing (see geometric parameters in Ta-
ble 3.6). Contrarily to the type C, it is not based on an epicyclic gear train (Fig. 3.9).
Indeed, the mechanism must be symmetric between the right and left half axles because
in normal condition (straight line motion with the same adherence for each wheel) there
is no reason to provide more torque to one lane rather than to the other.

1
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1: cap

2,4:side gear
3: element gears 

  (planet gear + transfer gear)

5: housing
6,7,8,9: thrust washers

Figure 3.9: Exploded view of type B TORSEN differential.

The element gears are bodies formed of three sections: two toothed segments
separated by a portion of reduced cross section without teeth. The two toothed pieces
have the same number of teeth but have not the same face width; the planet gears are
about three times wider than the transfer gears (see Figure 3.9). The element gears are
grouped by pairs and the transfer gear of the first element gear meshes with the planet
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Side Gear Element Gear
(planet gear)

Element Gear
(transfer gear)

Number of teeth Z [-] 15 5 5
Helix angle β [deg] 46 / -46 46 / -46 46 / -46
Normal pressure angle αmn [deg] 30 30 30
Normal modulus Mn [mm] 2.4 2.4 2.4
Pitch diameter [mm] 51.824 17.275 17.275
Face width [mm] 20.191 33.111 10.612

Table 3.3: Gear wheel geometric data of the type B TORSEN differential.

gear of the second element gear of the pair. Besides, the planet gears are also meshing
with one of the two side gears linked to the right or left wheel respectively.

The operating principle is similar to the type C central differential: the locking
is created by the friction between the elements gears and housing cavities as well as
between the annular lateral contact faces of the sides gears and the thrust washers. This
type B TORSEN differential has also four working modes (Fig 3.10). It is possible to
provide more torque to the right or to the left wheel and for each case the drive and
coast situations must be considered.

Drive

bias to left

Drive

bias to right

Coast

bias to right

Coast

bias to left

Figure 3.10: The four working modes of a type B TORSEN differential used as a front
differential.

A ring gear fixed on the housing allows the input torque to be transferred to the
differential with an hypoid gear mesh. The pinion is fixed on the transmission shaft
coming out of the gear box in a front wheel drive vehicle or on an output shaft of central
differential for a four-wheel drive vehicle. The two side gears are linked with splines to
the semi-axles supplying the motor torque to the right and left wheels.

3.2 Global gear pair model

The gear pairs are the key components of automotive drivetrain components and in
particular differentials. In the multibody models developed in this dissertation, each
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gear pair is modelled as a joint defined between two physical nodes located at the center
of each gear wheel represented by a rigid body. Nevertheless the flexibility of the gear
mesh is accounted for by a nonlinear spring and damper element inserted along the
pressure line (see Fig. 3.11). Several specific phenomena in gear pairs which influence
significantly the dynamic response of gears are also included in the model: backlash,
mesh stiffness variation, misalignment, transmission error, friction between teeth.

We summarize in this section the gear pair model developed by Cardona [16, 17]
which is available for representing the meshing of gear pairs in 3D flexible multibody
systems. This model is formulated in a general way so that any kind of gears often used
in industrial applications can be described: spur gear, helical gear, bevel gear, ring gear,
rack-and-pinion, etc. All reaction forces due to gear engagement, including tangential,
axial and radial forces, are accounted for. The gear pair model is implemented in a
finite element context (Section 2.2) and can be regarded as a specific kinematic joint.

Figure 3.11: Gear pair - flexible contact law along the line of pressure [88].

The modelling of the gear wheels as flexible bodies and the introduction of contact
conditions between tooth flanks would perhaps be possible through 3D finite element
discretization of the solid components. However, this approach would increase dramati-
cally the size and the complexity of the model due to the detailed FE meshes needed for
such complex geometries. The simplified approach with a flexible joint between rigid
wheels is sufficient to simulate the locking effects of the TORSEN differentials. The
main objective of this study is to develop a global and light model of the differential
in order to analyze the dynamical behaviour of the whole system. In Chapter 5, the
differential model will be inserted in a complete driveline model of a vehicle including
also the car body, the suspension and the tyres. Local effects such as stresses in the
gear teeth which would require a 3D FE discretization, are not essential to this kind of
global study.

In order to describe the flexible gear pair joint, 16 generalized coordinates are used
(Fig. 3.12):

qT =
{
xT
A αT

A xT
B αT

B ψA ψB um φ
}

(3.2)

where xA, xB and αA, αB are the position and rotation vectors of the wheel centers
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A and B respectively, expressed in the inertial frame. The four remaining generalized
coordinates (ψA, ψB, um, φ) are internal scalar variables of the gear pair and they are
introduced to simplify the element formulation. ψA and ψB are the rotation angles of
the gear wheels in the normal direction to the wheel plane (µ′′

1, ξ′′1). um is a measure
of the relative deformation and backlash in the direction normal to the tooth midplane
(η′′

2). Finally, φ is a measure of the angular misalignment along the tooth vertical line
(η′′

2).

Figure 3.12: Location of generalized coordinates of the gear pair joint.

In a purely rigid gear pair, the rotation of one of the gear wheels around its rotation
axis would be strictly prescribed by the rotation of the other gear wheel and vice versa.
Therefore, the kinematic joint has 11 degrees of freedom in case of a three dimensional
analysis. Since the flexibility of the gear meshing is taken into account in the gear pair
formulation described here, the rotations of the toothed wheels remain independent and
the gear pair element keeps 12 physical degrees of freedom (3 position and 3 rotation
variables for each wheel). Four algebraic constraints have to be introduced to retrieve
the correct number of DOFs because the model is defined by means of 16 generalized
coordinates (Eq. 3.2).

In order to describe the kinematics of the joint, several local frames are defined (see
Figs. 3.12-3.14). The directions of their base vectors can be considered as intermediate
variables facilitating the formulation of some mathematical expressions, but they are
not part of the set of generalized coordinates.

In the initial configuration, one local body frame is attached to each wheel center:
{A;µ1,µ2,µ3} for the first wheel and {B; ξ1, ξ2, ξ3} for the second wheel (Fig. 3.13).
The base vectors µ1 and ξ1 are aligned along the normal direction to the wheel plane.
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The vectors µ2 and ξ2 point towards the contact point C and the vectors µ3 and ξ3
complete the right-handed reference frames. A local frame {C;η1,η2,η3} is also defined
at the contact point (see Fig. 3.14): η1 follows the direction of the tooth baseline; η2

is parallel to the tooth vertical line and is oriented in order to start at the first wheel
and point towards the second one; η3 is perpendicular to the tooth midplane.

The user has to define only the direction of vectors µ1 and ξ1 in the inertial frame.
The vectors µ2 and ξ2 can be computed from the knowledge of the wheel radius rA, rB,
the cone angles γA, γB, the helix angles βA, βB, the misalignment angle φ, the vector
µ1 and the distance vector xAB between wheel centers. Likewise, the frame {η1,η2,η3}
is fully determined from the values of angular parameters and the orientation of one of
the body frames {A;µ1,µ2,µ3} or {B; ξ1, ξ2, ξ3} (see [16] for more details).

Figure 3.13: Position of various frames used to describe the joint kinematics [17].

In the current configuration, the orientation of the both body frames is obtained
by:

µ′
i = RA µi , ξ′i = RB ξi with i = 1, 2, 3 (3.3)

with RA,RB being the rotation matrices of nodes A and B. A second set of local frames
{A;µ′′

1,µ
′′
2,µ

′′
3} and {B; ξ′′1, ξ

′′
2, ξ

′′
3} is considered with the same orientation rules as in

the initial configuration, i.e. the base vectors µ′′
2 and ξ′′2 are oriented to point towards

the contact point. The orientation of both frames is obtained by multiplying the vectors
µ′
i or ξ′i with the rotation matrix related to the relative angular displacement ψ of each

gear wheel around its rotation axis (µ1, ξ1):[
µ′′
1 µ′′

2 µ′′
3

]
=

[
µ′
1 µ′

2 µ′
3

]
R(ψA) (3.4)[

ξ′′1 ξ′′2 ξ′′3

]
=

[
ξ′1 ξ′2 ξ′3

]
R(ψB) (3.5)
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Figure 3.14: Orientation of the frame at the contact point and sign conventions for
cone and helix angle [17].

The frame at the current contact point {C;η′′
1,η

′′
2,η

′′
3} is still oriented following the

tooth flank geometry as in the initial configuration. Using trigonometric expressions,
it is possible to find a relation between this last frame and the frames {A;µ′′

1,µ
′′
2,µ

′′
3},

{B; ξ′′1, ξ
′′
2, ξ

′′
3} as well as a connection matrix between these two frames (see Ref [16]

for details): [
ξ′′1 ξ′′2 ξ′′3

]
=
[
µ′′
1 µ′′

2 µ′′
3

]
W (γA, γB, βA, βB, φ) (3.6)

The four algebraic equations expressing the kinematic constraints between the
generalized coordinates of the gear pair element are given as:

Φ(q) ≡


(ψB ZB − ψA ZA)

Mn cosαn

2
+ um(

xA
C − xB

C

)
·η3

′′A

η2
′′A ·η3

′′B

η1
′′A ·η3

′′B − φ

 = 0 (3.7)

where:

- ZA and ZB are the numbers of teeth at each gear wheel;

- Mn is the normal module of the teeth;

- αn is the normal pressure angle of the gear meshing;

- xA
C and xB

C represent the positions of the contact point computed respectively in
terms of the variables of the wheels A and B;
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- ηi
′′A and ηi

′′B are the base vectors of the local frames at the contact point
computed in terms of the kinematics variables of wheels A and B respectively.

The first algebraic constraint is the kinematic relation resulting from the teeth con-
tact and provides the relationship between the angular displacements of booth wheels.
The Lagrange multiplier associated with this constraint, multiplied by a scaling factor
k, can be physically interpreted as the normal contact force between gear teeth.

The remaining constraints enable to impose the magnitude of the relative angular
displacements ψA and ψB and the misalignment angle φ. The second equation of
constraint expresses the hoop contact (oriented along η′′

3) between gear teeth and allows
to accounts for the hoop and axial components of the contact force. The third algebraic
equation expresses that the local frame {η′′

1,η
′′
2,η

′′
3} is unique whatever the gear wheel

used to compute its base vectors. Finally, the fourth constraint enables to determine
the value of the angular misalignment around η′′

2.

The radial component of the contact force needs to be added explicitly since the
second kinematic constraint (Eq. 3.7) provides only the tangential and axial contact
forces. This force is non-conservative due to its non-holonomic nature, and is formulated
as:

f r = −|kλ1| sinαn η2
′′ (3.8)

This radial force is applied on both wheels at the contact point C and always tends
to separate the gear wheels (see Fig. 3.15), fA

r = f r = −fB
r . In contrast to the axial

and tangential gear meshing forces, its orientation does not change with the sign of the
transmitted torque.

Figure 3.15: The radial component of the gear meshing force always tends to separate
the gear wheels whatever the rotation direction [17].
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The deformation of gear teeth as well as the meshing defaults (misalignment, load
transmission error, backlash) are modelled by an elastic potential defined as:

δVm = δum F + δφ T (3.9)

where the force F and the torque T are computed by assuming a cubic pressure distri-
bution on the tooth width following Niemann’s approach [99]. According to the value
of the misalignment angle φ, the contact along the tooth width can be considered as
partial or total and F , T are therefore defined by different expressions. In these formu-
lations, the backlash distance in the normal direction to the tooth and the displacement
due to errors with respect to the theoretical gear profile are added to the tooth defor-
mation magnitude um. The mesh stiffness can be automatically computed from the
gear geometrical parameters and can have a non constant value to represent the time
variations of the number of teeth simultaneously in contact.

It is also possible to model the friction force between the two wheels, which is not
a negligible force if the mutual sliding speed along teeth in contact is non-zero. The
effects of the variation of the center distance length can be considered too but they will
be not detailed here for the sake of conciseness, and the expressions of the constraint
gradients will neither be given.

Compared with other gear pair models available in the literature, for example [28,
69], the advantage of Cardona’s formulation lies in its generality. Indeed, besides allow-
ing to model the various gear pair configurations (rack-pinion, bevel gear, helix gear...),
the gear pair model can also be used to model gear trains. Several gear pair joints have
simply to be assembled in the same mechanism model. The connection with the rest of
the system is straightforward as the nodes at wheel centers are generalized coordinates.
For instance, these nodes can be attached to the transmission shafts modelled them-
selves as flexible beam elements and one can perform the dynamic analysis of a complex
mechanical system composed of numerous rigid and flexible bodies and including gear
pair joints. The forces produced by gear meshing are also transferred to the supports
of the gear wheels through these nodes. Although the gear pair model remains rela-
tively light, disruptive phenomena (friction, backlash,...) influencing significantly the
dynamical behaviour can be globally represented.

3.3 Unilateral contact condition

In this section, two different methods are presented to formulate a node to surface
contact element inside a multibody model based on the finite element approach. The
first formulation uses kinematic constraints to express the contact condition whereas
the second one is based on a penalty method.
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3.3.1 Formulation based on kinematic constraints

In the context of an implicit scheme, the contact constraints are solved at the same time
as the other nonlinearities and no distinction is done between the degrees of freedom
linked by contact and the other ones (see Ref. [64] for more details). Following the
approach developed by Alart and Curnier in [2], an Augmented Lagrangian approach
enables to express the complementarity condition and to define the kinematic con-
straints related to each contact condition. The resulting system of equations is solved
simultaneously for the displacements and for the Lagrange multipliers. Bilateral but
also unilateral contacts can be represented: the kinematic constraints are deactivated
when the two bodies are separated by a gap.

This formulation is suitable for an implicit nonlinear analysis and allows to model
contacts between a flexible part and a rigid surface (flexible/rigid contact) as well as
between two flexible bodies (flexible/flexible contact). In both cases, contact elements
are created automatically between each slave node located on the candidate contact
face of the first support and a master surface of the second support. This master face
is a finite element face in case of a double flexible contact or the single rigid face in case
of rigid/flexible contact. The contact method described in the sequel of this section
needs to be repeated for each candidate pair of slave node and master face.

E1

E3

E2

xM

xS

Master Faces on support 2

Slave Nodes on support 1

n

t1

t2

dn

Figure 3.16: Contact condition - projection of a slave node on the master surface.

The contact algorithm can be decomposed in two steps. The first step is purely
geometric and consists in projecting each slave node on the master surface(s) (see
Fig. 3.16). The determination of the projection point is direct in case of first degree
triangular master faces but requires Newton iterations for quadrangular element faces.
If the projection point is outside the master face, it is obvious that this couple slave
node - master face is not in effective contact and the associated kinematic constraints
can be deactivated or omitted.
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The distance dn from the slave node to the master face along the normal direction
is computed from:

dn = nT (xS − xM∗) (3.10)
where n is the unit normal vector to the considered master face, xS is the absolute
position of the slave node and xM∗ is the absolute position of a point located on the
master surface. For a rigid master face, this point is the master node attached to the
rigid surface while it is the projection point of the slave node or one vertex defining the
master element face in case of a flexible master face.

Moreover, if the friction is modelled, the displacement increments (∆u1,∆u2) in
the tangent directions during the current time step are also computed:

∆u1 = tT1 (xS − xM∗) (3.11)
∆u2 = tT2 (xS − xM∗) (3.12)

where t1, t2 are two orthogonal unit vectors in the tangential plane at the contact
point (t = vt/vt = α1t1 + α2t2, vt being the tangential velocity vector and t the unit
tangential vector).

The projection method will be not described at this stage but a similar method is
presented in detail in Chapter 6 where the contact formulation between superelements
is developed.

The virtual variations δdn, δ∆u1, δ∆u2 can be expressed as functions of the in-
finitesimal variations of generalized coordinates q:

δdn = nTB δq (3.13)
δ∆u1 = tT1 B δq (3.14)
δ∆u2 = tT2 B δq (3.15)

where B is a 3×n matrix defined by B = ∂(xS −xM∗)/∂q. The vector of generalized
coordinates of each individual contact element includes the absolute position of the
slave node and the absolute positions of the nodes defining the master face (flexible-
flexible contact) or the absolute position and rotation variables of the master node
linked to the rigid surface (flexible-rigid contact).

The second step of the contact algorithm sets the contact conditions whose ex-
pression depends on the current status of the contact. For unilateral contact, the case
of an active or an inactive contact can be distinguished in the normal direction. The
friction coefficient and the normal force enable to determine if stick or slip behaviour
in the tangential directions has to be considered.

Contact in the normal direction

In order to assess the contact status, the contact criterion defined in Eq. 3.16 is used.
This scalar value is a simple addition of the normal distance dn and the Lagrange
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multiplier λn weighted by the penalty and scaling positive factors p and k respectively.

σn = pdn + kλn (3.16)

The complementarity condition is illustrated by the bold red line in Fig. 3.17 and
represents the set of possible solutions at convergence of the DAE-system: either the
normal distance dn is null or the Lagrange multiplier λn vanishes. During the iterations
of the Newton-Raphson procedure, the system is not at the equilibrium and the contact
criterion σn allows to choose if the contact condition related to an active or an inactive
contact has to be used. The linear equation σn = 0 divides the space in two zones
(see dotted line in Fig. 3.17). If σn is positive, the algebraic constraint is deactivated
and the assessed couple (slave node - master face) is not considered in contact. In
contrast, when σn has a negative value, the system is considered in contact and the
contact constraint is active. At equilibrium, the contact constraint enforces the normal
distance dn to be equal to zero and can therefore be expressed as:

ϕ ≡ dn = nT (xS − xM∗) = 0 (3.17)

The constraint forces are simply obtained by formulating the virtual work of the alge-
braic constraint:

δW = δdn(pdn + kλn) + δλn kdn

=
{
δqT δλn

}{BTn (pdn + kλn)

kdn

}
(3.18)

Active contact

Inactive contact

Contact criterion

Solution at convergence

Figure 3.17: Contact criterion and solution.

The Lagrange multiplier λn scaled by the factor k can be interpreted as the contact
force. This parameter is often chosen equal to some stiffness measure of the structural
elements in order to have the same order of magnitude in the various terms of the
iteration matrix. The convergence property of this approach to formulate the contact
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condition depends on the slope (−p/k) of the line σn = 0. The scaling factor k being
often constant, the choice of the penalty parameter p influences the convergence speed
but the solution at convergence will not depend on this penalty parameter.

Friction in tangential directions

In the tangential plane, an activation test σt is also needed to evaluate if the bodies are
sticking or sliding at the contact point. Two additional Lagrange multipliers λt1 , λt2
are introduced to manage the frictional behaviour. The friction criterion is defined by
analogy with the contact criterion (Eq. 3.16):

σt =
√
σ2t1 + σ2t2 (3.19)

with
σti = p∆ui + kλti i = 1, 2 (3.20)

Sticking

The two contacting bodies are sticked if the magnitude of the friction force is smaller
than the normal force multiplied by the friction coefficient. This situation occurs when
the following condition between the normal and tangential criteria is satisfied:

σt − µ|σn| ≤ 0 (3.21)

In order to avoid relative motion between the slave node and the master face, two
constraints are introduced (Eq. 3.22).

ϕ ≡

{
∆u1
∆u2

}
= 0 (3.22)

The virtual work principle enables to compute the associated constraint forces:

δW = δ∆u1(p∆u1 + kλt1) + δ∆u2(p∆u2 + kλt2)

+ δλt1k∆u1 + δλt2k∆u2
(3.23)

The friction coefficient is assumed constant, no distinction being made between the
static and kinetic friction coefficients.

Sliding

If the sticking condition (Eq. 3.21) is not fulfilled, a sliding behaviour is considered.
Therefore, the relative tangential displacements do no longer cancel and both kinematic
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constraints have to be desactivated. The friction forces are equal to the friction coeffi-
cient µ multiplied by the normal contact force fn = k λn and a distribution coefficient
χi = σti/σt between the two tangential directions t1, t2.

In order to ensure the continuity of Lagrange multipliers at the switching time
between sticking and sliding periods, their values are prescribed in sliding situation.
The resulting algebraic equations do not constrain the generalized coordinates. The
full set of element forces can be summarized as:

δW =
{
δ∆u1 δ∆u2 δλt1 δλt2

}
µ|fn|χ1

µ|fn|χ2

(µ|σn|χ1 − kλt1)k/p

(µ|σn|χ2 − kλt2)k/p

 (3.24)

With this formulation, the friction Lagrange multipliers represent forces parallel to the
variation of sliding displacements (∆u1, ∆u2).

Inactive contact

When the contact is not active, i.e., σn > 0, there is no contact and no friction forces
applied on the nodes. So, it is not needed to impose any kinematic constraint. The
Lagrange multipliers having the physical meaning of forces, they have to be set to zero.
This can be achieved by defining the constraint equations as Φ ≡ λ = 0 and the virtual
work takes then the form:

δW = δλT (−kλ) (3.25)

with λT =
{
λn λt1 λt2

}
.

The evidence of this last virtual work expression can be found in Reference [2]
where a unique Lagrangian is defined for all contact status. With this approach, the
uniqueness of the solution can be proven and one avoids the discontinuities of the
Lagrange multipliers when the constraints are activated.

The iteration matrix of each contact status is not given in this document but it can
be found in [64]. In case of the sliding friction, the iteration matrix is not symmetric
so that it is recommended to use a non-symmetric solver.

3.3.2 Formulation based on a penalty method

An alternative method to formulate the contact condition consists in replacing the aug-
mented Lagrangian method by a pure penalty method. In contrast to the Lagrangian
approach where no penetration is allowed, the penalty approach enables a small pen-
etration between the two bodies, that slightly relaxes the discontinuity. The penalty
function can be linear or nonlinear and can be seen physically as a finite stiffness that
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is active in compression but not in traction. To have a smoother response, it can also
be useful to account for damping in the contact model.

The projection method of the slave nodes on the master faces is unchanged com-
pared with the Lagrangian approach but the contact detection criterion is not the same.
Indeed, with a penalty method, the contact is considered as active when the normal
distance dn (Eq. 3.10) is negative. In case of a linear contact law, the magnitude of the
contact force can be computed by:

fn = kp |dn| + c ḋn if dn < 0 (3.26)

where kp is the contact stiffness and c is the damping coefficient.

The friction force amplitude is simply given the multiplication of the normal con-
tact fn by the friction coefficient µ:

ffr = −µr fn (3.27)

A regularization is often used to avoid the discontinuity when the sign of the relative
sliding velocity shifts or at the transition between sticking and sliding contacts (see
Fig. 3.18). The regularized friction coefficient µr can be defined in different ways with
appropriate functions such as the simple quadratic function used in this study:

µr(ξ̇) =


µdyn

(
2− |ξ̇|

ϵv

)
ξ̇

ϵv
|ξ̇| < ϵv

µdyn
ξ̇

|ξ̇|
|ξ̇| ≥ ϵv

(3.28)

ξ̇ being the relative sliding velocity, µdyn the dynamic friction coefficient and ϵv the
regularization tolerance which corresponds to the relative velocity at which the friction
coefficient reaches its constant value.

Figure 3.18: Regularization of friction coefficient with two quadratic functions.
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The internal forces at the element level ( gint = BT (fn n+ ffr t) ) are obtained
by expressing the virtual work principle of contact forces

δW = δdn fn + δ∆u ffr (3.29)
= δqT BT n fn + δqT BT t ffr (3.30)

with the tangential unit vector defined as

t =
vt

vt
=

ẋS − ẋM∗

∥ẋS − ẋM∗∥
(3.31)

3.3.3 Penalty method versus algebraic constraint at position level to
model impact

Impact phenomena occur when the relative normal velocity of the colliding bodies is
high at the contact establishment. The modelling of nonsmooth unilateral contact
conditions by means of kinematic constraints formulated only at position level leads to
inconsistencies (see for instance Ref. [20]). Indeed, simulations of multibody systems
including this kind of contact model can fail to converge due to numerical difficulties.
In order to illustrate this non consistent behaviour, let us considered a very simple
system composed of a cube distant of a gap dn from a rigid plane (see Fig. 3.19). It is
at rest at the initial time and is submitted to a constant force F = 100 N during the
whole simulation. Only a displacement along the vertical direction is allowed and the
rotations are blocked. The cube is made of steel and is meshed using linear hexahedral
volume finite elements. Since the plane is rigid, the rigid-flexible version of the unilateral
contact condition described in section 3.3.1 is used to model the system. The presented
simulation is performed with a fixed time step equals to 10−4 s and the Hilbert-Hughes-
Taylor scheme (Section 2.2.3) is used with αf = 1/3.

0.1m

0.1m

F

Figure 3.19: Benchmark: impact of a flexible cube on a rigid plane.

Figure 3.20 shows the vertical position of one node of the cube contact face. The
dynamic response provided by the numerical model is obviously not physical. Indeed,
the rebounds after impact have unreliable amplitude and frequency. The cube seems to
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gain energy after some impacts and loses energy after others. This erratic phenomenon
is highly dependent on the impact instant between two computed time steps. The
numerical response is also strongly influenced by the amount of numerical damping
introduced by the integration scheme since it is the sole source of energy dissipation in
the model.
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Figure 3.20: Position of one contact node of the cube when the contact model is based
on a kinematic constraint at position level.

The literature mentions alternative contact models and solution methods able to
represent impact. Formulating the contact constraints at velocity level and not at
position level is beneficial for the consistency of the algorithm. The replacement of the
continuous integrator by a non smooth scheme (e.g., the Moreau-Jean method [63]) or
a energy preserving scheme is often recommended to deal with impact simulation. The
modelling of the contact condition by a pure penalty method offers a simple and easy
way to implement contact formulation, which can still be used with a smooth solver,
such as the Newmark, the HHT or the generalized-α method.

The simple cube-plane benchmark has also been simulated by using the penalty-
based contact model detailed in section 3.3.2. The solver parameters remain unchanged
and the penalty factor has been fixed to 1E.10 N/m3 whereas no damping contribution
is considered (c = 0 in Eq. 3.26). Now, the model reproduces the expected behaviour
(see Fig. 3.21). The decrease of bounce amplitudes is due to the non negligible numerical
damping.

The large frequency content of the impact response can disturb the automatic time
step strategy which tends to reduce the time step size to very small values. With a
smooth integrator and a contact modelling with position-level constraints, the conver-
gence is often easier with large time steps because, in this case, the impulse due to an
impact is averaged on a larger time period between two time steps. The friction is not
accounted for in the test model but the switching between stick and slip situations can
also lead to strong discontinuities especially in case of high speed systems.
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Figure 3.21: Position of one contact node of the cube computed using a penalty based
contact model.

The contact model based on a kinematic constraint does not provide any adjustable
parameter while the contact stiffness and the damping coefficient of the penalty method
can be chosen in order to ensure the convergence. Although the penalty approach
is much more robust, the stability and the accuracy of the numerical response can
nevertheless not be guaranteed. Unstable response can sometimes also be observed
when using a continuous contact model (see Section 4.2.2).

3.4 MBS simulation of TORSEN differentials

This section presents a comprehensive preliminary modelling of types B and C TORSEN
differentials. The objective here is to develop a robust modelling approach allowing
to simulate the four working modes and the locking effect of TORSEN differentials.
Therefore, several assumptions which appear reasonable for the analysis of the global
operation of differentials have been introduced. The multibody simulations are carried
out using the software SAMCEF FIELD and its module MECANO devoted to implicit
nonlinear analysis.

In order to validate and check the accuracy of the mathematical model, the nu-
merical results have been compared with measurements on an experimental test bench
provided by the JTEKT TORSEN company (see Fig. 3.22). To this purpose, the test
bench configuration has been reproduced virtually. Contrarily to the operation in a ve-
hicle, the housing does not rotate during the test (Fig. 3.23). It is nevertheless possible
to observe the four working modes since the locking effect of TORSEN differentials is
due to relative motion and to the forces between the output shafts and the housing.

As pointed out in the previous section, the contact formulation based on a La-
grangian approach is not well adapted in case of impact phenomena. Therefore, the
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Figure 3.22: Test bench for TORSEN differentials.

(a) test bench (b) vehicle

Figure 3.23: Schematic representation of differential working configuration (courtesy of
JTEKT TORSEN S.A.).

penalty based contact formulation (Section 3.3.2) has been used in order to model the
contacts between the thrust washers and the rim faces of the gear wheels included in
the TORSEN differentials. When the switching between two operation modes is very
fast, the impact is high and the addition of a damping contribution in the contact law
might be needed to enable the convergence of the integration scheme.

Dynamic analyses have been performed using the Chung-Hulbert generalized-α
integration scheme [23] because it permits to introduce a large numerical damping
without reducing significantly the response accuracy. A spectral radius equals to 0.01

is reached when αm = −0.97 and αf = 0.01. A high level of numerical damping thus
enables to annihilate the high frequency content produced by the impact events. Due
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to the presence of gear elements and contact conditions with friction, the iteration
matrix is not symmetric and therefore a non-symmetric resolution algorithm has been
adopted. This option is computationally more expensive but permits better convergence
in complex situations with high Coulomb friction.

3.4.1 Type C TORSEN: central differential

Figure 3.24: SAMCEF model of type C TORSEN differential.

The type C TORSEN differential contains 15 bodies which are all included in the
multibody model (see Fig. 3.24). The material behaviour as well as the joints between
the various bodies are subjected to the following modelling assumptions:

- Only the thrust washers are modelled as flexible bodies, the gear wheels and the
three parts of the housing being assumed rigid. The thrust washers are meshed
with nonlinear volume finite elements obtained by extrusion of a 2-D grid, what
is well suited for the selected contact formulation.

- The geometry of the thrust washers is simplified, the latter being modelled as
perfect rings: the locking bolts ensuring the positioning of the various thrust
washers inside the housing or case are neglected.

- The planet gears are connected to the differential housing by means of hinge joints.
The real link between these two parts is quite complex since the planet gears are
inserted in housing cylindrical cavities without physical rotation axis. The tooth
tips are in contact with the cavity external surface and the friction contributes
to the limited slip behaviour of the differential. Hence, the friction is accounted
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for in the hinges used to model these joints. The small axial displacement and
the tilting of planet gears allowed by clearance can not be represented by the
hinges but both kinds of motion are second order effects to the operation of the
differential.

- Several contact zones of minor importance on the global operation are not consid-
ered. Since some washers have completely different friction coefficients on their
two opposite faces, only the contact condition with the lower friction coefficient is
modelled while the washer is considered to be fixed on the body in contact with
the high friction face of the washer (in Fig. 3.6 washer #8 is fixed on the sun gear
and washer #10 is fixed on the coupling). The contacts between the lateral faces
of the planet gears and the housing or thrust washer #9 are not modelled since
the axial displacement of the planet gears is prevented by the hinge joints with
the housing.

- The thrust washers #7, 9, 11 are clamped on the housing or case in the model
whereas a small axial displacement can potentially appear in reality.

- A screw joint is used to represent the connection between the internal gear and
the coupling. The internal bevel gear pair with the same number of teeth on the
pinion and the ring gear having the same rotation axis, they cannot be modelled
by the gear pair formulation (Section 3.2). Therefore, this particular assembly is
approximated by a screw joint.

- The housing and the case are considered as rigidly connected: the screw is ne-
glected since in normal operation, there is no relative motion between both parts.

The epicyclic gear train of type C TORSEN is modelled by 8 independent gear
pair elements as described in section 3.2. The values of the main parameters are given
in Table 3.6. As described in [152], a detailed FE study can provide an accurate
value for the mesh stiffness parameter of each gear pair element. Here, approximated
values are computed according to the ISO 6336 standard (method B) [62]. In this case,
the computed mesh stiffness and mesh damping depend on material properties and
geometrical characteristics (addendum, number of teeth, helical and pressure angles...)
of gear wheels and teeth. Since the gear wheels are connected to the housing through
hinge joints, their rotation axes remain parallel and it is not needed to account for the
misalignment in the gear pair model. Likewise, the effects of load transmission error
have not been included in the system.

The model also includes 5 flexible/rigid unilateral contact conditions using a
penalty method (Section 3.3.2). The contact stiffness has been chosen in order to
relax the discontinuity at the impact instant and enable the numerical convergence.
A sufficiently high value has been adopted in order to avoid large penetration depth
between contacting bodies compared with the body strains.
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Sun Gear /
Planet Gear

Planet Gear /
Internal Gear

Center distance d [mm] 40.660 40.660
Normal pressure angle αn [deg] 30 30
Backlash b [mm] 0.06 0.06
Mesh stiffness [N/m] 5.58E8 4.20E8
Mesh damping [kg/s] 847 733
Friction coefficient between teeth µ [-] 0.1 0.1
Total contact ratio ϵγ [-] 3.007 2.923

Table 3.4: Data of gear meshing between a planet gear and the sun gear or the internal
gear of the type C TORSEN differential.

The friction coefficient of all contact conditions have been chosen based on ex-
perimental data provided by the manufacturer JTEKT TORSEN. In most cases, the
friction coefficient is 0.1 which is a common value for friction between two lubricated
steel surfaces. As in Fig. 3.18, a regularization of the friction coefficient has been needed
to avoid a large discontinuity when the sign of the relative rotation between the gear
wheel and the thrust washer changes at the switching time between operation modes.

Finally, the total number of generalized coordinates of the whole model amounts
to 8209. This huge number is mainly due to the 596 nodes of the FE modelling of
thrust washers and the distance sensors of the contact elements.

Test bench configuration

In the test bench configuration, the housing and the case are locked in translation and
rotation. In order to reproduce the various operation modes of the differential, a torque
is applied to one of the output shafts whereas the rotation speed of the second one is
prescribed, which is equivalent to apply a resisting torque. This torque is measured
and used to compute the TDR defined by Eq. 3.1. This index represents the torque
distribution due to the locking effects and is simply computed with the applied torque
value divided by the resistant torque measured value.

The sun gear and the coupling being linked to the front and rear axles respectively,
the two operation modes with torque biasing to the front axle are reproduced when a
torque is applied on the sun gear while the coupling rotation speed is limited. The two
operation modes with torque biasing to the rear axle can be activated by exchanging the
boundary conditions of both shafts. According to the direction of the applied torque,
it is a drive or a coast mode. Within the inertial frame used to construct the model, a
positive torque gives rise to a drive mode and a negative torque, to a coast mode.

In Figure 3.25(a), the numerical simulation of the two operation modes with torque
biasing to the rear axle is represented. A torque of 125 Nm is applied on the coupling
and the rotation speed of the sun gear is controlled in order to keep a difference of
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20 rpm between output shafts. The choice of 125 Nm and 20 rpm is only due to the
capacity of the experimental test bench used for the measurement. Indeed, the TDR is
constant for each locking mode whatever be the amplitudes of the applied torque and
the relative rotation between output shafts (cf. Fig. 3.2). The time evolution of the
applied torque and the prescribed rotation speed has been determined to observe both
operation modes with biasing to rear axle in a same simulation and in order to have a
smooth transition between the two modes. The parts of interest to compute the TDR
are the steady state parts: 0.4 s − 1 s and 2.2 s − 2.8 s.
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(b) drive to front and coast to front modes

Figure 3.25: Simulation of type C on test bench.

Figure 3.25(a) depicts the simulation of the operation modes with torque biasing
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to the front axle. Here, a 200 Nm torque is applied to the sun gear and the rota-
tion speed of the coupling is regulated. For each locking mode, Table 3.5 shows the
good agreement between the experimental TDR values and the results provided by the
numerical simulation. The error is lower than 5% for the four modes.

TDR Mode 1 Mode 2 Mode 3 Mode 4
Drive Coast Drive Coast
bias to rear bias to rear bias to front bias to front

Experimental 4.02 2.82 1.57 1.62
Simulation 3.89 2.92 1.53 1.66
Error (%) 3.23 3.55 2.55 2.47

Table 3.5: Comparison of torque distribution ratios for the four operation modes (type
C TORSEN).

As mentioned in the list of modelling assumptions, the complex joint between the
planet gear and the housing has been modelled as a simple hinge. The friction forces
occurring between the tooth heads and the holes in the housing are represented by a
friction torque along the axis of the hinge. Owing to the significant difference between
a hinge model and the actual joint, the friction coefficient in the hinge joint is not equal
to the true friction coefficient which would be difficult to assess. In order to determine
the value of this friction coefficient, a parametric study has been performed with several
friction coefficients. Then, the least squares criterion is used to find the best friction
coefficient, i.e. the value for which the sum of squared differences between experimental
and simulated TDR for the four operation modes is minimum. Figure 3.26 shows that
a value of the friction coefficient of 0.185 leads to the model with the closest TDR
values compared to the experimental data (see Tab. 3.5). This parameter identification
has been achieved using the BOSS QUATTRO software [86]. The friction coefficient
of the hinge joints is the only parameter that can be fitted in order to match the TDR
values. The values of the other parameters are imposed by the physics of the problem.
The accordance of numerical TDRs with respect to the experimental data shows the
accuracy of the MBS model of the TORSEN differential while only one parameter has
been adjusted.

Oscillations can be observed on the torque curve of the coupling in Figure 3.25(b).
Investigations have been carried out and have led to the conclusion that these oscil-
lations have a purely numerical origin. They result mainly from the time step selec-
tion strategy which induces acceleration and force discontinuities at the time step size
changes. Morevover, these oscillations are highly sensitive to the solver parameters and
to the contact stiffnesses.

This simulation also allows to compute the contact pressure, friction stress, dissi-
pated power or the sliding velocity. Figure 3.27 illustrates the contact pressures for all
the contact elements introduced in the model for the drive to rear mode.
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Figure 3.26: Parametric study: influence of the friction coefficient in hinge joints on
the sum of squared differences between experimental and computed TDRs for the four
operation modes.
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Figure 3.27: Contact pressure on thrust washers for drive to rear mode (test bench
configuration at time t = 0.6 s).

Vehicle configuration

In the vehicle configuration, the housing is driven in rotation by the output torque of
the gear box. In order to mimic the vehicle behaviour, the following load cases are
applied on the differential: a torque is applied to the housing and the rotation speeds
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of both output shafts are prescribed. The rotation speed difference is arbitrary because
it does not affect the TDR (see Fig. 3.2). According to the orientation of the inertial
frame used, the rotation speeds have negative values when the vehicle moves forward.
The motor torque is positive for coast modes and negative for drive modes.

In order to observe the four locking modes during the same simulation, the time
evolution depicted in Fig. 3.28 has been used for the three loadings. An intermediate
level is introduced during the increase and the decrease stages of the motor torque to
assess the robustness of the numerical model. Contrarily to the situation on the test
bench, the two output shafts rotate in the same direction. The housing rotation speed
assigned is set by the ratio of teeth numbers of the sun gear and the internal gear.

In drive modes, more torque is sent to the slower axle whereas it is the opposite for
the coast modes. The difference in the number of teeth on the sun gear and the internal
gear induces an uneven distribution of the motor torque between both output shafts.
This torque difference between the sun gear and the coupling is increased by the torque
biasing due to friction inside the differential. Therefore, the torque ratio is higher than
the teeth ratio for the four operation modes. For each mode, the TDR value computed
with this simulation is similar to the value obtained from the test bench simulation.

Figure 3.28: Time evolution of torque and rotation speed of housing and output shafts
of type C TORSEN on vehicle configuration.

As soon as the sign of the torque applied to the housing changes, the sun gear,
the coupling and the internal gear move axially very quickly (see Figure 3.29). That
leads to impacts onto the thrust washers. The axial displacements of the sun gear
and the coupling are always in the same direction while the internal gear moves in
the opposite direction. The sun gear and the coupling are then in contact for all the
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operation modes. This contact has a very low friction coefficient that allows reducing
the stick-slip phenomenon.
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Figure 3.29: Axial displacements of gear wheels (vehicle configuration).

The spikes observable in several time responses (e.g. Figs. 3.25, 3.28, 3.36) are due
to the transient behaviour at the impact time. The discontinuity created can affect the
convergence of the time integrator. The time step control algorithm often decreases
significantly the time step size near the impact time in order to ensure the convergence.
If the contact and the solver parameters such as the stiffness or the numerical damping
are not chosen adequately, the integration scheme might not override the discontinuity.

Figure 3.30 illustrates the contact pressure of all contact elements introduced in the
model when the differential is in the drive to rear mode. The time evolution of contact
pressures is depicted in Fig. 3.31 during the whole simulation. It can be observed that
at each time and for each operation mode, three contact elements are active and two are
inactive. The contact between the thrust washers #8 and #10 (cf. Fig. 3.6) is the only
contact element that are always active. The drive modes ([0; 7] s and [16; 24] s) activate
the contacts between the sun gear and the washer #7 and between the internal gear
and the washer #11. On the other hand, the contacts between the coupling and the
washer #11 and between the internal gear and washer #9 are active during the coast
modes ([8; 15] s and [25; 32] s). The friction is taken into account in the five contacts.
Fig. 3.32 shows the spatial distribution of the power dissipated by friction at t = 28.5 s.

The stresses in the thrust washers can be also provided by the numerical model.
For instance, Figure 3.33 shows the stress distribution at t = 11.6 s. The maximum
stress at this time step is 23 MPa and is located on the inner radius of the thrust
washers #11. This value is much lower than the yield strength of the steel material
used. The same observation can be done for the three other modes. The maximum
torque supplied to the housing of the type C TORSEN differential in normal conditions
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Figure 3.30: Contact pressure on thrust washers ( t = 3.5 s : Drive to rear mode).

0 5 10 15 20 25 30 35
−5

0

5

10

15

20

25

30

35

Time (s)

C
on

ta
ct

 p
re

ss
ur

e 
(M

pa
)

 

 
washer #7
washer #9
washer #8
washer #11 (IG)
washer #11 (CPL)

Figure 3.31: Time evolution of the contact pressure in thrust washers.

of a commercial vehicle is often close to 1100 Nm, i.e. slightly higher than the 900 Nm
applied in the presented simulation. However, it is obvious that the maximum stress
will remain also much lower than the ultimate strength. Nevertheless, the various parts
of the differential can be submitted to high stresses at impact times, which is the sizing
criterion.
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Figure 3.32: Power dissipated by friction between gear wheels and thrust washers ( t =
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Figure 3.33: Stress in the thrust washers ( t = 11.6 s : Coast to front mode).

3.4.2 Type B TORSEN: front or rear differential

In order to assess if the modelling approach elaborated for the type C TORSEN can
also be applied to another system, the type B TORSEN differential has been modelled
following a similar procedure. Moreover, this model (Fig. 3.34) will be used to test the
formulations developed in the next chapters.
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Figure 3.34: SAMCEF model of type B TORSEN differential.

Except for the screws, all the parts have been modelled with a set of assumptions
similar to those of the type C model:

- The thrust washers are modelled by a finite element mesh composed of volume
elements. The element gears, the housing and the gap are rigid bodies.

- As for the type C TORSEN differential, the joint between each element gear and
the housing is represented by a hinge. This is the major simplification adopted
in the model compared to the physical device.

- The contacts with insignificant influence on the locking operation have not been
accounted for in the model. For the three pairs of thrust washers (Fig. 3.9),
only the contact between the two washers is modelled since its friction coefficient
is much lower than on the opposite face of the thrust washer. The connection
between the element gears and the housing is modelled as an ideal hinge joint, so
that their axial displacement is not represented. Therefore, the frictional contact
between the lateral faces of element gears and the housing or the cap are neglected.

The multibody model includes 20 gear pair elements whose geometric parameters
are summarized in Table 3.6. Three contact elements using a penalty formulation are
also introduced. In order to identify the value of the friction coefficient in the hinge
joints, a parametric study has been performed. A value of 0.15 is retained for the
friction coefficient because it leads to the lowest sum of squared differences between
experimental and computed TDR for the four operation modes (see Fig. 3.35).
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Planet Gear /
Side Gear

Transfer Gear /
Planet Gear

Center distance d [mm] 34.549 17.275
Normal pressure angle αn [deg] 30 30
Backlash b [mm] 0.08 0.09
Mesh stiffness [N/m] 3.96E8 2.12E8
Mesh damping [kg/s] 703 515
Friction coefficient between teeth µ [-] 0.1 0.1
Friction regularization tolerance ϵv [-] 0.1 0.1
Total contact ratio ϵγ [-] 2.433 1.505

Table 3.6: Data of gear meshing between an element gear and a side gear or between
two element gears of type B TORSEN differential.
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Figure 3.35: A value of 0.15 for the friction coefficient in hinge joints leads to the
lowest sum of squared differences between experimental and computed TDR for the
four operation modes.

Test bench configuration

In order to validate the model, the tests on the experimental test bench have been
reproduced using the simulation tool. The procedure is similar to the one explained
for the type C TORSEN. The housing is fixed and a torque is applied on one of the
output shafts whereas the rotation speed of the second shaft is imposed.

Figure 3.36 depicts the torques and rotation speeds of the side gears attached to
both semi-axles. The TDR computed on the basis of the simulation results is in good
agreement with the experimental values as shown in Table 3.7 for the four operation
modes. Let us note that the computation of the error factor suffers from a small lack
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of accuracy because the experimental data have been given with a relative accuracy
of only 6% (0.1/1.6). The geometrical configuration of the type B TORSEN being
symmetric from the point of view of the output shafts, the TDR for the operation modes
with torque biasing to the left and to the right are similar. The friction coefficients
have similar values for all contacts with thrust washers, which explains the very small
difference between the TDR for drive and coast modes.
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0 0.5 1 1.5 2 2.5 3
−150

−100

−50

0

50

100

150

T
or

qu
e 

(N
m

)

Time (s)

 

 

0 0.5 1 1.5 2 2.5 3
−45

−30

−15

0

15

30

45

R
ot

at
io

n 
sp

ee
d 

(r
pm

)

torque side gear right
torque side gear left
rotation speed side gear right
rotation speed side gear left

(b) torque biasing to the left wheel

Figure 3.36: Simulation of type B on test bench.
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TDR Mode 1 Mode 2 Mode 3 Mode 4
Drive Coast Drive Coast
bias to right bias to right bias to left bias to left

Experimental 1.6 1.7 1.6 1.7
Simulation 1.58 1.66 1.61 1.64
Error (%) 3.20 2.35 0.62 3.53

Table 3.7: Comparison of torque distribution ratios for the four working modes (type
B TORSEN).

Vehicle configuration

The configuration on vehicle has also been simulated too. A torque is applied on the
housing and the side gear rotation speeds are prescribed (see Fig. 3.37). Although very
seldom effective in reality, the four locking modes can be observed in backward motion
of the vehicle. In practice, the backward motion is often used for experimental tests on
a small test track. Indeed, an acceleration of the vehicle in backward motion activates
a coast mode of the differential which enables to quickly observe the behaviour of the
differential. The vehicle starts from rest and has to travel only a few meters. The TDR
values for these modes are of course the same as for the vehicle forward motion. In the
second part of the simulation (34 s - 67 s), the direction of prescribed rotation speed
of side gears has been changed which enables to reproduce the differential behaviour in
backward motion. The time evolutions of the resisting torque on both side gears are
symmetric with respect to the middle of the simulation (t = 34 s). This proves that the
model is able to represent also the locking effects in backward motion with accurate
prediction of the TDR.

3.5 TORSEN differentials included in a simplified vehicle
drivetrain

As final application of this chapter, a global four-wheel drive vehicle equipped with
three TORSEN differentials has been modelled (Figure 3.38).

The objective of this model is to observe the distribution of the engine torque
between the four wheels. In this context, a very simplified vehicle model is considered.
The car body is modelled by a lumped mass and the suspension mechanisms are ignored.
The differentials are attached to the vehicle frame with hinge joints. In order to connect
the central differential (type C) with the front and rear differentials (type B), conical
gear pairs are introduced in the model. The drive shafts linked to the inputs and the
outputs of the differentials are represented by rigid bodies. Simple wheel models are
also considered in this simulation.

As depicted on Fig. 3.39, a driving torque of 100 Nm is applied to the housing of the
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Figure 3.37: Time evolution of torque and rotation speed of housing and output shafts
of type B TORSEN on vehicle configuration.

Figure 3.38: Four-wheel drive simplified vehicle model with three differentials.

central differential. Friction coefficients are prescribed with a different value for each
wheel-ground contact. For this simple application, quite different friction coefficients
have been arbitrarily assigned to illustrate the torque biasing resulting from limited
slip behaviour. For the sake of simplicity, the drive ratios have been chosen equal to
one for the conical gear pairs which mesh the housing of the front and rear differentials
with the pinion fixed on the drive shafts of the central differential. Friction coefficients
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in all contact conditions have been modified compared to the previous models with the
consequence that the TDR values are modified with respect to Tables 3.5 and 3.7.

The torque provided to each wheel is different and the distribution of the motor
torque is consistent with the ground-wheel friction coefficient. The wheel with the
higher road friction gets more torque than the other ones which is the advantage of
TORSEN differentials. With open differentials without slip limitation the torque on
each wheel would be limited by the lowest friction potential (front left wheel) and any
extra motor torque would contribute to wheel spin up.
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Figure 3.39: Torque distribution on each wheel for a four-wheel drive vehicle equipped
with three TORSEN differentials.

3.6 Concluding remarks

The multibody models developed in this chapter can be useful tools in the design
process of TORSEN differentials. Indeed, the results provided can reduce the number
of physical experiments. For instance, thanks to the numerical model, the radius of
the thrust washers or the friction coefficient can be modified to reach a desired locking
ratio for each operation mode. The washer thickness can also be modified by means of
the stress analysis.

Although the models have shown a good agreement with some experimental data,
some drawbacks have been highlighted. The major difficulties encountered are due
to contact element modelling. The formulation using algebraic constraints at position
level has a poor robustness in the presence of discontinuities generated by impacts. The
model based on a penalty method permits the convergence if one uses sufficiently small
time steps. Nevertheless, the contact element remains highly sensitive to the value of
the contact stiffness and other parameters such as the numerical damping. Moreover,
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the aforementioned contact formulation requires that at least one of the contacting
bodies is flexible. However, for some applications, it might not be essential to account
for the flexibility of the bodies in contact. In the differential model, the rigid-flexible
contact element would unnecessarily complicate the model and would increase its size,
especially if the mesh is composed of volume finite elements as in global models of
industrial mechanisms. The computational time would be highly increased, making
the simulation expensive. This has motivated for the development in Chapter 4 of a
contact element between two rigid bodies better adapted to simulation of impact.

Some of the modelling assumptions introduced in the TORSEN differential models
will be removed thanks to the new formulations presented in the next chapters. A
simple joint element will be presented in Section 4.5 to model the interactions between
the planet gears and the housing. The flexibility of the gear body will be taken into
account by the superelement formulation developed in Chapter 6.

The damping assumption introduced in the contact element to facilitate the con-
vergence at impact time is described by a linear function with respect to penetration
velocity. However, this damping can also have a physical meaning. Indeed, in real
operation the lubrication oil film between the contacting surfaces tends to slow down
the bodies before the contact and then plays the role of a damper. A model of squeeze
film is given in section 5.1 to describe the nonlinear damping behaviour according to
oil properties and washer geometry.

Finally, the simulation of the simple four-wheel drive vehicle has demonstrated
that the integrated simulation of the differential with the vehicle dynamics is possible
but lacks robustness with the model currently used. The substitution by the new
elements mentioned hereabove will improve the capabilities to model global applications
including a large number of bodies (see section 5.5).
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In this chapter, the continuous impact modelling approach is investigated to model
unilateral contact conditions between rigid bodies in dynamic simulations of multibody
systems. In addition to the normal contact forces, the contact formulation also accounts
for friction forces.

Firstly, the continuous impact theory is described in section 4.2. After validation
test models (Sections 4.2.2), the relevance of the developed contact elements has been
assessed with the modelling of contacts inside the type C TORSEN differentials (see
Sections 4.4.1, 4.5.3). Indeed, the former models of this drivetrain component presented
in Chapter 3 have underlined the need to express contact conditions between rigid
bodies. The proposed rigid contact models being formulated with a sufficient level of
generality, they can also be applied to other transmission devices. The formulation
developed for the contact between the thrust washers and the gear wheels is valid for
any contact between rigid circular rings which remain parallel. Likewise, the joint
between the planet gears and the differential housing can be considered as a non-ideal
cylindrical joint with clearance.

81
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4.1 Introduction

When modelling industrial applications including numerous parts as global multibody
systems, accounting for flexibility of all bodies is not conceivable for a computational
point of view. Numerous bodies are generally assumed to have a rigid behaviour in
order to reduce the complexity and the size of the MBS models and simulations.

The rigid body assumption makes sense when the deformations are sufficiently
small to assume that their influence is negligible on the overall system motion. Since
most bodies from mechanical transmission systems are massive and made of stiff ma-
terial (e.g. metals), they can be modelled as rigid bodies with limited loss of accuracy
on the numerical response.

The modelling of contact between rigid bodies is not trivial, especially in presence
of impacts. Indeed, the actual physical components are never completely rigid even
when they are very stiff. Therefore, the shock produced at the impact point initiates a
wave propagation inside the bodies so that the different zones of each contacting body
are not simultaneously submitted to the same stress and strain level. A part of the
initial kinetic energy is converted into strain energy to propagate the vibration. At
the end of the impact period, this elastic energy is converted into kinetic energy of
the separating bodies. Owing to material damping, the strain waves are attenuated,
which can be macro-mechanically interpreted as a loss of kinetic energy induced by
each impact. If the impact duration is long compared to the fundamental period of
the impacting bodies, the stress wave effects are negligible since they can experience
numerous reflexions inside the bodies during the contact phase. The impact can even
be treated with a quasi-static impact theory such as the well-known elastic Hertz’s
theory. In case of high velocity impact, the deformations can sometimes not be fully
recovered after the impact and lead to permanent plastic deformations which increase
the kinetic energy loss. Other physical phenomena (e.g. acoustic propagation, thermal
dissipation, visco-elasticity) can also contribute to the loss of kinetic energy.

In compliant contact force models as well as in nonsmooth ones, these different
sources of kinetic energy loss are globally represented by a restitution coefficient e
(0 ≤ e ≤ 1). An impact with e = 1 means no energy loss (complete elastic contact),
whereas e = 0 corresponds to a total loss of energy (plastic contact). This restitution
coefficient depends on the shape and material properties of the impacting bodies and
other parameters such as temperature or friction. Most contact models assume that
the restitution coefficient does not depend on the relative approach velocity [37, 45]
even if it is not fully true.

The restitution coefficient cannot be computed within the multibody system sim-
ulation. It has to be roughly estimated from experience, measured by experiment or
determined by numerical simulation on a fast time scale [122].
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There exist several definitions of the restitution coefficient. In the kinematic ver-
sion eN (Eq. 4.1), also referred as Newton’s law, the restitution coefficient is defined
as the ratio of the relative velocity between the two bodies in the normal direction
before and after impact (ℓ̇e, ℓ̇s, the indexes e and s meaning contact end and start
respectively).

Poisson’s model is based on a kinetic relationship (Eq. 4.2). The coefficient of
restitution eP is the ratio of the normal impulses ∆Pc, ∆Pr of the contact force f

during the compression and restitution phases (the time intervals [ts, tc] and [tc, te]

correspond to the compression and restitution durations).

Finally, the energetic restitution coefficient eE proposed by Stronge [129] is based
on a comparison of the deformation energies between the compression and restitution
phases Vc, Vr.

eN = − ℓ̇e
ℓ̇s

(4.1)

eP =
∆Pr

∆Pc
=

∫ te
tc
f dt∫ tc

ts
f dt

(4.2)

e2E = −Vr

Vc
= −

∫ te
tc
f ℓ̇dt∫ tc

ts
f ℓ̇dt

= −
∫ ℓe
ℓc
f dt∫ ℓc

ℓs
f dt

(4.3)

These three forms of the restitution coefficient are equivalent unless the configu-
ration is eccentric and the direction of the slip varies during the impact or if the bodies
are rough. Some differences can also appear in case of frictional contact or if several
impacts occur simultaneously (see [129] for more details).

As an outcome of the brief review of contact models presented in Section 2.4, a
continuous impact modelling approach has been chosen for the contact models presented
in the sequel of this chapter. This choice has been made because it allows using a
smooth solver of the generalized-α family and because friction forces are easily taken
into account.

4.2 Continuous impact modelling

The compliant contact models are based on a continuous relationship between the
contact force and the local indentation between the two contacting bodies during the
overall contact period. The associated penetration length ℓ can be interpreted as a
global measure of the local deformation of the contacting surfaces for both bodies.
Then, it is assumed that the bodies in contact have a global rigid behaviour but have
soft surfaces undergoing non negligible deformations in the contact zone.

In this way, the penetration inherent to the contact models based on a penalty
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approach gets a physical meaning and is not introduced for purely numerical reasons.
Provided that the penetration remains small, the hypothesis is coherent with the phys-
ical nature of the problem.

The magnitude of the contact force is directly related to the local penetration
multiplied by a penalty factor, also called the contact stiffness. Such compliant model
enables to relax the discontinuities induced by impact. As for all impact models, the
goal of the contact force law is to predict the post impact velocity from the system
state before the impact. The loss of kinetic energy at each impact is accounted for by
means of a restitution coefficient.

The continuous contact models take a different form if it is an elastic or a plastic
impact. Elastic impact corresponds to impact at low velocity, i.e. the relative velocity
v before impact being negligible compared with the propagation speed of deformation
waves across the solids (v < 10−5

√
E/ρ, where E is the Young’s modulus and ρ is

the mass density of the contacting body having the higher propagation speed, see
Ref. [80]). The energy dissipation can be simply represented by adding an internal
damping contribution. The initial kinetic energy is mainly dissipated through heating.

Conversely, plastic impact is often associated with high velocity impact and leads
to a permanent indentation at the contact location. The main source of energy loss
being now the local plasticity near the impact point, it can no longer be represented
by a simple material damping contribution. The contact period has to be decomposed
into a compression and a restitution phase, a different continuous contact force law
being used for each phase.

In both cases (elastic or plastic impact), the Hertz theory is often the basic law
for direct and central impacts between rigid bodies having locally a contact surface
which can be described by a quadratic function. In the sequel of this section, a brief
review of the main elastic contact laws is presented. Owing to the load cases given in the
various MBS simulations performed in this thesis, it can be reasonably assumed that no
permanent deformations are induced by impact. Besides, the transmission components
are usually designed to avoid plastic deformation. Therefore, the plastic contact force
models will be not described here, see Refs. [33, 50, 80, 91] for more details.

4.2.1 Elastic contact laws

The Hertz theory is often the foundation for contact situations encountered in en-
gineering applications. The Hertz law represents the contact force magnitude f as a
nonlinear function of the normal penetration ℓ with a contact stiffness coefficient kp:

f = kp ℓ
n (4.4)

the exponent n being often equal to 1.5 for metallic bodies having an elliptic contact
surface. This contact model is valid for static analysis of frictionless contact between
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bodies undergoing small strains thus remaining in the elastic domain. Moreover, the
contact area has to be small with respect to the body dimension (e.g. a spherical shape
around the contact point).

The contact stiffness parameter kp depends on the material properties and the
shape of the surfaces in contact. For two spheres in contact, the contact stiffness is
given by:

kp =
4

3(σ1 + σ2)

√
R1R2

R1 +R2
(4.5)

where R1 and R2 are the radii of the two spheres. The material parameters σi are
computed from the Young’s modulus Ei and the Poisson’s ratio νi of the body materials:

σi =
1− ν2i
Ei

(4.6)

The Hertz law is limited to contact between isotropic elastic bodies and does not account
for any kinetic energy loss. Therefore, it cannot be considered strictly speaking as an
impact model.

The Kelvin-Voigt model can be used in order to include the energy dissipation
during the contact process

f = kp ℓ+ c ℓ̇ (4.7)

This model simply consists of a linear spring to represent the elastic force and a linear
damper to model the energy loss. The damping parameter c is often called hysteresis
coefficient; ℓ̇ is the relative normal contact velocity. The parameters kp and c have to
be chosen in order to get realistic values for the impact duration, the local penetration
and the kinetic energy loss.

The contact force law 4.7 has two major drawbacks. The first one is the linearity
of the contact force with respect to the local indentation. Therefore, the physical
nonlinear nature of the deformation and the energy transfer related to each impact is
not correctly represented. The second drawback results from the discontinuity at the
contact establishment and at the end of the contact due to the damping term. Indeed,
contrarily to the penetration length, the penetration velocity is not negligible at the
beginning or at the end of the contact period. The damping contribution introduces
thus abrupt changes of the contact force at the transition between active and inactive
states of unilateral contacts.

Hunt and Crossley proposed to combined somehow both previous contact force
laws (see Eq. 4.8 and Ref. [60]). They extend the nonlinear Hertz’s law to account for
the kinetic energy loss. Moreover, in order to avoid a jump at the beginning of the
impact and tension force at the end, the classical viscous damping term c ℓ̇ has been
multiplied by ℓn. Thus, the internal damping contribution depends on the penetration
velocity but also on the penetration length

f = kp ℓ
n + c ℓn ℓ̇ (4.8)
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One way to set the damping parameter consists in expressing this coefficient as a
function of the restitution coefficient e. Hunt and Crossley proposed the following
expression:

c =
3(1− e)

2

kp

ℓ̇s
(4.9)

where ℓ̇s is the initial relative normal velocity between impacting bodies. The consid-
ered restitution coefficient corresponds to the kinematic version described in Eq. 4.1,
i.e. the post-impact velocity is the opposite of the pre-impact velocity scaled by the
restitution coefficient. This dependency of the damping coefficient with respect to
the restitution coefficient allows controlling the amount of energy dissipated by each
impact.

As depicted in Fig. 4.1, the force law 4.8 yields a hysteresis loop. The enclosed
area represents the kinetic energy loss during impact. It can be noted that this force-
penetration curve verify ℓs = ℓe = 0 so that there is no residual indentation after the
contact.

...
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Figure 4.1: The area encircled by the hysteresis loop represents the kinetic energy loss
due to the force law of the continuous impact model.

Many authors have developed variants of the Hunt and Crossley impact law. They
only differ in the definition of the damping coefficient.

The continuous contact force model proposed by Lankarani and Nikravesh [79]
is based on the following expression of the damping coefficient:

c =
3
(
1− e2

)
4

kp

ℓ̇s
(4.10)

which has been evaluated from the physics of the problem by equating the kinetic
energy loss in the system to the work done by the contact force. Since the kinetic
energy loss is expressed in terms of the squared relative velocity, the expression of the
hysteresis damping factor includes a term in e2.
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As the Hunt and Crossley impact law, the Lankarani-Nikravesh law provides a
good estimate of the dissipated energy only for large values of the restitution coefficients
(e > 0.8 ), see Fig. 4.2. Then, these definitions of the damping term are valid provided
that the loss of kinetic energy is small compared to the maximum elastic energy stored at
the instant of greatest penetration. This is due to the fact that the indentation velocity
has been approximated by the same expression during the whole contact period whereas
two different expressions should be employed for the compression and restitution phases.
This is the reason why the kinematic restitution coefficient given as model input (pre-
restitution coefficient in Fig. 4.2) is overestimated in the numerical response (see post-
restitution coefficient which is computed from the ratio of the relative normal velocity
before and after the first impact).

Flores and Machado model

Figure 4.2: Relation between the post and pre-restitution coefficient [37].

In order to circumvent this drawback, Flores and Machado have developed a
contact law suited for low to medium values of the restitution coefficient as occuring
with soft materials [37]. The damping coefficient of this contact law (Eq. 4.8) takes the
form:

c =
8 (1− e)

5 e

kp

ℓ̇s
(4.11)

Expression 4.11 has the advantage that it can be used whatever be the amount of
energy dissipation. Let us note that if e = 0, i.e. the impact is purely plastic, the
damping coefficient takes an infinite value. By comparison, the Lankarani-Nikravesh
model (Eq. 4.10) does not verify this feature.

Others continuous impact laws based on the same expression (Eq. 4.8) are also
available in the literature. Worth mentioning are the works of Gonthier [50], Gold-
smith [48] and Khulief [73]. Each model has its own peculiarities. Some of them have
been extended to model the friction forces.
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4.2.2 Bouncing ball

In order to assess the continuous impact modelling method, the well-known problem
of the bouncing ball has been used as benchmark. This very simple one DOF system
is composed of a rigid ball of radius R submitted to a gravity field g and dropped at
rest from an initial height h01 (see Fig. 4.3). The ball rebounds against a rigid plane
ground with a restitution coefficient e.

Figure 4.3: Bouncing ball (R = 0.2 m, e = 0.8, m = 1 kg, h0 = 1.001 m).

An exact closed-form solution exists if nonsmooth effects are accounted for (see for
instance Ref. [20]). At each time, the vertical position and the velocity of the ball are
given by Eqs. 4.12-4.13 where n denotes the nth impact. The impact instants tn and
the velocity before the first impact v−1 are given by Eq. 4.14 and Eq. 4.15 respectively.

This analytical solution will be compared with the dynamic response provided
by various numerical simulations using a continuous impact model and discussed in
the sequel of this section. Nevertheless, we have to keep in mind that the analytical
solution and the numerical response of the ball are not based on the same modelling
assumption. Indeed, the nonsmooth behaviour of the analytical solution enables to
represent the impulse and velocity jump at each impact whereas the continuous impact
solution assumes a smooth transition at impact instants. Moreover, the impact duration
is considered as infinitesimal in the nonsmooth solution while each impact has a finite
duration when using a continuous contact model. Therefore, the closed form solution
(Eqs. 4.12-4.15) can not be strictly considered as the reference solution for the bouncing
ball problem solved with a continuous contact model.

1If h0 = 1 m, the first impact is synchronized with a time step. Then, to avoid this peculiar situation,
the ball is dropped 1 mm higher [20].
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q(t) =


h0 − 1

2gt
2 t ∈ [0, t1)

R− 1
2g(t− tn)

2 − env−1 (t− tn) t ∈ [tn, tn+1)

R t ∈
[
1+e
1−e t1,+∞

) (4.12)

v(t) =


−gt t ∈ [0, t1)

−g(t− tn)− env−1 t ∈ [tn, tn+1)

0 t ∈
[
1+e
1−e t1,+∞

) (4.13)

tn =

√
2(h0 −R)

g

(
2e

1− en−1

1− e
+ 1

)
(4.14)

v−1 = −
√

2g(h0 −R) (4.15)

With the physical data (dimensions, material) and initial conditions adopted, it
can be assumed that no plastic deformation occur, so that an elastic contact law can
be used. Only impact laws derived from the Hunt and Crossley model (Eq. 4.8) have
been tested. Therefore, the unilateral impact-contact force between the ball and the
ground is formulated as:

f(ℓ, ℓ̇) =

{
kp ℓ

n + c ℓn ℓ̇ if ℓ > 0

0 if ℓ < 0
(4.16)

with the exponent n is equal to 1.5 for circular and elliptic contact areas (see Hertz
theory). The case when the penetration length ℓ has a negative value means that the
contact is not effective and consequently no contact force is applied on the ball. For
such a simple system, the penetration length and the penetration velocity are easily
determined: ℓ = −(q −R) and ℓ̇ = −q̇.

According to Ref. [79], the contact stiffness for a contact between a locally spherical
surface and a plane can be approximated by Eq. 4.5 where it is assumed that the radius
of the plane is infinite (Rground = ∞), which gives kp = 4

3(σ1+σ2)

√
Rball. With the

parameters adopted and if the ball and the plane are made of steel, kp = 6.88E.10 N/m.

Figures 4.4-4.8 illustrate the sensitivity of the dynamic response of the ball when
one of the following parameters varies: the time step size h, the contact stiffness kp,
the restitution coefficient e, the contact law, the spectral ratio of the time integrator
(α-parameter of the generalized-α scheme).

Owing to the fact that the indentation velocity is defined by the same expression
during the compression and the restitution phases, the ratio of the relative normal
velocity before and after an impact is not equivalent to the restitution coefficient given
as parameter of the contact law (see Ref. [79] and Fig. 4.2). That allows to explain the
significant differences observed in Figure 4.4 between the Lankarani-Nikravesh contact
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model and the analytic nonsmooth solution when e = 0.8 in both models. For the first
impact, the plot of the contact force magnitude versus the indentation distance shows
that the maximum indentation increases with the restitution coefficient. Conversely,
the contact duration and the energy dissipation represented by the area of the hysteresis
loop are larger when the coefficient of restitution is small.

A detailed parametric study has shown that a restitution coefficient e = 0.709

leads to the closest response to the nonsmooth solution with e = 0.8. Therefore, this
value of the restitution coefficient will be used in the simulations presented hereafter
based on the Lankrani-Nikravesh contact law.
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Figure 4.4: Sensitivity of the Lankarani-Nikravesh impact law to the restitution coef-
ficient (k = 6.88E.10 N/m, h = 1E.-5 s, α = 0.1).

The influence of the time step size on the dynamic response of the ball is depicted
in Figure 4.5. With the parameters used for this simulation (h0, m, e, kp, α), a time step
size of 1E.-5 s or smaller is needed to have a response in agreement with the nonsmooth
solution. Indeed, a larger time step size leads to huge discrepancy (e.g. h = 1E.-4 s
) or even fully unrealistic response since the ball gains energy after impact (see the
curve for h = 1E.-3 s in Fig. 4.5(d)). Such results are due to the insufficient number
of time steps during the impact duration. It is also observed that the hysteresis loops
degenerate in such situations (Fig. 4.5(c)). From this benchmark, it can be deduced as
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practical rule that at least ten time steps over the impact duration are needed to have
a correct representation of the energy dissipation.

The use of time steps as small as required for the bouncing ball system with
the parameters used in Fig. 4.5, would be strongly penalizing for complex systems
including numerous DOFs and several impact-contact conditions. In order to avoid
using too small time steps while keeping a reliable response, the contact parameters
have to be adjusted. For instance, the contact stiffness can be fixed to a lower value
than the physical value based on the Hertz theory (see Eq. 4.5). An alternative method
to circumvent this drawback consists in using an automatic time step strategy: small
time steps are used around impacts and the time step size is increased in free flight
motions.

nonsmooth h = 1E.-6s h = 1E.-5s h = 1E.-4s h = 1E.-3s
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Figure 4.5: Sensitivity of the Lankarani-Nikravesh impact law to the time step size
(k = 6.88E.10 N/m, e = 0.709, α = 0.1).

Figures 4.5(a)-4.5(b) show that with a time step equal 1E.-4 s, the numerical
simulation exhibits a large difference with the analytical solution. The other parameters
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being constant, the bouncing ball response is assessed with various values of the contact
stiffness in Fig. 4.6. This parametric study has for objective to observe the convergence
of the system response to the exact solution when the contact stiffness increases.

As expected, the local penetration of the ball in the ground increases when the
contact stiffness is reduced. In this way, the discontinuity at impact instant is relaxed.
Nevertheless, a too low contact stiffness can also lead to unrealistic responses of the
system since the non-penetration condition inherent to rigid contact is no longer re-
spected. On the other hand, a large contact stiffness reduces the penetration but can
produce erratic rebound amplitudes unless very small time steps are used. Therefore,
for a given time step size, an optimum exists in the choice of the contact stiffness.
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Figure 4.6: Influence of the contact stiffness on the Lankarani-Nikravesh impact law
(e = 0.709, h = 1E.-4 s, α = 0.1).

Contrarily to a nonsmooth contact formulation, the continuous impact model ap-
proach yields a finite contact duration for each impact. In order to show this effect, the
behaviour around the first impact of the bouncing ball benchmark has been studied in
detail. The simulation presented in Fig. 4.7 starts with a ball height h0 = 0.21 m and
an initial velocity v0 = −4 m/s. The smaller contact stiffness (k = 1E.7 N/m) used
in Fig. 4.6 has been chosen so as to have a sufficient number of time steps during the
indentation period and consequently a physically correct dynamic response for all con-
sidered time step sizes. The other simulation parameters are mentioned in the figure
caption.

Figure 4.7(b) shows that the contact duration tends to converge to a constant
contact duration (≈ 1.8E.-3 s) as the time step size decreases.

The convergence analysis on the interval [0; 0.1 s] is given in Figures 4.7(e)-4.7(f),
where the relative error being based on the L1 norm. The latter is defined for constant
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time steps as:

∥e∥1 =

N∑
i=0

|fi − ri|

N∑
i=0

|ri|
(4.17)

where N is the number of time steps used to compute the relative error, ri is the
reference solution and fi is the numerical solution. In the present case, the reference
solution is taken as the numerical solution with the smallest time step tested (h =

1E.-7 s). As expected, a second order convergence is observed.

The contact laws derived from the Hunt and Crossley model have the same non-
linear dependance to the local indentation ℓ (Eq. 4.16) but they differ by the defini-
tion of the damping coefficient. The positions of the ball are compared in Figure 4.8
when the Lankarani-Nikravesh (Eq. 4.10) and the Flores-Machado (Eq. 4.11) contact
laws are used. For both values of the restitution coefficient adopted, the Lankarani-
Nikravesh model overestimates the energy dissipation whereas the Flores-Machado un-
derestimates the energy dissipation. Contrarily to the Lankarani-Nikravesh model,
the Flores-Machado model provides good agreement with the exact solution for small
restitution coefficients. These observations are in accordance with Figure 4.2.

When the number of time steps during the indentation periods is reduced or if
the contact stiffness is increased, the spectral radius α of the numerical integration
scheme may have a strong influence on the dynamic response. Figure 4.9 illustrates
this situation: α = 0.1 means that the high frequencies are nearly annihilated by the
numerical damping while α = 0.9 corresponds to only a few damping of high frequencies.
Therefore, the simulation with α = 0.1 leads to a dynamic response converging to a
closed contact at the end of the simulation but with an energy dissipation at each
impact higher that the nonsmooth exact solution. In contrast, a response with erratic
magnitudes of rebounds is obtained when α = 0.9.

As demonstrated in this section, the parameters of a continuous impact model
cannot be varied independently. For instance, a high contact stiffness, requires using
small time steps.
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Figure 4.7: Convergence analysis of the Lankarani-Nikravesh impact law (e = 0.709,
kp = 1E.7 N/m, α = 0.1).
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Figure 4.8: Dynamic response of the bouncing ball with different expressions of the
damping coefficient included in the contact law (k = 1E.9 N/m, h = 1E.-4 s, α = 0.1).
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Figure 4.9: Influence of the spectral radius of the generalized-α integration scheme on
the Flores-Machado impact law (k = 6.88E.10 N/m, h = 1E.-4 s, e = 0.8).
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4.3 Kinematics of the contact between two rigid bodies

This section describes the formulation of an element capable to model the normal con-
tact forces and the friction forces between two rigid planar rings. This contact element
allows to simulate unilateral contacts when the contacting bodies are subjected to large
displacements and rotations in 3D analysis. The formulation follows the guidelines of
the finite element framework (Section 2.2) and has been implemented as a user element
in the multibody software SAMCEF/MECANO [88].

As for most contact models between rigid bodies, the proposed contact element is
defined between two nodes fixed on the two rigid bodies potentially in contact. These
nodes A and B are not necessarily located at the center of gravity of the two bodies
(see Fig. 4.10) and are the origins of two local frames (namely {A; e′′A1

, e′′A2
, e′′A3

} and
{B; e′′B1

, e′′B2
, e′′B3

}) following body motion.
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
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3A

e
A

u
 rel

Ax


Bx


Figure 4.10: Kinematics conventions for the contact between two rigid bodies.

At the initial configuration, these body frames denoted by the vectors eAi and
eBi in Fig. 4.11 are chosen parallel for simplicity. The rotation matrix R1 gives the
initial orientation of both material frames with respect to the absolute inertial frame
{O;E1,E2,E3}:

eAi = R1 Ei (4.18)
eBi = R1 Ei (4.19)

The rotation operators RA,RB enable to compute the rotation from initial to current
configuration (Eqs. 4.20-4.21).

e′′Ai
= RA eAi = RA R1 Ei (4.20)

e′′Bi
= RB eBi = RB R1 Ei (4.21)
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Figure 4.11: Schematic representation of rotation matrices linking the local frames
attached to nodes A and B of the colliding bodies.

The magnitude and the direction of the contact and friction forces depend on the
instantaneous relative position and orientation of both material frames at each time.
Therefore, the force vectors will be first computed according to the relative position
and rotation vectors expressed in the frame attached to node A. Afterwards, these
force vectors will be transferred in the inertial frame (Section 4.3.1).

The relative position vector u of node B with respect to node A in the frame
{A; e′′A1

, e′′A2
, e′′A3

} can be easily computed from the fundamental equation describing
the rigid body kinematics [13]:

u = RT
1 R

T
A(xB − xA) (4.22)

The vectors e′′Bi
are defined in the inertial frame but can also be expressed in the

frame {A;e′′A1
,e′′A2

,e′′A3
}:

e′′Bi /A = (RAR1)
T e′′Bi

= RT
1 R

T
ARBR1 Ei = Rrel Ei (4.23)

where Rrel is the relative rotation matrix.

4.3.1 Nodal forces at the element level

Since the contact model is defined between the nodes A and B, the generalized coordi-
nates vector q of the contact element is simply composed of the absolute nodal DOFs
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in translation and rotation of these two nodes:

q =


xA

ΨA inc

xB

ΨB inc

 (4.24)

The contribution vector gcon
int of the contact element to the internal forces of the

multibody system is obtained by identification between the two expressions of the
virtual work stated in Equation 4.25. The vectors f t and f r represent the contact
forces and torques expressed in the frame attached to node A.

δW = δqT gcon
int (q, q̇) = δuT f t + δΘT

rel f r (4.25)

The variation vectors δu, δΘrel of the relative displacement and material relative
rotation are computed by deriving the expressions 4.22 and 4.23:

δu =
~
uRT

1 T (ΨA inc) δΨA inc +RT
1 R

T
A (δxB − δxA) (4.26)

δΘrel = RT
1 T (ΨB inc) δΨB inc −RT

1 R
T
BRAT (ΨA inc) δΨA inc (4.27)

In summary, we have {
δu

δΘrel

}
= B δq (4.28)

where the matrix B is defined by:

B =

[
−(RAR1)

T ~
uRT

1 T (ΨA inc) (RAR1)
T 0

0 −RT
1 R

T
BRAT (ΨA inc) 0 RT

1 T (ΨB inc)

]
(4.29)

Now, the internal force vector due to contact can be formulated as:

gconint (q, q̇) = BT

{
f t

f r

}
(4.30)

The contribution to the iteration matrix is detailed in Appendix A.1 and the final
expression of the tangent stiffness and damping matrices are given in Eqs 4.31-4.32:

Kcon
t = BT

∂f t(u,u̇)
∂u 0

0
∂f r(Ψrel,Ψ̇rel)

∂Ψrel

B +


0 RAR1

~
f tR

T
1 T (ΨA inc) 0 0

0 1
2

~(
R1

~
uf t

)
+R1

~
f t

~
uRT

1 0 0

0 −RAR1

~
f tR

T
1 T (ΨA inc) 0 0

0 0 0 0


(4.31)

Ccon
t = BT

∂f t(u,u̇)

∂u̇
0

0
∂f r(Ψrel,Ψ̇rel)

∂Ψ̇rel

B (4.32)
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4.4 Contact between two planar rings

The kinematic relations (Eqs. 4.18-4.23) and the nodal forces computed hereabove are
valid for any contact between two rigid bodies. However, in order to simplify the
problem, only the geometric configuration in which two planar rings remain parallel
and in which their relative motion is composed of a translation and a rotation in the
sole normal direction, has been tested in numerical simulations.

The kinematics of the contact in this situation is depicted in Figure 4.12. The nodes
A and B are located on the revolution axis of the rigid rings at a normal distance DA

or DB from the contact surface. The first vector of local frames is the normal direction
of the contact force.
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2Ae



3Ae


A

1Be


2Be


3Be
B
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
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AD

BD

intR

extR

Figure 4.12: Kinematics of the contact between two planar rings.

With these geometric assumptions, the contact forces and torques f t, f r are re-
duced to the following expressions:

f t =


−f
0

0

 , f r =


Tfr
0

0

 (4.33)

where f is the magnitude of the normal contact force and Tfr is the magnitude of the
friction torque.

The value of the normal contact force f can be computed by means of one of
the continuous contact laws presented in Section 4.2.1. However, due to the peculiarity
of the geometric configuration in case of contact between two planar rings, it is advised
to use a linear contact law with respect to the penetration length (n = 1 in Eq. 4.8).
Indeed, as described in Refs. [79, 139], the contact between two locally planar surfaces
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is a linear phenomenon provided that the local irregularities due to, for instance, the
manufacturing properties of the contact surfaces are neglected. Since the local contact
area is not small neither elliptic, the Hertz theory is not applicable here.

In the general case of a constant pressure p applied on a rectangular contact area
of surface S, the contact stiffness is given by:

kp =

√
S

χ
(
1−ν2A
EA

+
1−ν2B
EB

) (4.34)

where Ei and νi are the Young’s modulus and the Poisson’s ratio of the body material;
χ is an empirical parameter depending on the side ratio of the rectangle [139].

The penetration length ℓ is easily determined thanks to the simple geometric con-
figuration:

ℓ = −(xT
AB n−DA −DB) (4.35)

= −(u(1)−DA −DB) (4.36)

where the Di are the distances from the reference nodes A, B to the contact surfaces
in the normal direction n (see Fig. 4.12). The penetration velocity is equivalent to the
opposite of the first component of the relative velocity vector: ℓ̇ = −u̇(1), see Eq. A.4
for the detailed expression of u̇.

The magnitude of the friction force in the tangent plane simply consists in multi-
plying the normal contact force f by a regularized friction coefficient µR (see Eq. 3.28
for the expression). The friction torque Tfr produced by the contact between the
two rigid rings is defined by:

Tfr =

∫
S
µR p r dS = 2π µR

f

S

R3
ext −R3

int

3
(4.37)

4.4.1 Application to the contact between gear wheels and thrust wash-
ers of TORSEN differentials

In order to test the proposed element formulation dedicated to the modelling of con-
tact between two planar rings, the type C TORSEN differential is considered as an
application test case. Indeed, the contacts between the thrust washers and the lateral
annular face of the gear wheels can be regarded as contacts between two planar rings.

The first node of the contact element (see node A in Fig. 4.12) corresponds to
the center of mass of the thrust washer and the second node (node B) is the rotation
center or the center of mass of the gear wheel. The distance DA is equal to the half
the thickness of the thrust washer and DB is the distance from the reference node B
to the face of the gear wheel web which enters into contact.
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As pointed out in Chapter 3, at the switching time between two working modes
of the TORSEN differential, the gear wheels move quickly in the axial direction, that
leads to an impact phenomenon when they enter in contact with the thrust washers.
Therefore, the contact element should be able to manage such type of situation.

According to the material and geometric data of the differential parts as well
as their relative velocity when they are impacting in normal working conditions, the
impacts are purely elastic, i.e., no plastic deformation occurs. Moreover, the coefficient
of restitution can be assumed to be relatively high so that the Lankarani-Nikravesh
contact law can be used (see Fig. 4.2).

In a first step, in order to have a simple MBS test model, only a reduced part of
the differential has been modelled. As depicted in Figure 4.13, this model includes four
rigid bodies: two thrust washers, the sun gear and one planet gear. The only motion
allowed for the planet gear is a rotation around its rotation axis while the sun gear
can move in the axial direction before entering in contact with the lower or the upper
thrust washer which are both clamped.

Figure 4.13: Benchmark: unilateral contacts between the sun gear and two thrust
washers of the type C TORSEN differential.

A torque is applied on the planet gear whereas the rotation speed of the sun gear
is prescribed (their time evolution is depicted in Figure. 4.14). Due to the helical
meshing, the sun gear undergoes an axial displacement as soon as the sign of the
torque applied on the planet gear changes (see Fig. 4.15(a)). The zoom around the
second axial displacement represented in Fig. 4.15(b) shows some rebounds of the sun
gear against the thrust washer before reaching a closed contact configuration. The
magnitude and the frequency of these rebounds depends on the value of the contact
stiffness (kp = 1010 N/m) and the restitution coefficient (e = 0.8).

Figure 4.16 illustrates the hysteresis loops observed when plotting the contact force
versus the penetration length. The area defined by theses loops is a measure of the
energy dissipation introduced by each impact and is directly related to the value of the
restitution coefficient. It can be noticed that the median of each loop follows a linear
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Figure 4.14: Load case for the benchmark model.
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Figure 4.15: Axial displacement of the sun gear.

law instead of a nonlinear law as depicted in Figs. 4.1, 4.4, 4.5(c) and 4.25. This is a
consequence of the replacement of the nonlinear nature of Hertz’s contact by a linear
contact force model in case of contact between two planar surfaces (the exponent n is
fixed to 1 in Eq. 4.8).

In order to have a correct modelling of the the kinetic energy loss, the hysteresis
loops have to be represented by a sufficient number of time steps. An automatic time
step selection strategy is able to reduce the time step size at impact instants while
keeping a reasonable time step size during closed contact periods (see Fig. 4.17).

In a second stage, the full TORSEN differential has been modelled. The loading
and boundary conditions are the same as described in Section 3.4.1 when the differential
is in the vehicle configuration. Let us remind that a torque is applied on the differential
housing while the rotation speed of the output shafts (sun gear and coupling) are
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Figure 4.16: Hysteresis loop representing the kinetic energy loss at each impact between
the gear wheel and the thrust washers.

prescribed. The only modification addresses the replacement of the five rigid/flexible
contact conditions (see Section 3.3) by the new contact element between rigid bodies.

The time evolution of the torque on the sun gear and the coupling are depicted in
Fig. 4.18. These torques can be interpreted as the reaction torques on the differential
output shafts linked to the sun gear and the coupling because their rotation speed is
prescribed. At each time step, the sum of the two output torques is equal to the input
torque applied on the differential housing. The gap between the two output torques
is different according to the active working mode of the differential. This asymmetric
torque splitting is representative of the locking rate of TORSEN differentials.

The Torque Distribution Ratios (see Eq. 3.1) computed from these torque curves
are similar to the values obtained with the rigid/flexible contact element used in chap-
ter 3 (see Fig. 3.28 and Table 3.5) and are therefore also in good agreement with the
experimental data.

Compared with the rigid/flexible contact condition described in section 3.3, the
main advantage of the proposed rigid/rigid contact element is the reduction of the com-
putational time. For the simulation of the full type C TORSEN differential presented
hereabove and in Section 3.4.1, the CPU time is reduced by a factor of 50. This is
mainly due to the drastic decrease of the number of degrees of freedom: from 27867
DOFs with the “coarse” FE models of thrust washers (see Fig. 3.30) to 851 DOFs with
the rigid thrust washers models. The projection method of the rigid/flexible contact
element is also highly time consuming and is avoided with the rigid contact model.
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Figure 4.17: The automatic time step algorithm reduces the size of time steps around
impact instants.
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Figure 4.18: Reaction torque on the sun gear and the coupling.

4.5 Cylindrical joint with clearance and friction

As discussed in the state of the art chapter (Section 2.5), there is a need to develop
global models of kinematic joints able to simulate the operation defects.

The formulation of a cylindrical joint where the clearance, the misalignment and
the friction forces are accounted for is presented in this section. The continuous impact
modelling approach is used to determined the magnitude of the contact force between
the pin and the internal cylinder, both being represented as rigid bodies. As for the
contact element between plane rings (Section 4.3), the new joint has been formulated
in the FE context and implemented as a user element in SAMCEF/MECANO.
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According to the kind of mechanism under study, the contact between the pin and
the external surface of the hollow cylinder can occur at one point, at two points or along
a line. In this work, in order to simplify the joint formulation, it is assumed that the
contact only takes place at the top or at the bottom of the pin. The proposed contact
element models the interactions between the cylindrical face of the hollow cylinder and
one extremity of the pin. Therefore, the joint needs to be used twice for each pin, one
time for each extremity.

The direction of the contact and friction forces depends on the geometry of the pin
and the inner cylinder near the contact point and can be hardly determined in case of
intricate configurations: sharped edge or small fillet radius on the pin external surface
for example. This study does not aim to analyse the detailed phenomena at the contact
point but simply to get a global representation of the dynamic behaviour. Therefore, in
order to have a simple formulation for this 3D contact element, the top and the bottom
of the cylinder are both considered as having a spherical shape (see Fig. 4.19). This
assumption seems reasonable in practical situations where the clearance is small and
the relative inclination of the pin is limited since the contact point would then remain
close to the intersection circle between the sphere and the cylinder. Thus, it would
be close to the physical contact point even if the geometry of the cylinder edge is not
accurately represented.
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Figure 4.19: Position of reference and contact points as well as orientation of reference
vectors used to compute the normal contact force.

The new joint is defined by one physical node attached on each of the two rigid
bodies subject to contact. Node A is located on the axis of the hollow cylinder and
node B is fixed at the center of the top or bottom circular face of the pin which is also
the center of the contact sphere.
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A material local frame attached to each body is used in the joint model. The local
frames {e′′A1

, e′′A2
, e′′A3

} and {e′′B1
, e′′B2

, e′′B3
} have their origin at node A of the hollow

cylinder and at node B of the pin respectively. The first triad vectors e′′A1
and e′′B1

are
aligned with the axis of the cylinders. The second triad vectors e′′A2

, e′′B2
are arbitrary

oriented in the plane perpendicular to e′′A1
and e′′B1

. The third unit vectors e′′A3
, e′′B3

complete the right-handed reference frame.

The vectors eAi , eBi represent the orientations of both material frames at the
initial configuration. For the sake of simplicity the pin and the hollow cylinder have
their axes parallel at the initial time. Therefore, the initial rotation matrix R1 is
identical for both bodies.

The points P and Q in Figure 4.19 are the approximated contact points respec-
tively on the rigid bodies A and B due to the geometrical assumptions introduced
previously. As it will be shown in section 4.5.1, the position vectors xP ,xQ of these
contact points can be easily computed according to the position vectors xA,xB of
the nodes A and B, the rotation matrices RA,R1 and the radii rA, rB of the contact
surfaces near the contact points. The formulation of the normal contact forces and
friction forces is described in Sections 4.5.1 and 4.5.2 as well as their contributions to
the motion equations of the multibody system.

In order to determine the contact stiffness, the most accurate approach involves a
fully flexible finite element model of the bodies in contact with their actual geometric
configuration. The contact stiffness can be obtained by applying a load on one body
and using a flexible-flexible contact condition. However, such detailed models can be
difficult to elaborate and CPU time expensive. In case of global multibody models,
it is preferable to use analytical formulations to compute the contact stiffness. For a
sphere in contact with an internal cylinder, approximate expressions are available in
the literature. Reference [109] provides a good approximation for the contact stiffness
kp (see Eqs. (4.38-4.41)).

kp =
2 π

3(σ1 + σ2)

(
−1

e
dE
de

A

) 1
2

K− 3
2 (4.38)

The material parameters σi are computed from the Young’s modulus Ei and the Pois-
son’s ratio νi of the bodies materials:

σi =
1− ν2i
Ei

with i = 1, 2 (4.39)

The parameter A is given by the following expression:

A =
1

D1
− 1

D2
(4.40)

where D1 and D2 are the diameter of the sphere and the cylinder respectively. The em-
pirical parameters −1

e
dE
de and K are available in lookup tables [109] and are determined
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according to the ratio A
B , defined by:

A

B
=

1
D1

− 1
D2

1
D1

(4.41)

4.5.1 Normal contact force

The continuous contact force models described in section 4.2 do not involve any kine-
matic constraint. Therefore the contribution of this force element to the motion equa-
tions (Eq. 2.7) of the multibody system consists only of the internal forces, gint(q, q̇).
The virtual work principle is used in order to formulate the internal force vector of this
contact element:

δWn = δxT
P fA + δxT

Q fB (4.42)

where xP , xQ are the position vectors expressed in the absolute frame of the contact
point P on the body A and of the contact point Q on the body B (see Figure4.19);
fA,fB are the contact forces applied on bodies A and B respectively.

In order to express the virtual displacements δxP and δxQ, the points P and Q

are considered as rigidly fixed on the bodies A and B:

δxP = δxA + δθA × xAP (4.43)
δxQ = δxB + δθB × xBQ (4.44)

The relation between the variation of the spatial angular vector (δθ) and the material
angular variation vector (δΘ) is provided by the initial rotation matrix (R1) and the
rotation operators (RA,RB):

δθA = R1RA δΘA (4.45)
δθB = R1RB δΘB (4.46)

The virtual displacement of P and Q can be now reformulated as:

δxP = δxA − ~
xAPR1RA δΘA (4.47)

δxQ = δxB − ~
xBQR1RB δΘB (4.48)

The unit vector n normal to the collision surface between the sphere and the hollow
cylinder and aligned with the vector xPQ of maximal indentation ℓ can be defined as:

n =

(
I − e′′A1

e′′A1

T
)
xAB∥∥∥(I − e′′A1

e′′A1

T
)
xAB

∥∥∥ (4.49)

where e′′A1
is the first axis of the material local frame attached to the node A which

represents the cylinder axis (see Eq. 4.20).
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The vector xAP and xBQ can be expressed according to the normal vector n and
the distance vector xAB:

xBQ = rB n (4.50)
xAP = xAB + xBQ + xQP (4.51)

= xAB + (rB − ℓ) n (4.52)

with rB the radius of the sphere attached at the top of the pin.

The contact forces fA and fB are aligned with the normal direction n and their
magnitude f is given by the contact law (Eq. 4.16). The formulation proposed in [37]
has been chosen for the definition of the damping parameter c (see Eq. 4.11).

f = fB = −fA = f n (4.53)

f depends on the relative normal indentation ℓ and indentation velocity ℓ̇, which are
computed according to the following expressions:

ℓ = xT
PQ n = xT

AB n+ rB − rA (4.54)
ℓ̇ = ẋT

PQ n+ xT
PQ ṅ (4.55)

where the second term of ℓ̇ is always null because xPQ is parallel to n whereas ṅ is
perpendicular to n. The vector ẋPQ can be obtained as the difference of the velocity
vectors of P and Q:

ẋP = ẋA + ωA × xAP (4.56)
ẋQ = ẋB + ωB × xBQ (4.57)

The spatial angular velocity vectors ω are related to their material expressions Ω by:

ωA = R1RA ΩA (4.58)
ωB = R1RB ΩB (4.59)

Finally, the virtual work expression (Eq. 4.42) can be reformulated as:

δWn =
(
δxT

AB + δΘT
BR

T
BR

T
1

~
xBQ − δΘT

AR
T
AR

T
1

~
xAP

)
f (4.60)

The internal force vector gintn (Eq. 4.63) of the normal contact force can be easily
obtained by identification of the last expression with the classical virtual work expres-
sion for a force element:

δW = δqT gint (q, q̇) (4.61)
q being the vector of generalized coordinates involved in the force element. For the
contact model developed here, the vector q includes the absolute nodal degrees of
freedom in translation and rotation of the nodes A and B.

q =


xA

ΨA inc

xB

ΨB inc

 (4.62)
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gint
n (q, q̇) = f


−n

−T T (ΨA inc)R
T
AR

T
1
~
xAB n

n

0

 (4.63)

4.5.2 Friction force and torque

The friction forces fA
fr and fB

fr produced by the contact between the bodies A and B

are considered as applied on the geometric point M , located at the middle between the
points P and Q (Fig. 4.20).

E1

E3

E2

e"A1

xAB

e"B1

P
Qn

M

A

B

f
A
fr

f
B

fr

Figure 4.20: Position of the reference and contact points as well as orientation of the
reference vectors used to compute the friction force and torque.

The virtual work of the friction forces can be expressed as:

δWfr = δxA
M

T
fA
fr + δxB

M
T
fB
fr (4.64)

where δxA
M is the virtual displacement of the material point located at M and attached

to the body A; δxB
M is the virtual displacement of the material point located at M

and attached to the body B. By analogy with Eqs. (4.47-4.48), the expression of these
virtual displacements can be easily obtained:

δxA
M = δxA − ~

xAMR1RAδΘA (4.65)
δxB

M = δxB − ~
xBMR1RBδΘB (4.66)

The vectors xAM and xBM between the nodes A and B and the application point M
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of the friction force can be formulated in terms of xAB, n, rB and ℓ

xAM = xAP +
ℓ

2
n = xAB +

(
rB − ℓ

2

)
n (4.67)

xBM = xBQ − ℓ

2
n =

(
rB − ℓ

2

)
n (4.68)

The friction forces are aligned with the tangential vector t but they have opposite
directions (ffr = fB

fr = −fA
fr) and are defined by:

ffr = −µr(vt) f t (4.69)

where f is the magnitude of the normal contact force (see Eq. 4.16), t is the unit
tangential vector described hereafter in Eq. (4.71) and µr is the regularized friction
coefficient which allows to avoid the large discontinuity when the sign of the relative
sliding velocity shifts. Several formulations can be found in the literature for the
regularization function and some of them require physical parameters which are quite
difficult to determine by numerical simulation or experiment. In this work, a simple
quadratic function of vt, the norm of the tangential velocity vector, is used

µr(vt) =

 µdyn

(
2
vt
ϵv

−
(
vt
ϵv

)2
)

vt < ϵv

µdyn vt ≥ ϵv

(4.70)

As depicted in Fig. 4.21, the regularization tolerance ϵv corresponds to the magnitude of
the tangential velocity where the regularized friction coefficient µr reaches the constant
dynamic friction coefficient µdyn. When ϵv ≈ 0, the regularized friction coefficient
tends to the Coulomb model. Therefore, the sticking phenomena are only represented
in an approximate way with this continuous definition of the friction coefficient when
assuming ϵv ̸= 0 to avoid discontinuities.

vt

Figure 4.21: Evolution of the regularized friction coefficient according to the tangential
velocity.

The unit tangential vector t can be expressed by:

t =
vt

vt
(4.71)
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where vt is the tangential velocity vector at the point M where the friction forces are
applied:

vt =
(
I − nnT

) (
ẋB
M − ẋA

M

)
(4.72)

ẋA
M and ẋB

M are the velocity vectors when the point M is attached to the bodies A and
B respectively.

ẋA
M = ẋA + ωA × xAM (4.73)

ẋB
M = ẋB + ωB × xBM (4.74)

The virtual work expression of the friction forces can be reformulated as:

δWfr =
(
δxT

AB + δΘT
BR

T
BR

T
1

~
xBM − δΘT

AR
T
AR

T
1

~
xAM

)
ffr (4.75)

The identification with the equation (4.61) is straightforward and allows to obtain
the vector of internal forces gintfr :

gintfr (q, q̇) =


−ffr

−T T (ΨA inc)R
T
AR

T
1
~
xAM ffr

ffr

T T (ΨB inc)R
T
BR

T
1
~
xBM ffr

 (4.76)

The tangent stiffness and damping matrices have also been computed analytically
and are given in Appendix A.2.

4.5.3 Application to the contact between the planet gears and the
housing of TORSEN differentials

In this section, the proposed non-ideal cylindrical joint model is used to model the con-
nection between the planet gears and the housing of the type C TORSEN differential.
In the former differential model presented in section 3.4.1, this link was represented by
a standard idealized hinge joint. This assumption can be now removed thanks to the
new cylindrical joint model accounting for the clearance and the friction.

The assembly of the planet gears on the planet carrier is particular in the TORSEN
differentials. Indeed, the planet gears are inserted in cylindrical cavities without any
physical rotation axis (see Fig. 4.22). The clearance between the crater and the planet
gear enables the tilting of the latter, until contact occurs between the top of gear teeth
and the crater cylindrical surface. The displacement and the inclination of the planet
gears modify the gear mesh properties: the center distance, the pressure angle, the
orientation of the wheel axis. The transient behaviour at the switching time between
two working modes is also highly influenced by this peculiar assembly.
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Figure 4.22: The planet gears are inserted inside cavities of the differential housing;
there is no physical rotation axis.

Nevertheless, the interactions between the planet gears and the housing play a key
role in the differential response since it is through this joint that the driving torque
applied on the housing is transferred to the two output driveshafts connected to the
sun gear and to the coupling respectively. Moreover, the friction generated in this joint
contributes significantly to the locking effect of the differential. From a global point
of view, the joint between each planet gear and the housing can be represented by a
cylindrical joint where the clearance and the friction are taken into account.

In order to study in a simple way the behaviour of the new cylindrical joint in the
configuration of the TORSEN differential, only a reduced part of the differential has
been modelled in a first step. As depicted in Figure 4.23, this model includes the sun
gear, a single planet gear, the housing and one thrust washer. The housing and the
thrust washer are clamped to the ground. The sun gear is linked to the housing with
a hinge joint and is submitted to a torque linearly increasing from 0 Nm at t = 0 s to
10 Nm at t = 0.02 s and staying constant during the period t = [0.02 s; 0.04 s] before
decreasing following a linear function until −20 Nm in t = 0.06 s. Finally, this value
is maintained until the end of the simulation in t = 0.2 s. The planet gear is meshing
with the sun gear and its displacement in the x − y plane is constrained by the new
joint developed in this work.

The described element formulation is used twice for each planet gear. The node
B (see Figs. 4.19, 4.20) is attached successively to the top and the bottom face center
of the planet gear whereas the same node A can be used for both elements and simply
has to be located along the axis of the housing crater.

The displacements in the x−y plane of the top and the bottom face centers of the
planet gear inside the housing hole are depicted in Fig. 4.24. At the initial time, the
planet gear is located at the center of the housing cavity and their axes are parallel.
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Figure 4.23: Test model for the new cylindric joint in the geometrical configuration of
the TORSEN differential.

As soon as a torque is applied on the sun gear, the meshing force tends to increase the
center distance of the gear pair and the planet gear is deported against the circular face
of the housing cavity. After the first impact, the planet gear undergoes several rebounds
and afterwards tends to keep a constant global orientation until the torque applied on
the sun gear changes of sign. At this time, the planet gear quickly moves to negative
values of y-axis and also tends to maintain a fixed position after the transient period.
Due to the helical shape of gear teeth, the planet gear tilts during the transient phases,
which explains the small differences of trajectory observed in Fig. 4.24(a) compared
with Fig. 4.24(b). When the planet gear position is stabilised, the rotation axis is
almost parallel to the fixed axis of the sun gear.

(a) bottom face center (b) top face center

Figure 4.24: Trajectory of the face center relative to the center of the housing cavity.
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Figure 4.25 illustrates the kinetic energy dissipation during the first impacts. In-
deed, the area covered by each hysteresis loop represents the amount of energy dissi-
pated owing to the damping term used in the contact force law (Eq. 4.16). The areas
of these hysteresis loops highly depend on the choice of the restitution coefficient and
the contact stiffness. In this example, this coefficient has been fixed to 0.8, a frequently
used value for contacts between two metallic bodies. The contact stiffness is determined
according to Eq. 4.38 and amounts to kp = 5.77 1010 N/m.
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Figure 4.25: Hysteresis loops of the contact force illustrating the energy dissipation for
the first impacts.

Since the benchmark model has shown the ability of the new cylindrical joint for-
mulation to model the interaction between the planet gears and the housing, the full
type C TORSEN differential has been modelled. For this simulation the same configu-
ration as in experimental settings on a test rig has been reproduced (see Section 3.4.1).
Let us recall that for these experimental tests, a torque is progressively applied on
one output shaft (Fig. 4.26(a)) whereas the rotation speed is prescribed on the second
output shaft (Fig. 4.26(b)) and the housing is clamped on the test bench.

Figure 4.27(a) depicts the resistant torque which allows to limit the angular veloc-
ity of the sun gear while a torque is applied on the coupling. The limited slip behaviour
of the differential for both operation modes with torque biaising to the rear axle can
be observed on this figure. Indeed, the resistant torque is much smaller than the input
torque multiplied by the tooth number ratio between the sun gear and the coupling.
This difference is due to the friction inside the differential. The friction between the
planet gears and the housing is one of the major contributions to the total friction
torque. As described in section 3.1, the torque distribution differs for each locking
mode and can be computed from this torque curve.

A detailed view at the beginning of the simulation is given in Fig. 4.28 and enables
to analyze the transient motion at switching between operation modes of the differential.
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Figure 4.26: Load cases for the type C TOSREN differential in the test bench config-
uration.
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Figure 4.27: Operation modes of the type C TORSEN with torque biaising to the rear
axle.

In the initial configuration (t = 0 s), the different bodies are not in contact and then
no friction occurs which explains the null value of the resistant torque during the first
time steps (t < 3 10−3 s). The first spikes on the torque curve are caused by the shocks
when the planet gears collide with the housing. The oscillations are quickly damped
thanks to the energy dissipation introduced by the restitution coefficient.

The discontinuities observed during the second part of the simulation (t > 0.025 s)
are due to the contact establishment between the gear wheels and the thrust washers.
The contact between the sun gear and the thrust washer #7 is at the origin of the
jump at t = 0.03 s. The friction inherent to the contact between the internal gear and
the thrust washer #11 modifies the friction torques in the differential as soon as this
unilateral contact is active and explains the step on the curve at t = 0.07 s.
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Figure 4.28: The spikes on the output torque are due to the transient behaviour when
bodies enter in contact at an operation mode switching.

The displacements of the top and bottom face centers of the four planet gears in
the plane perpendicular to the axis of housing cavities is depicted in figure 4.29. As
for the benchmark model, in the initial configuration, the planet gears are located at
the middle of the housing cavities and their respective symmetry axes are coinciding.
It is the reason why all the trajectories of displacements start from the origin in the
x − y plane. For each operation mode, the motion to reach the steady-state position
of the planet gears corresponds to a displacement in the tangential direction given by
the sign of the input torque. During the transient phase before reaching this position,
the planet gears tilt and undergo several rebounds due to impact against the housing
cavities.

The differential model including the non-ideal cylindric joints can capture the local
effects which influence the dynamics of the whole transmission device, especially during
the transient periods at the switching time between two working modes. The modelling
of the other drivetrain components could be considered to study the propagation of the
vibrations generated by the contact between the planet gears and the housing and
assess its effect on the driveline dynamic behaviour.

Nevertheless, the main drawback of the proposed joint model lies in the need to
use very small time steps to ensure the numerical convergence. For the simulation
presented in this section, the time step size had to be decreased up to 2 10−6 s during
the almost entire simulation. The automatic time step algorithm can rarely increase
the time step size.

Therefore, the computational time is very high so that it cannot be afforded to
account for these local effects between the planet gears and the housing in case of global
MBS models where the differential is embedded in a full vehicle model submitted to
manoeuvres (see Section 5.5). For example, the CPU time amounts to 4 hours for 0.5 s
of simulation (see Fig. 4.26) although the model size is still reasonable since the number
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Figure 4.29: Trajectory in the x − y plane of the four planet gears of the type C
TORSEN differential.

of DOFs is 776. In comparison, the same MBS modelled with classic hinge joints to
represent the connection between the planet gear and the housing allows to reduce the
CPU time by a factor of 300.

Owing to its computational cost, the proposed cylindrical joint model based on a
contact modelling will be not employed in the global differential models presented in
the following of this dissertation (Sections 5.4, 5.5). Besides, the global operation of
the TORSEN differential is still accurately represented with standard hinge joints (see
the good correlation of TDR values in Table 3.5).
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Finally, let us mention that a parametric study should be performed in order to
determine the value of the friction coefficient which allows the best fitting of the TDR
with the experimental data of the four working modes. The procedure should be the
same as the one described in Section 3.4.1 (see Figs. 3.26) but will be not reproduced
here since the cylindrical joint with clearance and friction will be not used in the sequel.
The results presented hereabove have been obtained with a friction coefficient equal to
0.1, which is the same value used to model the contacts with the thrust washers.

4.6 Concluding remarks

In this chapter, it has been shown that the continuous impact modelling method is
suitable to model rigid/rigid contact conditions in global models of automotive trans-
mission components. The contact stiffness and the restitution coefficient are the only
two parameters of this contact model. The formulation leads to a simple implemen-
tation and is robust in presence of impact. The dynamic responses considered here
are characterized by a very short duration, a huge force and acceleration magnitude, a
rapid energy dissipation leading to a highly nonlinear behaviour.

The simulation of the bouncing ball benchmark has been performed in order to
assess the sensitivity of the dynamic response according to the values of the restitution
coefficient, the contact stiffness, the time step size and the spectral radius of the inte-
grator. From this detailed analysis, we conclude that a sufficient number of time steps
(> 10) are needed during the indentation phase to ensure a correct prediction of the
energy dissipation. The convergence to a fixed contact duration has been verified when
decreasing the time step size. It can also be observed that owing to the assumptions
adopted in main continuous contact laws, the restitution coefficient given as parameter
of the contact force expression is not exactly corroborated in the numerical response
especially for low values of the restitution coefficients. The elastic contact law proposed
by Flores and Machado [37] only slightly underestimates the restitution coefficient for
the whole range (0 < e < 1). It is the reason why the latter law is used in the various
models presented in this chapter.

A kinematic description for the contact between two rigid bodies, each one repre-
sented by a unique finite element node, has been developed for two specific geometric
configurations. The first one addresses the contact between two planar rings and is used
to model the contact between the thrust washers and the lateral faces of gear wheels
included in the type C TORSEN differential. The numerical results prove the ability
of the contact formulation to simulate impacts and allow to divide by 50 the com-
putational time compared to the model based on a rigid/flexible contact formulation
presented in Chapter 3.

The second kinematic formulation is dedicated to the contact between the pin and
the hollow cylinder of a cylindrical joint. This general approach enables to account
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for the clearance, the tilting and the friction forces in a natural way. The assembly
of planet gears on the TORSEN differential housing has been represented using this
joint model in order to replace the idealized hinge joints used in the former differential
model. The transient displacements of planet gears inside their housing holes can
be observed at switching between operating modes. Nevertheless, the proposed joint
formulation requires small time steps to ensure the numerical convergence. Therefore,
the consideration of these local effects can not be achieved for global vehicle models
with reasonable computer effort.

Besides the modelling of TORSEN differentials, the contact formulations proposed
in this chapter could be easily extended to model the contact between plates in clutches
or between synchronization devices in gear boxes.
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film
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The presence of lubricant inside drivetrain components influences the contact prop-
erties in a non negligible way. The dynamic response of unilateral contacts is modified
in both normal and tangential directions.

This chapter presents a simple squeeze film model allowing to model the damp-
ing effect due to the lubricating film when two rigid bodies are approaching. The
proposed model has a very compact formulation (Section 5.2) thanks to a set of geo-
metrical assumptions. The relevance of the model is demonstrated with the modelling
of the lubricated contacts between the gear wheels and the thrust washers of TORSEN
differentials. In a first step, a detailled study of the type C TORSEN differential is
presented in Section 5.4. Then, the dynamics of three global vehicle models are sim-
ulated together with the differential model including the developed combined squeeze
film contact model (Section 5.5).
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5.1 Introduction

In order to have a proper operation of many transmission devices, a lubrication is often
required. The oil film enables to evacuate fragments of materials and the heat gener-
ated by friction. Wear is greatly reduced when mechanisms are adequaly lubricated.
Therefore, the contact properties are significantly influenced by the presence of the
lubricant. For instance, the film of lubricating oil between mechanical parts plays the
role of a damper and tends to slow down the contacting bodies before the contact es-
tablishment. Therefore, the impact phenomenon is reduced since the relative velocity
is lower at the impact time.

The rigid/flexible unilateral contact element described in section 3.3 and used
to model the TORSEN differentials (see Section 3.4) is based on a linear damping
contribution in its contact law (Eq. 3.26) to manage the discontinuities induced by the
impact. The damping coefficient is a constant parameter whatever be the magnitude
of the impact.

The rigid/rigid contact force formulation proposed by Hunt and Crossley (Eq. 4.8)
and its derived contact laws introduce a damping term depending on the indentation
velocity but also on the penetration length in a nonlinear way. The damping coefficient
is function of the contact stiffness, the relative impact velocity and a coefficient of
restitution. Consequently, the damping coefficient is different for each impact. However,
as discussed in Section 4.2, the choice of the restitution coefficient is not trivial, specially
when the contact is lubricated.

This section shows that a model of oil film between contacting bodies leads to
a physical definition of the damping behaviour before the effective contact between
bodies. A simple squeeze film model is proposed and has been implemented in the user
element framework of SAMCEF/MECANO. Our objective is to model at a macroscopic
level the damping due to the squeeze film between two axisymmetric surfaces under
several assumptions, but not to represent detailed and localized tribology effects.

5.2 Squeeze film formulation

The squeeze film model presented here is based on the Poiseuille flow assumption [145]
and has been particularized to two simple geometric configurations: the squeeze film
between discs and the squeeze film between the planar faces of two superimposed rings.
Therefore, several assumptions are made:

- the fluid is Newtonian and incompressible;

- the fluid is isothermal in steady state;
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- the surfaces are plane and parallel with an axisymmetric geometry (2 discs or 2
rings);

- the film thickness hsf is much smaller than the external radius of the plate walls;

- the flow is laminar and parallel to the plates; there is no sliding on walls;

- the pressure is constant in the normal direction to the walls.

This system can be considered as a quasi-steady problem since the squeeze film is
considered at equilibrium for any value of the film thickness.

In order to formulate the squeeze film model, we start from the Navier-Stokes
equation which represents the conservation of momentum in incompressible flow of
Newtonian fluids:

ρ

(
∂v

∂t
+ (v ·∇) v)

)
= −∇p+ µvis∇2v + ρ fd (5.1)

with:

ρ the mass density;

v the velocity vector of fluid flow;

t the time;

∇ the nabla operator;

p the fluid pressure;

µvis the dynamic viscosity;

fd the vector of forces per volume unit acting on the fluid.

Since the system is axisymmetric, the model will be expressed using cylindrical
coordinates. The radial component of the Navier-Stokes equation 5.1 takes the form:

ρ

(
∂vr
∂t

+ vr
∂vr
∂r

+
vϕ
r

∂vr
∂ϕ

+ vz
∂vr
∂z

−
v2ϕ
r

)

= −∂p
∂r

+ µvis

[
1

r

∂

∂r

(
r
∂vr
∂r

)
+

1

r2
∂2vr
∂ϕ2

+
∂2vr
∂z2

− vr
r2

− 2

r2
∂vϕ
∂ϕ

]
+ ρgr (5.2)

This last expression can be reduced to Eq. 5.3 owing to the simplification hypothesis
introduced and if vr

r2
is considered negligible compared with ∂2vr

∂z2
.

∂p

∂r
= µvis

∂2vr
∂z2

(5.3)
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The second principle at the basis of the squeeze film model is the conservation of
mass expressed by the continuity equation:

∇·v = 0 (5.4)

In cylindrical coordinates, the continuity equation is formulated as:

1

r

∂

∂r
(r vr) +

∂vz
∂z

= 0 (5.5)

5.2.1 Squeeze film between discs

The simplified Navier-Stokes equation 5.3 and the continuity equation 5.5 will be com-
bined and integrated with the boundary conditions in agreement with the geometric
configuration where the walls of the lubricating film are perfect discs (see Fig. 5.1).

sfhz 
r

z

0z

atmp

R

Figure 5.1: Squeeze film between two metallic plates.

After double time integration in the axial direction (z-axis), Equation 5.3 of the
conservation of momentum becomes:

∂p

∂r

z2

2
= µvis vr + C1 z + C2 (5.6)

The constants of integration C1 and C2 are computed by means of the boundary condi-
tions representing the no sliding condition at the walls, i.e. vr = 0 in z = 0 or z = hsf :

C1 =
∂p

∂r

hsf
2

(5.7)

C2 = 0 (5.8)

The velocity at a given radial position r has a parabolic profile in the longitudinal
direction z and has a sign opposite to the pressure gradient δp/δr:

vr = − 1

2µvis

∂p

∂r

(
hsf z − z2

)
(5.9)
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The continuity equation is integrated over the volume filled by the fluid. To this
end, after having replaced the velocity profile by its expression 5.9, the integration of
Equation 5.5 is achieved in the longitudinal direction between z = 0 and z = hsf

− ∂

∂r

(
r

1

2µvis

∂p

∂r

)
h3sf
6

+ rḣsf = 0 (5.10)

Then, this last expression is integrated in the radial direction:

− r
1

2µvis

∂p

∂r

h3sf
6

+
r2

2
ḣsf + C3 = 0 (5.11)

where the integration constant C3 = 0 if we considered the boundary condition in r = 0.
Now, the pressure gradient can be expressed as:

∂p

∂r
= 6µvis

ḣsf
h3sf

r (5.12)

Performing integration along the radial direction enables to compute the pressure
at a given radial distance r from the revolution axis

p(r) = patm + 6µvis
ḣsf
h3sf

(
r2

2
− R2

2

)
(5.13)

where the boundary condition at the external radius of the disc (r = R) considered
that the fluid pressure is equal to the atmospheric pressure, p(R) = patm.

The global force applied on each disc is obtained after integration of the pressure
over the disc area:

fdi =

∫ R

0
6µvis

ḣsf
h3sf

(
r2

2
− R2

2

)
2πr dr = −3

2
πµvisR

4 ḣsf
h3sf

(5.14)

5.2.2 Squeeze film between rings

If the walls of the squeeze film have a planar ring geometry rather than a disc shape, a
similar mathematical development has to be carried out to find the force applied on the
walls. The first part from Eq. 5.6 to Eq. 5.11 is still valid, the change starts with the
definition of the integration constant C3 since the boundary conditions has be modified
from r = 0 to r = Rint:

C3 = Rint
1

2µvis

∂p

∂r

∣∣∣∣
r=Rint

h3sf
6

− R2
int

2
ḣsf (5.15)

Therefore, the pressure gradient is restated as:

∂p

∂r
=

1

r

[
6µvis

ḣsf
h3sf

(
r2 −R2

int

)
+Rint

∂p

∂r

∣∣∣∣
r=Rint

]
(5.16)
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In order to compute the pressure in function of the radius r, the pressure gradient is
integrated, what gives:

p(r) = 6µvis
ḣsf
h3sf

(
r2

2
−R2

int ln r
)
+Rint

∂p

∂r

∣∣∣∣
r=Rint

ln r + C4 (5.17)

The constant C4 is determined according to the boundary condition in r = Rint where
it is assumed that p(Rint) = patm :

C4 = patm − 6µvis
ḣsf
h3sf

(
R2

int

2
−R2

int lnRint

)
−Rint

∂p

∂r

∣∣∣∣
r=Rint

lnRint (5.18)

In order to compute the total force applied on the rings, the pressure gradient in
r = Rint has first to be determined. That is easily achieved thanks to Equation 5.17
where it is also assumed that p(Rext) = patm :

∂p

∂r

∣∣∣∣
r=Rint

= 6µvis
ḣsf
h3sf

(
Rint −

R2
ext −R2

int

2Rint ln Rext
Rint

)
(5.19)

Finally, the global force applied by the squeeze film on the two rings results from
the integration of the fluid pressure over the ring area S:

fri =

∫∫
S
p(r)− patm dS (5.20)

=

∫ Rext

Rint

6µvis
ḣsf
h3sf

(
r2

2
−R2

int ln r
)
+Rint

∂p

∂r

∣∣∣∣
r=Rint

ln r + C4 − patm 2πr dr

In summary, the force applied on the two plates can be reduced to the following
expression:

fsf (hsf , ḣsf ) = −A∗ ḣsf
h3sf

(5.21)

with:

A∗ =


3
2πµvisR

4 for the squeeze film between two discs

3
2πµvisR

4
ri for the squeeze film between two rings

(5.22)

The constant Rri is introduced to have analogous expressions for the two types of plates
and can be interpreted as the equivalent radius of the ring to produce the same effect
as a plate with a disc shape.

Rri =

((
R2

int −R2
ext

)(R2
ext −R2

int

ln Rext
Rint

− 2R2
ext

)
−
(
R2

ext −R2
int

)2) 1
4

(5.23)

Expression 5.21 enables to conclude that the developed squeeze film model repre-
sents the behaviour of a nonlinear damper (fsf = 0 when ḣsf = 0). Nevertheless, this
model presents a tangent stiffness when ḣsf ̸= 0.
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5.2.3 Test example

In this section, the time response of the squeeze film model will be determined if a
constant force F is applied on the plates by the mechanical parts connected to them
and tends to put closer the two plates.

From Equation 5.21, it can be easily deduced that:

F

A∗ dt = − 1

h3sf
dhsf (5.24)

After a time integration, we get:

F

A∗ t =
1

2h2sf
− 1

2h20
(5.25)

where h0 is the film thickness at the initial time t = 0 s.

Finally, the film thickness at each time instant t can then be expressed by Eq. 5.26
where it can be noticed that the film thickness evolves inversely proportional to the
square root of time.

hsf (t) =
h0√

1 +
2h2

0F
A∗ t

(5.26)

5.2.4 Resisting viscous torque

The viscosity of the lubricating oil tends also to act against the relative rotation between
the two plates. This viscous resistance is introduced in the model by means of a torque
along the z-axis:

Tvis =

∫
S

µvis ω r2

hsf
dS = 2π

µvis ω

hsf

R4
ext −R4

int

4
(5.27)

where ω is the relative rotation velocity in the longitudinal direction.

5.2.5 Influence of the wall asperities

As demonstrated in Eq. 5.26, the squeeze film tends to reach a null thickness hsf ≈ 0

if a constant force is applied during a sufficient time period. However, if at a given
instant the mechanical system in which the plates are included tries to separate the
two plates, the squeeze film model acts as an adhesive and prevents the split motion.
If the film thickness is very small, the predicted sticking effect is too large and is not
physically realistic. Indeed, in reality the roughness on the plate surface is such that
the lubricating film thickness can never decrease below a limit value because contacts
appear between plates asperities (see Fig. 5.2).
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Figure 5.2: The rugosity of the plates limits the thickness to a minimal value.

Therefore, when the film thickness becomes lower than the arithmetic roughness
Ra, the contact force between the rigid walls is added to the squeeze film model. This
very simple contact model simply consists in a linear penalty method, where kp is the
global contact stiffness of the two plates.

fsf+con(hsf , ḣsf ) =


−A∗ ḣsf

h3
sf

if hsf > Ra

−A∗ ḣsf

h3
sf

+ kp (hsf −Ra) if hsf < Ra

(5.28)

Moreover, the additional contact force allows to avoid the ill conditioning of the
squeeze film model, when hsf and ḣsf are simultaneously close to zero.

The friction involved by the contact between the two plates is taken into account
in the model through a friction torque in the longitudinal direction z:

Tfr =


0 if hsf > Ra∫
S
µR

kp(hsf −Ra)

S
r dS = 2π µR

kp(hsf −Ra)

S

R3
ext −R3

int

3
if hsf < Ra

(5.29)

with µR the regularized friction coefficient (see Eq. 4.70) and Rint = 0 in case of contact
between two perfects discs.

The total torque applied on the two plates by both viscous and friction contribu-
tions can be summarized as:

Tfr+vis(hsf , ω) =


Tvis if hsf > Ra

Tvis + 2π µR
kp(hsf −Ra)

S

R3
ext −R3

int

3
if hsf < Ra

(5.30)

5.3 Implementation in a FE context

In order to include the proposed squeeze film model within a dynamic multibody system
formulated with finite element coordinates, the same kinematic description developed
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for the rigid contact model in section 4.3.1 can be used (see Fig. 4.12). The element is
defined with twelve generalized coordinates representing the DOFs in translation and
rotation of the two nodes between which is squeeze film is formulated (Eq. 4.24).

In the local frame attached to node A, the forces (Eq. 4.30) applied between the
two plates are expressed as:

f t =


fsf + fcon

0

0

 , f r =


Tvis + Tfr

0

0

 (5.31)

5.4 Application to the contact between gear wheels and
thrust washers of TORSEN differentials

The TORSEN differentials are usually located inside the casing of the gear box. The
holes drilled in the housing and the case of the differential (see Figs. 5.3) enable the
flow of the lubricating oil through the differential.

(a) case (b) housing

Figure 5.3: Bores in the housing and the case of the differential for the flow of the
lubricating oil.

The gap between the gear wheels and the thrust washers are then filled by the
lubricant that influences significantly the properties and the dynamic response of the
various contacts. For instance, the relative velocity when the two bodies enter in contact
is highly reduced since the film of lubricant acts as a damper, hence the impacts are
moderated or even avoided. Likewise, the value of 0.1 used for the friction coefficient
(see Table 3.6) between these two parts is a common value for a lubricated contact
between metallic bodies made of basic steel.

The geometric configuration of the space between the lateral face of the gear wheels
and the thrust washers as well as the properties of the lubricating oil satisfy the assump-
tions introduced in the proposed squeeze film model detailed in Section 5.2. Indeed,
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the contacting surfaces are plane rings which remain parallel during the operation of
the differential. The gap between the two bodies is very narrow (≈ 0.1 mm) and then
much smaller than the radius of film walls. The supports of the squeeze film are only
loaded in the normal direction to the walls: the gear wheel is either approaching or sep-
arating from the thrust washer according to the active operation mode. Consequently,
the squeeze film hypothesis is valid.

The model construction of the type C TORSEN differential is similar to what
has been described in section 3.4.1, except that the axial locking of the planet gears
and of the thrust washer #9 are replaced by a contact condition based on the squeeze
film model. Indeed, the squeeze film formulation (Eq. 5.28) enables to smooth the
discontinuities induced by unilateral contacts and then the number of contact condi-
tions included in the MBS model can be enlarged without degrading the convergence
properties.

Due to the fact that the new cylindrical joint with clearance and friction developed
in Section 4.5 necessitates a very small time step size, this joint is not used here.
Moreover, the objective of the model presented in this section is not to study the local
behaviour of the planet gears but rather to have a reliable, computationally efficient
and robust representation of the differential with the aim to include this transmission
device in a full vehicle model (Section 5.5).

The four planet gears are now connected to the housing by a combination of a
hinge and a prismatic joint. Like the sun gear, the coupling and the internal gear, the
planet gears move quickly in the axial direction as soon as the differential switches of
working mode. These axial displacements are limited by contacts against either the
housing or the thrust washer #9 (see Fig. 3.6). The contacts have the same geometric
configuration as the previous ones, hence they are also modelled by the squeeze film
model combined with the penalty method (Eq. 5.28).

The complete type C TORSEN differential model includes 14 unilateral contact
conditions based on the squeeze film model whose parameters are given in Table 5.1.
Eight gear pair elements (Section 3.2) are needed to represented the epicyclic gear
train. In addition to the six idealized hinge joints, there are also one screw joint and
seven prismatic joints. The seventh prismatic joint constrains the displacement of
the thrust washer #9 with respect to the housing. The total number of generalized
coordinates amounts to 878 which is close to the DOF number of the model presented
in Section 4.4.1 but much smaller than the former model detailed in Section 3.4.1 with
FEM representation of the thrust washers.

The behaviour of the differential in a vehicle is reproduced by applying a torque
on the housing while the rotation speeds of the two differential outputs (sun gear
and coupling) are prescribed (see Fig. 5.9 for the time evolution given to these three
quantities). With this set of load cases, the drive to rear mode is active at the beginning
of the simulation, the coast to front and drive to front modes are observed during the
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Dynamic viscosity µvis [Pl] 0.0741
Friction coefficient µ [-] 0.1 / 0.03
Friction regularization tolerance ϵv [m/s] 0.01
Contact stiffness kp [N/m] 1014

Arithmetic roughness Ra [m] 1.6 10−6 / 0.5 10−6

Table 5.1: Parameters of the contact model based on the squeeze film used in the type
C TORSEN differential.

periods t = [4; 8] s and t = [8; 12] s respectively and the coast to rear mode at the end
of the simulation.

Figure 5.4 shows the displacements in the axial direction of the gear wheels and the
thrust washer #9 inside the differential. Each working mode corresponds to a different
configuration of this set of bodies. The sun gear and the coupling are always pressed
together whereas the internal gear moves in the opposite direction. The four planet
gears go down and enter in contact with the housing for the two first modes. As soon
as the third mode (drive to front) is activated, the planet gears go up and enter in
contact with the thrust washer #9. After a short time, the axial force applied by the
planet gear enable to lift up this thrust washer until its displacements are stopped by a
contact with the inner face of the internal gear. During the last mode (coast to rear),
the internal gear is submitted to a negative axial force which produces a downward
motion so that the thrust washer #9 and the planet gears are pushed until the contact
establishment of the thrust washer with the housing. Therefore, the thrust washers #9

is simultaneously in contact with the internal gear and the planet gears for two of the
four working modes of the differential.

The damping effect of the squeeze film model can be observed on the displacement
curves (Fig. 5.4(b)): the gear wheels are slowed down before the establishment of
contact against the thrust washers. In this way, the impacts between these rigid bodies
are avoided or at least greatly reduced. The sticking effect which acts against the
separation of the contacting bodies is also visible and explains why some gear wheels
move sometimes with a small delay at the switching time between two working modes.
The little step on the displacement of the planet gears when the drive to front mode is
activated at t = 8 s is also due to this sticking phenomenon.

The contribution of the squeeze film force and the penalty based contact force in
the magnitude of the total axial force (Eq. 5.28) are compared in figure 5.5. The squeeze
film produces a significant force during the transient phases between two working modes
but this force vanishes when the bodies are in closed contact situation (Fig. 5.5(a)).
This is due to the fact that the squeeze film force is directly proportional to the velocity
of the film thickness (see Eq. 5.21). The latter is null when the lubricating film has
reached a steady-state thickness slightly lower than the arithmetic roughness.

The forces induced by the contact between the rigid bodies present an opposite
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Figure 5.4: Axial displacement of bodies inside the differential.

time evolution (see Fig. 5.5(b)), i.e. these forces are null when the squeeze film is
sufficiently thick to separate the two bodies but support most of the axial load when
the contact is established. Since the input torque applied on the housing is a function
linear by parts (fig. 5.9(a)), the contact forces continue to increase once the contact is
closed and decrease when the torque is released.
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Figure 5.5: Force in the axial direction due to the squeeze film and the contact between
bodies.

Figure 5.6 shows the viscous torque (Eq. 5.27) and the friction torque (Eq. 5.30)
for each element combining the squeeze film and the contact model. In the normal
operation of a vehicle, the difference of rotation speed between the two axles is not



5.4 Application to the contact between gear wheels and thrust washers of TORSEN
differentials 133

0 2 4 6 8 10 12 14 16

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Time [s]

T
o
rq

u
e
 [
N

m
]

 

 

SG/TW#7 IG/TW#9 CPL/TW#11 IG/TW#11 TW#8/TW#10 TW#9/housing PG/housing PG/TW#9

0 5 10 15
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time [s]

T
o
rq

u
e
 [
N

m
]

(a) viscous torques

0 5 10 15
−80

−60

−40

−20

0

20

40

60

80

Time [s]

T
o
rq

u
e
 [
N

m
]

(b) friction torques

Figure 5.6: Dissipative torques for contacts inside the TORSEN differential.

tremendous so that the magnitude of the viscous torques is insignificant compared
with the friction torques. Due to the lower axial force transmitted by the contacts on
the top and bottom faces of the planet gears (see Fig. 5.5(b)) and the smaller radius of
their contact area, the related friction torques are much lower than the friction torques
of the other contacts with the thrust washers. Nevertheless, the axial motions of the
planet gears enable to account for the contact between the thrust washer #9 and the
internal gear in the drive to front mode (third mode). The friction torque involved by
this contact is sizeable and modifies the torque distribution in the differential. This
phenomenon could not be represented using the previous differential model with locking
of the planet gears (see Section 3.4.1).

In order to model the correct amount of friction, the regularization tolerance (ϵv in
Eq. 4.70) has to be chosen in such a way that the regularized friction coefficient reaches
the constant dynamic friction coefficient when the torques are measured to compute the
TDRs. The smooth transition to avoid the discontinuity of the friction coefficient has
to be crossed as fast as possible. The fullfillment of this condition is verified in Fig. 5.7
where it can be observed that the dynamic friction coefficient is quickly reached for all
contact conditions.

Since additional friction forces have been added in the system due to the planet
gear displacements, the friction coefficient in the hinge joints has to be checked and
readjusted if necessary. From a parametric study, the friction coefficient leading to
the best agreement between the numerical and experimental TDR values is determined
equal to 0.17 (see Fig. 5.8). All the results given in this section have been obtained by
using this value of the friction coefficient. The small difference with the value obtained
in Chapter 3 (0.185) proves the minor but not negligible influence of the contacts on
the lateral faces of planet gears.
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Figure 5.7: Evolution of the regularized friction coefficients.
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Figure 5.8: Parametric study: influence of the friction coefficient in hinge joints on
the sum of squared differences between experimental and computed TDRs for the four
working modes (type C TORSEN differential with squeeze film contact model).

The resisting torques allowing to impose the rotation speed of the sun gear and the
coupling are depicted in figure 5.9(a). The gap between these two curves is a measure of
the locking rate of TORSEN differentials for each working mode. The TDRs computed
from these torque curves are given in Table 5.2. Similarly to the differential model using
the rigid/flexible contact model (Section 3.4.1), the numerical TDR values agree with
the experimental data; for each mode the relative error is lower than 5%. However,
the model including the squeeze film contacts is more robust and can be simulated
using larger time step which reduce the CPU time by a factor of 100 for the proposed
simulation.

The developed squeeze film contact model can also replace the rigid/flexible con-
tact conditions used in the type B TORSEN differential model described in section 3.4.2.
For the sake of conciseness, the numerical results are not presented here for a system
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Figure 5.9: Torque and angular velocity of the various gear wheels.

including only the TORSEN differential. Nevertheless, the model will be used in the
next section where the interactions between the differential and the vehicle dynamics
are studied.

Similarly to the central differential (type C), the axial displacements of the ele-
ment gears are now authorized whereas they were locked in the former type B TORSEN
differential model presented in Section 3.4.2. Since additional friction torques are in-
troduced by the contacts between the element gears and the housing or the case, the
friction coefficient inside hinge joints has also been fitted again. This friction coefficient
is now 0.14 instead of 0.15 and allows us to obtain the TDR values given in Table 5.3.
Similar errors as the rigid/flexible contact model are observed but the CPU cost of the
squeeze film model is much smaller.

TDR Mode 1 Mode 2 Mode 3 Mode 4
Drive Coast Drive Coast
bias to rear bias to rear bias to front bias to front

experimental 4.02 2.82 1.57 1.62
rigid/flexible contact 3.89 2.92 1.53 1.66

error (%) 3.23 3.55 2.55 2.47
squeeze film model 3.95 2.95 1.49 1.6

error (%) 1.74 4.61 5.10 1.23

Table 5.2: Comparison of torque distribution ratios for the four working modes of the
type C TORSEN when the squeeze film model is used.
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TDR Mode 1 Mode 2 Mode 3 Mode 4
Drive Coast Drive Coast
bias to right bias to right bias to left bias to left

experimental 1.6 1.7 1.6 1.7
rigid/flexible contact 1.58 1.66 1.61 1.64

error (%) 3.20 2.35 0.62 3.53
squeeze film model 1.62 1.67 1.64 1.67

error (%) 1.25 1.76 2.50 1.76

Table 5.3: Comparison of torque distribution ratios for the four working modes of the
type B TORSEN when the squeeze film model is used.

5.5 Integrated simulation of differentials with the vehicle
dynamics

The TORSEN differentials strongly interact with the others transmission components
(e.g. the gear box) and the others vehicle subsystems such as the suspension mecha-
nisms. Therefore, in order to get a desired vehicle handling behaviour, the differential
design has to be adapted according to the feature of the vehicle (suspensions, car frame,
etc). As well, the use of a TORSEN differential sometimes requires some modifications
in other vehicle devices, for instance the size of the anti-roll bar.

Therefore, there is a need to develop integrated simulations of differentials together
with the vehicle dynamics. These virtual prototypes are useful during the design phase
of any component and allow to reduce the number of physical tests.

In this section, the TORSEN differentials have been included in three vehicle
models of increasing complexity. In order to ensure robustness and computational
efficiency for these global models, the planar contacts inside the differentials have been
modelled by the squeeze film formulation.

5.5.1 Simple four-wheel drive vehicle

The model of the four-wheel drive vehicle briefly introduced in section 3.5 was too
computationally expensive and not sufficiently robust to simulate vehicle manoeuvres
during long periods. About 28 hours were needed for the simulation of the 4 s repre-
sented in Fig. 3.39. This was mainly due to the large number of DOFs involved by the
FE models of the thrust washers and to the cost of the rigid/flexible contact conditions
using a projection method of slave nodes on the master face (see Section 3.3).

Thanks to the proposed squeeze film contact model, these drawbacks are circum-
vented and the drivetrain model including three TORSEN differentials is efficiently
simulated together with rigid driveshafts and wheel models (Pacejka’s magic formula,
see Ref. [88]).
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In this simplified vehicle model, the three differentials are connected through hinge
joints to the car body which is modelled as a lumped mass. The suspensions and the
steeering mechanism are not represented (see Fig. 3.38). The output shafts of the
central differential (type C TORSEN) are linked to the housing of the front or rear
differential (type B TORSEN) with a conical gear pair; by simplicity the axle ratio has
been chosen equal to 4 for both axles.

The whole MBS model contains 64 rigid bodies, 34 hinge joints, 31 prismatic
joints, 1 srew joint, 4 wheel models, 50 gear pair elements and 60 unilateral contact
conditions. The total number of DOFs amounts to 4637. The full system is submitted
to the gravity field and a 1 m/s initial velocity is given to the vehicle which is moving
forward in straight line motion. The vehicle is driven by a torque applied on the
housing of the central differential. The time evolution of this torque is simply made by
a piecewise quadratic function with two parts as depicted in Fig. 5.10(a).

In order to study the torque transfers induced by the limited slip behaviour of
the three TORSEN differentials, quite different grip conditions have been chosen for
each wheel of the vehicle, even if it is not very realistic. The rear right wheel has a
good adherence whose parameters are given by the Pacejka’s wheel model. The ground
in contact with the other wheels has a lower adherence whose properties are given by
scaling the grip potential of the rear right wheel with a factor equals to 0.5 for the rear
left wheel, 0.4 for the front right wheel and 0.1 for the front left wheel.

The torque distribution between the four driving wheels is illustrated in Fig. 5.10.
Since a driving torque is applied on the central differential and the rear wheels have a
better adherence than the front wheels, the drive to rear mode of the type C TORSEN
differential is activated. Therefore, the rear wheels receive more torque than the front
wheels. It can be verified that the torque ratio between the front axle and the rear axle
matches the TDR value of the drive to rear mode given in Table 5.2.

Likewise, both front and rear differentials provide more torque to the right wheels
because the right lane has a better adherence. The torque ratios are also in accordance
with the TDR of the drive to right mode (see Tab. 5.3).

Figure 5.11 depicts the angular velocities of the planet gears and the four wheels.
The three differentials are nearly locked since all the wheels almost rotate at the same
speed and the planet gears have only a small angular velocity. Let us remark that
the purely closed configuration of TORSEN differentials correspond to no relative slid-
ing inside differential. Nevertheless, a small sliding is still observed in the proposed
numerical model because of the regularization of the friction coefficients.

The model can also represent the open configuration. To this end, the same
system has been simulated with a higher driving torque: the maximal value of the
torque amounts to 500 Nm instead of 300 Nm (see Fig. 5.12(a)). The torque curves
keep similar time evolution as illustrated in Fig. 5.12(b).
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Figure 5.10: Distribution of the driving torque between the four driving wheels having
a different friction coefficient (maximum torque = 300 N/m).

In contrast, the graphics with the rotation speeds are significantly different (Fig. 5.13
compared with Fig. 5.11). Indeed, the potential of adherence is exceeded for the front
left wheel and results in the spinning of this wheel. The other wheels have almost the
same speed whereas the housing of the front differential rotates at a mean velocity be-
tween the right and the left front wheels. The planet gears of the central and the front
differential turn much quicker than in the previous simulation which is representative
of the fully open status of the two differentials.

5.5.2 AUDI A6 RWD with a detailed suspension system

In order to perform reliable simulations of the dynamics of cars during manoeuvres,
the suspensions and the steering system have to be modelled. As proof-of-concept,
the AUDI A6 model presented here (Fig. 5.14) includes four independent multi-link
suspensions articulated to the car body which is simply represented by a rigid body.
The steering mechanism is composed of a rack and pinion system connected to the
knuckles by means of spherical joints and universal joints.

The full MBS model is formulated with 3268 DOFs, 56 rigid bodies and numerous
kinematic joints (constant velocity joints, universal joints, hinge joints, prismatic joints,
spherical joints).

Lane change manoeuvre

The well-known elk test is a standardized lane change manoeuvre (Fig. 5.15) often
used to assess the drivability of a vehicle. An initial velocity (10 m/s) is given to the
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Figure 5.11: Rotation speed of the planet gears and the output shafts of the three
TORSEN differentials (maximum torque = 300 N/m).
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Figure 5.12: Distribution of the driving torque between the four driving wheels having
a different friction coefficient (maximum torque = 500 N/m).

vehicle and no torque is provided by the engine or the brakes, the car is coasting. This
qualification test is defined by the command given to the steering mechanism. In the
present model, it simply consists in prescribing the displacement of the steering rack
following the function depicted in Fig. 5.16. This is an open-loop command without any
correction of the driver. This latter should have been modelled by a simple controller
such as a PID in order to track a given vehicle trajectory (see Ref. [95]).

When the rack of the steering system moves, the inner wheel is slowed down
while the outer wheel is speeded up by the same relative velocity with respect to the
differential housing (Fig. 5.17). From the point of view of the differential, this situation
is equivalent to brake the inner wheel and provide a torque to the other wheel. Since
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Figure 5.13: Rotation speed of the planet gears and the output shafts of the three
TORSEN differentials (maximum torque = 500 N/m).

Figure 5.14: AUDI A6 vehicle model including the suspension system.

Figure 5.15: Elk test: standard lane change manoeuvre.

no torque is applied by the engine in this test, the sum of the torques provided by the
differential on both wheels has to be null. This is the reason why the torques have the
same magnitude but an opposite sign in Fig. 5.18(a).

In order to assess the torque transfer characteristic of TORSEN differentials, the
same model has been simulated without considering the friction forces inside the dif-
ferential. As depicted in Fig. 5.18(b), the torque transfer is insignificant in this case
and is equivalent to the behaviour of an open differential. Finally, let us note that the
load case used to simulate the elk test is not common since no torque is applied by the
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Figure 5.16: Displacement prescribed on the rack steering during the elk test manoeu-
vre.

motor.

0 5 10 15
−150

−100

−50

0

50

100

Time [s]

A
n
g
le

 [
d
e
g
]

(a) planet gears

0 5 10 15

−310

−300

−290

−280

−270

−260

−250

−240

Time [s]

R
o

ta
ti
o

n
 s

p
e

e
d

 [
rp

m
]

 

 

left

right

housing

(b) housing and output shafts

Figure 5.17: Elk test: rotation of the planet gears, the housing and the output shafts
of the rear differential.

Slippery ground

In this section, the AUDI A6 model including the rear TORSEN differential is simulated
when the vehicle is moving forward in straight line thanks to a driving torque applied on
the differential housing. In order to represent the behaviour of the vehicle on a slippery
patch successively below the left wheel and right wheel, the friction parameters of the
wheel model are multiplied by a factor comprised between 0 and 1 when the vehicle
has covered a given distance (see Fig. 5.19).

The maximum driving torque is 200 Nm and is progressively applied following a
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Figure 5.18: Comparison of the torque on differential output shafts between a TORSEN
and an open differential.
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Figure 5.19: In order to represent slippery ground surface, the friction coefficient com-
puted by the Pacejka’s wheel model is scaled.

ramp function in the interval [0; 2] s. The torque transfers between the two differential
output shafts can be observed in Fig. 5.20(b). The torque ratio for the first slippery
surface matches the TDR value (Tab. 5.3) because the left wheel has almost no adher-
ence in this situation. The adherence of the second slippery surface being better, the
differential provides more torque to the rear left wheel but the torque ratio does not
reach the TDR since the difference of adherence is not sufficient. The asymmetric dis-
tribution of the torque enables the vehicle to continue to move forward in the presence
of a slippery ground on one wheel which would not be possible with a conventional
differential.
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Figure 5.20: When the vehicle moves forward on a slippery surface, the TORSEN
differential provides more torque to the wheel having a better adherence.

5.5.3 IMPERIA prototype with flexible chassis frame

With the aim of having a more accurate car model, the various vehicle components can
be extended to capture other physical effects (e.g. structural flexibility) or other subsys-
tems can be included in the model (e.g. gear box, clutch, chassis, joints with bushings
and clearance). In addition to the suspension system, the rear TORSEN differential
and the steering system, the vehicle model presented in this section also contains a
flexible body frame represented by means of beam elements. The car modelled is the
IMPERIA prototype which is a vehicle driven by a hybrid engine (see Fig. 5.21).

The flexibility could also be taken into account for other components such as the
suspensions wishbones, the differential case or the driveshafts. But the current model
is sufficient to demonstrate the ability of the proposed integrated simulation approach
to simulate efficiently the dynamics of a global vehicle with a transmission component.
The model depicted in Fig. 5.22 already contains about 12000 DOFs.

In the simulation presented in this section, the load case has been chosen in order
to activate the four working modes of the type B TORSEN differential. During the
first five seconds of the simulation, the IMPERIA vehicle is running in straight line
at a 10 m/s constant velocity. This phase allows the vanishing of transient effects of
numerical origin at the beginning of the simulation. Afterwards, a driving torque is
applied on the differential housing until t = 12 s where the torque is applied in the
other direction in order to produce the same effect as the brakes (Fig. 5.23(b)). During
both acceleration and deceleration phases, a cornering sequence to the right and to the
left is prescribed to the vehicle by moving the steering rack (see Fig. 5.23(a)).

The axial displacements of all the gear wheels included in the differential are



144 Chapter 5. Contact modelling with squeeze film

depicted in Fig. 5.24. It can verified that the side gears are pushing in opposite direction,
against the cap and the housing respectively, when the drive modes are active. For the
coast modes, the axial position of the two side gears is synchronized since they are in
contact. Moreover, a contact also occurs with the upper or the lower thrust washer
according to the direction of the torque transfer between the driving wheels (bias to
the right or bias to the left). On the other hand, the axial position of the element gears
is only influenced by the direction of torque transfer and not by the drive or the coast
situation.

The friction torques involved by the contacts inside the differential lead to an
unequal distribution of the torque between the right and the left wheels when the
vehicle turns (Fig. 5.25). In driving conditions, the inner wheel receives more torque
whereas it is the opposite in coast condition.

Since the flexibility of the car body is modelled, the magnitude of stresses and
strains can be analysed thanks to this kind of numerical model. At t = 8 s, Figure 5.26
shows that the stresses in the car body are maximum near the attachments points of
the four suspension systems. A more detailed study should be performed in order to
assess the effects of the chassis deformations on the dynamics of the vehicle, but this
kind of analysis is out of the scope of this thesis.

5.6 Concluding remarks

A unilateral contact model considering the squeeze film of the lubricant in the narrow
gap between two rigid bodies in intermittent contact has been developed in this chapter.
The expression of the normal force produced by the squeeze film has a compact form
thanks to a set of geometric and physical hypotheses. When the thickness of the oil film
is lower than the arithmetic roughness, the contact occurs between the two metallic
bodies and is modelled by a penalty method. In addition to the contact forces in the
normal direction, the friction torques in the tangential plane are also included in the

Figure 5.21: IMPERIA CAR (http://www.imperia-auto.be/).
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Figure 5.22: Multibody model of the Imperia including the type B TORSEN differential
as rear differential.
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Figure 5.23: Load case imposed to the vehicle for the simulation of the four working
modes of the differential during the same simulation.

proposed model.

The TORSEN differentials have been used as an application to assess the squeeze
film model. The presence of the squeeze film model allows to reduce the discontinuities
when the gear wheels enter in contact with the thrust washers at each transition between
two working modes. The relative velocity is decreased by the damping force introduced
by the squeeze film model which is proportional to the velocity of the film thickness
and inversely proportional to the cube of the film thickness.

The modelling of the squeeze film allows us to better describe the physical be-
haviour of the differential and also leads to an increased robustness and a reduced
computational time since larger time steps can be used. Moreover, the axial locking
of the planet gears can be removed which involves additional contact conditions in
the model. Similarly to the models using the rigid/flexible contact model presented in
Chapter 3, the comparison of the TDR values for the four working modes has shown a
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(b) Element gears

Figure 5.24: Axial displacement of the two side gears and the element gears inside the
type B TORSEN differential.
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Figure 5.25: Torque provided by the differential to the left and right rear wheel.

good correlation with the experimental data.

Finally, the TORSEN differential models have been included in several vehicle
models in order to simulate the interactions with the vehicle dynamics. These global
models have shown the feasibility to integrate transmission components in full vehicle
models.
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Figure 5.26: Stress distribution in the body frame of the IMPERIA vehicle modelled
with FE beam elements.
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The contact model described in Chapter 3 requires that at least one of the two
contacting bodies is represented by a finite element model. In order to have a contact
formulation more suited to represent impact phenomena and less CPU time consuming,
global contact models defined between rigid bodies have been proposed in Chapter 4.
These models have been developed for specific geometries, namely planar rings and
cylinders. Now, the rigidity assumption will be withdrawn and more general geometries
will be considered. For that purpose, a contact element between superelements is
presented in the present chapter. The superelement approach allows to account for
the flexible behaviour while keeping a reduced model size. The main application of
this new contact formulation is the modelling of gear pairs. Therefore, contrarily to

149
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the gear pair model used until now, the flexible effects inside gear components can be
represented.

The outline of the chapter is the following. Firstly, the principles of the Craig-
Bampton are reminded in Sections 6.2-6.3. The superelement formulation (Section 6.4)
as well as the corotational frame definition (Section 6.5) used in this study are briefly
presented. Then, the various steps of the contact detection algorithm will be looked over
in Section 6.6. The contact law and the expression of the contact forces are described
next (Sections 6.7-6.8). Finally, the relevance of the approach for the dynamic analysis
of transmission devices is demonstrated through simulation results based on simplified
examples first (Sections 6.9- 6.10), and then on a gear pair model (Section 6.11).

6.1 Introduction

The contact models defined between rigid bodies are appropriate to represent the inter-
actions between bodies in large and complex mechanical systems. Their formulation is
often compact and does not require large computer resources while keeping the number
of bodies small. However, due to the rigidity assumption, it is not possible to study
the wave propagation caused by hard contact or impact, so that the dynamic responses
may not lead to realistic predictions. Reference [151] points out that for compliant gear
bodies the flexibility effects modify significantly the teeth contact forces and alter the
motion of the whole gear pair system. With rigid body models, this kind of dynamic
behaviour can not be captured.

An accurate way to account for flexibility effects in contact situations is to rely
on finite element models of bodies since this approach accounts for a description of
deformation and vibration phenomena (see Ref. [19]). Nevertheless, if the number of
bodies and the number of contact conditions become large, the numerical simulation
may become computationally ineffective since requiring large computational time and
huge memory requirements. For example, in order to model the contact between gear
pairs, a rather fine mesh of the whole skin of the rotating wheels would be required,
which would be highly penalizing for a global dynamic analysis [85].

In order to simulate quickly and properly the contacts included in multibody mod-
els of industrial applications where the flexibility effects are not negligible, a contact
model at an intermediate detail level between both aforementioned approaches is there-
fore needed.

Model reduction techniques of finite element models enables to significantly reduce
the size of the structural component models while representing the flexibility effects
with good accuracy. For example, the superelement formulation based on the Craig-
Bampton technique [44] relies on a partitioning of the nodal coordinates into interface
DOFs which need to be kept in the superelement and internal DOFs which can be



6.2 Linear reduction of a finite element model 151

condensed in order to reduce the size of the problem. However, as such, this approach
is impractical for contact problems since the coordinates of all the nodes in the potential
contact zone should appear in the interface set and cannot be condensed. The size of
the resulting superelement would thus be prohibitive.

This chapter proposes an alternative superelement formulation in which a large
part of the nodes in the potential contact zone can be condensed. This means that the
number of generalized coordinates of the reduced model can be much smaller than the
number of nodal coordinates of the skin. Then, the formulation of the contact forces
relies on a reconstruction of the skin geometry based on the generalized coordinates of
the superelement. The active contact zone is determined by a contact detection algo-
rithm which considers the condensed nodes as virtual nodes. At last, the contact forces
computed in the 3D space are reformulated and directly applied upon the superelement
generalized coordinates. The implementation is carried out within the framework of
absolute nodal coordinates that are well suited with the corotational formulation of a
superelement as described in Ref. [18].

6.2 Linear reduction of a finite element model

The nonlinear finite element method for flexible multibody systems as presented in
section 2.2 requires using a nonlinear definition of the strain tensor even for small
elastic deformations. Furthermore, the number of nodal coordinates can become large
if 3D meshes are used, and consequently the model size can also become large.

However, the dynamics of an MBS is often characterized by large rotations but
only small elastic displacements. Therefore, in that case the only nonlinearities result
from geometric effects linked to large rotation of the bodies. In a local frame (that
can be either a floating [124] or a corotational one [42]) that follows the gross motion
of the flexible body, a simple linear elastic model can be used to compute the elastic
forces if the assumption of small strains remains valid. Afterwards, the body model
can be reduced by using one of the various model reduction methods which have been
introduced in Section 2.3.

The basic principle of a reduction technique for decreasing the size of an eigenvalue
problem

Kd = ω2Md (6.1)

consists in finding a linear expansion of the elastic displacement field (d) in a basis of
deformation modes (Ψ) of the body (Eq.6.2).

d ∼= Ψ η (6.2)

Matrix Ψ is of dimension n×m, with n being the size of the displacement field d

of the initial model, m (m < n) the length of the reduced variable vector η which can
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be of various nature according to the substructuring technique used. The columns of
this matrix contain the global shape functions of the reduced model.

The accuracy of the reduced model depends on the ability of the subspace spanned
by the deformation modes Ψ to describe the actual node displacements of the initial
finite element model. The various reduction techniques only differ from each other by
the definition of the reduction matrix Ψ.

The reduced stiffness K and mass M matrices can be easily obtained from the
variational principle of the reduced problem (see Ref. [44])

K = Ψ
T
KΨ (6.3)

M = Ψ
T
MΨ (6.4)

The term superelement is generally given to the set of reduced matrices (K, M ,
Ψ). The main advantage of the superelement approach to model flexible multibody
bodies lies in its ability to represent geometrically complex components connected to
the rest of the system while keeping a relatively simple global dynamic model based on
a limited number of coordinates.

6.3 Craig-Bampton method

The Craig-Bampton method is a reduction technique based on the mechanical impedance
or component-mode synthesis (CMS) concepts. With this approach, the dynamic be-
haviour of a superelement is described as the superposition of:

- static modes attached to boundary nodes;

- vibration modes describing internal deformation.

The displacement field d of the initial model is split up into two parts: a set of
nB boundary degrees of freedom dB on one the hand and a set of nI internal degrees
of freedom dI on the other hand (see Fig.6.1).

If it is assumed that no external force is applied on the internal degrees of freedom,
the static equilibrium of a mechanical component can be written as:[

KBB KBI

KIB KII

]{
dB

dI

}
=

{
gB

0nI×1

}
(6.5)

where Kij are the different blocks of the stiffness matrix and gB is the vector of interface
forces between the superelement and its connected neighbouring parts. The internal
degrees of freedom can be eliminated by static condensation (see second equation of
Eq. 6.5):

dI = −K−1
II KIB dB (6.6)
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Figure 6.1: The nodes of the initial finite element model are partitioned into boundary
nodes and internal nodes [42].

(a) static mode (b) vibration mode

Figure 6.2: Deformations due to solicitations of superelement modes [42].

The static modes ΨB can be interpreted as constrained modes representing the
static deformations of the structure if a unit displacement is successively prescribed to
each boundary degree of freedom (Fig. 6.2(a)):[

KBB KBI

KIB KII

][
InB×nB

ΨB

]
=

{
GB

0nI×nB

}
(6.7)

with
ΨB = −K−1

II KIB (6.8)

and GB is a matrix containing the reaction forces at boundary nodes for the nB static
modes.

The reduction subspace formed with the static modes is then enriched by indepen-
dent vibration modes obtained when the boundary nodes are clamped (Fig. 6.2(b)).
The internal vibration modes ΨI can be computed by solving the internal eigen-
value problem: (

KII − ω2M II

)
ΨI = 0nI×nI (6.9)

In order to significantly reduce the size of the initial model, only a limited number
(nI < nI) of eigenmodes are included in the modal basis. This truncation of the modal
expansion means that the higher frequencies are neglected, which is relevant since it
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can be shown from the mechanical impedance concept that the effect of lower frequency
terms is dominating [42]. The internal vibration modes retained are chosen according
to the magnitude of the reactions (KIB−ω2

iM IB)ΨIi produced by the eigenmode ΨIi

on the retained nodes. All the boundary static modes have to be kept to ensure the
compatibility of the displacements at the interfaces.

Finally, the displacement of any node of the initial finite element model can be
expressed as a linear combination of both static and dynamic modes{

dB

dI

}
∼=

[
I

ΨB

]
dB +

[
0

ΨI

]
ηI (6.10)

where ΨI is the subset of selected internal dynamic modes and ηI is the (nI×1) vector
of internal variables representing the modal intensity of each vibration mode retained.

The full reduction matrix Ψ of dimension n × (nB + nI) (see Eq. 6.2) is simply
constructed by the concatenation of the two mode matrices:

Ψ =

[
I 0

ΨB ΨI

]
(6.11)

The reduced stiffness and mass matrices are obtained from Eqs. 6.3-6.4 and have
the following structure if the eigenmodes are orthogonal in the metrics of the mass
matrix:

K =

[
KBB 0

0 µ ω2
I

]
, M =

[
MBB MBI

M IB µ

]
(6.12)

where ωI = diag(ω1 . . . ωi . . . ωnI ) collects the eigenfrequencies ωi = 2πfi of the subsys-
tem, and µ = diag(µ1 . . . µi . . . µnI ) is a diagonal matrix containing the modal masses
µi = Ψ

T
IiM IIΨIi . Like the finite element stiffness matrix K, the reduced stiffness

matrix K is also singular due to the existence of rigid body modes.

6.4 Superelement formulation

In dynamic multibody systems submitted to large displacements but undergoing small
strains, the linear elasticity hypothesis required by the Craig-Bampton reduction method
is only admissible inside a moving frame following the gross motion of a substructure
modelled as superelement. Indeed, in an inertial frame, geometric nonlinearities are
present for large amplitude motion even for a rigid body motion. The reduced stiffness
and mass matrices (K,M) of a superelement remain constant in this local frame but,
if the system is expressed in an absolute inertial frame, the superelement matrices are
no longer constant and depend on the generalized coordinates.

The corotational frame approach allows a simplified nonlinear formulation of a
superelement which is based on the superposition of a global motion represented by the
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corotational frame position with small linear elastic deformations. This method uses
the absolute nodal coordinates and is therefore fully compatible with the finite element
approach described in Section 2.2. For instance, multibody models of complex systems
can include corotational superelements connected by means of the boundary nodes to
nonlinear finite elements (e.g., beams) or rigid bodies. The modelling of flexible bodies
with one or the other approach depends on the level of accuracy needed and the CPU
time requested.

6.4.1 Kinematic description

As depicted in Fig. 6.3, the position xP and the rotation matrix RP of each point P
of a superelement can be written as:

xP = x0 +R0(XP + uP ) (6.13)
RP = R0 R(γP ) (6.14)

where x0 is the absolute position of the corotational frame {O; e1, e2, e3}, R0 is the ro-
tation matrix of the corotational frame about the inertial frame, XP is the undeformed
position of P in the corotational frame, uP is its small elastic displacement, γP is a
set of variables representing the small relative rotation with respect to the corotational
frame and R(γP ) is the rotation matrix associated with the three independent rotation
variables γP .

The local displacements and relative rotations of any point P can be directly
obtained by the linear reduction relationship provided by the Craig-Bampton technique:{

uP

γP

}
∼= ΨP η (6.15)

with ΨP are the rows of the mode matrix Ψ related to the the point P . The latter can
be easily deduced from Eq. 6.2. The vector of local coordinates η of the superelement
expressed in the corotational frame is defined by:

η =


uB

γB

ηI

 (6.16)

where uB, γB are the local displacement amplitudes in translation and rotation of the
interface nodes and ηI is the vector of internal mode intensities.

The corotational formulation of the superelement presented in this section is in-
spired from Ref. [18]. However, unlike in this reference, the position and orientation of
the corotational frame is represented by an independent, massless node of coordinates
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absolute inertial frame

corotational

xP

x0

XP

uP
P

frame

Figure 6.3: Kinematics of a superelement.

(x0,α0) explicitly added to the set of generalized coordinates q of the superelement:

q =



x0

α0

xB

αB

ηI


(6.17)

where xB and αB are the absolute nodal positions and nodal rotation parameters of
the boundary nodes; ηI are the modal amplitudes of the internal modes. This approach
introduces 6 additional unknowns (x0, α0) in the set of generalized coordinates of the
system and therefore increases the number of the equations of motion. But this allows
to simplify some expressions, especially in the contact formulation and in the definition
of the corotational frame as it will be shown in the next sections. Moreover, matching
the corotational frame to an additional node offers a convenient way to prescribe the
overall motion of the superelement.

The local displacement uB and the local rotation γB in the corotational frame
can be computed from the absolute positions xB and orientation variables αB of the
boundary nodes by inverting Eqs. 6.13-6.14

uBi = RT
0 (xBi − x0)−XBi (6.18)

R(γBi
) = RT

0 RBi (6.19)

Remarks

- The rotation variables are represented within the framework of the Lie group
theory [15, 128] whereas a parametrization of spherical motion is used in Ref. [18]
as briefly summarized in section 2.2.1. This choice has been made to circumvent
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the drawbacks of the rotation parametrization and to benefit from parts of a
MATLAB code based on Lie groups and developed at the University of Liège to
simulate multibody systems (see [128]). From the point of view of the superele-
ment and the contact condition formulation, only a few things change between
these two different representations of spherical motion. The formulations pre-
sented hereafter could be easily particularized if a rotation parametrization with
a Cartesian rotation vector was used.

- One can notice that {xT
B αT

B}T is a condensed notation since all boundary nodes
have not necessarily 6 DOFs. Indeed, according to the type of finite elements
(beam, shell, volume, etc) in the initial mesh before linear reduction, the boundary
nodes can have only translational or only rotational degrees of freedom. For
each boundary node, the three corresponding DOFs are removed from the set
{xT

B αT
B}T if not present in the initial FE model.

6.4.2 Elastic and inertia forces

In order to generate the equations of motion and thus compute the elastic and inertia
forces, the Hamilton principle summarized in section 2.2.2 is used. The stationarity
condition δA = 0 of a conservative system is expressed as:

δA = δ

∫ t2

t1

L dt = 0 (6.20)

where the Lagrangian L is defiend by L = K−V, with K is the kinetic energy and V
is the potential energy of a superelement.

The potential energy V can be seen as the internal deformation energy of the
superelement. In the corotational frame, V and its variation δV have the following
expressions:

V =
1

2
ηT Kη , δV = δηT Kη (6.21)

The various terms of the variation of the local coordinates vector δη are defined
by:

δuBi = RT
0 (δxBi − δx0) +

~
RT

0 (xBi − x0) δΘ0 (6.22)

δγBi
∼= vect

(
δR(γBi

)
)
= [B1 B2]

{
δΘBi

δΘ0

}
(6.23)



158 Chapter 6. Modelling of contact between superelements

with:

B1 =
1

2

R22 +R33 −R21 −R31

−R12 R11 +R33 −R32

−R13 −R23 R11 +R22

 (6.24)

B2 =
1

2

−(R22 +R33) R12 R13

R21 −(R11 +R33) R23

R31 R32 −(R11 +R22)

 (6.25)

The expression 6.23 is valid if the assumption of small rotations can be adopted, i.e.
R(δγBi

) ∼= I + δ
~
γBi

. The operator vect represents the vectorial map.

From Equations 6.22 and 6.23, a kinematic tangential relationship between δη and
δq can be easily obtained:

δη = P (q) δq (6.26)
with

δη =


δuB

δγB

δηI

 , P (q) =

−RT
0

~
RT

0 (xBi − x0) RT
0 0 0

0 B2 0 B1 0

0 0 0 0 I

 , δq =



δx0

δΘ0

δxB

δΘB

δηI


(6.27)

Following the approach described in [42], the kinetic energy K evaluated in the
corotational frame is expressed by Eq. 6.28 even though this expression is not fully
consistent.

K =
1

2
τTMτ (6.28)

The vector τ represents the velocities in the corotational frame and is defined by:

τ =


RT

0 ẋB

ΩB

η̇I

 (6.29)

where the term RT
0 ẋB can be interpreted as the absolute translational velocities of

the boundary nodes expressed in the corotational frame. ΩB is the angular velocities
of the boundary nodes expressed in the material frame and corresponds also, in first
approximation, to the angular velocity vector in the corotational frame. Finally, η̇I is
the time derivative of the vibration mode intensities.

Equation 6.30 represents the linear relation of the frame transformation between
the velocity vector in the corotational frame (τ ) and in the absolute inertia frame
(vector v defined in Eq. 6.31).

τ = V 1 v with V 1(q) =

0 0 RT
0 0 0

0 0 0 I 0

0 0 0 0 I

 (6.30)
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v =



ẋ0

Ω0

ẋB

ΩB

η̇I


(6.31)

The variation of the kinetic energy can be simply expressed as:

δK = δτTMτ (6.32)

with

δτ =


δ(RT

0 ẋB)

δΩB

δη̇I

 (6.33)

The first two terms of δτ are computed by:

δ(RT
0 ẋB) = RT

0 δẋB +
~
RT

0 ẋB δΘ0 (6.34)
δΩB =

~
ΩB δΘB + δΘ̇B (6.35)

Finally, δτ can be reformulated as:

δτ = V 1 δq̇ + V 2 δq (6.36)

where V 1 is already defined in Eq. 6.30 and V 2 has the following expression:

V 2 =

0
~
RT

0 ẋB 0 0 0

0 0 0
~
ΩB 0

0 0 0 0 0

 (6.37)

The Hamilton principle (Eq. 6.20) can now be explicitly restated according to the
potential and kinetic energies detailed hereabove:

δA =

∫ t2

t1

δL dt =
∫ t2

t1

δq̇TV T
1 Mτ + δqTV T

2 Mτ − δqTP TKη dt (6.38)

If the first term of Eq. 6.38 is integrated by parts, this equation becomes:∫ t2

t1

δL dt =
[
δqTV T

1 Mτ
]t2
t1
−
∫ t2

t1

δqT
[(

V̇
T
1 Mτ + V T

1 Mτ̇
)
− V T

2 Mτ + P TKη
]

dt

(6.39)

Because of the independence and arbitrary nature of the variations δq, the com-
bined expression of the elastic, the inertia and the gyroscopic forces can be easily
deduced:

g(q,v, v̇) =
(
V̇

T
1 Mτ + V T

1 Mτ̇
)
− V T

2 Mτ + P TKη (6.40)
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The time derivative of the vector τ and of the matrix V 1 are expressed by Eqs. 6.41
and 6.42 respectively.

τ̇ =


RT

0 ẍB −
~
Ω0R

T
0 ẋB

Ω̇B

η̈I

 = V 1 v̇ + V 3 Ω0 with V 3 =


~
RT

0 ẋB

0

0

 (6.41)

V̇ 1 = −V 4V 1 with V 4 =


~
Ω0 0 0

0 0 0

0 0 0

 (6.42)

After replacing Eqs. 6.41-6.42 into the force vector g (Eq. 6.40), the various con-
tributions can be easily identified: gel is the vector of elastic forces in the superelement,
giner is the vector of inertia forces, and ggyr is the vector of gyroscopic forces.

gel(q) = P TKη (6.43)
giner(q, v̇) = V T

1 MV 1 v̇ (6.44)
ggyr(q,v) =

(
V T

1 V 4 − V T
2

)
MV 1 v + V T

1 MV 3 Ω0 (6.45)

Contribution to the iteration matrix

In order to compute the tangent stiffness matrix of the superelement, the dependency
with respect to q of inertia and gyroscopic forces can often be ignored in first approx-
imation so that only the spatial derivative of elastic forces has to be accounted for.
If the derivative of the connection matrix P is neglected, the tangent stiffness matrix
such that the directional derivative satisfies Dgel(q)· δq = Kse

t δq takes the form:

Kse
t =

∂gel

∂q
≃ P TKP (6.46)

The tangent mass matrix of the superelement is obtained by differentiation of the
inertia forces with respect to the generalized accelerations v̇:

M se =
∂giner

∂v̇
= V T

1 MV 1 (6.47)

Finally, in some specific cases, it could be useful to include the contribution of
gyroscopic forces into the iteration matrix to improve the convergence rate. The tangent
damping matrix is computed by differentiating the gyroscopic forces with respect to
the velocity vector in the absolute frame (v):

Cse
t =

∂ggyr

∂v
=
(
V T

1 V 4 − V T
2

)
MV 1 + V T

1

(
MC1 +C2

)
+C3 (6.48)
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where the matrices C1, C2 and C3 and given by:

C1 =

0 V 3

−
~
Ω0R

T
0

0

0

 0 0

 , C2 =

0 −
~
(MV 1v)xB 0 0 0

0 0 0 0 0

0 0 0 0 0



C3 =



0 0 0 0 0

0 0 −
~
(MV 1v)xBR

T
0 0 0

0 0 0 0 0

0 0 0 −
~
(MV 1v)αB 0

0 0 0 0 0


(6.49)

The notations (MV 1v)xB and (MV 1v)αB mean that some components of the vector
MV 1v are extracted. The indexes xB and γB correspond respectively to the compo-
nents in translation or in rotation at the boundary nodes.

6.5 Corotational frame definition

A corotational frame is attached to each body modelled by a superelement and follows
its gross motion. This local frame is defined by the position vector x0 of the frame
origin and the rotation matrix R0 that depends on the rotation variables α0 and gives
the orientation of the local frame about the inertial frame. Several formulations are
available to determine the corotational frame. The simplest way would be to associate
the reference frame with one of the boundary nodes. However, with this method the
mechanical response of the superelement can be sensitive to the chosen boundary node.
In Ref. [42] another definition is presented where the position and orientation of the local
frame are obtained by a weighted mean of positions and orientations of the boundary
nodes. The drawback of such definition results from complex couplings between global
and local variables, and thus involves the manipulation of large matrices where the
sparsity is not preserved.

The corotational frame definition described in this section requires that the frame
variables x0, α0 are explicitly added to the vector q of generalized coordinates of
the superelement (Eq. 6.17). A set of 6 holonomic kinematic constraints is needed
to link these local frame variables to the boundary node coordinates. Therefore, in
addition to x0 and α0, six other unknowns, the Lagrange multipliers associated with
the constraints, are added for each superelement. The resulting reference frame is
equivalent to a Buckens frame [142].

The boundary node displacements (uB,γB) in the corotational frame are defined
relatively to x0 and α0 (see Eqs. 6.18-6.19). Therefore, small variations of the general-
ized coordinates (x0,α0) are equivalent to add a small rigid body motion to the relative
displacements and rotations of the boundary nodes. The aim of the new constraints
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(Eq. 6.50) is to minimize the virtual work of the boundary node inertia forces in a rigid
body displacement. In other words, the rigid body motion defined in the corotational
frame (U rig) and the relative displacements and rotations ( ηT

B = {uT
B γT

B} ) must be
M-orthogonal.

Φ(q) ≡ UT
rig MBB ηB(q) = 0 (6.50)

The matrix of the 6 rigid body modes in the corotational frame is written as:

U rig =



U rig,1

...
U rig,i

...
U rig,nBnode


(6.51)

where each matrix U rig,i is related to the ith boundary node:

U rig,i =

[
I3×3 −

~
XBi

03×3 I3×3

]
(6.52)

XBi being the undeformed position of the boundary node Bi in the corotational frame.
The first three columns of U rig represent the rigid body modes in translation and the
last three columns are the rigid body modes in rotation.

The corotational frame coordinates (x0,α0) do not appear explicitly in the con-
straint formulation (Eq. 6.50), but the dependence with respect to them is included in
the definition of the local displacement vector (ηB) according to Eqs. 6.18-6.19. The
matrices (U rig, MBB) involved in the kinematic constraints are invariant.

Contrarily to both corotational frame formulations previously mentioned, the su-
perelement frame can be defined even if the boundary nodes have no rotational degrees
of freedom, which is often the case if the initial finite element model is meshed with vol-
ume finite elements. At equilibrium, the values given to x0 and R0 can be interpreted
as the position and orientation of the center of gravity of the body.

The constraints (Eq. 6.50) are enforced by using the Lagrange multiplier method.
The virtual work of the kinematic constraints 6.50 is expressed as:

δW = δqTΦT
q λ+ δλT Φ (6.53)

where Φq is defined by:
Φq = U rigMBBPB (6.54)

The matrix PB is the submatrix of P (Eq. 6.27) obtained by wiping out the last
column.

Equation 6.53 can be now restated as:

δW =
{
δqT δλT

}{P T
BM

T
BBU

T
rig λ

Φ

}
(6.55)
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The constraint forces induced by the corotational frame formulation adopted can
be easily identified in this last expression:

gcoro(q,λ) = P T
BM

T
BBU

T
rig λ (6.56)

They apply on the boundary degrees of freedom and on the corotational frame coordi-
nates, but not on the internal modal variables ηI since the last column of PB is full of
zeros.

The virtual work needs to be further differentiated in order to obtain the iteration
matrix associated with these 6 kinematic constraints:

δdW =
{
δqT δλT

}[ 0 k ΦT
q

k Φq 0

]{
dq
dλ

}
(6.57)

The contribution to the iteration matrix is then expressed as:

Kcoro
t =

[
0 k ΦT

q

k Φq 0

]
(6.58)

6.6 Contact detection algorithm

In order to determine the presence or absence of contact for each candidate contact
area over the superelement skin, a contact detection algorithm based on a standard
node-to-face projection method is used. The goal of this search procedure is to find
which node of the slave body is in contact with which element face of the master body
(see Fig. 6.4).

E1

E3

E2

xCi

master contact faces 

slave contact nodes 

n

d

xprojecxNi

Figure 6.4: Projection of slave nodes on master faces.

In case of a large number of potential contact nodes, the size of the superelement
matrices could not be drastically reduced compared with initial finite element model
if all the contact nodes are retained as boundary nodes. The solution adopted to keep
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a compact superelement model consists in considering the candidate contact nodes as
virtual nodes. This approach allows retaining only a few boundary nodes and not all
the candidate contact nodes.

The contact detection algorithm presented here is suitable for a master triangular
surface and can be summarized by the following steps (see Fig. 6.9):

1. Computation of the absolute positions xCi , xNi of the candidate contact nodes
on the slave and master bodies respectively.
The absolute position of virtual nodes is computed from the corotational frame
coordinates (x0,R0) and the modal amplitudes (η), see Equations (6.59-6.60)
which are obtained by combining Equations (6.13) and (6.15).

xCi = xs
0 +Rs

0(XCi +ΨCiη
s) (6.59)

xNi = xm
0 +Rm

0 (XNi +ΨNiη
m) (6.60)

The exponents s and m permit to distinguish the variables relative to the slave
and master bodies. The accuracy of the computed contact node positions depends
on the detail level provided by the 3 rows of the reduction basis (Ψ) relative to
the contact node Ci or Ni.
The candidate contact nodes are a fixed set of nodes located on the skin of the
non-reduced model. These nodes are selected by the model analyst during the
model construction and their absolute positions are computed at each Newton-
Raphson iteration of the time integration scheme (see Section 2.2.3).
Let us note that if some candidate contact nodes are retained as superelement
boundary nodes, their position vectors are readily available in the vector q of
generalized coordinates and do not have to be computed.

2. Determination of the normal direction for each master contact face.
The normal direction of a triangular face can be easily obtained by:

n =
xN12 × xN13

∥xN12 × xN13∥
=

~
xN12 xN13∥∥~xN12 xN13

∥∥ (6.61)

with xNij = xNj − xNi (see Fig. 6.5). The master nodes are numbered in order
that n points towards the outside of the body faces.
The topology of the potential contact zone has to be saved from the initial finite
element model in order to determine the contact nodes that are the vertices of
each master surface.

3. Computation of the normal distance between a slave node and the plane of a
master surface.
The basic equation of a plane is:

nx x+ ny y + nz z + a = 0 (6.62)
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xN12
n

xN13
N1

N2

N3

Figure 6.5: Definition of the normal vector to a master contact face.

where nx, ny, nz are the three components of the normal direction to this plane
(Eq. 6.61).

The independent term a can be simply determined if the coordinates of one point
of the plane is known. For instance, if the first vertex of the master face is
considered, a is defined by:

a = −(nx xN1 + ny yN1 + nz zN1) (6.63)

The normal distance d between a slave node and a master surface can be then
simply computed by:

d = nx xC + ny yC + nz zC + a (6.64)

If d is positive, there is a gap between the slave node and the master surface and
consequently this pair (slave node - master surface) is not in active contact. In
this case, the next steps of the contact detection algorithm have not to be carried
out.

4. Computation of the absolute coordinates of the projection of the slave node onto
the master face plane.

The position vector xprojec of a slave node projected onto the plane of a master
surface is given by:

xprojec
yprojec
zprojec

 =


(n2y + n2z) xC − nxny yC − nxnz zC − a nx
−nxny xC + (n2x + n2z) yC − nynz zC − a ny
−nxnz xC − nynz yC + (n2x + n2y) zC − a nz

 (6.65)

5. Determination of the relative position of the projection point inside the surface
element.

In the previous step, the slave node has been projected onto the plane contain-
ing the triangular-shaped master surface. Then, one has to determine whether
the projection point is inside or outside the surface element. To this end, the
barycentric coordinates can be used.
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The position coordinates (xprojec , yprojec , zprojec) of the projected point can be
expressed using a set of three barycentric coordinates (β1,β2,β3):

xprojec = β1 xN1 + β2 xN2 + β3 xN3 (6.66)
yprojec = β1 yN1 + β2 yN2 + β3 yN3 (6.67)
zprojec = β1 zN1 + β2 zN2 + β3 zN3 (6.68)

where N1,N2,N3 are the three vertices of the master face.

The space transformation from the absolute inertial frame to the barycentric
coordinate space can be expressed as:

β1
β2
β3

 =

xN1 xN2 xN3

yN1 yN2 yN3

zN1 zN2 zN3


−1

xprojec
yprojec
zprojec

 (6.69)

The projected point is inside the triangular area defined by the nodes Ni if βi > 0

and β1 + β2 + β3 = 1.

In order to avoid solving the system of equations (6.69), which is time consuming
if the operation is repeated a lot of times, this step is only achieved if the node
projected lies in the neighbourhood of the contact element. For instance, if the
projection point is not located inside a 3D box surrounding the master surface
element (see Fig. 6.6), it is not necessary to compute the barycentric coordinates
since the slave node considered is not likely to be in contact with the master face
tested.

projection point outside box:

detection algorithm stopped 

projection point inside box:

computation of barycentric coordinates

inactive contact 

projection point on element: 

active contact

Figure 6.6: The contact detection algorithm can be stopped if the projection of the
slave node in not in the vicinity of the master surface.
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If the last condition is satisfied, the slave node and the master face tested by the
contact detection algorithm are considered to be in active contact. This slave-master
pair in effective contact has then to be saved and will be used in the formulation of the
contact force vector as described in section 6.8.

Like for all node-to-surface projection approaches, it is recommended that the
mesh of the slave body in the contact zone should be finer than the mesh of the master
body. It prevents unreliable effective contact zones and numerical problems which can
affect the robustness of the numerical simulation.

In particular geometric configurations such as the contact between two cylinders
(see Fig. 6.7), spurious contacts can be erroneously detected. If all nodes of the cylin-
drical face are candidate contact nodes, the projection points of several slave nodes are
inside the master surface element and the associated normal distances are negative.
To circumvent this problem the (slave node)-(master surface) pair for which the norm
of the normal distance d is higher than a threshold value −|dmax| is eliminated from
the set of active contacts. This constant parameter dmax is chosen according to the
characteristic dimensions of the system and the maximum penetration length allowed
between the bodies in contact.

.
.

n

penetration distance

master body

slave body

Figure 6.7: False contact detections.

If the penetration length is small, a given slave node is usually in contact at most
with one master face. However, in particular situations such as depicted in Fig. 6.8,
a slave node can be detected in contact with two or more master faces. Furthermore,
due to accuracy errors, the same situation occurs when the projection point of the slave
node is on or very close to an edge between two master faces.

The contact detection procedure detailed hereabove is simple but could be im-
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.
. . .

.

. .
. ..

.
..

n1 n2

slave nodes

master faces

slave node in contact

with 2 master faces

Figure 6.8: A slave node detected in contact with two master faces.

proved at nearly all stages from the point of view of the computational efficiency. For
instance, in order to avoid the projection of each slave node on each master face, the
implementation of a tree data structure such as an octree could greatly reduce the
number of mathematical operations due to the projection method. Moreover, with
the proposed algorithm the potential contact surfaces have to be triangular-shaped.
Despite its limitations, this simple method will allow us to implement and assess the
contact force formulation between superelements, which is the main original contribu-
tion of this chapter.

A similar contact detection procedure is described in Ref. [151] for quadrangular
faces on the master body but this method involves nonlinear relations and therefore
needs an iterative procedure to detect the active contact nodes. In our algorithm, each
quadrangular face is split into two triangles.

Figure 6.9: Flow chart of the contact detection algorithm.
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6.7 Contact law

In Chapter 3, it has been shown that continuous contact models can be solved using
a smooth integration scheme of the generalized-α family. Imposing non-penetration
constraints would require the use of a nonsmooth time integration scheme, which is
beyond the scope of the present thesis. Therefore, a penalty method is chosen as
contact law for the developed contact formulation between two superelements.

In a general context such as the contact between spherical-shaped bodies, the local
deformation is a nonlinear phenomenon in the contact zone. However, the compliance
of the contacting bodies is accounted for by the linear elastic model embedded in the
reduced matrices of each superelement. The nonlinearity can be represented in two
different ways using whether a linear or a nonlinear contact law.

If the spatial discretization in the contact zone is sufficiently refined, a linear
penalty function can be used since the contact nonlinearity is properly accounted for by
the geometric variation of the active contact area with the magnitude of the approaching
load applied on contacting bodies. The contact stiffness has to be high enough so that
the local penetration is negligible with respect to the body strains. A superelement
model should be able to model accurately the deformation of the contact area.

On the other hand, when the mesh in the potential contact zone is coarse or the
superelement does not provide a detailed description of the deformations on the contact
surface, a nonlinear contact law has to be used. Indeed, in this situation the contact
phenomenon can be decomposed in two parts: local nonlinear effects at the contact
points and a global linear elastic behaviour in the rest of the body. The penetration
allowed by the penalty method can be seen as a measure of the local deformation
near the contact point whereas the global flexibility is accounted for by the linear
superelement.

In both cases, the contact law is expressed by Eq. 6.70 where ℓ represents the
penetration length, kp is the contact stiffness and c the damping coefficient. S∗

c is
the mean area around the slave node in contact. As in the continuous impact model
presented in Section 4.2, a damping contribution is added to introduce the energy
dissipation involved by hard impact. The linear contact law is simply recovered by
setting n = 1.

f(ℓ, ℓ̇) =

{
S∗
c

(
kp ℓ

n + c ℓn ℓ̇
)

if ℓ > 0 active contact
0 if ℓ < 0 no contact

(6.70)

In order to render the contact law independent of the mesh density in the contact
area, the mean area S∗

c of the element surfaces adjacent to the slave node in contact is
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introduced as a multiplication factor in the contact law (Eq. 6.70):

S∗
c =

1

nn

nn∑
i=1

Si (6.71)

where nn is the number of nodes of the slave contact faces (nn = 3 for triangular
faces), the Si are the areas of the element faces including the slave node for which the
contact force magnitude is determined. Furthermore, the border effects between the
contact surface and the connected free surfaces are avoided since only the element faces
inside the candidate contact face are accounted for in the computation of the mean
area S∗

c (Eq. 6.71). If the deformation of bodies are very small, the mean area S∗
c can

be assumed constant, so that it is only computed in the initial configuration at t = 0 s
and not at the following time steps. If the mesh is regular in the contact zone, the same
mean area can be assigned to all contact nodes according to the mesh density.

The parameters kp and c have the meaning of the contact stiffness and damping
coefficient per unit surface area. In this way, these parameters have a constant value
when the discretization of the contact surface is refined. These parameters are chosen
in such a way that the penetration length is much lower than the elastic deformation.
In order to avoid a jump at the beginning of the contact and a tension force at the end,
the classical viscous damping term c ℓ̇ has been multiplied by the penetration length.

As for the contact models between rigid bodies (Chapter 4), the damping coeffi-
cient can be determined according to an energy restitution coefficient (see Eq. 4.11).
Compared to a constant damping coefficient, the advantage of this definition of the
damping coefficient lies in its adaptability with the relative velocity at the impact in-
stant. In this way, the amount of damping introduced in the contact law is different
for hard or smooth impact.

The penetration length ℓ and the penetration velocity ℓ̇ in the normal direction
are computed as:

ℓ = nT (xN1 − xCi) (6.72)
ℓ̇ = nT (ẋN1 − ẋCi) + (xN1 − xCi)

T ṅ (6.73)

where ṅ, the time derivative of n (Eq. 6.61), is given by:

ṅ =
I − nnT∥∥~xN12 xN13

∥∥ aṅ (6.74)

with
aṅ =

(~
xN13 −

~
xN12

)
ẋN1 −

~
xN13 ẋN2 +

~
xN12 ẋN3 (6.75)

In Eqs. 6.73 and 6.75, the time derivative of absolute position vectors of the can-
didate contact nodes on the slave and master bodies are respectively computed as:

ẋCi = ẋs
0 −Rs

0

~
(XCi +Ψ

s
Ci
ηs) Ωs

0 +Rs
0Ψ

s
Ci
P s vs (6.76)

ẋNi = ẋm
0 −Rm

0

~
(XNi +Ψ

m
Niη

m) Ωm
0 +Rm

0 Ψ
m
NiP

m vm (6.77)
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where the derivative of the tangent matrix P has been neglected.

6.8 Contact force formulation

E1

E3

E2

xCi

master contact face 
slave contact node

n

xprojec xNi

fsc

fmN1

fmN2

fmN3

`

Figure 6.10: Kinematics of contact force.

The contact force (Eq. 6.78) applied on a contact node of the slave or master bodies
has its magnitude f defined by the contact law (Eq. 6.70) and its direction given by
the normal vector n to the master contact surface involved in the slave-master pair
considered. For the master body, the participation factors w permit to distribute the
contact force on the master nodes delimiting the master surface (see Fig. 6.10). In case
of triangular contact faces, these participation factors are equivalent to the barycentric
coordinates already computed in the detection algorithm presented in section 6.6. For
the slave body, the parameter w is obviously always equal to one because the contact
force amplitude is computed at this node

f c = w f n (6.78)

The contact nodes can be interpreted as virtual nodes since they do not necessarily
correspond to the superelement boundary nodes. Therefore, each contact force applied
on these virtual nodes has to be transferred to the generalized coordinates vector q of
the superelement, loading the retained boundary nodes and the modal variables.

Since the contact force is computed by a penalty method, no kinematic constraint
is involved and its contribution to the motion equations (Eq. 2.7) of the multibody
system is only contained in the term of internal forces gint(q, q̇). The virtual work
principle is used in order to get the internal force vector associated with each nodal
contact force:

δWcon
Ci

= δxT
Ci

f c (6.79)

The virtual displacements δxCi of the contact points are easily obtained by derivation
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of Eqs. (6.59 -6.60):

δxCi = δx0 −R0

~
(XCi + uCi) δΘ0 +R0 δuCi

= δx0 −R0

~(
XCi +ΨCiη

)
δΘ0 +R0ΨCiP δq

(6.80)

where ΨCi are the 3 rows of the mode matrix Ψ linked to the ith contact node, δΘ0 is
the vector of virtual rotation in the corotational frame such that

~
δΘ0 = RT

0 δR0 (see
Ref. [42]).

The internal force vector gint,con
Ci

(Eq. 6.81) matching with the contact force f c

applied on the contact point xCi can be easily obtained by identification of Eq. (6.79)
with the classical virtual work expression for a force element: δW = δqT gint.

gint,con
Ci

= P TΨ
T
Ci
RT

0 f c +



f c~(
XCi +ΨCiη

)
RT

0 f c

0

0

0


(6.81)

It can be noticed that the contact force vector (Eq. 6.81) has a compact form
owing to our choice to add explicitly the corotational frame coordinates (x0,α0) in the
set of superelement generalized coordinates (q). With the corotational frame defini-
tion proposed in [42], the contact formulation would be more cumbersome, especially
regarding the computation of the iteration matrix detailed below.

Contribution to the iteration matrix

In case of highly discontinuous behaviour such as resulting from unilateral contact,
an accurate estimation of the iteration matrix is needed to ensure good convergence.
Indeed, unless using extremely small time steps, the approximation of the iteration
matrix by the mass matrix is not acceptable because the contribution of the tangent
stiffness matrix is dominating.

The method of finite differences offers a simple way to obtain the tangent stiffness
and damping matrices. However, this approach increases drastically the CPU time.
Indeed, in order to compute the iteration matrix, each generalized coordinate involved
in the element definition is successively submitted to a unit variation and the associated
residual vector (Eq. 2.9) of the equation system has to be computed. For superelements
with a significant number of boundary nodes and internal modes, the determination
of the iteration matrix could be very costly. For instance, for the simple benchmark
presented in section 6.9 the CPU time is 30 times longer with the finite difference
approach than with an iteration matrix computed analytically.
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An analytical determination of the tangent matrices (Kt, Ct) requires an effort to
compute the absolute spatial derivative of the internal force vector gint,con

Ci
(Eq. 6.82)

but it has to be computed only once and the CPU time for the full simulation is
therefore greatly reduced.

dgconCi
(q,v) =

∂gcon
Ci

∂q
dq +

∂gcon
Ci

∂v
dv (6.82)

with dq =

{
dqs
dqm

}
, dv =

{
dvs

dvm

}
(6.83)

In order to simplify some mathematical expressions, the internal contact force
vector (Eq. 6.81) is restated as follows:

gint,con
Ci

= f

P TΨ
T
Ci
RT

0 n+



n
~
zCiR

T
0 n

0

0

0



 (6.84)

where zCi is a compact notation for:

zCi = XCi + uCi = XCi +ΨCiη (6.85)

The contact force f c has been decomposed in its amplitude f and the normal direction
n in order to separate the terms depending on the force amplitude from the terms only
ruled by geometric effects.

The spatial derivative of gint,con
Ci

can be now written as:

dgconCi
= df 1

f
gconCi

+ f d

P TΨ
T
Ci
RT

0 n+



n
~
zCiR

T
0 n

0

0

0



 (6.86)

The derivative of the force amplitude f defined by Equation (6.70) can be expressed
as:

df =
∂f

∂ℓ
dℓ+ ∂f

∂ℓ̇
dℓ̇ (6.87)

where the partial derivatives are computed as:
∂f

∂ℓ
= S∗

c

(
kp n ℓ

n−1 + c n ℓn−1 ℓ̇
)

,
∂f

∂ℓ̇
= S∗

c c ℓ
n (6.88)

The variation of the penetration length is simply obtained by derivation of Eq. (6.72):

dℓ = d
(
nT (xN1 − xCi)

)
= nT (dxN1 − dxCi) + (xN1 − xCi)

T dn
(6.89)
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where by analogy with Eqs. (6.76-6.77) the total derivatives dxCi and dxNi are put in
the form:

dxCi = dxs
0 −Rs

0
~
z
s
Ci

dΘs
0 +Rs

0Ψ
s
Ci
P s dqs (6.90)

dxNi = dxm
0 −Rm

0
~
z
m
CNi

dΘm
0 +Rm

0 Ψ
m
Ci
Pm dqm (6.91)

In case of triangular-shaped master contact faces, the derivative of the normal vector
n (see Eq. 6.61) takes the form:

dn =

(
I − nnT

)∥∥~xN12 xN13

∥∥ d
(~
xN12 xN13

)
=

(
I − nnT

)∥∥~xN12 xN13

∥∥ (~xN12 dxN13 −
~
xN13 dxN12

)
=

(
I − nnT

)∥∥~xN12 xN13

∥∥ [(~xN13 −
~
xN12

)
dxN1 −

~
xN13 dxN2 +

~
xN12 dxN3

]
(6.92)

The penetration velocity ℓ̇ is given by:

dl̇ = d
[
nT (ẋN1 − ẋCi) + (xN1 − xCi)

T ṅ
]

= (ẋN1 − ẋCi)
T dn+ nT (dẋN1 − dẋCi) + ṅT (dxN1 − dxCi) + (xN1 − xCi)

T dṅ
(6.93)

where the various terms not yet defined are given by the following expressions:

dẋNi = dẋm
0 +Rm

0

~~
z
m
NiΩ

m
0 dΘm

0 +Rm
0

~
Ω

m

0 Ψ
m
NiP

m dqm −Rm
0

~
z
m
Ni dΩm

0

−Rm
0

~
(Ψ

m
NiP

mvm) dΘm
0 +Rm

0 Ψ
m
NiP

m dvm +Rm
0 Ψ

m
Ni dPm vm

(6.94)

dẋCi = dẋs
0 +Rs

0

~~
z
s
Ci
Ωs

0 dΘs
0 +Rs

0

~
Ω

s

0Ψ
s
Ci
P s dqs −Rs

0
~
z
s
Ci

dΩs
0

−Rs
0

~
(Ψ

s
Ci
P svs) dΘs

0 +Rs
0Ψ

s
Ci
P s dvs +Rs

0Ψ
s
Ci

dP s vs

(6.95)

dṅ = d
(

I − nnT∥∥~xN12 xN13

∥∥
)

aṅ +
I − nnT∥∥~xN12 xN13

∥∥ daṅ

=
1∥∥~xN12 xN13

∥∥
[(~~

n aṅ +
~
n
~
aṅ

)
dn+

(
I − nnT

) (
daṅ − aṅ nT d

[~
xN12 xN13

])]
(6.96)

with

daṅ =
(~
xN13 −

~
xN12

)
dẋN1 −

~
xN13 dẋN2 +

~
xN12 dẋN3

+
(~
ẋN3 −

~
ẋN2

)
dxN1 +

(~
ẋN1 −

~
ẋN3

)
dxN2 +

(~
ẋN2 −

~
ẋN1

)
dxN3

(6.97)
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and

d
(~
xN12 xN13

)
=
(~
xN13 −

~
xN12

)
dxN1 −

~
xN13 dxN2 +

~
xN12 dxN3 (6.98)

The derivative in the second term of Eq. 6.86 can be easily expanded in:

d

P TΨ
T
Ci
RT

0 n+



n
~
zCiR

T
0 n

0

0

0



 = P T Ψ
T
Ci

~
RT

0 n dΘ0 + P TΨ
T
Ci
RT

0 dn

+



dn

−
~
RT

0 nΨCiP dq +
~
zCi

~
RT

0 n dΘ0 +
~
zCiR

T
0 dn

0

0

0


(6.99)

where the terms in dP have been neglected since they introduce second order contri-
butions.

The development of Equation 6.86 taking into account Equations 6.87-6.99 allows
computing the tangent stiffness Kcon

t and damping Ccon
t matrices can be computed.

Their explicit expression is not given for the sake of conciseness. In order to optimize the
computational efficiency, a particular attention has been given to the implementation.
For instance, some terms are grouped and the intermediate resulting matrices are saved
temporarily to reduce the number of operations. The contribution to the damping
matrix Ct is only included in the first term of Eq. 6.86 and is due to the presence of
hysteresis damping in the contact law (see Eq. 6.70).

Inasmuch numerous mathematical operations are needed (see Eq. 6.86-6.99), the
computation of the iteration matrix could be time consuming. However, since it is
not mandatory to have an exact iteration matrix to assure the convergence, some
contributions can possibly be omitted. Besides, instead of computing the iteration
matrix at each Newton-Raphson iteration, it could be evaluated only once per time
step or even kept constant for several time steps. According to the dynamics of the
system, the implementation of the tangent damping matrix is perhaps not necessary.
Some comparison tests could be performed in the future in order to find the optimal
strategy to reduce the CPU time.

6.9 Simple contact example

In order to assess the contact formulation developed in this work, the simulation of a
simple contact problem has been performed. The system is composed of two elastic bars
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constrained at their center of mass by a hinge joint along the x-axis and the contact is
induced by a torque applied along the rotation axis of the bar #2 (see Fig. 6.11).

1 m

0.1 m

0.1 m

0.8 m

0.2 m

0.15 m

x

y

z

# 1

slave body

# 2
master body

torque

prescribed 

rotation

boundary nodes

(a) initial configuration (t = 0 s) (b) final configuration (t = 2 s)

Figure 6.11: Simple contact example: positions of the bars and simulation setup.

Both bars are made of steel (Young’s modulus: 210 GPa, Poisson’s ratio: 0.3 ,
mass density: 7800 kg/m3). Both bars are initially meshed with hexahedral finite
elements and their model is then reduced by keeping the 8 vertices as boundary nodes
and adding 10 vibration modes. A static mode and an internal vibration mode are
depicted in Figure 6.12. The eigen frequencies of the first 10 internal vibration modes
are in the range [603; 3210] Hz for bar #1 and in the range [391; 3008] Hz for bar #2.
This example aims at verifying that the contact element can work with only a few
global shape functions in the reduction basis Ψ. The results obtained are acceptable
even though the accuracy of system response would improve by increasing the modal
basis.

In the initial configuration, the bars are at rest and separated by a very small gap.
The torque applied on the additional node linked to the corotational frame of bar #1

is linearly increased from 0 Nm at t = 0 s to reach −1000 Nm at t = 0.6 s and keeps
this value till the end of the simulation. The rotation of bar #2 is prevented during
the first second of the simulation and follows a ramp function until t = 2 s where the
rotation speed keeps a constant value of −1 rad/s.

For both bodies, the candidate contact zone assessed by the contact detection
algorithm is depicted in gray in Figure 6.13 and the effective contact area is colored
in red at t = 1.5 s. The bar deflections at the same time step are represented in
Figure 6.14.

This system has also been simulated using the finite element method in the com-
mercial software SAMCEF/MECANO in order to validate the proposed contact for-
mulation. The contact element that is used to model the contact condition between the
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(a) static mode (b) internal vibration mode (f1 = 391 Hz)

...

normalized
displacement
amplitude

1

Figure 6.12: Examples of retained modes in superelement bar #2.

two bars modelled with finite elements is described in section 3.3.1. Moreover, the sys-
tem response has been computed with a non reduced superelement, i.e., that all nodes
of the finite element mesh are retained as boundary nodes such that the superelement
matrices have the same size as the initial finite element model. The mesh is identical for
the three models and the time step is h = 0.01 s. As depicted in Figure 6.15, the total
magnitude of the contact force between the two bars is in good agreement for the three
methods although the computational effort is greatly reduced with the superelement
based model. The decrease of the contact force magnitude observed after about 1.3 s is
due to the sliding of the active contact zone along the contact face of the master body.
Indeed, for a constant torque applied on the master bar, the total magnitude of the
contact force decreases if the the distance from the rotation axis of the master body to
the active contact zone increases (Fig. 6.12(b)).

(a) master body (#2) (b) slave body (#1)

Figure 6.13: Candidate contact zones depicted in gray and effective contact zone colored
in red (t = 1.5 s).



178 Chapter 6. Modelling of contact between superelements

(a) master body (#2) (b) slave body (#1)

Figure 6.14: Bar deflections at t = 1.5 s (deformation scaled by factor 2000).
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Figure 6.15: Magnitude of the total contact force between the two bars.

6.10 Cam mechanism

The cam system depicted in Figure 6.16 is composed of two superelements (the cam
and the roller) and a spring. The material of both flexible bodies is steel. Only a few
boundary nodes are retained (18 for the cam and 9 for the roller); they are more or
less equally distributed along the vertical edge face. In addition, 20 internal vibration
modes are included in each superelement. Therefore, compared with the full finite
element model (Fig. 6.17), the number of DOFs of the whole system is greatly reduced:
from 107532 DOFs to 142 DOFs. The candidate contact zones are colored in gray in
Fig. 6.16. It includes numerous nodes for the cam since all the nodes of the vertical
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Figure 6.16: Simple cam system.

Figure 6.17: Finite Element model of the simple cam system.

edge face can enter in contact during a full revolution. For the roller body, only a
reduced section of the cylindrical face is considered.

The rotation speed of the cam is prescribed to 60 rpm whereas the roller can only
move in the direction of the spring and cannot rotate. The stiffness of the spring is
equal to k = 1.E5 N/m and its undeformed length is ℓ0 = 0.2 s. Whatever the angular
position of the cam during the revolution, the spring always works under compression.

Figure 6.18(a) shows that the boundary nodes of the cam are alternately loaded
according to the angular position: the closest boundary node to the contact points
undergoes larger deformations than the others ones. Conversely, on the roller the
contact occurs always in the same area. Therefore the deformation is mainly localized
around the same boundary node (see Fig. 6.18(b)). As depicted in Figure 6.19, a similar
behaviour can be observed for the modal amplitudes of the 20 internal vibration modes.
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Figure 6.18: Displacements of boundary nodes.
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(b) roller

Figure 6.19: Magnitude of modal intensities.

The proposed contact formulation defined between two superelements can be used
for contacts between rigid bodies too. Indeed, if only one boundary node having 6 DOFs
is retained and no vibration mode is included, the superelement model is reduced to a
6 DOFs system. The mode shape matrix is composed of the 6 rigid body modes and
the reduced mass matrix is simply given by the global mass and inertia matrix of the
whole body. The corotational frame is then equivalent to the unique boundary node.

This kind of rigid superelement provides a general approach to model contacts
with rigid bodies having a complex geometry. Indeed, the contact area has not been
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represented by an analytical expression as for classic contact formulation between rigid
bodies, see for instance Ref [47]. At each time, the geometry of the potential contact
zone is determined thanks to the modal basis.

The simulation of the cam system has been performed with a full FE model and
with the rigid version of the superelement bodies. The parameters are identical to the
model presented with superelements including only a small number of modes. The
time step size is equal to 1E.-3 s and the contact stiffness is 1E.12 N/m3. The spatial
discretization of the candidate contact zone is exactly the same for the three models.

There is a good agreement for the evolution of the contact force magnitude with
respect to the rotation angle of the cam computed with the three different models
(Figure 6.20). This result from the fact that the flexible effects are not dominant for
the system modelled.
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Figure 6.20: Contact force magnitude vs. rotation of the cam. The proposed contact
formulation is in accordance with a full FE model performed with SAMCEF/MECANO.
In this simulation, the superelements models either include a few modes (SE-curve) or
are degenerated to rigid bodies (rigid-curve).

6.11 Gear pair model

Multibody dynamics analysis of gear pairs is often based on the expression of global
kinematic joints defined between two rigid bodies representing the gear wheels. These
global models make use a spring and damper combination along the normal pressure
line in order to represent a unique idealized contact point between teeth (see for in-
stance Ref. [16] and Section 2.6). Such formulation of gear pair models is compact and
can be used to simulate complex mechanism systems including gears with relatively low
computational time. However, only properly meshing gears can be considered since the
disruptive effects are most of the time quite approximately represented. For instance,
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transmission devices with misalignment or crossed axes can hardly be accurately mod-
elled.

To model the gear flexibility more accurately and to capture the meshing defects,
one can resort to detailed finite element models of the two gear wheels and express the
contact conditions between tooth flanks [85]. Such detailed models are without doubt
the most reliable technique but they are quite complex to develop and involve a huge
computational time.

The modelling of gear wheels as superelements combined with the contact model
described previously allows accounting for the tooth flexibility and modelling the mis-
alignment, the gear hammering and the backlash with higher accuracy than classical
global models. Moreover, the formulation is more compact and computationally more
tractable than with full FE models. The proposed modelling approach takes the ac-
tual 3D geometry of the gear wheels (Fig. 6.21) into account and therefore aims at
predicting the actual contact points on teeth flanks.

#1, pinion

slave body

#2, gear

master body
candidate 

contact zones

prescribed

 rotation

viscous 

torque

boundary nodes

Figure 6.21: Gear pair model.

6.11.1 Selection strategy of slave-master flank pairs

If the candidate contact zone on the skin of bodies under contact is large and includes
numerous nodes, the detection procedure can be numerically very costly. Indeed, in
this case the projection method of a slave node on a master surface (Section 6.6) has
to be repeated a large number of times.

In order to reduce the number of mathematical operations and consequently the
computational time, the candidate contact zone can be split in several subareas. A
suitable strategy allows determining which contact zones of the two bodies have to be
tested by the contact detection algorithm.
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For gear pair simulation, each tooth flank can be considered as an individual small
candidate contact zone and the several steps described hereafter aim at identifying the
couples of slave-master flanks to be supplied to the detection algorithm.

Initial configuration (t = 0 s)

1. Select a reference node on each tooth flank and compute its absolute position.

A reference node is chosen on each candidate contact zone, i.e., each tooth flank.
The absolute position of these reference nodes can be easily determined by means
of Equation 6.59. For instance, the reference nodes can be located at the tops of
gear teeth as depicted in Figure 6.22.

The boundary nodes should be used as reference nodes if there is at least one
boundary node per tooth as discuss in section 6.11.2. In that case, the position
of the reference nodes is available from the vector of generalized coordinates and
has not to be computed. One reference node per gear tooth could be sufficient to
determine the pairs of slave and master flank for which the presence of contact
has to be assessed (see the coarse collision detection presented in Ref. [151]). Nev-
ertheless, in this dissertation thesis with the aim of having a general framework
which can be easily extended to other transmission components than the gear
pairs, each candidate contact zone can have its own reference node which is not
necessarily a boundary node.

Reference nodes

e

r
i

Figure 6.22: A reference node is selected on each tooth flank.

2. Determine the closest slave reference node to the center distance of the gear pair.

The slave reference node closest to the center distance of the gear pair can be
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obtained by solving:

max
(

ri · e

∥ri∥ ∥e∥

)
(6.100)

where e is the vector between the rotation centers of the two wheels and the ri
are the vectors from the rotation center to the reference nodes of the slave gear
wheel.

3. Determine the tooth flank of the master gear wheel which is the nearest to the
central slave flank.

Once the closest slave flank is known, the nearest master flank to this latter slave
flank has to be determined. To this end, the minimum distance pi is looked for
(see Fig. 6.23).

reference nodes

.
pi

1 2 3 4

1 2 3 4

.

flank number

Figure 6.23: Determination of the nearest master flank to the central slave flank.

4. Construct the map with the slave and master tooth flank matched.

From the knowledge of the slave and master tooth flank ID number around the
gear pair center distance, the couple of tooth flanks that could be in contact in
a near future are easily determined. Indeed, if the contact zones related to the
tooth flanks are numbered consecutively on the two gear wheels (Fig. 6.23), it is
only needed to increment the tooth flank ID numbers to get the next tooth flank
pairs to be in contact and to construct a map in this way.

Current configuration

1. Compute the position of the slave reference nodes and determine the closest slave
tooth flank to the center distance.
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At each time step, the position of the reference nodes of the slave wheel are
recomputed and the closest node to the center distance has to be determined
following the same procedure as in the initial configuration (t = 0 s).

2. Update the map of flank couples if necessary and take a few flanks on both sides
of the central flank.

The contact between gear teeth can simultaneously occur between one or several
gear tooth pairs. Therefore, the contact detection has also to be performed for
a few number of flanks on each side of the central slave-master pair. The total
number of flanks which have to be considered depends on the contact ratio of
the gear pair (see Ref. [62] for more details). Usually, the number of tooth pairs
simultaneously in contact does not exceed three, so that the potential contact
zones are often limited to six.

The ID number of the central slave flank determined at the previous step enables
to localize the set of slave-master couples in the table map which are provided to
the contact detection algorithm.

Since the gear wheels often have a prime number of cogs, the same tooth flanks
on both wheels rarely enter in contact. Therefore, the map is only constructed
for a restricted number of slave-master flanks potentially in contact, for example
the smallest number of flanks of the two wheels. Then, the table map is updated
from time to time when the selection task of the set of couples tries to exceed the
dimension of the table map.

6.11.2 Position of boundary nodes

When developing the model, the number and the location of boundary nodes have to be
chosen with great care. Indeed, the system response is significantly influenced by the
static modes. Furthermore, the shape functions and the eigen frequencies of vibration
modes depend directly on the spatial distribution of superelement boundary nodes.

Keeping one or several static modes for each gear tooth seems a suitable ap-
proach in order to describe properly the bending of each tooth. Therefore, at least one
boundary node per gear tooth has to be retained in the superelement model. Several
configurations have been considered to select the set of boundary nodes (see Fig. 6.24)
while keeping a reasonable model size for the resulting superelement.

The most natural choice consists in retaining the closest node to the center of each
tooth tip face as a boundary node. However, as depicted in Figure 6.25, the deformed
shapes of static modes present huge deformations localized around the boundary nodes.
These non-uniform displacements on tooth flanks can lead to partial contact paths along
the wheel facewidth.

A solution to circumvent this drawback consists in introducing an additional node
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(a) physical center node (b) mean joint on the tooth head face

(c) mean joint with both flanks (d) mean joint for each tooth flank

Figure 6.24: Various choices of boundary node configurations on each gear tooth.

near the center of each tooth head face and define this node as the mean frame con-
nected to the nodes on the tooth head. Then, only these extra nodes are retained
as boundary nodes of the gear wheel superelement. In this case, there are no longer
localized deformations around the boundary nodes for the static modes (see Fig. 6.26).

The 6 DOFs related to the additional node are prescribed by 6 constraints which
can be formulated as proposed in [87]:

Φtr(q) ≡
nG∑
i=1

(
1

nG
uGi

)
− uA +

nG∑
i=1

(
1

nG
(xGi − xA)

)
×ΨA = 0

Φrot(q) ≡
nG∑
i=1

(
1

nG
(xGi − xA)× (uGi − uA + (xGi − xA)×ΨA)

)
= 0

(6.101)

where nG is the number of nodes selected on the FE model and included in the master
node group, ΨA is the 3×1 vector of rotation parameters associated with the additional
node. These constraint equations assume a linear behaviour which is valid since only
small displacements are considered in the Craig-Bampton method. The value given to
xA and ΨA can be interpreted as the mean position and rotation of the node group
located on the tooth head. Each node of the master node group have the same weight
(1/nG) in the constraint formulation. Therefore, if the node group corresponds to a face
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(a) x-direction (b) y-direction (c) z-direction

(d) f2 = 11789 Hz (e) f25 = 37261 Hz

...

normalized
displacement
amplitude

1

Figure 6.25: Deformation modes of gear wheel superelement when the center node
of each tooth head face is retained as a boundary node: (a)-(c) static modes; (d)-(e)
internal vibration mode.

of the 3D body (e.g. a tooth flank), the nodes on the face boundaries get the same loads
as the center face nodes instead of one half load. This fact could explain the non-uniform
deformation observe on the top and the bottom of the teeth in Figures 6.26-6.28.

The aim of this mean element is similar to that of the corotational frame definition
presented in section 6.5 (Eq. 6.50) but the kinematic constraints are not at the same
stage of the modelling process. Indeed, the constraints enabling to determine the
position and the orientation of the additional node are defined between the nodes of
the initial finite element model, whereas the corotational frame constraints are based
on the boundary nodes of the reduced model.

In contrast to the previous choice of boundary nodes, the torsion of the gear teeth
is represented by static modes (Figs. 6.26(d)-6.26(f)) but this implies that the total
number of static modes in the superelement is doubled.

Other choices are possible for the master node group of the mean element. For
instance, all the nodes located on the two tooth flanks can be considered as master nodes
(see Fig. 6.27). In the latter case the slave node is near the tooth center. Since the
contacts in gear pairs occur between the tooth flanks, this choice seems more physical
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(a) x-direction (b) y-direction (c) z-direction

(d) x-rotation (e) y-rotation (f) z-rotation

(g) f2 = 16639 Hz

...

normalized
displacement
amplitude

1

Figure 6.26: Deformation modes of gear wheel superelement when the boundary nodes
are additional nodes linked to each tooth head face by a mean joint: (a)-(f) static
modes; (g) internal vibration mode.

than the mean defined on the tooth head face.

In order to capture the compression of the teeth due to the gear meshing, two inde-
pendent mean elements can be used for each gear tooth, one per tooth flank (Fig. 6.28).
Hence, there are two boundary nodes for each tooth and the number of static modes
is multiplied by two.

Many others spatial configurations can be imagined for the boundary nodes. Since
the deformations due to gear engagement are mainly localized inside the teeth, the
modal basis needs to be able to represent accurately the tooth strains.

The node associated with the corotational frame offers a convenient way to pre-
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(a) x-direction (b) y-direction (c) z-direction

(d) x-rotation (e) y-rotation (f) z-rotation

(g) f2 = 29239 Hz
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normalized
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Figure 6.27: Deformation modes of gear wheel superelement when the boundary nodes
are additional nodes linked to the two flanks of a same tooth by a mean joint:
(a)-(f) static modes; (g) internal vibration mode.

scribe the rotation or to apply a torque onto a gear wheel. This is due to the fact
that the corotational frame coordinates have been included in the set of generalized
coordinates (Eq. 6.17).

Another solution consists in placing a boundary node on the rotation axis and to
apply the loads on this boundary node. Since there is often a bore in the gear web in
order to connect the wheel to the driveshaft, a mean element between the cylindrical
face of the hole and an additional node located on the rotation axis is also needed.
In this way, the deformations of the gear wheel when driven by the driveshaft are
represented by a set of six static modes (see Fig. 6.29). With this configuration, the
node associated with the corotational frame is not necessarily exactly located on the
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(a) x-direction (b) y-direction (c) z-direction

(d) x-rotation (e) y-rotation (f) z-rotation

(g) f2 = 22765 Hz
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Figure 6.28: Deformation modes of gear wheel superelement when the boundary nodes
are additional nodes linked to each tooth flank by a mean joint: (a)-(f) static modes;
(g) internal vibration mode.

rotation axis of the gear wheel. Its coordinates depend on the deformation distribution
of the boundary nodes and are determined by the constraints defined in Eq. 6.50.

6.11.3 Spur gears

In this section, numerical results are presented for the simulation of a spur gear pair.
The geometric data of the pinion and the gear come from Ref. [89] and are summarized
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(a) x-translation (b) x-rotation

(c) z-translation (d) z-rotation

...
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Figure 6.29: Static modes for the connection between the gear web and the driveshaft
(model with mesh nodes chosen as boundary nodes, Fig. 6.25).

in Table 6.1. As for the two previous test models, the material properties correspond
to a standard steel: Young’s modulus = 210 GPa, Poisson’s ratio = 0.3 , mass density
= 7800 kg/m3.

Pinion Gear
Number of teeth [-] 16 24
Pitch diameter [mm] 73.2 109.8
Outside diameter [mm] 82.64 118.64
Root diameter [mm] 62.50 98.37
Face width [mm] 15 15
Addendum modification coefficient [-] 0.196 0.125
Pressure angle [deg] 20 20
Module [mm] 4.5 4.5

Table 6.1: Geometric data of spur gear wheels [89].

The configuration of boundary nodes where there is one boundary node per tooth
flank has been chosen (see Fig. 6.28). This choice has been made to have the closer
model to the dual superelement approach developed in the next chapter (Section 7.6.1)
and allow in this way a consistent comparison of numerical results between both su-
perelement formulations.
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A boundary node is also located at the center of mass of the gear wheel (see
Fig. 6.29). This node is connected to the bore in the gear web by a mean joint (see
Eq. 6.101). This last boundary node is used to apply a torque or to prescribe the
rotation of the gear wheel.

The superelement of the pinion and the gear wheel have 33 and 49 boundary nodes
respectively and also includes 100 vibration modes. Therefore, the size of the reduced
models amounts to 298 and 394 DOFs, which is much lower than the initial finite
element models (331968 DOFs and 148203 DOFs respectively). The eigen frequencies
are in the range [35331; 146068] Hz for the pinion and in the range [19513; 116664] Hz
for the gear.

A hinge joint between the ground and the boundary node attached to the gear web
bore is introduced to avoid the inclination of the wheel rotation axis. The misalignment
will thus not be studied in this simulation. In order to analyze the dynamic response
when there is a significant backlash between teeth, the center distance is set to 91, 5 mm.

Analysis of gear wheel deformation

In a first step, in order to assess in a simple way the proposed flexible gear pair model
based on contact detection between two superelements, the following load cases have
been applied to the system:

- the rotation of the gear wheel #2 is prevented;

- a torque is applied on the pinion gear following a ramp function (20 Nm after
t = 5 10−3 s.

At the initial time, the two gear wheels are separated by a narrow gap and the
applied torque induces the contact between teeth. The dynamic simulation is performed
using the generalized-α integration scheme with a fixed time step (h = 10−4 s) and a
spectral radius equal to ρ∞ = 0.1.

The element faces detected in contact on the tooth flanks are depicted in red in
Fig. 6.30 for both wheels. They are aligned along a line parallel to the rotation axis
and their radial location is consistent with the angular position of the gear pair.

As mentioned in Section 6.6, the spatial discretization on the contacting faces has
to be finer for the slave body than for the master body. Figure 6.30 shows that this
recommendation is respected: 247 nodes are on each tooth flank of the slave body
and 96 faces are on each tooth flank of the master body. This mesh grid enables to
capture the meshing irregularities occurring for instance in case of misalignment but is
too coarse to compute accurately the stresses. Let us note that since the rotation axes
are fixed in the present test case, a smaller number of nodes and element faces could
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have been chosen along the gear width direction because the contact always occurs on
the full face width. In order to avoid penalizing the computational efficiency, a strategy
has been adopted to reduce the number of projections, i.e., the slave nodes close to the
upper edge of the gear wheel are not projected onto the lower master faces.

(a) pinion, slave body (b) gear, master body

Figure 6.30: Zone of tooth flanks in contact (in red). The candidate contact zones
tested by the contact detection algorithm are the complete tooth flank surfaces (in
gray).

The displacement of each point of the gear wheels can be computed from the gener-
alized coordinates and the mode matrix of the superelement models (see Eq. 6.15). The
norm of displacements in the three directions is illustrated in Fig. 6.31. As expected,
the deformations are mainly concentrated in the gear teeth while the gear wheels un-
dergo almost no deflection. A small deformation is nevertheless observed around the
bore in the gear web and is due to the static modes associated with this connection
between the gear wheel and the driveshaft. The maximum deformation amplitude is
different for the two gear wheels since the thickness at the tooth root varies with the
number of teeth. The position of the contact forces along the height of the teeth can
also explain the difference of deformation between teeth. The zoom and amplified view
in Fig. 6.32 shows the ability of the superelement model to represent the tooth bending.

The modal intensities of all internal vibration modes and the local displacements
of all boundary nodes are represented in Figs. 6.33-6.34 for both gear wheels. The two
boundary nodes attached to the tooth in contact undergo much larger displacements
than the other boundary nodes (see Figs. 6.33(b)-6.34(b)). The displacements are al-
most null for the teeth at the opposite of the contacting tooth. The constant amplitude
of the vibration modes in the steady state phase demonstrates the static contribution
of these modes to the response of the superelement.

Figure 6.35 represents the time evolution of the amplitude of the contact force
between superelement gear wheels. After some oscillations, a closed contact condition
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(a) pinion, slave body (b) gear, master body

Figure 6.31: The deformation of gear wheels are mainly concentrated in the teeth.

Figure 6.32: The tooth bending produced by gear contact is accounted for by the
superelement model (deformation scaled by factor 2000, the wireframe representing
the undeformed shape of the gear wheel #2).

is established between the tooth flanks resulting in a constant total contact force applied
on the tooth flank. The angular position and the rotation velocity of the gear wheel
submitted to the torque are given in Fig. 6.36 where it can observed that after a
transient phase the wheel reaches a fixed angular position.

If the initial relative angular position of the two gear wheels is slightly modified
and the torque amplitude is increased, the contact simultaneously occurs between two
pairs of teeth (see Figs. 6.37-6.38). As depicted in Fig. 6.39, the amplitude of the total
contact force is not equitably distributed between the two teeth pairs which explains
why the deformations are not equal for both teeth. The tooth #2 enters in contact
first and when the tooth has bend the tooth #1 also enters in contact.
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(a) ηI : internal vibration modes
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(b) uB : boundary nodes

Figure 6.33: Time evolution of superelement local coordinates (pinion).
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(b) uB : boundary nodes

Figure 6.34: Time evolution of superelement local coordinates (gear).
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Figure 6.35: Amplitude of the total contact force applied on the tooth flank in contact.
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Figure 6.36: Angular position and velocity of the pinion gear #1.

(a) pinion, slave body (b) gear, master body

Figure 6.37: Zone of tooth flanks in contact (in red) when there are two teeth simul-
taneously in contact. The candidate contact zones are the full tooth flank surfaces (in
gray).

Dynamic simulation of gear meshing

In this section, the dynamic response of the spur gear pair is simulated with boundary
conditions that mimic classical interactions with the rest of a transmission system.

At the initial time, both gears are not in contact and their rotation velocities are
−1000 rpm for the pinion and 667 rpm for the gear according to the transmission ratio.
During the whole simulation, the gear rotation is still prescribed at the same velocity
whereas a viscous torque (T = −c ω(rad/s)) is applied on the pinion. This torque tends
to slow down the gear and leads to contact between teeth of the geared wheels. Both
gear wheels rotation axis are fixed, so that misalignment effects are not be studied here.
The simulation is performed with a fixed time step of 1.E-6 s.
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Figure 6.38: Norm of nodal displacements on gear wheels when there are two tooth
pairs in contact.
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Figure 6.39: Amplitude of the contact force applied on the two tooth flank simultane-
ously in contact.

The penalty factor kp of the contact law has been chosen much higher than
the tooth stiffness to have a penetration length between the two bodies several or-
ders of magnitude smaller that the tooth deformation. The damping coefficient c has
been set to a value allowing to introduce enough dissipation to manage the impacts
due to backlash or gear hammering. The values given to these two parameters are
kp = 1E.17 N/m3 and c = 1E.12 kg/(m2s).

Figure 6.40 displays the amplitude of the accumulated normal contact force applied
on tooth flanks of the pinion. It can be observed that during the gear meshing there is
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an alternation of time periods with one pair of teeth in contact and periods with two
pairs simultaneously in contact. As a consequence of this variation of the mesh stiffness,
the rotation of the gear wheels is not uniform during the revolution (Fig. 6.41).

Except during the single-teeth contact stages, the contact forces on tooth flanks
vary steeply. Some abrupt changes occur when a second pair of teeth enters in contact
or when switching from double to single-teeth contact. Indeed, due to the flexibility
of the gear wheel, the applied contact forces give rise to small tooth deflections which
result in geometrical improper contacts between gear tooth involutes. The proposed
model is able to represent these undesired physical phenomena. For instance, the tooth
tip might enter in contact too early (see Fig. 6.42) and produce a shock during the gear
meshing. These hard contacts generate gear noise, transmission error and wear. As
described in Ref. [89], the deviations from the theoretical geometry of the flank profiles
due to the manufacturing process can also lead to similar effects. Reference [106]
points out that a flank profile correction by tip relief allows to significantly reduce the
discontinuities on contact force curves.
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tooth 8 / flank 2

tooth 9 / flank 2

tooth 10 / flank 2

tooth 11 / flank 2

tooth 12 / flank 2

tooth 13 / flank 2

tooth 14 / flank 2

Figure 6.40: Normal contact force applied on tooth flanks of gear #1.

Another contribution to the sudden modifications of the tooth contact forces has a
numerical origin and lies in the spatial discretization of the tooth involute. When slave
nodes in contact move from one master face to another (see Fig. 6.8), a discontinuity
can occur. This is particularly the case with the contact detection algorithm used
here (Section 6.6) and the coarse mesh adopted in the present spur gear superelement
models (Fig. 6.43).

Even though the contact force on each tooth flank is highly fluctuating, the total
force magnitude for all tooth flanks in contact oscillates around the constant value cor-
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Figure 6.41: Rotation velocity of the gear #1 which is submitted to the viscous torque.

Figure 6.42: The tooth bending leads to inappropriate contact configuration such as
too early tip contacts between gear teeth (t = 0.0046 s).

responding to a perfectly steady operation (Fig. 6.44(a)). The reaction torque related
to the kinematic constraint prescribing the rotation velocity of the gear #2 is depicted
in Fig. 6.44(b) and also shows some noise but the mean value verifies the transmission
ratio.

The local displacements of the boundary nodes in the corotational frame are given
in Fig. 6.45 for the pinion. It can be noted that the global evolution is similar to
the distribution of the contact force between tooth flanks. The two boundary nodes
attached to each tooth in contact undergo a much higher deformation than the other
teeth. When a tooth has left the contact zone, the boundary nodes remains nearly
undeformed. The only boundary node loaded during the full revolution is the node lo-
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(a) slave body (b) master body

Figure 6.43: Spatial discretization on the flanks of gear teeth.
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Figure 6.44: Total magnitude of the normal contact force between tooth flanks and
reaction torque due to the imposed rotation speed of gear wheel #2.

cated on the rotation axis and used to applied the torque. The red curve on Fig. 6.45(b)
with a nearly constant value corresponds to the static mode in torsion of this node.

The modal intensities of the internal vibration modes are illustrated in Fig. 6.46:
they exhibit some oscillations when the contact forces present discontinuities.

Figure 6.47 shows that the deformation of teeth is three orders of magnitude higher
than the mean penetration between the two bodies. The values given to the penalty
parameter and the damping parameter of the contact law are thus appropriate.

The tooth deformation is directly related to the applied torques on the gear wheels.
In order to assess the influence of the tooth bending on the contact force distribution
between tooth flanks, the same spur gear pair system has been simulated with a smaller
and a higher torque on the pinion (see Figs. 6.48-6.49). To this end, the damping
parameter c of the viscous torque applied on the pinion (T = −c ω) has been multiplied
or divided by a factor 10, the other parameters remaining unchanged.
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(a) uB : local displacement amplitudes in trans-
lation
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(b) γB : local displacement amplitudes in rotation

Figure 6.45: Boundary node displacements (gear #1).
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Figure 6.46: Time evolution of the modal intensities of internal vibration modes (gear
#2).

The comparison of Figs. 6.40, 6.48(a) and 6.49(a) shows that the tooth flexibility
has a huge influence on the distribution of the gear contact force between the various
tooth flanks. The duration of the periods when only one pair of teeth is in contact
decreases when the applied torque increases since the teeth stay longer in contact due
to tooth bending. Indeed, with the high torque value (Fig. 6.48(a)) the deformation
is such that there are always two flanks in contact. In contrast, the periods with
two tooth pairs simultaneously in contact are very short when a low torque is applied
(Fig. 6.49(a)) and instants when the contact is completely lost between the two gear
wheels also appear due to the large backlash of the modelled gear pair. Figure 6.50
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(a) mean deformation of the entire tooth
flank face
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(b) mean indentation between the slave
nodes and the master faces for the five
pairs tested by the contact detection
algorithm

Figure 6.47: Comparison of the mean deformation of tooth flanks with the mean pen-
etration length of the penalty based contact force formulation.

depicts the impacts occurring at the beginning of the simulation and demonstrates the
ability of the model to simulate gear hammering.

The numerical results show that for the gear pair system studied here and the load
cases adopted, the flexibility has a significant influence on the dynamic response. In
order to assess the advantage of the proposed fully elastic gear pair model compared to
fully rigid body models, the same system has been simulated with rigid superelements,
i.e., each gear wheel is reduced to a unique boundary node and no internal vibration
mode is included.

As represented in Fig. 6.51(a), there are never two tooth pairs simultaneously in
contact. This is due to the very high contact stiffness used in the contact law (the
same value as for the previous simulations) which leads to contact separation between
two flanks as soon as a second tooth pair enters in contact. This phenomenon results
in a highly discontinuous behaviour of the gear contact force. Let us note that most
rigid body gear pair models (e.g., Ref. [16]) circumvent this drawback by reducing the
contact stiffness in order to obtain a smoother response. The non negligible penetration
permitted between the gear teeth relaxes the discontinuity and can be interpreted as a
global measure the gear wheel deformation. In this way, the variation of the number of
teeth in contact can be represented. Nevertheless, this kind of gear model represents
the various effects of the flexibility in a more global way than the approach developed
in this thesis and can result in a lack of accuracy in some non-standard configurations.
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(a) Repartition of contact forces between
tooth flanks
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(b) Total contact force between gear teeth
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(c) Resistant torque on gear #2
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(d) Angular velocity of the pinion

Figure 6.48: Influence of tooth bending on the spur gear dynamic response when the
viscous torque is 10 times higher (T = −10 c ω).
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(a) Repartition of contact forces between
tooth flanks
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(b) Total contact force between gear teeth
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(c) Resistant torque on gear #2
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(d) Angular velocity of the pinion

Figure 6.49: Influence of tooth bending on the spur gear dynamic response when the
viscous torque is 10 times lower (T = −0.1 c ω).
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Figure 6.50: Zoom on impacts between tooth flanks at the beginning of the simulation
(T = −0.1 c ω).
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(a) Repartition of contact forces between
tooth flanks
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(b) Total contact force between gear teeth
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(c) Resistant torque on gear #2
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(d) Angular velocity of the pinion

Figure 6.51: Dynamic response of the spur gear pair with rigid gear wheels (T = −c ω).
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6.12 Concluding remarks

The contact formulation presented in this chapter is defined between two flexible bodies
modelled as superelements. One major originality of the proposed approach addresses
the determination of the spatial configuration of the potential contact zones from the
superelement generalized coordinates. The contact forces computed in the 3D space
are reformulated and directly applied upon the superelement generalized coordinates.
Such approach allows very compact models of contacting bodies.

For systems with wide potential contact zones or with several sliding contact paths,
the size of the reduced model would still be rather large if each potential contact node
had to be retained. For instance, in the model of a gear pair, all the nodes on the teeth
flanks can enter into contact during the gear mesh. In the formulation developed in
this work, in order to keep the model as compact as possible, all the candidate contact
nodes do not need to be included in the vector of generalized coordinates, so that a
large number of nodes of the skin can still be condensed.

At each time step, the component mode description allows to reconstruct the 3D
geometry of the candidate contact zones from the generalized coordinates of the su-
perelement and the global shape functions of both static and dynamic modes. From the
absolute positions of the candidate contact node, a node-to-face projection algorithm
is used to detect the active contact zone. The contact forces are evaluated by a contact
law based on a penalty method with stiffness and damping contributions. Then, these
contact forces are mapped to the coordinates of the reduced model using nonlinear
kinematic relationships.

The classical Craig-Bampton method has been adopted as the elastic model order
reduction technique. It describes the body flexibility by a mixed set of static modes
related to the boundary nodes and vibration modes related to the internal nodes. The
reduced body matrices are defined in a corotational frame that follows the overall
motion of the body, so that one can assume linear elastic behaviour in case of small
strains. Only a couple of nodes, not compulsorily located on the contact zone, have to
be selected as boundary nodes.

With the implementation achieved in the thesis, the full process to perform the
dynamic simulation of contacts between superelements consists of three steps (see
Fig. 6.52). The 3D geometry of each body is first constructed in a CAD software
(CATIA V5). In a second step, the mesh to obtain the initial finite element model
as well as the computation of the reduced matrices (M , K, Ψ) of the superelement
are achieved using the SAMCEF FE software [87]. Last, the contact condition is fully
implemented in MATLAB and the integration of the DAE-system during the model
simulation is also performed in the development code.

The developed contact model between superelements offers a comprise between
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Figure 6.52: Various step of contact model between superelements.

rigid body models and fully elastic FE models. The flexibility effects of contacting
bodies are globally represented by keeping a reasonable model size. Besides the contacts
between two flexible bodies, rigid/flexible contacts or rigid-rigid contacts can also be
represented by the contact formulation detailed in this chapter. In contrast to the
rigid-rigid contact models developed in Chapters 4 and 5, no assumption is made for
the geometry of the contacting surfaces and complex configurations can be represented.

The relevance of the developed contact approach between superelement models
for the dynamic analysis of transmission devices has been assessed through simulation
results of two simple benchmarks first, and then on a spur gear pair model.

The general gear pair model presented in this thesis is able to represent tooth
bending and meshing defects such as misalignment, backlash or non-standard flank
profiles. Since the objective is to obtain global models of transmission components, the
number of modes included in each gear wheel superelement model is greatly reduced
compared with a full FE model. Only one or two boundary nodes per tooth have been
retained in the superelement model in order that the tooth bending is represented by
static modes. The full gear pair model includes about 300 coordinates per gear wheel
which is much lower than the 1500 modes used in the work described in Ref. [151].
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The contact detection algorithm is very simple but comparative tests have shown
that a major part of the CPU time is dedicated to the numerous projections of slave
nodes on master faces. Some improvements have been introduced to reduce the number
of projections, e.g., a selection strategy of tooth flanks around the gear pair center
distance.

As a perspective to this work, a more efficient contact detection algorithm could be
used before to consider the implementation in a commercial software. In order to avoid
numerical oscillations due to a coarse discretization of the contact surface, a smooth
detection algorithm based on a parametric curve to represent the actual geometry of
the contact surface could be investigated (see Ref. [21]). In order to assess the number
of modes needed to obtain a given accuracy, a detailed comparative study could be
perform for various gear pair configurations.
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As in the previous chapter, this chapter addresses the modelling of contacts be-
tween superelements, the gear pairs being the main application system (Section 7.6).
Nevertheless, another kind of elastic reduced order model is considered here: the dual
Craig-Bampton method described in Section 7.2. As a consequence, only small changes
appear in the contact force formulation which is summarized in Section 7.5. The expres-
sion of the kinematic constraints needed to connect the superelement to its environment
are given in Section 7.4. Finally, the chapter ends with the presentation of simulation
results (Section 7.6).

7.1 Introduction

The new contact formulation between superelements presented in Chapter 6 has shown
satisfying results. Nevertheless, using another basis of deformation modes could im-
prove the accuracy and the reliability of the mechanical response and reduce the CPU
time of the simulation. The Craig-Bampton method is an efficient linear reduction

209
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technique for numerous fields of applications but it is perhaps not the best choice when
the superelements are connected to its external environment by contact forces.

As described in section 6.3, the Craig-Bampton substructuring technique is based
on static modes, which correspond to a unit displacement of one boundary node while
the other boundary nodes are clamped. The resulting shape functions present localized
deformations around the associated boundary node and nearly no deformation outside
this local area. Therefore, they poorly represent the global body deformation involved
by contact forces which can occur on large contact zones that are continuously changing
with the current configuration. This is particularly the case with the approach adopted
previously which is based on a restricted number of boundary nodes to keep the model
as compact as possible.

Moreover, the internal vibration modes have the meaning of deformation modes
between fixed boundary nodes. The eigenfrequencies and eigenmodes included in the
model are then strongly dependent on the number and position of the boundary nodes.

In order to circumvent these drawbacks, this chapter studies a formulation of
the superelement using the dual approach. Among the various dual reduction tech-
niques, the dual Craig-Bampton method developed by Rixen is chosen (see [113] for
linear structures and [144] for planar co-rotated multibody dynamics). This dynamic
substructuring method is based on a set of free interface eigenmodes completed by
residual attachment modes. The substructures are assembled through interface forces.
This choice is more natural than the MacNeal or Rubin methods [42] which enforce the
superelement connectivity through displacements of interface nodes.

7.2 Dual Craig-Bampton method

The dual Craig-Bampton method is a linear reduction method based on the mechanical
admittance concept [41, 77]. This latter consists in representing the dynamic response
of a structural component by means of its free-free vibration modes Ψf which are
obtained by solving the eigenvalue problem:(

K − ω2M
)
Ψf = 0n×n (7.1)

where K and M are the stiffness and mass matrices of the initial finite element model
which has n degrees of freedom.

The first free-free vibration modes are the rigid body modes and have a zero
eigenfrequency. They can be easily expressed as three pure translation modes and
three pure rotation modes about the three directions of the reference frame (see the
definition of U rig, Eqs. 6.51-6.52 in Section 6.5). These rigid body modes are mutually
M -orthogonal, so that:

UT
rigMU rig = µrig (7.2)
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with

µrig =

[
µtr 0

0 µrot

]
(7.3)

where µrot is the inertia matrix expressed in the reference frame and µtr = mI, m being
the total mass of the component. If the reference triad is aligned with the principal
axes of the structure, µrot = diag(I1, I2, I3) is also a diagonal matrix where the Ii are
the principal moments of inertia.

In order to reduce the size of the system matrices, only a subset of eigenmodes
are retained in the superelement and consequently the reduction basis includes nf free
vibration modes. This restricted number of vibration modes Ψf does not contain
the six rigid body modes and verifies the orthogonality properties:

Ψ
T
f KΨf = ω2

f µf (7.4)

Ψ
T
f MΨf = µf (7.5)

Ψ
T
f MU rig = 0 (7.6)

where µf and ω2
f are diagonal matrices of dimensions nf × nf with respectively the

generalized modal masses and eigenvalues (ωi = 2πfi with fi the eigenfrequencies).
The set of free vibration modes retained are often the first eigenmodes with the lowest
eigenfrequencies but it is not mandatory, e.g., a set of eigenmodes only in the frequency
range of interest can also be selected.

The mechanical admittance principle states that the static response at interface
points is correctly represented only if all free-free vibration modes are accounted for.
Therefore, when using a truncated set of free-free vibration modes, the superposition of
a residual flexibility correction is needed to recover a correct behaviour at attachment
nodes.

The static modes, called attachment modes, related to the interface connections
are collected in Q and are the solutions of

K Q = AT
rig G (7.7)

where G is a n×nr matrix in which each column describes a unit load applied on one
of the nr boundary degrees of freedom. Arig is a projection operator which transforms
the set of loads G into self-equilibrated loads so that Equation 7.7 remains solvable for
a semi-definite system:

Arig = I −U rigµ
−1
rigU

T
rigM (7.8)

This operator allows to filter the rigid body modes U rig:

x∗ = Arig x → x∗TMU rig = 0 ∀x (7.9)

The attachment modes are often computed by the method of temporary links or
by an alternative method which consists in solving a constrained system. Both methods
are presented in the following.
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Temporary links

The method of temporary links consists in fixing temporarily the structure to avoid
the singularity of the stiffness matrix due to rigid body modes or kinematic modes. In
this way, a pseudo-inverse of the stiffness matrix can be computed. The full procedure
is presented in Ref. [44]. The method can summarized in Eq. 7.10 providing a very
compact formulation to compute the static response of a free-free structure.

Kaa Kal 0

K la Kll I

0 I 0


Qa,1 Qa,2

Ql,1 Ql,2

λ1 λ2

 =

Ga MU rig,a

Gl MU rig,l

0 0

 (7.10)

The degrees of freedom of the initial FE model are partitioned into free DOFs qa
and a set of nl constrained DOFs ql where nl is the number of rigid modes. The n×nr
matrix G is a Boolean matrix in which each column represents the unit external load
applied on the DOFs associated with each individual attachment mode. It is partitioned
into the (n−nl)×nr and nl ×nr matrices Ga and Gl; nr is the number of attachment
modes.

The last set of equations in the system 7.10 can be seen as iso-static constraints
which allow to lock the structure, Ql = 0. The set of Lagrange multipliers λ1 (nl×nr)
and λ2 (nl × nl) can be interpreted as the reaction forces at the locked DOFs.

In order to obtain the static response of the free-free structure, i.e., the attachment
modes J , the system responses Q1, Q2 have to be combined following Equation 7.11
which leads to have null reaction forces at the DOFs temporarily locked.

J = Q1 −Q2 λ2
−1 λ1 (7.11)

The implementation of the temporary links method as described by Equations 7.10
and 7.11 is refered to as the inertia relief method. Finally, the attachment modes are
filtered with respect to rigid body modes U rig and the vibrations modes Ψf to give
the residual attachment modes Ψr:

Ψr = Af Arig J (7.12)

where Arig is the operator filtering the rigid body modes defined in Eq. 7.8 and Af is
the filtering operator enabling to obtain residual attachment modes orthogonal to the
elastic modes (see Eq. 7.13). This projection step avoids free vibration modes to be
accounted twice.

Af = I −Ψfµ
−1
f Ψ

T
f M (7.13)

The location of temporarily locked DOFs can either be chosen by the model analyst
or can be automatically determined according to the rule of maximum pivots applied
to the initial finite element model.
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Constrained system

An alternative method based on the solution of a constrained system (Eq. 7.14) may
also be adopted in order to obtain the static response of the free-free system.[

K MU rig

UT
rigM 0

][
Q

λ

]
=

[
G

0

]
(7.14)

G is a n × nr matrix with the unit loads applied on the DOFs corresponding to the
nr attachment modes Q. The latter ones are already M -orthogonal to the rigid body
modes. Indeed, the constrained equations, i.e., the second set of equations in the DAE-
system 7.14 (UT

rigMQ = 0), enforce that the attachment modes Q are orthogonalized
with respect to the rigid body modes.

The residual attachment modes Ψr are simply obtained by filtering the attachment
modes with respect to the free vibration modes:

Ψr = Af Q (7.15)

with the filtering operator Af defined in Eq. 7.13.

Contrarily to the previous method, this method does not require the temporary
locking of the structure, which can be seen as an advantage. Therefore, the computa-
tion process of attachment modes is fully independent of the choice of the temporary
fixations. Nevertheless, the expression of the six constrained equations (in case of a
3D system) is more complex than the iso-static constrained equations in the temporary
links method. Indeed, all DOFs of the initial FE model are coupled by the algebraic
constraints whereas only the fixed DOFs are explicitly constrained with the first method
(see Eq. 7.10).

Whatever the approach adopted to compute the residual attachment modes, the
reduction basis of the dual Craig-Bampton reduction technique simply consists in the
concatenation of the two kinds of modes:

Ψ =
[
Ψf Ψr

]
(7.16)

The elastic displacement field u is approximated in the local frame by adding the
contribution of the attachment modes to the contribution of the free vibration modes:

u ∼= Ψf ηf +Ψr r (7.17)

where ηf is a vector with the contribution factors of eigenmodes and r are the intensi-
ties of loads associated with the residual attachment modes. The latter are interpreted
as Lagrange multipliers in Ref. [113] since they have the meaning of a force at interface
nodes.
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The fact of getting a hybrid set of reduced variables
(
ηT = {ηT

f rT }
)

is the main
difference between the dual Craig-Bampton method and the Mac Neal or Rubin reduc-
tion techniques. Although they are based on the same ingredients, Mac Neal and Rubin
introduce a change of variables such that the resulting superelements can be expressed
in terms of interface displacements rather than interface forces. In this way, a primal as-
sembly of the substructure with its external environment can be used, which is common
and easy in a finite element framework. In contrast, the dual Craig-Bampton method
keeps the interface forces as connection variables in the vector of reduced variables.

An attachment mode often corresponds to the static response of the system when
one of its nodes is submitted to a unit force. But attachment modes can also be related
to a more global behaviour. For instance, an attachment mode can correspond to a
constant pressure applied on an external face of the body modelled as a superelement.
That allows having a very restricted number of attachment modes and therefore induces
very compact reduced matrices. Moreover, this kind of global static modes avoids the
delicate choice of a particular boundary node on a contact face as was the case with
the primal Craig-Bampton method for the simulation of gear pairs (see Section 6.11.2).

The part of the reduced stiffness and mass matrices related to the residual attach-
ment modes is obtained by projecting the full FE matrices in the basis formed by the
residual attachment modes:

Krr = ΨT
r KΨr (7.18)

M rr = ΨT
r MΨr (7.19)

The denomination reduced stiffness matrix is a misuse of language since the matrix
Krr has the physical meaning of a flexibility matrix because of the nature of the
attachment modes.

In the local frame, the whole stiffness and mass matrices of the reduced model are
expressed by Equation 7.20.

K =

[
ω2

f µf 0

0 Krr

]
, M =

[
µf 0

0 M rr

]
(7.20)

Unlike the primal Craig-Bampton method (Section 6.3), the reduced stiffness matrix
is not singular because the rigid body modes are not accounted for in the free-free
vibration modes Ψf . Likewise, the two kinds of modes are fully uncoupled in the
reduced matrices contrarily to the primal Craig-Bampton method in which the reduced
mass matrix includes coupling terms (see Eq. 6.12).

Since the matrix Krr has the physical nature of flexibility matrix, it is needed
to scale the attachment modes so that the components of Krr have the same order
of magnitude as the diagonal terms of ω2

f µf . In this way, the ill-conditioning of the
reduced matrices K, M describing the superelement is avoided.
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The reduced stiffness and mass submatrices related to the free-free eigenmodes (i.e.
ω2

f µf and µf respectively in K and M defined in Eq. 7.20) have a diagonal structure
whereas the submatrices Krr, M rr are full matrices. In order to have diagonal reduced
matrices K and M , a mass orthogonalization of the subsystem formed by the
residual attachment modes can be performed. To this end, the eigenvalue problem

Krr r∗ = ω2 M rr r∗ (7.21)

has to be solved. The vectors r∗ are the eigenvectors of the problem 7.21, they should
not be confused with the eigenmodes Ψf of the free-free structure.

Due to this M -orthogonalization, the reduction basis (Eq. 7.16) is slightly modified
since the residual attachment modes Ψr are replaced by Ψr∗:

Ψr∗ = Ψr R∗ (7.22)

where R∗ is a matrix containing the nr eigenvectors r∗.

The reduced stiffness and mass matrices of the superelement have now the following
form:

K =

[
ω2

f µf 0

0 ω2
r µr

]
, M =

[
µf 0

0 µr

]
(7.23)

where ωr is a diagonal matrix with the eigenfrequencies of the pseudo-eigenmodes re-
lated to the attachment modes. µr includes their generalized modal masses and it is
also a diagonal matrix. The lowest eigenfrequency of the orthogonalized attachment
modes (min fr) is always higher than the highest eigenfrequency of the free-free vibra-
tion modes (max ff ). The diagonal topology of the matrices is an essential feature since
it allows taking advantage of sparse solvers and contributes to CPU time reduction.

In order to illustrate clearly the physical interpretation of the attachment modes,
a very simple benchmark is presented in Figs. 7.1-7.5. The elastic bar depicted in
Figure 7.1 is meshed with hexahedral volume elements and is made of steel (Young’s
modulus: 210 GPa, Poisson’s ratio: 0.3 , mass density: 7800 kg/m3).

The first fourtheen free vibrations modes are retained in the superelement reduc-
tion basis. The deformed shape of the seventh eigenmode is depicted in Fig. 7.2. For
each of the four nodes of the element surface colored in gray (Fig. 7.1), an attachment
mode corresponding to a unit load applied along each of the three frame axes x, y, z is
considered. Therefore, a total of 12 attachment modes are computed for this system.

The deformed shape of the three attachment modes Ψr associated with the node
highlighted by a red cross is depicted in Figure 7.3. The residual attachment modes,
i.e. after the filtering process of retained eigenmodes, are represented in Fig. 7.4 for
the same interface node. Finally, the deformed shapes of these residual attachment
modes after M -orthogonalization are illustrated in Fig. 7.5. One can observe that the
attachment modes and their residual forms can be easily interpreted while the physical
meaning is lost after the M -orthogonalization.
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y

z
x

Figure 7.1: Elastic bar meshed with volume elements. Attachment nodes are computed
for the nodes of the element surface colored in gray.

...

normalized
displacement
amplitude

1

Figure 7.2: Deformed shape of the 7th free vibration mode.

From the description of the principles at the basis of the dual Craig-Bampton
method, it appears clearly that this reduction technique is more suitable for con-
tact modelling between massive 3-D elastic structures than the primal Craig-Bampton
method. Indeed, the interconnection between bodies submitted to contact conditions
is enforced through contact forces. Therefore, a reduction basis where the static modes
represent the body deformation when unit loads are applied without clamping the
boundary DOFs appears as a better the best way to define the shape functions of su-
perelements submitted to contact conditions. Besides, the vibration modes are related
to the free-free structure and are then independent of the number and location of the
static boundary nodes.

In the sequel of this dissertation thesis, the basic Craig-Bampton method (Sec-
tion 6.3) will be denoted as the primal Craig-Bampton method in order to avoid the
confusion with the dual Craig-Bampton approach which has just been introduced.
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(a) x-direction (b) y-direction (c) z-direction

Figure 7.3: Attachment modes Q (filtered with respect to the rigid body modes but
not with respect to the retained free vibration modes).

(a) x-direction (b) y-direction (c) z-direction

Figure 7.4: Residual attachment modes Ψr (after filtering with respect to the free
vibration modes).

(a) x-direction (b) y-direction (c) z-direction

Figure 7.5: Residual attachment modes Ψr∗ after mass orthogonalization.
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7.3 Superelement formulation

In case of large amplitude motion, the linear elasticity assumption can be used in a
moving frame following the global motion of the superelement. The floating frame
approach is used as a local frame in contrast to the primal Craig-Bampton method
where a corotational frame has been used (see Section 6.4).

The floating frame enables to separate the rigid body motion from the elastic
deformation.

7.3.1 Kinematic description

As for primal Craig-Bampton superelements, the position and rotation matrix of any
point of a superelement modelled by the dual Craig-Bampton method can be deter-
mined according to Equations 6.13-6.15.

The local coordinates vector η (Eq. 7.24) in the floating frame is simply formed by
the modal amplitudes of the free eigenmodes (ηf ) and the residual attachment modes
(r) respectively.

η =

{
ηf

r

}
(7.24)

In the inertial frame, in addition to the local coordinates η, the set of generalized
coordinates q (Eq. 7.25) includes also the position x0 and rotation α0 variables of the
floating frame. The reference node ′0′ associated with the origin of the floating frame
is affected with the total mass and inertia properties of the whole structure.

q =


x0

α0

η

 (7.25)

As for the primal Craig-Bampton superelement, the rotation variables are not
parametrized but represented by the Lie Group R3 × SO(3).

7.3.2 Elastic and inertia forces

The expression of elastic and inertia forces are obtained by applying the Hamilton
principle (see Section 2.2.2).

The discretized form of the superelement kinetic energy can be computed as a
quadratic expression of the absolute velocities rotated in the floating frame even if it is
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a non consistent approximation (see Ref. [42]):

K =
1

2

∑
i

∑
j

{(
RT

0 ẋi

)T
ΩT

i

}
M ij

{
RT

0 ẋj

Ωj

}
(7.26)

where the ẋi, ẋj are the absolute nodal velocities in translation of the initial FE model;
Ωi, Ωj are the velocities of angular DOFs in the material frame and M ij are the 6× 6

blocks of the FE mass matrix coupling the node i and j.

After differentiation with respect to the time, the kinematic description of the
absolute position defined in Eq. 6.13 and premultiplying by RT

0 , the rotated absolute
velocities in translation are expressed as:

RT
0 ẋi = RT

0 ẋ0 +
~
Ω0Xi +

~
Ω0ui + u̇i (7.27)

The first two terms of the last expression can be interpreted as the rigid part of
the rotated absolute velocity. If the reference node associated with the floating frame
is located at the center of mass of the undeformed structure, this rigid part can be
reformulated as: (

RT
0 ẋi

)
rig

= U tr,i R
T
0 ẋ0 +U rot,i Ω0 (7.28)

where U tr,i and U rot,i are 3×3 matrices representing the contribution of the considered
node in the rigid body modes in translation and rotation respectively (see Section 6.52).
This expression is valid provided that the rigid body modes are defined as three pure
translational and three rotational modes along the three coordinate axes of the material
frame in its initial configuration (U tr,i = I and U rot,i = −

~
Xi).

For stiff bodies, the third term of Eq. 7.27 (
~
Ω0ui) can be omitted which means

that the change of the inertia tensor caused by the elastic deformation is not accounted
for. This second-order approximation is acceptable for relatively stiff bodies for which
the geometric stiffening can be considered as negligible. Furthermore, if the velocity of
the local deformation (u̇i) is expanded in terms of the mode shape matrix (Ψ) and the
local coordinates velocity vector (η̇), the rotated absolute velocities in translation can
finally be approximated by:

RT
0 ẋi ≃ U tr,i R

T
0 ẋ0 +U rot,i Ω0 +Ψtr,i η̇ (7.29)

By replacing RT
0 ẋi by its approximation Eq. 7.29, the kinetic energy of transla-

tional DOFs becomes:

Ktr =
1

2

{
ẋT
0 ΩT

0 η̇T
}R0U

T
trMU trR

T
0 R0U

T
trMU rot R0U

T
trMΨ

UT
rotMU trR

T
0 UT

rotMU rot UT
rotMΨ

Ψ
T
MU trR

T
0 Ψ

T
MU rot Ψ

T
MΨ



ẋ0

Ω0

η̇


(7.30)
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Because of the orthogonality of the elastic modes with respect to the rigid bodies modes
and since the global mass matrix µtr = UT

trMU tr is not affected by a frame rotation
(R0µtrR

T
0 = µtr), the kinetic energy Ktr obeys to block diagonal structure:

Ktr =
1

2

{
ẋT
0 ΩT

0 η̇T
}µtr 0 0

0 µrot 0

0 0 M



ẋ0

Ω0

η̇

 (7.31)

with µtr = UT
trM trU tr, µrot = UT

rotM rotU rot and M = ΨTMΨ.

The variation of the kinetic energy related to translation DOFs takes the following
expression:

δKtr = δη̇TMη̇ + δẋT
0 µtrẋ0 + δΩT

0 µrotΩ0 (7.32)

with
δΩ0 =

~
Ω0 δΘ0 + δΘ̇0 (7.33)

The applications treated in this work include exclusively massive 3D parts which
are modelled with volume finite elements. Therefore, in the sequel we will consider the
dual formulation of superelements constructed from FE models with translation DOFs
only. However, the developments could be extended to systems with both translation
and rotation DOFs.

In the floating frame, the variation of the potential strain energy is simply ex-
pressed as:

δV = δηT Kη (7.34)

After having given the detailed expression of the potential and kinetic energy, the
Lagrangian L = K − V can be computed and the Hamilton principle applied in order
to determined the superelement forces:∫ t2

t1

δL dt =
∫ t2

t1

δη̇TMη̇ + δẋT
0 µtrẋ0 + δΩT

0 µrotΩ0 − δηTKη dt (7.35)

Integrating by parts over a time interval [t1, t2] yields:∫ t2

t1

δL dt =
[
δηTMη̇ + δxT

0 µtrẋ0 + δΘT
0 µrotΩ0

]t2
t1

−
∫ t2

t1

δηTMη̈ + δxT
0 µtrẍ0 + δΘT

0

(
µrotΩ̇0 +

~
Ω0µrotΩ0

)
+ δηTKη dt (7.36)

Because of the independence and the arbitrary nature of the generalized coordinate
variations, the elastic forces gel, inertia forces giner and gyroscopic forces ggyr can be
easily identified in Eq. 7.36:

gel(q) =


0

0

K η

 , giner(v̇) =


µtr ẍ0

µrot Ω̇0

M η̈

 , ggyr(v) =


0~

Ω0µrotΩ0

0

 (7.37)
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Contribution to the iteration matrix

The tangent stiffness and the tangent damping matrices as well as the mass matrix of
the superelement take the following simple forms:

Kse
t =

0 0 0

0 0 0

0 0 K

 , Cse
t =

0 0 0

0
~
Ω0µrot −

~
µrotΩ0 0

0 0 0


M se =

µtr 0 0

0 µrot 0

0 0 M


(7.38)

The expression of these tangent matrices taking part in the definition of the itera-
tion matrix (see Eq. 2.27) are much more compact than those generated by the formula-
tion with the primal Craig-Bampton method (see Eqs. 6.46-6.49 in Section 6.4.2). The
inertia forces depend only on the accelerations and not on the position of generalized
coordinates as it is the case for the superelement inertia forces provided by the primal
Craig-Bampton reduction technique (Eq. 6.44). Likewise, the gyroscopic forces of the
dual formulation do no longer depend on the generalized coordinates at position level.

7.4 Connectivity constraint

In order to connect the superelement to the other parts of the system, it is often
needed that the absolute position xB and the angular variable αB of the connection
nodes appear explicitly in the vector of generalized coordinates:

q =



x0

α0

η

xB

αB


(7.39)

These connection nodes are submitted to prescribed displacements or connection
forces (external forces, contact forces, reactions forces at boundaries, forces at reference
nodes of kinematic joints, etc) and can be seen as the analogues of the boundary nodes
used by the primal Craig-Bampton method.

The compatibility between these connection nodes and the other superelement
variables (floating frame coordinates, static and vibration modal intensities) is ex-
pressed a posteriori through kinematic constraints.

A set of three constraints defined in Equation 7.40 is added for each connection
node Bi. Their expression is directly inspired from the kinematic equation giving the
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absolute position of any superelement point (see Eq. 6.13).

Φtr(q) ≡ xBi − x0 −R0

(
XBi +ΨBt

i
η
)
= 0 (7.40)

If the connection nodes have rotational DOFs (for instance if a torque has to be
applied on a node), three other constraints per connection node are involved. The
formulation of these constraints is based on the composition law of rotation matrices:

RBi = R0R(γBi
) (7.41)

where RBi is the rotation matrix of angular DOFs (αB) in the inertial frame, R0 is
the rotation matrix of the floating frame and R(γBi

) is the rotation matrix associated
with the local angular variables γBi

in the reference frame. The constraints can be
formulated as the vectorial part of the composition law premultiplied by RT

Bi
:

Φrot(q) ≡ vect
(
−RT

Bi
R0R(γBi

)
)
= 0 (7.42)

where the local angular variables γBi
can be computed from γBi

= ΨBr
i
η (ΨBr

i
being

the three rows of the mode matrix related to these DOFs).

The constraint gradients involved in the formulation of constraint forces (ΦT
q λ) as

well as in their contribution to the iteration matrix (see Eq. 2.27) are given in Eqs. 7.43-
7.44. In order to simplify the expression, the situation at equilibrium is considered for
the computation of the constraint gradient of rotations.

Φtr
q =

[
−I R0

~
(XBi +ΨBt

i
η) −R0ΨBt

i
I 0

]
(7.43)

Φrot
q =

[
0 −R(γBi

)T −ΨBr
i

0 I
]

(7.44)

In addition to the better representativeness of deformation modes provided by
the dual approach, its computational efficiency could also be improved compared to
the primal superelement formulation. Indeed, the tangent stiffness and mass matrices
(Eq. 7.38) are now constant matrices and exhibit a block diagonal structure and even
a full diagonal structure if the residual attachment modes are M -orthogonalized (see
Eq. 6.44). Only the tangent damping matrix is not constant; it varies with the angu-
lar velocity of the floating frame and it has an expression similar to the one of rigid
body [42].

The superelement attached to its connection nodes has an almost block-diagonal
iteration matrix: only the rows and columns corresponding to the Lagrange multipli-
ers associated with the kinematic constraints generate coupling terms for the modal
intensities as well as for the position and rotation variables of the floating frame and
for the connection nodes. The nonlinearities are also concentrated on these rows and
columns. Therefore, for an equivalent number of boundary nodes, the size of the full
equation system is larger with the dual approach than with the primal Craig-Bampton
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since a Lagrange multiplier is associated to each attachment mode. Nevertheless, the
introduction of a set of extra variables is compensated by the sparse structure of sys-
tem matrices which enables to take advantage of sparse solvers and thus to reduce the
computational time.

7.5 Contact force formulation

The contact between superelements can be considered as a particular interconnection
between two substructures. In this case, the position of each node potentially in con-
tact is embedded in the vector of generalized coordinates like any other connection
node and the associated connectivity constraints (Eqs. 7.40-7.42) are introduced in the
DAE-system. However, as already mentioned in section 6.6, if the candidate contact
zone is large and contains numerous contact nodes, the model matrices could still be
cumbersome and they could not be significantly reduced compared to the FE model.

In this work, to have a superelement model as compact as possible, the numer-
ous candidate contact nodes are not considered as connection nodes. Therefore, as in
the approach adopted for the contact formulation between primal superelements (Sec-
tion 6.8), the absolute positions of contact nodes are not available in the generalized
coordinate vector and need to be computed from the floating frame coordinates (x0,
α0) and the modal amplitudes (η):

xCi = xs
0 +Rs

0(XCi +ΨCiη
s) (7.45)

xNi = xm
0 +Rm

0 (XNi +ΨNiη
m) (7.46)

where the superscripts s and m denote the slave and the master body respectively. The
connectivity constraints (Eqs. 7.40-7.42) are not introduced since the contact forces are
transformed to load directly the modal variables and the floating frame coordinates.
This specific contact formulation can be seen as a constraint elimination method of
connectivity constraints related to the contact nodes. If the contact node positions were
explicitly available in the generalized coordinate vector, the contact force expression
and, especially, its contribution to the iteration matrix would be simplified but the
model would be larger and more complex due to the presence of algebraic constraints.

As a conclusion, the contact formulation is almost unchanged compared to the
contact between primal superelements described in section 6.8. The magnitude of
contact forces is determined by means of a penalty method whose nonlinear contact
law is defined in Eq. 6.70. The main simplifications in the formulation are due to
the fact that the local coordinates η in the reference frame are also a subset of the
generalized coordinates vector q, so that it is not needed to define a kinematic tangent
operator P to convert the variations of the local coordinates into absolute generalized
coordinates (see Eq. 6.26).
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The expression of the absolute velocities of the candidate contact nodes on the
slave (ẋCi) and the master body (ẋNi) are slightly simplified and are given by:

ẋCi = ẋs
0 −Rs

0

~
(XCi +Ψ

s
Ci
ηs) Ωs

0 +Rs
0Ψ

s
Ci

η̇s (7.47)

ẋNi = ẋm
0 −Rm

0

~
(XNi +Ψ

m
Niη

m) Ωm
0 +Rm

0 Ψ
m
Ni η̇

m (7.48)

The virtual work principle is used to compute the internal force vector (Eq. 7.49)
applied onto the full set of superelement generalized coordinates due to a 3D contact
force f c detected for any contact node. It comes

gint,con
Ci

=


f c~(

XCi +ΨCiη
)
RT

0 f c

Ψ
T
Ci
RT

0 f c

 (7.49)

It can be noticed that the formulation of the load vector (Eq. 7.49) is slightly more
compact than for the primal superelement version (see Eq. 6.81). This expression of
the internal force vector can be easily retrieved by developing the virtual displacement
of the contact point:

δxCi = δx0 −R0

~
(XCi + uCi) δΘ0 +R0 δuCi

= δx0 −R0

~(
XCi +ΨCiη

)
δΘ0 +R0ΨCi δη

(7.50)

Contribution to the iteration matrix

Following the same procedure as previously, the contribution of each contact force to
the iteration matrix is computed analytically. The spatial derivative of gcon

Ci
is then

expressed as:

dgcon
Ci

= df 1

f
gcon
Ci

+ f d


n

~
zCiR

T
0 n

Ψ
T
Ci
RT

0 n

 (7.51)

The derivative of the force amplitude f defined by Equation (6.70) can be expressed
as:

df =
∂f

∂ℓ
dℓ+ ∂f

∂ℓ̇
dℓ̇ (7.52)

where the partial derivatives are equal to:
∂f

∂ℓ
= S∗

c

(
kp n ℓ

n−1 + c n ℓn−1 ℓ̇
)

,
∂f

∂ℓ̇
= S∗

c c ℓ
n (7.53)

The variation of the penetration length is simply obtained by derivative of Equa-
tion (6.72):

dℓ = d
(
nT (xN1 − xCi)

)
(7.54)

= nT (dxN1 − dxCi) + (xN1 − xCi)
T dn (7.55)
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where by analogy with Equations (6.76-6.77) the total derivatives dxCi ,dxNi are put
in the form:

dxCi = dxs
0 −Rs

0
~
z
s
Ci

dΘs
0 +Rs

0Ψ
s
Ci

dηs (7.56)
dxNi = dxm

0 −Rm
0

~
z
m
CNi

dΘm
0 +Rm

0 Ψ
m
Ci

dηm (7.57)

In case of triangular-shaped master contact faces, the derivative of the normal vector
n (see Eq. 6.61) takes the form:

dn =

(
I − nnT

)∥∥~xN12 xN13

∥∥ d
(~
xN12 xN13

)
(7.58)

=

(
I − nnT

)∥∥~xN12 xN13

∥∥ (~xN12 dxN13 −
~
xN13 dxN12

)
(7.59)

=

(
I − nnT

)∥∥~xN12 xN13

∥∥ [(~xN13 −
~
xN12

)
dxN1 −

~
xN13 dxN2 +

~
xN12 dxN3

]
(7.60)

The derivative of the penetration length ℓ̇ is developed as:

dl̇ = d
[
nT (ẋN1 − ẋCi) + (xN1 − xCi)

T ṅ
]

= (ẋN1 − ẋCi)
T dn+ nT (dẋN1 − dẋCi) + ṅT (dxN1 − dxCi) + (xN1 − xCi)

T dṅ
(7.61)

where the various terms that are not yet defined can be formulated by the following
expressions:

dẋNi = dẋm
0 +Rm

0

~~
z
m
NiΩ

m
0 dΘm

0 +Rm
0

~
Ω

m

0 Ψ
m
Ni dηm −Rm

0
~
z
m
Ni dΩm

0

−Rm
0

~
(Ψ

m
Niη̇

m) dΘm
0 +Rm

0 Ψ
m
Ni dη̇m
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ẋN2 −

~
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Finally, the derivative in the second term of Equation 6.86 can be easily expanded
in:
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7.6 Gear pair model

During the meshing between two gear wheels, each node on the tooth flanks can po-
tentially enter in contact. If an attachment mode is associated with each node of this
group, the superelement model becomes cumbersome. Indeed, in this case the set of
generalized coordinates should be large since a modal variable is introduced for each
attachment mode (see vector r in Eq. 7.24). Moreover, a large number of connectiv-
ity constraints would be added to the system unless a activation/deactivation strategy
would be used.

In order to circumvent these drawbacks, the static mode switching and static
mode sliding have been investigated in Refs. [131, 133, 134] to simulate the dynamics
of gear pairs too. These recent works consist in including in the modal basis only the
attachment modes related to the modes detected in effective contact. In this way,
the model of each gear wheel keeps a reasonable dimension. Nevertheless, on the one
hand the static mode switching approach suffers from discontinuities when the static
modes are added or removed of the modal basis and an explicit Runge-Kutta integra-
tor without numerical damping has been used. On the other hand, the static mode
sliding approaches requires a configuration dependent modal basis which significantly
complicates the formulation and the implementation.

In this work, we prefer to keep a constant mode matrix which contains a restricted
number of attachment modes in order to have a compact superelement model. These
attachment modes correspond in this case to more global loadings than a force applied
on an individual node. For instance, a normal pressure applied to a part or to the
whole tooth flank can reproduce the global bending behaviour of the teeth when they
are engaged. Since, the contact points are not included in the generalized coordinates
vector, the mapping of contact forces to load directly the full set of modal variables is
mandatory as detailed in Section 7.5.

The developed gear pair model is perhaps less suited to capture local effects near
the contact points than the models proposed in [134] or [150] but seems more compu-
tationally efficient in a global system approach. Indeed, the objective followed since
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the beginning of this thesis is to develop integrated simulations of complex industrial
systems. A standard implicit integration scheme of the generalized-α family can be
used to simulate the MBS model including not only the proposed gear pair model but
also other flexible bodies such as beam elements to model the driveshafts. Our gear
pair model considers a damping contribution in the contact law and also numerical
damping but no structural damping unlike Ref. [134].

In order to limit the number of projections of slave nodes on master faces of the
contact detection process, the strategy to select the paired tooth flanks described in
Section 6.11.1 is also used here with the dual version of the superelement model.

7.6.1 Spur gears

In this section, the spur gear pair system presented in Section 6.11.3 will be simulated
with the dual formulation of the superelement. The geometric data of two gear wheels
are given in Tab. 6.1. The simulation is performed during 0.02 s with a fixed time step
of 1.E-6 s. The load case can be summarized as follows: the rotation of the biggest
wheel is prescribed to keep a constant velocity; the smallest wheel has an initial velocity
equals to −1000 rpm and is braked by a viscous torque (T = −10 ω). The rotation
axis cannot tilt so that there is no misalignment. The center distance is such that a
significant backlash occurs.

The most natural choice to select the attachment modes of a spur gear pair consists
in considering lines of uniform loads parallel to the axial direction. A normal pressure
offers a convenient approach to accurately represent the loads due to teeth contact. In
the presence of meshing defaults such as misalignment, non symmetric static modes
can be added to account for these effects.

In order to model the tooth bending due to the gear engagement in a global
way, a normal pressure applied on the entire flank face is used to introduce only one
attachment mode per tooth flank (Figs. 7.6-7.7). The same philosophy of global static
modes related to each tooth flank was already used in Section 6.11.2 for the selection
of boundary nodes linked with the mean joint.

Figure 7.6 shows the superelement modes when only the first eigenmode of the
free-free structure is retained whereas Fig. 7.7 draws a few mode shapes when the 100-
first vibration modes are included in the gear wheel model. The residual attachment
mode illustrated in Fig. 7.6(b) highlights the good ability of this mode to represent the
tooth bending. The comparison with Fig. 7.7(b) enables to notice that if numerous
eigenmodes are retained, the tooth bending is already represented by these modes and
the residual attachment only corresponds to local deformation effects. Therefore, in
order to capture the global tooth bending, it is not necessary to include a huge number
of eigenmodes in the mode matrix of the superelement.
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(a) unique elastic eigen mode
(f = 5857 Hz)

(b) residual attachment
mode

(c) 12th mode of the sys-
tem composed of the set
of residual attachment
modes

...

normalized
displacement
amplitude

1

Figure 7.6: Dual superelement of a gear wheel including the first free-free eigen mode
and a normal pressure attachment mode for each tooth flank as well as 6 attachment
modes to connect the gear web to the propeller shaft.

(a) 90th elastic eigen mode
(f = 126819 Hz)

(b) residual attachment
mode

(c) 30th mode of the sys-
tem composed of the set
of residual attachment
modes

...

normalized
displacement
amplitude

1

Figure 7.7: Dual superelement of a gear wheel including 100 free-free eigen mode and a
normal pressure attachment mode for each tooth flank as well as 6 attachment modes
to connect the gear web to the propeller shaft.

Similarly to the gear wheel superelement based on the primal Craig-Bampton
method presented in Section 6.11 (see Fig. 6.29), six attachment modes (3 in translation
and 3 in rotation) are introduced to represent the deformation due to the connection
between the gear web and the propeller shaft. This set of attachment modes is related
to a unit force or a torque applied on an additional node linked to the cylindrical face
of the gear web bore by a mean joint (see Eq. 6.101). The mode shapes related to the
x-axis are depicted in Fig. 7.8.

The numerical results presented below have been obtained with superelement mod-
els including the 30-first free-free eigenmodes and one global pressure attachment per
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(a) x-translation (b) x-rotation

...

normalized
displacement
amplitude

1

Figure 7.8: Residual attachment modes for the connection between the gear web and
the driveshaft (before mass orthogonalisation with the others attachement modes ).

tooth flank. The model size of the two superelements amounts to 74 DOFs for the pin-
ion and 90 DOFs for the gear wheel, which is much lower than the initial finite element
models (331968 DOFs and 148203 DOFs respectively) and also significantly lower than
in the primal Craig-Bampton superelement (298 DOFs and 394 DOFs respectively) .
The eigen frequencies are in the range [12545; 42360] Hz for the pinion and in the range
[5839; 37766] Hz for the big gear.

The time evolution of the normal contact forces applied to the various tooth flanks
is illustrated in Fig . 7.9. It presents the same global aspect as in Fig. 6.40 where the
primal superelement models were used. We observe a periodic variation of the number
of tooth flanks in contact. The duration of the single-teeth contact periods are inversely
proportional to the transmitted torque and this a consequence of the elastic deformation
of gear teeth. Indeed, when the forces applied on the tooth increase, the tooth bending
also increases and results in a longer contact period for this tooth.

The sudden changes in the contact forces are due to non-conformal contacts be-
tween the flank profiles produce by tooth deflection. The coarse spatial discretization
of the tooth flanks (see Fig. 6.43) as well as the assumptions introduced in the simple
contact detection algorithm also contribute to the steep variations of the contact forces.

The amplitude of the total contact force between gear wheels and the resistant
torque needed to preserve the constant velocity of the gear wheel #2 are represented
in Fig. 7.10. Their mean value is constant but some noise is superimposed owing to
the oscillations of the elastic displacements. The nonuniform rotation of the pinion
during the revolution (see Fig. 7.11) is also a consequence of this not perfectly steady
operation.

This gear pair simulation allows us to validate the use of the dual superelement
formulation with the proposed contact approach. The numerical results are close to
those obtained in Chapter 6 but the simulation is more efficient since the model size is
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Figure 7.9: Normal contact force applied on tooth flanks of wheel #1.
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Figure 7.10: Total magnitude of the normal contact force between tooth flanks and
reaction torque due to the imposed rotation speed of gear wheel #2.

lower and the system matrices present a better sparsity.

7.6.2 Helical gears

The developed gear pair model is very general with respect to the geometry of the
gear wheels. The formulation remains the same for all kinds of gear pairs, e.g., helical
gear, bevel gear, rack and pinion. In this section, simulation results of the meshing
of an helical gear coming from an energy production system pair are presented. Both
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Figure 7.11: Rotation speed of the pinion.

gear wheels have the same number of teeth (see Fig. 7.12). They have a large radius
(Rm ≈ 0.42 m), a large face width (b = 0.6 m) and have the particularity to present a
very wide bore in the gear web. The shafts are not modelled but would certainly stiffen
the wheels in a practical setup.

Figure 7.12: Finite element model of an helical gear pair.

Figure 7.13 illustrates the deformed shapes of the gear wheel superelement model
based on the primal Craig-Bampton method if the same choice is adopted to select the
boundary nodes as for the spur gear pair model described in Section 6.11.3, namely
one boundary node linked to each flank face by a mean joint. It can be observed that
the static modes do not correctly represent the loading applied to the gear teeth.

For the dual superelement formulation, the deformation modes are depicted in
Fig. 7.14 if the same load case is used to computed the attachment modes as the spur



232 Chapter 7. Dual superelement formulation for contact modelling

(a) x-direction (b) y-direction (c) f1 = 2410 Hz

(d) x-rotation (e) y-rotation (f) f50 = 6.691 Hz

...

normalized
displacement
amplitude

1Figure 7.13: Deformation modes of the helical gear wheel superelement when the bound-
ary nodes are additional nodes linked to each tooth flank by a mean joint: (a),(b),(d),(e)
are static modes; (c),(f) are two of the 100 retained internal vibration modes.

gear model (Section 7.6.1), i.e., a uniform normal pressure applied on the whole tooth
flank face. Figure 7.14(e) shows that the residual attachment mode better represents
the tooth bending than the static modes of the superelement based on the primal
Craig-Bampton method (Fig. 7.13).

Nevertheless, the attachment modes are still far from the true loading applied by
the gear contacts. Indeed, the tooth flanks of helical gears get into contact at single
points instead of occurring along a line for normal operation of spur gears. Therefore,
the selection of a unique static mode per tooth flank cannot accurately represent the
actual behaviour even from a global point of view. Thus, compared to spur gears, the
choice of static modes has to be adapted to have a reliable helical gear pair model.

A better choice consists in considering several attachment modes according to the
position of the contact point on the tooth flank face. For instance, the teeth can be
split in several zones along the axial direction of the gear wheel (Fig. 7.15) and a
pressure attachment mode is associated with each zone. Obviously, the accuracy of the
superelement model increases with the number of zones but we choose to keep a small
number of zones (5) in order that the model size remains reasonable and much smaller
than the initial FE model.

In the proposed model, the 16171 DOFs of each helical gear wheel have been
reduced to 292 DOFs in the superelement model. Only the first 30 free-free vibration
modes are included in the reduced model and have an eigenfrequency between 2410 Hz
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(a) 1st elastic eigen mode
(f = 260 Hz)

(b) 15th elastic eigen mode
(f = 1785 Hz)

(c) attachment mode for a unit pres-
sure on a tooth flank

(d) attachment mode of a unit force
in y-direction on the node linked
to the gear web

(e) residual attachment mode for a
unit pressure on a tooth flank

(f) 5th mode of the system composed
of the set of residual attachment
modes

...

normalized
displacement
amplitude

1

Figure 7.14: Dual superelement of the helical gear wheel including 30 free-free eigen
mode and a normal pressure attachment mode for each tooth flank as well as 6 attach-
ment modes to connect the gear web to the propeller shaft.

and 5797 Hz. The boundary conditions are illustrated in Fig. 7.16: a constant torque
is applied on the left-handed gear wheel while the rotation speed of the right-handed
gear wheel is prescribed. A fixed time step size of 1E.-3 s is used.

The active contact zones at the last time step of the simulation are depicted in
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Figure 7.15: The tooth flanks are divided in five zones of equal width along the axial
direction; a pressure attachment mode is associated with each zone.
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(a) rotation speed prescribed on the right-handed
helical gear

0 1 2 3 4 5
0

2

4

6

8

10

12
x 10

4

Time [s]

T
o

rq
u

e
 [

N
m

]

(b) torque applied on left-handed helical gear

Figure 7.16: Total magnitude of the normal contact force between tooth flanks and
reaction torque due to the imposed rotation speed of gear wheel #2.

Fig. 7.17. At this instant, three pairs of tooth flanks are in contact and it can be
checked that the contact zones are inside a band parallel to the gear wheel axis.

Figure 7.18 illustrates the deformation of both gear wheels. Contrarily to the spur
gear pair model, the deformation of the superelement is not only limited to the gear
teeth. Indeed, the gear web is quite thin for the gear wheels studied here which results
in an ovalisation of the overall gear structure under the load applied by tooth contact.
The first eigenmodes of the gear wheels are mainly excited as represented in Fig. 7.19.
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(a) slave body (b) master body

Figure 7.17: Active contact zone on both gear wheels. The blue points represent the
slave nodes detected in contact and all adjacent faces are colored in red. For the master
body, only the master faces considered in contact are collored.

The deformed shapes of these modes correspond to an ovalisation of the gear body (see
Fig. 7.14(a)).

Moreover, owing to the helix angle of teeth, the deformation is not uniform along
the axis of the wheel. This kind of behaviour cannot be represented by a rigid body
gear pair model since only the tooth bending is accounted for in these global models.

The normal contact forces applied on several tooth flanks are depicted in Fig. 7.21(a).
The number of teeth simultaneously in contact varies between three and four because
the helical shape of the teeth leads to a significant increase of the contact ratio of the
gear meshing compared to spur gear pairs. Since the rotation velocity of the right-
handed gear wheel is increased after t = 2 s, the contact duration for each tooth flank
decreases in the second part of the simulation when the gear wheel has a covered a full
revolution. As for the spur gear pairs, these contact forces are affected by oscillations
owing either to the elastic deformation of the teeth or to the numerical discontinuities
introduced by a note-to-surface contact detection algorithm combined with a coarse
discretization of tooth flanks.

Even though the magnitude of the contact forces applied on individual tooth flanks
is highly fluctuating, the total gear contact force, the transmitted torque and the rota-
tion speed have nearly a steady behaviour as shown in Figs. 7.21-7.22. It can observed
that the noise superimposed to the mean value increases with the rotation velocity after
t = 2 s.
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(a) left-handed gear (b) right-handed gear

(c)

Figure 7.18: Deformation of the two helical gear wheels at t = 0.6 s ((a)-(b): deforma-
tion scaled by factor 1000, (c): no amplification).

7.7 Concluding remarks

This chapter deals with the dual Craig-Bampton method to formulate superelements
submitted to unilateral contact conditions. The basic principle of this substructuring
technique is to enrich the modal basis initially composed of a reduced number of eigen-
modes of the free-free structure by a set of attachment modes related to the possible
loads exerted by the other components of the system, e.g., at the contact interface.
This association of modes enables to represent both the local linear deformation due
to the forces applied on any node and the global deformations involved by the dy-
namic behaviour of the flexible body. The floating frame of reference approach is used
to represent the rigid body motion of the structure and the set of elastic coordinates
defines the deformation in this moving frame. The connection of the superelement
with the rest of the system requires the explicit appearance of connection nodes in
the set of generalized coordinates of the superelement. The introduction of kinematic
constraints enables to express a posteriori the connection between these nodes and the



7.7 Concluding remarks 237

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 1 2 3 4 5
−1

−0.5

0

0.5

1
x 10

−4

Time [s]

M
o
d
a
l 
a
m

p
lit

u
d
e
s
 [
−

]

 

 

(a) left-handed wheel
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(b) right-handed wheel

Figure 7.19: Modal participation factors of the free-free eigenmodes included in the
gear wheel superelement model.
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Figure 7.20: Magnitude of the contact force per tooth flank.

superelement modes.

The approach developed in Chapter 6 to express the contact between two superele-
ments is conserved. In order to keep the model compact, the candidate contact nodes
are not necessarily included in the set of boundary nodes. Therefore, a large number
of nodes of the skin can be condensed. At each time step, the absolute positions of the
candidate contact nodes are computed in terms of the position and the rotation matrix
of the floating frame together with the modal intensities of the superelement modes.
A node-to-surface projection method is used to detect the effective contact zones and
compute the local penetration length of the penalty-based contact force law. Finally,
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(a) total gear contact force

0 1 2 3 4 5
−12

−10

−8

−6

−4

−2

0
x 10

4

Time [s]

R
e
a
c
ti
o
n
 t
o

rq
u
e

 [
N

m
]

 

 

(b) transmitted torque

Figure 7.21: Magnitude of the the total contact force between gear wheels and the
transmitted torque.
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Figure 7.22: Rotation speed of the left-handed gear wheel submitted to the torque.

each individual 3D contact force is transferred to the generalized coordinate vector,
loading thus the floating frame coordinates and the modal coordinates. The various
steps of this contact approach are summarized in Fig. 7.23.

The relevance of the dual superelement formulation to simulate unilateral contact
has been assessed by the simulation of a spur gear model and an helical gear pair model.
The numerical results show that the static modes of the dual Craig-Bampton method
have a better capability to represent the deformations undergone by contact forces than
the static modes of the primal Craig-Bampton method. As a consequence, the number
of modes included in the superelement model is lowered and results in an improvement
of the computational efficiency.

In this work, in order to include a reasonable number of attachment modes in
the superelement, the latter are selected to represent the global loading applied on
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Figure 7.23: Summary of contact formulation between superelements.

the contact face, e.g., a normal pressure applied on the entire tooth flank face. Thus,
the number of dedicated attachment modes is kept much lower than the number of
candidate contact nodes.

For future work, the dynamic updating of the modal basis and of the connection
nodes during the analysis according to the location of the active contact area could
be another solution to reduce the size of the model and to improve the computational
efficiency, e.g. based on the static mode switching or on the static mode sliding tech-
niques [56, 133, 134]. These methods are usually dedicated to more detailed analysis
than those performed in the present thesis. For instance, the stress distribution in gear
teeth is studied in [132].
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Chapter 8

Conclusion

8.1 Summary of the work

The objective of this doctoral thesis was to contribute to the dynamic modelling of
mechanical transmission systems. The various developments have been carried out in
the field of automotive drivetrain components where the need for such dynamic models
is particularly strong. Reliable driveline models would allow to fully model the vehicle
from the engine to the suspension systems.

As a representative industrial application, the methodological developments are
demonstrated by the modelling of TORSEN differentials. In a first part of the the-
sis, global models of the TORSEN differential have been constructed in the flexible
multibody software SAMCEF/MECANO and have been be validated with experimen-
tal data. In order to find the best correlation with the experimental data, the friction
coefficient in the joint between the planet gears and the housing has been fitted. The
main difficulties encountered had concerned the contact modelling in presence of impact
and friction as well as the lack of capability to model contact between rigid bodies.

Indeed, the unilateral contact conditions employed in the initial differential models
require that at least one of the two contacting bodies is a flexible body discretized with
finite elements. Besides the high computational cost induced by the large model size,
this contact formulation can hardly support the shocks produced by contact establish-
ments at high velocities.

In order to circumvent these drawbacks, several contact models have been devel-
oped in the second part of the thesis which enable to remove some of the assumptions
introduced in the first models of the differential. The proposed formulations are based
on a penalty method, so that a continuous integration scheme of the generalized-α
family can be adopted. The first developments considered that the two supports of the
contact condition are rigid bodies whereas the last works address the contact modelling

241
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between two flexible structures represented by means of superelements.

The proposed contact models are formulated in the framework of the nonlinear
finite element method for flexible multibody systems. They have different levels of
details and accuracy and they can be combined in the same model in order to simulate
complex and full drivetrain components with a reasonable computational efficiency.
For instance, the contacting bodies for which the attention is put can be represented
by superelements while the other contact conditions of minor importance are modelled
between rigid bodies.

8.2 Claimed contributions

The main achievements of the present PhD thesis can be listed as follows.

- Development of a methodology to model automotive differentials. Thanks to
a detailed analysis of the working principle of TORSEN differentials, the ele-
ments which significantly contribute to the global locking effect of this kind of
limited slip differential have been identified. In contrast, some effects of minor
importance have been neglected and a set of modelling assumptions have been
introduced. The differentials in test bed as well as in vehicle configuration have
been reproduced in the numerical simulations. These models have been globally
validated by comparison with experimental data of the torque distribution ratios
for the four working modes of the TORSEN differentials.

- Formulation of a 3D frictional contact element between two rigid bodies in a
finite element framework. A general kinematic description is proposed to model
the contact between two nodes rigidly attached to the contact surfaces. The
magnitude of the contact forces is computed by a continuous impact law which
uses a restitution coefficient to represent the loss of kinetic energy inherent to each
impact. The geometric shapes of the contacting surfaces have been particularized
to planar rings for the implementation.

- Modelling of a cylindrical joint with operation defects. The clearance, the tilting
and the friction forces are taken into account in this kinematic joint model based
on the contact detection between the pin and the hollow cylinder considered as
rigid bodies.

- Enhancement of contact models by introducing the effects of the lubricating oil.
Thanks to a set of physical and geometrical hypotheses, a simple and compact
squeeze film model has been developed to account for the damping force produced
by the film of lubricant between two planar discs or rings.

- Integrated simulation of the interactions between differentials and the vehicle dy-
namics. The TORSEN differential models have been included in global vehicle
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models in order to analyse the dynamics response of the vehicle in case of ma-
noeuvres or slippery ground surfaces. These global models could be very useful
in the design phase of an automotive differential by significantly reducing the
number of physical prototypes. For instance, the influence of the modification of
the friction coefficient of one thrust washer can be investigated.

- Development of a new contact formulation defined between flexible components
modelled as superelements. The proposed contact model accounts for the global
flexible behaviour of the contacting bodies but with a model size of one to several
order of magnitude smaller than a full finite element mesh. Therefore, the CPU
time needed for the simulation is significantly reduced. The main distinctive fea-
ture of this contact formulation lies in the direct loading of the modal generalized
variables. Two different superelement formulations have been investigated: the
primal and the dual Craig-Bampton methods.

- Use of two different types of superelement formulations to represent the global
flexibility by a mixed of static modes and vibration modes.

- Modelling of flexible gear pairs with accurate representation of geometric and
meshing defects. Each gear wheel is represented by an independent superelement.
The unilateral contact conditions prescribed between both superelements offer a
convenient approach to account for the gear teeth flexibility. The formulation is
very general and can be easily applied to any kind of gear pair since the actual
3D geometry of each gear wheel is embedded in the superelement model.

Excepted the contact model between superelements which has been implemented
in a MATLAB development code, the other contributions of this thesis have been imple-
mented the FEM-based flexible multibody commercial software SAMCEF/MECANO.

8.3 Directions for future work

Some perspectives for future developments in the various research domains tackled in
this thesis are now proposed. Firstly, the outlooks directly related to the contributions
achieved in this work will be exposed. Afterwards, more general outcomes will be
addressed.

The proposed rigid-rigid contact elements could be extended to support other
geometries of the contacting surfaces. Only planar discs or rings are available with
the current implementation of the rigid contact model and the squeeze film model.
Likewise, the non-ideal cylindrical joint model considers that the extremities of the
inner cylinder have a spherical shape.

The regularized friction model adopted for each contact condition should be en-
hanced in order to be able to represent the transient behaviour between sticking and
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sliding friction. Indeed, the locking of TORSEN differentials corresponds to the situa-
tion where there is no relative motion between the gear wheels and the thrust washers.
Owing to the regularization of the friction coefficient in the friction law used in this
work, the sticking situation cannot be represented strictly speaking. Moreover, the
stick and slip phenomena due to the variation of the friction coefficient between the
static and the kinematic friction coefficients can be a source of noise and vibration.

The TORSEN differential models could be improved by introducing the flexibility
of several parts. For instance, the housing or the case could be easily modelled by a
finite element model or a superelement. The flexible behaviour of the driveshafts could
be easily represented by means of FE beam elements and so that the propagation of the
vibrations generated by the differential towards the others subsystems of the vehicle
can be studied. For instance, impacts or the variation of the number of gear teeth
simultaneously in contact can be at the origin of vibrations.

In order to improve the computational efficiency of the developed contact
formalism between superelements, the implementation should be performed in a
compiled code such as SAMCEF for example. In the current implementation, a large
CPU time time is devoted to the projection of the slave nodes on the master faces.
Thus, a more efficient contact detection algorithm would be beneficial.

The flexible gear pair model based on the contact modelling between superelements
could be tested to model a gear train system such as the TORSEN differentials. In
addition to the gear pairs, the other contact conditions could also be represented by
the contact element defined between superelements. In this way the global flexibility
of many bodies could be accounted for with a reasonable model size and many defects
could be represented. The influence of the lubrication on the gear meshing could also
be included in the gear pair model as proposed in Refs. [120, 121].

A new avenue of research consists in formulating the unilateral contact conditions
between superelements with kinematic constraints instead of a continuous contact force
law. In this way, impact phenomena should be represented by using larger time steps
and no penetration occurs between the contacting bodies. To this end, the nonsmooth
generalized-α integration scheme proposed in [20] could be tested.

An other issue for the contact model with superelements is the addition of the
friction forces in the model. The stresses and wear index in bodies in contact would
also be interesting to simulate.

Concerning the perspectives at a more general point of view, let us first mention
the structural optimization of components by accounting of the dynamic response of
the system, see for instance Ref. [140].
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Appendix A

Iteration matrix of rigid contact
models

For nonsmooth behaviours such as those introduced by unilateral and frictional con-
tacts, a reliable estimation of the iteration matrix is required in order to limit the
number of Newton iterations to reach the convergence. An iteration matrix not suf-
ficiently accurate can even prevent the convergence of the numerical integration. An
analytical computation of the iteration matrix needs an effort to determine the vari-
ous matrix components but enables to reduce significantly the CPU time of the entire
multibody simulation compared with the finite difference approach.

In this appendix, the iteration matrices of the three contact models between rigid
bodies presented in Chapter 4 are detailed.

A.1 Contact element between two plane rings

This section presents the fully analytical computation of the iteration matrix related to
the contact element between two plane rings detailed in Section 4.3. The expressions
given hereabove are the same if the contact force is determined by a continuous impact
law (Section 4.2.1) or the squeeze film model (Section 5.2.5) since they are both based
on the same kinematic description. Only the derivative of the magnitude of the contact
force and the friction force is different for the two methods, but these simple expressions
are not detailed in the sequel of this section.
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The derivative of the virtual work principle (Eq. 4.25) takes the form:

δdW = δuT ∂f t(u, u̇)

∂u
du+ δuT ∂f t(u, u̇)

∂u̇
du̇+ δduT f t

+ δΘT
rel

∂f r(Θrel, Θ̇rel)

∂Θrel
dΘrel + δΘT

rel

∂f r(Θrel, Θ̇rel)

∂Θ̇rel

dΘ̇rel + δdΘT
rel f r

(A.1)

This expression A.1 has to be transformed in order that the following structure appears:

δdW = δqT
∂gint(q, q̇)

∂q
dq + δqT

∂gint(q, q̇)

∂q̇
dq̇ (A.2)

To this end, the various terms of Eq. A.1 have to be expanded in terms of the generalized
coordinates (q).

The spatial and time derivative of the relative position vector u are obtained by
analogy with δu (see Eq. 4.26):

du =
~
uRT

1 T (ΨA inc) dΨA inc +RT
1 R

T
A (dxB − dxA) (A.3)

u̇ =
~
uRT

1 T (ΨA inc)Ψ̇A inc +RT
1 R

T
A (ẋB − ẋA) (A.4)

One more derivative enables to computes du̇. It comes

du̇ =−
~(
RT

1 T (ΨA inc)Ψ̇A inc

)
RT

1 R
T
A(dxB − dxA)

−

[~(
RT

1 T (ΨA inc)Ψ̇A inc

)~
uRT

1 T (ΨA inc)−
~
uRT

1 G(ΨA inc, Ψ̇A inc)

+ RT
1

~(
RT

A(ẋB − ẋA)
)
T (ΨA inc)

]
dΨA inc

+RT
1 R

T
A(dẋB − dẋB) +

~
uRT

1 T (ΨA inc)dΨ̇A inc

(A.5)

where the matrix G comes from:

dT (ΨA inc)Ψ̇A inc = G(ΨA inc, Ψ̇A inc) dΨA inc (A.6)

By means of the previous developed vectors, the various terms of the virtual work
expression (Eq.A.1) can be reformulated. The first term becomes:

δuT ∂f t(u, u̇)

∂u
du =

{
−δΨT

A incT
T (ΨA inc)R1

~
u+

(
δxT

B − δxT
A

)
RAR1

} ∂f t(u, u̇)

∂u{~
uRT

1 T (ΨA inc)dΨA inc +RT
1 R

T
A (dxB − dxA)

}
(A.7)

If the two first terms of du̇ are neglected, the second term takes the form:

δuT ∂f t(u, u̇)

∂u̇
du̇ =

{
(δxT

B − δxT
A)RAR1 − δΨT

A inc T
T (ΨA inc)R1

~
u
}

∂f t(u, u̇)

∂u̇

{
RT

1 R
T
A(dxB − dxA) +

~
uRT

1 T (ΨA inc)dΨA inc

}
(A.8)
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The third term of the variation of the virtual work (Eq. A.1) can be approximated by:

δduTf t
∼=−

(
δxT

B − δxT
A

)
RAR1

~
f tR

T
1 T (ΨA inc)dΨA inc

+ δΨT
A inc

[
1

2

~(
R1

~
uf t

)
+R1

~
f t

~
uRT

1

]
dΨA inc

(A.9)

For the fourth term of Eq. A.1, it is needed to compute the absolute spatial derivative
of relative rotation vector Θrel.

dΘrel = −RT
1 R

T
BRAT (ΨA inc)dΨA inc +RT

1 T (ΨB inc)dΨB inc (A.10)

δΘT
rel

∂f r(Θrel, Θ̇rel)

∂Θrel
dΘrel =

{
−δΨT

A incT
T (ΨA inc)R

T
ARBR1

+δΨT
B incT

T (ΨB inc)R1

} ∂f r(Θrel, Θ̇rel)

∂Θrel

{−RT
1 R

T
BRAT (ΨA inc)dΨA inc +RT

1 T (ΨB inc)dΨB inc}

(A.11)

In order to compute dΘ̇rel, we start from the derivative of:

Ωrel = RT
1 ΩB −RT

1 R
T
BRA ΩA (A.12)

and after some mathematical manipulations, we get:

dΘ̇rel = RT
1 R

T
BRA

[~(
T (ΨA inc)Ψ̇A inc

)
T (ΨA inc)−G(ΨA inc, Ψ̇A inc)

]
dΨA inc

−RT
1

[~(
RT

BRAT (ΨA inc)Ψ̇A inc

)
T (ΨB inc)−G(ΨB inc, Ψ̇B inc)

]
dΨB inc

−RT
1 R

T
BRAT (ΨA inc)dΨ̇A inc +RT

1 T (ΨB inc)dΨ̇B inc

−G(Θrel, Θ̇rel) dΘrel

(A.13)

By omitting the terms in dΨA inc and dΨB inc, the fifth term of Eq. A.1 can be reduced
to:

δΘT
rel

∂f r(Θrel, Θ̇rel)

∂Θ̇rel

dΘ̇rel = {−δΨT
A incT

T (ΨA inc)R
T
ARBR1

+δΨT
B incT

T (ΨB inc)R1}
∂f r(Θrel, Θ̇rel)

∂Θ̇rel

{−RT
1 R

T
BRAT (ΨA inc)dΨ̇A inc +RT

1 T (ΨB inc)dΨ̇B inc}

(A.14)

Finally, the last term of Equation A.1 can be neglected in first approximation:

δdΘT
rel f r

∼= 0 (A.15)
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Owing to the few terms neglected, the tangent stiffness and tangent damping
matrices can be put in a compact matrix form (Eq. A.16-A.17).

Kcon
t =

∂gint(q, q̇)

∂q
= BT

∂f t(u,u̇)
∂u 0

0
∂f r(Θrel,Θ̇rel)

∂Θrel

B

+


0 RAR1

~
f tR

T
1 T (ΨA inc) 0 0

0 1
2

~(
R1

~
uf t

)
+R1

~
f t

~
uRT

1 0 0

0 −RAR1

~
f tR

T
1 T (ΨA inc) 0 0

0 0 0 0


(A.16)

Ccon
t =

∂gint(q, q̇)

∂q̇
= BT

∂f t(u,u̇)

∂u̇
0

0
∂f r(Θrel,Θ̇rel)

∂Θ̇rel

B (A.17)

The contribution of the contact element to the iteration matrix of the full MBS is given
by:

Scon
t = Kcon

t +
γ

βh
Ccon

t (A.18)

A.2 Cylindrical joint with clearance and friction

The iteration matrix of the cylindrical joint with clearance and friction described in
section 4.5 is detailled in the following of this appendix. Owing to the huge number of
mathematical operations involved, the computation of the full iteration matrix could
be time consuming. Some terms given herebelow provide probably a insignificant con-
tribution to the full iteration matrix and could be omitted. A detailed study could be
carried out in order to determine which terms should be neglected.in order to optimize
the CPU time.

The contribution to the iteration matrix of any force element can be obtained by
deriving the virtual work expression (Eq. 4.61):

δdW = δqT dgint(q, q̇) (A.19)

A.2.1 Contact Force

In order to separate explicitly the contributions due to purely geometric effects and the
contributions due to the contact force magnitude, it has be chosen to decompose the
internal force vector gint

n (Eq. 4.63) in two parts. Therefore, the absolute derivative of



Cylindrical joint with clearance and friction 265

this force vector is made of two terms:

dgint(q, q̇) = df


−n

−T T (ΨA inc)R
T
AR

T
1
~
xAB n

n

0

+ f d


−n

−T T (ΨA inc)R
T
AR

T
1
~
xAB n

n

0


(A.20)

Spatial derivation of the contact law

The contact force depends on the penetration length ℓ and the penetration velocity ℓ̇.
This dependence will be used to express the spatial derivative of f :

df =
∂f

∂ℓ
dℓ+ ∂f

∂ℓ̇
dℓ̇ (A.21)

where the spatial derivative are defined by:

∂f

∂ℓ
= k n ℓn−1 + c n ℓn−1 ℓ̇ (A.22)

∂f

∂ℓ̇
= c ℓn (A.23)

The derivative of the penetration length takes the form:

dℓ = d
(
xT
PQ n

)
= nTdxPQ + xT

PQ dn (A.24)
= nT dxAB +A2 dΨA inc (A.25)

with:

dxPQ = dxAB − ~
xBQR1RBT (ΨB inc)dΨB inc +

~
xAPR1RAT (ΨA inc)dΨA inc

A2 = nT ~
xAPR1RAT (ΨA inc) = nT ~

xABR1RAT (ΨA inc) (A.26)

The derivative of the penetration velocity can be formulated as:

dℓ̇ = d
(
ẋT
PQ n+ xT

PQ ṅ
)

(A.27)
= nTdẋPQ + ẋT

PQ dn (A.28)

The vector dn appearing in Eq. A.28 can be expanded in:

dn =
(
I − nnT

) d
[(

I − e′′A1
e′′A1

T
)
xAB

]
∥∥∥(I − e′′A1

e′′A1

T
)
xAB

∥∥∥ (A.29)

with:

d
[(

I − e′′A1
e′′A1

T
)
xAB

]
= d

(
I − e′′A1

e′′A1

T
)
xAB +

(
I − e′′A1

e′′A1

T
)

dxAB (A.30)
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The first term is developed in:

d
(
I − e′′A1

e′′A1

T
)
xAB = d

(
−
~
e′′A1

~
e′′A1

)
xAB (A.31)

= −

(~~
e′′A1

xAB +
~
e′′A1

~
xAB

)
RA

~
eA1T (ΨA inc)dΨA inc

In summary, the derivative of the normal vector is restated in a compact form:

dn = A3 dxAB +A4 dΨA inc (A.32)

where

A3 =
1∥∥∥(I − e′′A1
e′′A1

T
)
xAB

∥∥∥
(
I − nnT

) (
I − e′′A1

e′′A1

T
)

(A.33)

A4 = − 1∥∥∥(I − e′′A1
e′′A1

T
)
xAB

∥∥∥
(
I − nnT

)(~~
e′′A1

xAB +
~
e′′A1

~
xAB

)
RA

~
eA1T (ΨA inc)

In addition to the term in dn, Eq. A.28 requires also computing dẋPQ:

dẋPQ = dẋAB +

~(
R1RBT (ΨB inc)Ψ̇B inc

)
dxBQ −
~(
R1RAT (ΨA inc)Ψ̇A inc

)
dxAP

+
~
xBQR1RB

~(
T (ΨB inc)Ψ̇B inc

)
T (ΨB inc) dΨB inc

− ~
xAPR1RA

~(
T (ΨA inc)Ψ̇A inc

)
T (ΨA inc) dΨA inc

− ~
xBQR1RBT (ΨB inc) dΨ̇B inc +

~
xAPR1RAT (ΨA inc) dΨ̇A inc

(A.34)

Finally, dℓ is composed of four terms:

dℓ̇ = A5 dxAB +A6 dΨA inc + nTdẋAB +A7 dΨ̇A inc (A.35)

where:

A5 = nT~
ωB rB A3 − nT~

ωA [I + (rb − l)A3] + ẋT
PQ A3 (A.36)

A6 = nT~
ωB rB A4 − nT~

ωA(rb − l)A4 (A.37)

+nT ~
xAPR1RA

~(
T (ΨA inc)Ψ̇A inc

)
T (ΨA inc) + ẋT

PQ A4 (A.38)

A7 = nT~
xAPR1RAT (ΨA inc) (A.39)

The tangent stiffness matrix and the tangent damping matrix of the first term of
Equation A.20 can be reduced to:

Kt/1 = A1{−G H G 0} (A.40)
Ct/1 = A1{−L J L 0} (A.41)
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with:

A1 =


−n

−T T (ΨA inc)R
T
AR

T
1
~
xAB n

n

0

 (A.42)

G =
∂f

∂ℓ
nT +

∂f

∂ℓ̇
A5 (A.43)

H =
∂f

∂ℓ
A2 +

∂f

∂ℓ̇
A6 (A.44)

L =
∂f

∂ℓ̇
nT (A.45)

J =
∂f

∂ℓ̇
A7 (A.46)

Let us note that in the case where the contact law does not include a damping contri-
bution, this tangent stiffness matrix is symmetric.

Spatial derivation of the geometric term of the internal force vector

The second term of Equation A.20 can be reformulated as:

f d


−n

−T T (ΨA inc)R
T
AR

T
1
~
xAB n

n

0

 = f


−dn
−A8

dn
0

 (A.47)

with:

A8 = T T (ΨA inc)
~(
RT

AR
T
1
~
xAB n

)
T (ΨA inc) dΨA inc

− T T (ΨA inc)R
T
AR

T
1

~
n dxAB

+ T T (ΨA inc)R
T
AR

T
1

~
xAB dn

(A.48)

By replacing dn by his expression (Eq. A.32), this last matrix can be merged in
only two terms:

A8 = A9 dxAB +A10 dΨA inc (A.49)

with:

A9 = −T T (ΨA inc)R
T
AR

T
1

~
n+ T T (ΨA inc)R

T
AR

T
1

~
xAB A3 (A.50)

= T T (ΨA inc)R
T
AR

T
1

(
−~
n+

~
xAB A3

)
(A.51)

A10 = T T (ΨA inc)
~(
RT

AR
T
1
~
xAB n

)
T (ΨA inc)

+ T T (ΨA inc)R
T
AR

T
1

~
xABA4

(A.52)
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In a matrix form, the contribution of the geometric term of gint to the tangent
stiffness matrix is:

Kt/2 = f


A3 −A4 −A3 0

A9 −A10 −A9 0

−A3 A4 A3 0

0 0 0 0

 (A.53)

A.2.2 Friction forces

The derivative of the internal force vector due to friction (Eq. 4.76) is defined by:

dgint
fr (q, q̇) = d
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 (A.54)

The derivative of the friction force can be split in three terms. The expression of
each vector or matrix involved in these three terms is given in the set of Equations A.56
to A.76 .

dffr = − [ dµR(vt) f t+ µR(vt) df t+ µR(vt) f dt ] (A.55)

1st term

dµr(vt) =
∂µR
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dvt (A.56)

with
∂µr
∂vt

=

{
µ
(

2
ϵv

− 2
ϵ2v
vt

)
vt < ϵv

0 vt ≥ ϵv
(A.57)

dvt = vT
t dt+ tTdvt (A.58)
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M

)]
(A.60)

=

(~[~
n
(
ẋB
M − ẋA
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In summary, we have:
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2nd term

By analogy with Eqs. A.40-A.41, the contribution of the second term to the tangent
stiffness matrix has the following form

µr(vt) df t = µr(vt) t {−G H G 0} (A.74)

and the contribution to the tangent damping matrix has the form:

µr(vt) df t = µr(vt) t {−L J L 0} (A.75)

3rd term

µr(vt) f dt = µr(vt)
f
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dvt (A.76)

dffr can be now expressed as:
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(A.77)

The intermediate matrix A11 appearing in Eq. A.54 is expanded in:
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The intermediate matrix A12 of Eq. A.54 can be developed as:
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After reformulation, we get:
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Finally, the contributions of A11 and A12 to the tangent stiffness and damping
matrix become:
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