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The research focuses on the identification
of time-varying systems
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M (t) ẍ(t) + C(t) ẋ(t) + K(t) x(t) = f (t)

Dynamics of such systems is characterized by :
I Non-stationary time series
I Instantaneous modal properties

I Frequencies : ωr(t)
I Damping ratio’s : ξr(t)
I Modal deformations : V r(t)



Why time-varying behaviour appears ?

Mathieu BERTHA (ULg) ISMA 2014, September 2014 2

Several possible origins :
I Structural changes

I Operating conditions

I Damages



Outline of the presentation
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Introduction to the Hilbert transform and the HVD
method

Adaptation of the initial method to overcome some
drawbacks

Application to the identification of a test structure



In this work, we use the Hilbert Transform
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The Hilbert transform H of a signal x(t) is the convolution product of
this signal with the impulse response h(t) = 1

π t

H(x(t)) = (h(t) ∗ x(t))

= p.v.
∫ +∞

−∞
x(τ)h(t − τ) dτ

=
1
π

p.v.
∫ +∞

−∞

x(τ)
t − τ

dτ

It is a particular transform that remains in the time domain

It corresponds to a phase shift of −π
2 of the signal



The Hilbert transform and the analytic signal
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The analytic signal z is built as

z(t) = x(t) + iH(x(t))
= A(t) eiφ(t)

The instantaneous properties of the signal can
then be obtained

A(t) = |z(t)|
φ(t) = ∠z(t)

ω(t) = dφ
dt



Example of analytic signal construction
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Example of analytic signal construction
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This work is based on the idea of the Hilbert Vibration
Decomposition (HVD) method
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x(t)

Analytic signal
z(t) = x(t) + iH(x(t))

Frequency extraction
ω(t) = dφ(t)

dt = d∠z(t)
dt

Lowpass filtering
ω(t) → ωk(t)

Synchronous demodulation
xk(t)

Sifting process
x(t) := x(t) − xk(t)

It is an iterative process:
I Detection of the instantaneous frequency of the

dominent component
I Demodulation of its related monocomponent
I Extraction of the monocomponent from the signal

The sifting of the signal extracts monocomponents
from higher to lower instantaneous amplitude

It is applicable to single channel measurement and
crossing monocomponents may be a problem



The identification of the instantaneous frequencies
and the signal decomposition are modified
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x(t)

Analytic signal
z(t) = x(t) + iH(x(t))

Frequency extraction
ω(t) = dφ(t)

dt = d∠z(t)
dt

Lowpass filtering
ω(t) → ωk(t)

Synchronous demodulation
xk(t)

Sifting process
x(t) := x(t) − xk(t)

Instantaneous frequencies are
calculated using Time-Varying

Auto Regressive (TVAR) modelling

The signal decomposi-
tions is performed using a
Vold-Kalman filter (VKF)



Time–Varying Auto Regressive model is chosen for the
identification of the instantaneous frequencies
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The response is assumed to be a linear combination
of its past values

In time-varying systems, the regression coefficients
are time–dependant

x(t) =
p∑

i=1
ai(t) x(t − i) + e(t),

leading to the time-varying transfer function

H (ω, t) = 1
1−

∑p
i=1 ai(t) e−j ω i

The roots of the denominator give the
instantaneous poles of the system



The basis function approach is adopted to manage
the time dependency of the regressive coefficients
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It is assumed that the time–variation of the
regressive coefficients can be represented as a linear
combination of a set of known functions

ai(t) =
q∑

k=0
ai,k uk(t)

In that way, only the ai,k coefficients are estimated,
in a time invariant problem

G α = h

in which α gathers the regression coefficients and
G and h are functions of x and uk



A global estimation is possible
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Because the poles of the system are global
properties, the regressive coefficients should be the
same if identified from any sensor

A least squares estimate of the regression
coefficients is possible by gathering all the sensors

G1
G2
...

Gn

 α =


h1
h2
...

hn


→ sensor 1
→ sensor 2

...
→ sensor n



Response signals are decomposed using
a Vold–Kalman filter
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This method allows to retrieve signal
subcomponents based on their phase

x(t) =
∑

k
ak(t) ei

∫ t
0 ωk(t)dt︸ ︷︷ ︸

x(k)(t)

+ δ(t)

The complex amplitudes of the components
minimise the data equation

x(t)−
∑

k
ak(t) ei φk(t) = δ(t)

and the structural equations

ak(t − 1)− 2ak(t) + ak(t + 1) = εk(t)



Monocomponents and complex amplitudes
are extracted
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The Vold-Kalman model and the modal
expansion are very similar.

The extracted complex amplitudes are then
considered as unscaled mode shapes

Vold-Kalman filter: x(t) =
∑

k ak(t) ei φk(t)

l l
Modal expansion: x(t) =

∑
k Vk(t) ηk(t)



The experimental set-up
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2.1 meter aluminum beam
Steel block (≈ 3.5 kg, 38.6%)

1 shaker
7 accelerometers
LMS SCADAS & LMS Test.Lab system



Time invariant modal identification
of the beam subsystem
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A record is performed in time–varying
conditions
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The shaker excites the structure with a random force

The mass is pulled along the beam

The accelerations of the beam are recorded
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The time–varying identification is now performed
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Legendre polynomials are chosen as basis functions
The model order and size of the basis are chosen
(p = 17, q = 32)
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The time–varying identification is now performed
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Legendre polynomials are chosen as basis functions
The model order and size of the basis are chosen
(p = 17, q = 32)
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The moving mass has an influence on the mode shapes of
the structure
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The mode shapes are the most disrupted when the
mass lies on an anti-node of vibration

Conversely, when the mass lies on a node of a
mode, the latter is no more perturbed
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Thank you for your
attention




