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1 Introduction

Neuroimaging techniques allow to get different kind of in-
formation on the brain. For example, Diffusion Tensor
Imaging (DTI) is a measure of the density of fibers and their
orientation at a certain point in the brain whereas functional
Magnetic Resonance Imaging (fMRI) and Positron Emis-
sion Tomography (PET) measure the level of cerebral activ-
ity. Techniques that essentially measure the same trait such
as fMRI and PET have different spatial and temporal reso-
lutions but can be used in a complementary analysis of that
trait [1].
It seems natural that it is more difficult to use data measuring
different traits such as fMRI and DTI in a unifying frame-
work. Model based analyses [2] have allowed to draw some
connections between structural and functional information
(DTI and fMRI data, respectively) but the way structural
properties constrain cerebral activity remains poorly under-
stood.
In this work we represent both functional and structural data
by graphs because they allow to encode and detect impor-
tant properties of neuronal data [3]. In order to detect the
communities at different scales we use the general concept
of stability, a measure of the quality of a partition that also
includes a measure of robustness of the results through the
notion of variation of information [4].

2 Methods

We denote by X(m,T ) the resting state fMRI signal, with m
the number of voxels and T the number of time samples.
The m time courses are first band-pass filtered in order to
extract only the neuronal contribution. We then consider
the correlation matrix of this cleaned fMRI signal as the
functional adjacency matrix A f

T .
The structural adjacency matrix As

T is obtained by log-
rescaling DTI data to an acceptable range of values (see [2]
for details).
Stability is denoted by r(t) where t is a resolution parameter
and our formulation of stability is the following :

r(t) = max
H

r f (t,H)+λ (t)rs(t,H) (1)

where H is a given partition of the graph, r f (rs) is the sta-
bility of the partition H at the resolution t based on the func-

tional (structural) adjacency matrix A f
T (As

T ). λ is a weight-
ing parameter to balance functional and structural stability
contributions.

3 Ongoing work

A first part of the work is to compare the large-scale net-
works that are deduced from this graphical approach to net-
works that are obtained using classical techniques such as
independent component analysis [1]. The correspondence
between those results can be considered as a quality mea-
sure but the robustness (measured by the variation of infor-
mation) of the network that is extracted using our approach
has the advantage of being a quality measure by itself and
hence we can confront those two criteria.
A second key question is to study the role of the weighting
parameter λ . In particular we want to answer the following
questions :

• How does λ influences the correspondence between
the networks deduced from our approach and the clas-
sical component analysis approach, when keeping λ

constant across different scales (λ (t) = λ̄ ).

• What happens if the weighting parameter is not con-
stant across time scales?

• Is the matching between the networks different at dif-
ferent scales and hence is functional connectivity en-
coding different structural constraints at different res-
olutions ?
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