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Abstract: This paper presents a kinematic hardening model for describing some important 

features of natural stiff clays under cyclic loading conditions, such as closed hysteretic loops, 

smooth transition from the elastic behavior to the elastoplastic one and changes of the 

compression slope with loading/unloading loops. The model includes two yield surfaces, an 

inner surface and a bounding surface. A non-associated flow rule and a unified kinematic 

hardening law are proposed for the inner surface. The adopted hardening law enables the 

plastic modulus to vary smoothly when the kinematic yield surface approaches the bounding 

surface and ensures at the same time the non-intersection of the two yield surfaces. 

Furthermore, the first loading, unloading, and reloading stages are treated differently by 

applying distinct hardening parameters. The main feature of the model is that its constitutive 

equations can be simply formulated based on the consistency condition for the inner yield 

surface based on the proposed unified kinematic hardening law; thereby, this model can be 

easily implemented in a finite element code using a classic stress integration scheme as for the 

modified Cam Clay model. The simulation results on the Boom Clay, natural stiff clay, have 

revealed the relevance of the model: a good agreement has been obtained between simulations 

and the experimental results from the tests with different stress paths under cyclic loading 

conditions. In particular, the model can satisfactorily describe the complex case of oedometric 

conditions where the deviator stress is positive upon loading (compression) but can become 

negative upon unloading (extension). 

Keywords:  natural stiff clay; kinematic hardening; cyclic loading; elastoplasticity; stress 

integration; validation 
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1. Introduction 

It is well known that the stress-strain curves of soils under cyclic loading conditions show 

hysteresis loops with gradual accumulation of permanent strain. Indeed, various experimental 

results from isotropic compression tests, drained triaixal shear tests and oedometer tests on 

natural stiff clays (Boom Clay and Ypresian Clays, for instance) with several 

unloading/reloading cycles show marked hysteresis loops [1, 2, 3]. Natural stiff clays also 

exhibit smooth transition from elastic to elastoplastic compression (progressive stiffness 

degradation with strain) for either loading or unloading/reloading stages. In addition, 

experiments show another important characteristic regarding the compression slope in the 

reloading process before reaching ′vmax which is the maximum vertical stress applied before 

unloading. This compression slope in the reloading process varies significantly from one loop 

to another. Nguyen [4] concluded that this slope increases with ′vmax. These features must be 

taken into account when developing constitutive models for the description of the mechanical 

behavior of this kind of clays under cyclic loading conditions.  

Conventional critical state models for soils including the Modified Cam Clay model (MCC) 

can describe plastic strains in the normally consolidated state, but only elastic strains is 

produced during the subsequent unloading–reloading cycles within the yield surface. On the 

other hand, bounding surface models with radial mapping rule proposed in the 1980s (see e.g. 

[5, 6]), where the current plastic modulus varies with the distance between the stress state and 

its image point on the bounding surface, can successfully describe some important features of 

natural stiff clays such as the smooth transition from elastic to elastoplastic states as well as 

the softening behavior.  However, this kind of the models gives open hysteresis loops during 

unloading-reloading stages and cannot describe the cyclic loading behavior realistically, since 

no plastic strain is generated during the unloading process. To overcome this deficiency, 

attempts were made by some researchers (e.g. [7, 8]]) by applying the generalized plasticity 

concept proposed by Zienkiewicz and Mroz [9]. It is assumed that plastic strain is produced 

even by a stress increment directed toward the inside of the yield surface, the stress point 

always lying on the inner yield surface. With the generalized plasticity concept, a gradual 

strain accumulation with closed hysteresis loops can be simulated for the loading compression 

side (the deviator stress is positive).  However, it fails for the extension side (negative 

deviator stress): an inflection appears in the stress-strain curve upon unloading along a 

straight stress path [10] as illustrated in Fig. 1.  It is assumed that the loading yield surface has 
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an ellipse shape as in the MCC model (see Fig. 1 (a)). During the unloading process (path 1-2), 

the loading surface shrinks from fl1 to fl2 with the size parameter decrease from  p′c1 to p′c2. A 

negative plastic strain increment is generated for this loading path.  When point 3 is reached, 

the direction of the effective stress rate becomes tangential to the loading surface and just 

elastic strain is produced leading to an inflection point (see Fig. 1 (b)). After point 3, the 

loading surface expands along p′ axis passing through the origin of the stress space with a 

positive plastic strain increment generated. Indeed, the predicted behavior that a negative 

plastic strain increment generated along path 1-3 but a positive plastic strain increment along 

path 3-4 is difficult to admit physically. Hence, this kind of the models is not suitable for 

simulating the oedometer tests where negative deviator stress occurs in the unloading process. 

 

                 
Fig.  1.   Problems related to the bounding surface models with isotropic hardening law considering plastic strain 

in the unloading process: (a) the stress path in the (p′, q) plane and (b) the stress-volumetric plastic strain curve  

An important development in the constitutive modeling for the cyclic loading behavior is the 

introduction of kinematic hardening mechanism by Mroz (1967) [11]. The ‘Bubble’ model by 

Al-Tabbaa (1989) [12] was developed within the framework of kinematic models. In this 

model, a kinematic yield surface (namely bubble surface) is defined, which is allowed to 

translate and expand or contract within the conventional yield surface (namely bounding 

surface). The formulation of such a kinematic hardening model is mainly centered on the 

translation rule and the hardening function:  the former is used to control the movement and 

interaction of the two surfaces and the latter is defined to describe the variation of the plastic 

modulus. This model can reproduce a closed hysteretic loop under a complete cyclic loading 

with deviator stress being from positive values to negative values. However, it should be 

pointed out that in the bubble model, the plastic modulus of the current stress state is not 

formulated by considering the consistency condition of the kinematic yield surface, but given 

by an interpolation function depending on the distance from the current stress point to the 
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bounding surface. In addition, the kinematic hardening models are still not widely used to 

describe the cyclic behavior of natural stiff clays, such as Boom Clay. 

In this study, a kinematic hardening model for modeling the cyclic behavior of natural stiff 

clays is developed. Basically, the developed model has a structure similar to that of bubble 

models. However, instead of defining an interpolation function for the plastic hardening 

modulus, a unified kinematic hardening law associated with the kinematic yield surface is 

defined, enabling the plastic modulus to vary smoothly along a plastic loading process. With a 

translation rule incorporated, this hardening law ensures that the two yield surfaces do not 

intersect but tend to coincide at the current stress point. Thereby, the constitutive equations 

can be simply obtained based on the consistency condition of the kinematic yield surface 

which is equivalent to the classic yield surface. Hence, in the numerical implementation, all 

the features of the stress integration schemes for classic elastoplastic models can be applied. 

This allows the model to be employed easily in the analysis of geotechnical problems. 

Furthermore, different model parameters for describing hardening rate in the 

loading/unloading/reloading processes are introduced enabling the cyclic loading behavior of 

natural stiff clays to be described in a flexible fashion. Also, a non-associated flow rule is 

adopted in order to properly describe the dilatancy behavior. The simulation of a series of 

tests on natural Boom Clay along different loading paths including the complex oedometric 

path show the relevance of the model proposed.  

2. Model description 

For the sake of simplicity, it is assumed that the soil behavior is isotropic. This hypothesis 

will clearly limit the proposed constitutive model if inherent and induced anisotropy is to be 

described. However, the extension of this model to an anisotropic elasto-plastic model is 

feasible by incorporating new plastic mechanisms such as a rotational hardening rule 

associated with an inclined surface as proposed by Wheeler et al.  [13]. 

In what follows, the constitutive model is developed and formulated in the conventional 

triaxial conditions, i.e., when two effective principal effective stresses are equal (′2 = ′3). 

The model can be extended to a general stress state easily if the soil parameters are properly 

determined as pointed out by Morz et al. [14]. By defining the compressive stresses and 

strains as positive, the mean effective stress p′ = p - u with u as the pore water pressure and 

the deviator stress q are defined as follows: 
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  1 3 1 3

1
p 2 q

3
            (1) 

where ′1 and ′3 are the axial and lateral effective stresses, respectively. 

The volumetric strain v and the shear strain s are defined as: 

 v 1 3 s 1 32          (2) 

where 1 and 3 are the axial and lateral strains, respectively. 

 

2.1. Elastic behavior 

As in the MCC, the elastic volumetric strain increment is given by: 

 e

v

dp
d

K



  (3) 

with the elastic bulk modulus as follows: 

 0v p
K




  (4) 

where  is the elastic slope in a specific volume-logarithmic mean stress plane (v, ln p′) and v0 

is the initial specific volume. 

The elastic shear strain increment can be calculated by: 

 e

s

dq
d

3G
   (5) 

and the shear modulus G can be calculated with a constant Poisson's ratio ν: 

 
 

 

3 1 2 K
G

2 1









 (6) 

It is well-known that this choice for shear modulus (Eq (6)) helps in simulating experimental 

results, but leads to  thermodynamic inconsistency since the Maxwell symmetry relations are 

not satisfied in this case [15, 16]. 

2.2 Plastic behavior 

2.2.1 Yield surfaces 
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Two yield surfaces are introduced (see Fig. 2): an outer yield surface namely bounding 

surface (fb) that represents the normal consolidation behavior and an inner kinematic yield 

surface (fk) that delimits an elastic domain. The yield behavior is described in terms of 

evolutions of the kinematic yield surface within the domain delimited by the bounding surface.  

 

Fig. 2.  Kinematic hardening model:  Bounding surface and kinematic yield surface  

To achieve a wide variety of yield surface shapes, a smooth ‘egg-shape’ yield surface inspired 

from Eekelen et al. [17] is used for the bounding surface (fb). The yield locus fb as seen in Fig.  

2 consists of two ellipses having the same center  α p q,   but different horizontal axis 

lengths, bp′c for the left part and (1-b)p′c for the right part. At the apex of the two ellipses (see 

point C0) where they touch each other, the tangent to both ellipses is horizontal. The slope of 

the diagonal of the left ellipse is Mf, the same as in the MCC model. Thus, the yield function 

is defined as follows: 

 

 
 

 

 
   

 

2

q2
2

p pc2

f

22

q2
2

p pc2 2

f

q
f p p 0 for p

M

1 b q
f p p 0 for p

b M


 


 


       

 
       

 (7) 

where p′c  is the conventional preconsolidation pressure defining the size of the bounding 

surface and b is a material parameter.  Since the bounding surface passes through the origin in 

(p′, q) plane and develops along the hydrostatic axis, p cbp   and q 0   will always hold 

in the yield surface evolution. It is worth noting that the MCC model is obtained when b = 1/2.  

It is assumed that the inner kinematic yield surface has a similar shape but a size R (0 < R < 1) 

times that of the bounding surface. Thus, the equations of the kinematic surface (fk) take the 

following form: 
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
 


       

 
       

 (8) 

where α(αp, αq) is the coordinates that specify the  position of the center of the kinematic yield 

surface. 

2.2.2 Isotropic hardening law 

The isotropic hardening law is defined to describe the evolution of the bounding surface size 

(through parameter p′c) with plastic strains. The evolution of p′c depends on the plastic 

volumetric strain p

v as in the MCC model, and is given by:  

 p0 c
c v

v p
dp d

 


 


 (9) 

where λ is the normal consolidation slope in  (v, ln p′) plane. This isotropic hardening law also 

applies implicitly to the kinematic yield surface through the constant ratio R as the kinematic 

yield surface is activated. 

2.2.3 Kinematic hardening law 

Consider now the kinematic hardening law for the kinematic yield surface.  The current stress 

state is defined as  ,σ =
T

p q   (point A in Fig. 3) which lies on the kinematic surface is 

associated with a conjugated stress state  σ p ,q
   (point B in Fig. 3) on the bounding 

surface having the same direction of the exterior normal, as illustrated in Fig. 3. The similarity 

of the kinematic yield surface and the bounding surface gives the following relationship: 

  σ α σ αR
     
 

 (10) 
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Fig. 3.  Schematic representation of the kinematic hardening law 

To account for the progressive increment of plastic strain as the kinematic yield surface 

approaches the bounding surface, a scalar r measuring the normalized distance of the current 

stress state on the kinematic yield surface to the associated conjugated stress state on the 

bounding surface is defined as follows: 

 
max

r



  (11) 

where σ σ
   is the current distance between the current stress state and the conjugated 

stress state,  max  denotes the maximum distance:  max c1 R p   .  Obviously, r = 0 holds 

when the two surfaces are in contact.  

A simple law is defined to describe the evolution of r following Borja et al. [18]: 

 
2 p0

d

v
dr s r d

 
 


 (12) 

with a generalized plastic strain defined in Eq (13) to account for the contribution of both the 

volumetric and shear plastic strains: 

    
2 2

p p p

d v d sd d A d     (13) 
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where s is a parameter describing the degradation of the stress–strain curve inside the 

bounding surface; Ad is a parameter which controls the contribution of shear plastic strain. 

Note that such a combined volumetric-deviatoric hardening law enables the stress increase 

over the critical state line along non-isotropic stress paths and thus enables the plastic 

dilatancy to be described.   

The contribution of Eq (13) is illustrated in Fig. 4 through an isotropic loading-unloading path 

O1CDEF.  The initial effective stress state is represented by point O1. For the stress path O1C, 

only elastic strain occurs. Upon further loading, the bubble will be pulled along the stress path 

and in the meanwhile plastic strain is generated. Due to the plastic strain generation, the 

kinematic yield surface and the bubble model will expand (not shown in Fig. 4). The 

volumetric plastic strain produced along the stress path CD can be calculated from Eq (9) and 

Eq (12) :  

   p0
v

vdp
1 s 1 R r d

p


 


     

 (14) 

 When parameter r decreases from its initial value r0 to 0, the stress point moves toward the 

bounding surface and the overall hardening modulus decreases. This hardening law enables a 

smooth elastic-plastic transition. If r = 0, the two surfaces are in contact at point D and the 

contribution of Eq (12) vanishes. In that case, the isotropic hardening law applies, and any 

further loading process will move the two surfaces together. If the soil is now unloaded such 

that the stress path travels along stress path DE, the soil behaves elastically first with 

generation of expansive (negative) elastic strain. Along stress path EF, expansive plastic 

strain is produced. The volumetric plastic strain produced along stress path EF can also be 

calculated from Eq (9) and Eq (12): 

   p0
v

dp v
1 s 1 R r d

p


 


     

 (15) 

Like in the loading process, in the unloading process the hardening modulus decreases as the 

stress moves toward the inside of the bounding surface with r decreases from another initial 

value of r0 to 0. A smooth elastic-plastic behavior in the unloading process can also be 

simulated. 
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Fig. 4. Relative configuration of the kinematic yield surface and bubble surfaces 

Note that it is not guaranteed that the kinematic yield surface do not intersect the bounding 

surface in the plastic loading process just with Eq (12). This can be remediated by defining a 

translation rule that guarantees that both surfaces (fk = 0 and fb = 0) do not intersect but are in 

contact at a point where they share the same normal.  This can be done by assuming that the 

relative motion of point A with respect to B (see Fig. 3) is directed along vector (β σ σ
   ) 

[14]. The following expression can then be obtained: 

 σ σ σ σd d
          
   

 (16) 

where d  is a scalar factor. 

To define a unified hardening law, Eq (12) and Eq (16) should be made compatible. For this 

purpose, d  is defined as: 

  p p0
d v

v
d srd d  

 
 


 (17) 

Eq (16) can now be rewritten by substituting Eq (9) and Eq (17) : 

 

σ σ σ σ
p0

d

max max

v
d s rd

   

           
      

 
 
 

 (18) 

which satisfies Eq (12). 
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Substituting the geometric relation given by Eq (10) into Eq (18) gives a unified kinematic 

hardening law: 

  
 

 α σ σ σ α α
p p0
d v

c

c

1v
s

R dp
d dr

p
dd

R
 

 

      
 

 


  (19) 

This kinematic hardening law specifies the translation of the centre of the kinematic yield 

surface and enables the plastic modulus to vary at the same time, having a unified function of 

the hardening law and the translation rule in a classic kinematic hardening model.   

2.2.4 Hardening parameter s and loading cycles 

To satisfactorily describe the closed hysteretic loop behavior, a well-known solution is to 

divide the whole cyclic loading process into three parts, namely first loading, unloading and 

reloading processes (e.g. [19, 20]). For each part, a specific expression of plastic modulus is 

used to control the corresponding slope of the stress-strain curve.  Following this concept, 

parameters s0, su and sr are introduced to control the hardening rate for the first loading, 

unloading and reloading processes, respectively. 

Furthermore, as mentioned before, an important behavior regarding slope Ccp in the reloading 

process before reaching ′vmax (the maximum vertical stress applied before unloading) has 

been observed experimentally:  Ccp varies significantly from one loop to the next one. For 

Boom Clay and Ypresian Clays, oedometer tests have revealed that Ccp varies linearly with 

the logarithm of ′vmax [4].  Since K0 (the coefficient of earth pressure at rest) is close to 1 for 

natural Boom Clay (K0 = 0.80) and Ypresian Clays (K0 = 0.88) [21, 22], the vertical effective 

stress state can then be approximated by the mean effective stress. Therefore, the following 

expression can be adopted for hardening parameter sr : 

 r
r 0 s

max

p
s s log

p


 
   

 
 (20) 

where λs is a material constant which controls the variation rate of sr;  p′r is the initial mean 

effective stress in the reloading process; p′max is the maximum mean effective stress applied 

before unloading.  This equation ensures that the higher the value of p′max or the lower the 

value of p′r, the lower the value of sr, thus the straighter the stress-strain curve for the 

reloading before reaching p′max (or ′vmax). 

2.2.5 Flow rule 
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In the common critical state models, the phenomenological interaction between shear and 

volume change (contraction and dilatancy) has been well handled by specifying an 

appropriate flow rule.  In the well-known MCC model, the flow rule is defined as follows: 

 

2 2p
gv

p

s

Md

d 2



 


  (21) 

where  is the stress ratio q/p′;  Mg is the critical state slope corresponding to the stress ratio 

when there is no further volumetric strain. In the loading process, if  gM   , plastic 

compression occurs; if gM  , plastic dilatancy occurs.  

If an associated plastic flow rule is adopted in this model, it gives  

 

 
 

 
   

 

2p
p fv

pp

s q

2 2p
p fv

p2p

s q

p Md
for p

d q

p b Md
for p

d 1 b q




 




 

 
 



 
 

 

 (22) 

where  
f gM M  holds in the associated flow rule.  

It can be clearly seen that the contractive plastic phase, dilative phase and the critical state 

controlled by Eq (22) depends on the relative position between the current effective stress 

state and the center of kinematic yield surface, instead of the value of 
gM  as in the MCC 

model.  Hence, a non-associated flow rule is defined by modifying the associated flow rule 

expressed by Eq (22) : 

 

  
 

  
 

when loading/reloading

when unloading

p
g p cv

p

s g q c

p
g p cv

p

s g q c

M 2 p 2 Rpd

d k 2 q Rp

M 2 p 2 Rpd

d k 2 q Rp

 

 

 

 

   


  
 

   


  
 

 (23) 

where kg is a material constant that is used to control the magnitude of the ratio of plastic 

volumetric strain increment to plastic shear strain increment. During loading, the sign of Eq 

(23) is controlled by the value of gM  . This value allows distinguishing the plastic 

contractive phase, plastic dilative phase and the critical state. Similarly, during unloading, Eq 

(23) defines the plastic contractive phase, the plastic dilative phase, and the critical state when 

gM    , gM    and gM   , respectively. 
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2.5 Constitutive equations 

In the following, the equations for the plastic strain increment are formulated by considering 

the consistency condition for the kinematic yield surface. The formulations are given in 

triaxial {p', q} space. The stress and strain variables write as follows: 

    , , ,σ ε
T T

v sp q      (24) 

The plastic strain increment is computed from the plastic potential as follows: 

 ε
σ

p g
d d





 (25) 

where dλ is a positive scalar namely plastic multiplier; g is the plastic potential. 

α and p′c  act as hardening variables. Therefore, the consistency condition of the kinematic 

yield surface is given by: 

 : σ + : α+
σ α

T T

k k k
c

c

f f f
d d dp 0

p

     
     

      
 (26) 

Substituting Eqs (9), (19) and (25)  into Eq (26)  gives: 

 : σ
σ

t

kf d hd 0
 

    
 (27) 

with h being the hardening modulus: 
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 (28) 

From Eq (28), we can see that even when the stress state reaches the condition   = Mg, the 

inclusion of the shear hardening part (
g

q




 > 0) leads to h > 0. With further loading, the 

effective stress increases over the critical state line and negative plastic volumetric strain 

occurs. 

The stress-strain equations can finally be obtained in a differential form: 
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 σ D ε
epd d   (29) 

where: 

 
 

 

b a D
D D D

a D b

T e

ep e e

T e h
 


 (30) 

and D
e
 is the elastic stiffness matrix, a

σ

kf

, b

σ

g



. 

3. Determination of parameters 

The proposed kinematic hardening model has 13 parameters (λ, , p′c0, ν, Mg, R, Mf, b, kg, s0, 

su, λs, Ad). The procedure for determining these parameters is described as follows.   

1. λ, , p′c0, ν, Mg are common parameters in the MCC model. λ is the slope of the normal 

consolidation compression line and  is the slope of swelling line of the isotropic 

compression curve in (v, ln p′) plane. Note that  is the parameter governing the elastic 

behavior. However, the proposed kinematic model assumes a purely elastic behavior only 

inside the kinematic yield surface in the initial stage of the loading/unloading/reloading 

processes. To be consistent with this elasto-plastic framework,   can be determined by the 

swelling curve in the early stage of the unloading process. p′c0 denotes conventional 

isotropic preconsolidation pressure and it defines the initial size of the bounding surface. 

These three parameters (λ,  and p′c0) can be determined based on the isotropic compression 

curve in the (v, ln p′) plane. The Poisson’s ratio ν can be determined from a standard triaxial 

test by considering the elastic behavior at a low strain level (around 0.5%) in the (v, 1) 

plane:  1 / 2v    . Mg is the critical state stress ratio which can be determined by the 

effective stress ratio at critical state.  

2. R is the ratio of sizes of kinematic yield surface and bounding surface.  The size of the 

kinematic yield surface is defined by R. Considering its physical meaning, this size can be 

determined in the early loading/unloading stage of isotropic compression test, based on the 

compression curve in the (v-ln p′) plane. 

3. Mf and b are parameters specifying the shape of the yield surface and can be calibrated by 

fitting the bounding yield surface shape to the conventional yield points obtained from the 

tests of different stress paths.  
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4. kg is used in the plastic flow rule and can be determined by the values of  

p p

v sd / d  obtained from drained triaxial shear tests. 

5. Parameters s0 and su determine the hardening rate for the first loading and unloading, 

respectively.  λs is a material constant which controls the variation of the hardening rate in 

the reloading process. These three parameters can be back calibrated from an isotropic 

compression or oedometer test with at least two full unloading/reloading cycles. 

4. Prediction and validation 

In this section, the performance of the proposed model is assessed by simulating different 

tests on natural Boom Clay. This clay was taken in the Underground Research Laboratory 

(URL) at Mol, at a depth of 223 m. At this depth, the total vertical stress is around 4.5 MPa 

and the pore pressure is equal to 2.2 MPa, defining an effective vertical stress around 2.3 MPa 

[23]. As mentioned before, the value of K0 being about 0.8, the initial effective stress state can 

be approximated by an isotropic one. As indicated by some researchers ([1, 24, 25]), 

saturating samples under low effective stresses induce significant swelling and the subsequent 

mechanical tests may not be representative of the behavior of natural Boom clay in field 

conditions. Therefore, only data obtained from the tests on samples saturated under the in-situ 

effective stress are considered in this study.  The results that are taken into account include 

those from isotropic compression tests, drained triaixal shear tests and oedometer tests, 

carried out in different laboratories. 

All the simulations are performed from a common point (p′0 = 2 MPa, e0 = 0.61) which is 

assumed to be on the initial kinematic yield surface.  Parameters λ,  and p′c0 were determined 

from the isotropic compression tests; kg, Ad and ν were calibrated using the experimental 

curves v-1 from two drained triaxial shear tests; Mf, kf, b and Mg were derived from the 

conventional yield stresses and the critical stress ratio of all the drained triaxial shear tests; s0, 

su and λs were calibrated from the oedometer test results. These parameters are presented in 

Table 1. 

Table 1 Model parameters for natural Boom Clay 

λ  ν 
p′c0  

(MPa) 
R Mf b 

0.18 0.02 0.3 6 0.15 0.7 0.65 

Mg kg s0 su λs Ad  

0.67 0.14 40 14 10.3 0.2  
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4.1 Isotropic compression test 

Many isotropic compression tests on natural Boom Clay samples have been performed and 

some of them are summarized in Table 2 [1, 4, 26].  

 Table 2 Summary of the isotropic tests reported in literature 

Test Reference Sample depth (m) Initial void ratio Void ratio after 

saturation 

Iso-1 Baldi et al. [1] 

223 

0.677 - 

Iso-2 Le [26] 0.620 0.590 

Iso-3 Nguyen [4] - 0.600 

After completion of the saturation process, isotropic compression was performed under 

drained conditions: in Iso-1, the sample was loaded isotropically up to a mean effective stress 

of 4 MPa and then unloaded to 2 MPa, reloaded to 8 MPa, unloaded again to 2 MPa, and 

reloaded again to 5 MPa; in test Iso-2, the sample was loaded isotropically up to a mean 

effective stress of 10 MPa and then unloaded to 2 MPa; in test Iso-3, the sample was loaded 

isotropically up to 20 MPa and then unloaded to 0.5 MPa. The volumetric strains were 

obtained from the volume of drained-out water in all the three tests.  

 
Fig. 5. Numerical simulations of isotropic compression cyclic tests. 

Fig. 5 compares the model simulation and the experimental results. Note that the experimental 

data along the same loading path from different samples present a little scatter and the 

simulation cannot satisfy all the experimental data. Keeping this in mind, it can be observed 

that the model can capture the general trend of the experimental data in the loading-

unloading-reloading processes and the difference between them is small.  In particular, the 

hysteresis loops are simulated satisfactorily.  Furthermore, the model can capture the smooth 

elasto-plastic behavior in each process of loading/unloading/reloading. 

4.2 Triaxial shear test 
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The drained triaxial tests under cyclic loadings performed by Baldi et al. [1] are summarized 

in Table 3. These three tests CD-1 and CD-2 and CD-3 are performed under strain-controlled 

conditions. Strain reversals were applied at 0.60% and 2.80% of axial strains for CD-1 (Fig. 

6), at 0.56% and 2.93% of axial strains for CD-2 (Fig.7), at 0.60% and 3.80% of axial strains 

for CD-3 (Fig.8), respectively. 

Table 3 Summary of the drained triaxial tests reported in literature. 

Test 
Sample depth 

(m) 

Water content 

(%) 

Mean effective stress 

before shearing 

(MPa) 

Initial void ratio 
Shear rate 

(μm/min) 

CD-1 

223 

25.8 2 0.705 

1 CD-2 25.8 3 0.717 

CD-3 25.7 4 0.712 

Figs. 6-8 present a comparison between the experimental results and those predicted by the 

model for the drained triaxial tests. The results are presented in terms of variations of deviator 

stress and volumetric strain versus axial strain. 

For test CD-1, the model predicts smooth responses as observed experimentally (Fig. 6). 

Furthermore, the volumetric dilatancy is predicted on the volumetric strain-axial strain curve 

at large axial strain levels (after 5%). This is because a non-associated flow rule is adopted 

allowing the stress state to be above the line q = Mg p′. For the unloading-reloading process, 

the model can predict the closed hysteresis loops, the first loop at a small strain level (1 = 

0.6%) and the second loop at a large strain level (1 = 2.8%). The second predicted hysteresis 

loop is wider than the first one, in agreement with the experimental results.  
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Fig. 6. Numerical simulations of drained triaxial shear cyclic test CD-1 (p′0 = 2.0 MPa). 

For test CD-2, the predictions agree well with the experimental data with a smooth elasto-

plastic transition behavior on the deviator stress-axial strain curve as shown in Fig. 7.  Though 

the volumetric strain given by the model is larger than the experimental one, the general trend 

is consistent.  Again, the model can satisfactorily describe the hysteresis loops. 
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Fig. 7.  Numerical simulations of drained triaxial shear cyclic test CD-2 (p′0  = 3.0 MPa). 

For test CD-3, it appears that the predictions agree well with the experimental results for the 

deviator stress-axial strain relationship even though a smaller hysteresis loop is predicted (Fig. 

8). For the volume change, only contraction is predicted, in agreement with the test data.  
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Fig. 8.  Numerical simulations of drained triaxial shear cyclic test CD-3 (p′0   = 4.0 MPa). 

 

4.3  Oedometer tests 

The oedometer tests conditions reported in literature are summarized in Table 4 [1, 3, 27]. 

Table 4 Summary of the odometer tests reported in literature. 

Test Reference 
Sample depth 

(m) 
Initial void ratio 

Void ratio 

after saturation 

Oed-1 Horseman et al. [3] 247 - 0.608 

Oed-2 Deng et al. [27] 
223 

0.610 0.580 

Oed-3 Baldi et al.  [1] 0.696-0.717 - 

In Oed-1 and Oed-2, the samples were saturated under a vertical effective stress of 1 MPa and 

no obvious swelling was found in the saturation process. Compression cycles were then 

applied, under the vertical effective stresses of 2, 8, 1, 32 and 1 MPa in Oed-1 and of 2, 16, 

0.2, 32, and 0.1 MPa in Oed-2. In Oed-3, the sample was saturated under a higher vertical 

effective stress of 2.3 MPa. It was then loaded under 2 and 10 MPa effective vertical stresses.  

Fig. 9 shows the comparison between the model predictions and the experimental data. It can 

be observed clearly that the simulation curves agree well with the experimental ones for each 

part of the loading paths, indicating the performance of the model in simulating smooth stress-
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strain behavior. The important behavior of hysteresis loops under the cyclic loading paths is 

also well predicted. It is worth noting that during the unloading path in the second unloading-

reloading loop, the stress path leads to negative values of deviator stress. The good 

correspondence between the model prediction and experimental data clearly shows the 

capability of the model in describing the behavior of soil under extension conditions. In the 

following reloading process, the predicted behavior is first purely elastic since the effective 

stress state moves inside the kinematic yield surface and then elasto-plastic after the stress 

path reaches the kinematic yield surface again.  

 
Fig. 9. Simulations of the oedometer tests. 

From the experimental results from oedometer tests on natural stiff clays, Cui et al. [2] 

identified a mechanism involving the competition between the mechanical and 

physicochemical effects occurring during unloading or reloading. A threshold stress ′vs 

related to this mechanism was identified that separates the domain of large volume changes 

from the domain of small volume changes. Further analysis showed that this threshold stress 

corresponds physically to the swelling pressure of soil. It was observed that ′vs is function of 

the void ratio (ei) just before the unloading or reloading process [4]: 

  expvs ie     (31) 

where  and  are soil constants. 

For Boom Clay, the values of  = 231.4MPa and  = -8.0 are determined from the test data. 

The vertical swelling pressure ′vs calculated using Eq (31) is presented in Table 5 for each 

unloading/reloading process. On the other hand, using the proposed model, it is also possible 

to define a threshold stress (′k) at each stage of unloading/reloading process based on the 
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initial kinematic yield surface, which divides the soil behavior into two parts: a part of purely 

elastic behavior with small volume changes and a part of elasto-plastic behavior with larger 

volume changes. Basically, ′vs and ′k have the same physical meaning. Thus, it is rational to 

make a comparison between them. For this purpose, the threshold stress ′k is determined 

using the proposed model and the obtained values are also presented in Table 5. Comparison 

between ′vs and ′k shows that the threshold stresses predicted by Eq (31) and the kinematic 

hardening model have the same general trend with the loading loops, but some difference 

exists, for instance, ′k =7.1 MPa and ′vs = 4.2 MPa for the first unloading process. This may 

be attributed to the experimental data scatter. Indeed, as observed before, the compression 

curves predicted by the model are in good agreement with the experimental ones for Oed-3, 

but there is some difference between the model and experiment in the case of Oed-1 and Oed-

2 during the first loading process. As a result, a higher value of ′k is predicted in the 

following unloading path in comparison with ′vs based on the test data of Oed-1 and Oed-2.  

Table 5 Predictions of the threshold stress in the loading/unloading/reloading loops 

Loading phase ei ′vs  

(MPa) 

′k 

(MPa) 

1
st
 unloading 0.503 4.2 7.1 

1
st
 reloading 0.583 2.1 1.6 

2
nd

 unloading 0.372 12.0 16.2 

2
nd

 reloading 0.606 1.8 0.9 

3
rd

 unloading 0.272 26.2 24.2 

 

Summarizing, the developed model provides good predictions of the results from 

conventional experimental tests on natural Boom Clay. The smooth elasto-plastic behavior 

can be well predicted, suggesting that the unified hardening law that allows flexible plastic 

modulus variation with the stress state inside the bounding surface is suitable for describing 

the natural Boom Clay behavior. Moreover, the volume change behavior including the shear 

dilatancy is well described with the non-associated flow rule. By adopting different hardening 

parameters in the loading/unloading/reloading processes, the hysteresis loop behavior under 

full unloading-reloading cycles (with loading compression and extension) can also be well 

described.  

5. Conclusion 

A kinematic hardening model is developed for describing some important features of natural 

stiff clays under cyclic loadings. The model uses general expressions for the yield surface, the 
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MCC yield surface being a special case. A unified kinematic hardening law associated with 

the kinematic yield surface is introduced, enabling the plastic modulus to vary flexibly when 

the kinematic yield surface approaches the bounding surface. The kinematic surface can be in 

contact with the bounding surface but never intersect with it. The non-associated flow rule 

adopted allows the shear and volume change behavior to be satisfactorily described, 

especially the shear dilatancy behavior. In addition, by introducing three model parameters for 

describing the hardening rate in the first loading/unloading/reloading process, the cyclic 

loading behavior of natural stiff clays can be flexibly modeled. With the unified hardening 

law introduced, the constitutive equations of the model can be simply formulated based on the 

consistency condition for the kinematic yield surface. Therefore, the proposed kinematic 

hardening model can be easily implemented in a numerical code using a stress integration 

scheme as for the MCC model.  

Comparisons between the model predictions and the experiment data from the tests on natural 

Boom Clay show that the model is capable to capture the overall stress-strain behavior along 

different loading paths under cyclic loading conditions. In particular, the model can 

satisfactorily describe the complex case of oedometer tests where the deviator stress can 

become negative during unloading.    
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