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Multi-label classification tasks

Many supervised learning applications in text, biology or image
processing where samples are associated to sets of labels.

Input X 800× 600 pixel Output Y labels
driver, mountain, road,
car, tree, rock, line,
human, . . .

If each label corresponds
to a wikipedia article, then
we have around 4 million
labels.
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Random forest

Randomized trees are built on a bootstrap copy of the input-output
pairs ((xi, yi) ∈ (X × Y))ni=1 by recursively maximizing the
reduction of impurity, here the variance Var. At each node, the
best split is selected among k randomly selected features.

S

SL

Xk ≤ tk

SR

Xk > tk

Var(S) = 0.24

Var(SL) = 0.014

Var(SR) = 0.1875

∆ Var(S) = Var(S)−12

20
Var(SL)− 8

20
Var(tR)

≈ 0.16
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When Y is very high dimensional, this constitutes the main
bottleneck of the random tree ensemble.

The multi-output single tree algorithm requires the computation of
the sum of the variance over the label space at each tree node and
for each candidate split.
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Multi-output regression trees in randomly projected output
space

We propose to approximate the computation of the variance by
using random projection of the output space.

Theorem
Given ε > 0, a sample (yi)ni=1 of n points y ∈ Rd, and a projection
matrix Φ ∈ Rm×d such that for all pairs of points the
Jonhson-Lindenstrauss lemma holds, we have also

(1− ε) Var
(
(yi)ni=1

)
≤ Var

(
(Φyi)ni=1

)
≤ (1 + ε) Var

(
(yi)ni=1

)
.

5 / 15



Multi-output regression trees in randomly projected output
space

We propose to approximate the computation of the variance by
using random projection of the output space.

Theorem
Given ε > 0, a sample (yi)ni=1 of n points y ∈ Rd, and a projection
matrix Φ ∈ Rm×d such that for all pairs of points the
Jonhson-Lindenstrauss lemma holds, we have also

(1− ε) Var
(
(yi)ni=1

)
≤ Var

(
(Φyi)ni=1

)
≤ (1 + ε) Var

(
(yi)ni=1

)
.

5 / 15



Multi-output regression trees in randomly projected output
space

1. Randomly project the output space

Φ
yi

=

2. Grow the tree on the projected output space
(xi,Φyi)ni=1

3. Label leaves using (yi)ni=1
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Ensemble of randomized trees

Shared subspace Individual subspace

(xi,Φyi)ni=1 (xi,Φ1y
i)ni=1 (xi,Φ2y

i)ni=1
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Bias-variance analysis
Averaging over the learning set LS, algorithm randomization ε and
output subspace randomization Φ, the square error Err of t multi
output tree models can be decomposed into:
Single shared subspace (Algo 1)

ELS,Φ,εt{Err(f1(x;LS,Φ, εt))}

= σ2
R(x) +B2(x) + VLS(x) +

VAlgo(x)

t
+ VProj(x).

Individual subspace (Algo 2)

ELS,Φt,εt{Err(f2(x;LS,Φt, εt))}

= σ2
R(x)︸ ︷︷ ︸

residual error

+B2(x)︸ ︷︷ ︸
bias

+VLS(x) +
VAlgo(x) + VProj(x)

t︸ ︷︷ ︸
variance

.

Individual subspace should always be preferred to single shared
subspace.
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Label ranking average precision to assess performance

LRAP(f̂) =
1

|TS|
∑
i∈TS

1

|yi|
∑

j∈{k:yik=1}

|Lij(yi)|
|Lij(1d)|

,

Lij(q) =
{
k : qk = 1 and f̂(xi)k ≥ f̂(xi)j

}
where f̂(xi)j is the probability (or the score) associated to the label
j by the learnt model f̂ applied to xi, 1d is a d-dimensional row
vector of ones.

Higher score if true labels have a higher probability (score) than the
false labels.
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Decision tree performance converges with m = 200
Gaussian random output projections
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Decision tree
Decision tree on Gaussian subspace (Algo 2)

Delicious dataset (983 labels)
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Faster convergence with ensemble of randomized trees
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Random forest
Random forest on Gaussian subspace (Algo 2)
Random forest on fix-Gaussian subspace (Algo 1)

Delicious dataset (983 labels, k =
√
p, t = 100, nmin = 1)

Randomly projecting the output space reduces computing time
from 3458 seconds (no projection) to 311 seconds (m = 25,
individual subspace) without accuracy degradation.
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Systematic analysis on 24 datasets
Increasing m leads to convergence in LRAP

0.8 1.0 1.2
LRAP(random forest on Gaussian output subspace) / LRAP(random forest)

bookmarks
delicious
CAL500
corel5k
diatoms

protein-interaction
EUR-Lex (desc.)
drug-interaction

scene
genbase

EUR-Lex (dir.)
SCOP-GO 

enron
mediamill
Yeast-GO

medical
yeast
WIPO

Expression-GO 
emotions

reuters
tmc2017

bibtex
EUR-Lex (subj.) m=1

m=log(d)
m=d

(k =
√
p, t = 100, nmin = 1, averaged over 10 repetitions)
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Output randomization could be more effective than input
randomization
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k
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Random forest
Random forest on Gaussian subspace (Algo 2) with m= 1
Random forest on Gaussian subspace (Algo 2) with m= 7
Random forest on Gaussian subspace (Algo 2) with m=14

Drug-interaction dataset(1554 labels, t = 100, nmin = 1)
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Alternative random output subspace
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Random forest
Random forest on random output subspace (Algo 2)

Random forest on sparse Rademacher (s=
√
d ) subspace (Algo 2)

Random forest on sparse Rademacher (s=3) subspace (Algo 2)

Delicious dataset(981 labels, k =
√
p, t = 100, nmin = 1)
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Random forests with random projections of the output space
for high dimensional multi-label classification

Conclusions
I Lower computing time, without affecting accuracy.
I Optimizing input and output randomization could improve

prediction performance.

Future work
Efficient technique to adjust random output space parameters so as
to reach the best accuracy and computing time trade-off.

Source code is available @
github.com/arjoly/random-output-trees.
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github.com/arjoly/random-output-trees
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