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Multi-label classification tasks

Many supervised learning applications in text, biology or image
processing where samples are associated to sets of labels.

Input X 800 x 600 pixel Output Y labels

driver, mountain, road,
car, tree, rock, line,
human, ...

If each label corresponds
to a wikipedia article, then
we have around 4 million
labels.
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Random forest

Randomized trees are built on a bootstrap copy of the input-output
pairs ((z%,y") € (X x V)™, by recursively maximizing the
reduction of impurity, here the variance Var. At each node, the
best split is selected among k randomly selected features.
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When ) is very high dimensional, this constitutes the main
bottleneck of the random tree ensemble.

The multi-output single tree algorithm requires the computation of
the sum of the variance over the label space at each tree node and
for each candidate split.
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Multi-output regression trees in randomly projected output
space

We propose to approximate the computation of the variance by
using random projection of the output space.
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Multi-output regression trees in randomly projected output
space

We propose to approximate the computation of the variance by
using random projection of the output space.

Theorem

Given € > 0, a sample (y*)?_, of n pointsy € R?, and a projection
matrix ® € R™*¢ such that for all pairs of points the
Jonhson-Lindenstrauss lemma holds, we have also

(1—¢) Var ((y')iey) < Var ((@y")iLy) < (1+¢) Var ((y)izy) -
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Multi-output regression trees in randomly projected output
space
1. Randomly project the output space

= P

2. Grow the tree on the projected output space
('Tiﬂ (I)yi)znzl
L

3. Label leaves using (y*)™,
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Ensemble of randomized trees

Shared subspace Individual subspace

(z*, Py" )P, (z*, D1y (2", Poy"),
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Bias-variance analysis

Averaging over the learning set LS, algorithm randomization e and
output subspace randomization ®, the square error Err of ¢ multi
output tree models can be decomposed into:

Single shared subspace (Algo 1)

ELS,@,st{ETT(fl (xa LS’ q)a Et))}

Vaigo(z)

= o%(z) + B*(z) + Vis(z) + + Vproj ().

Individual subspace (Algo 2)

Eps ot ot {Err(fa(z; LS, ®,e"))}

‘/Algo(x) + VPrOj(‘/IJ)
r .

variance

= ok(z) +B(x)+Vis(x)+
o T2

residual error bias

Individual subspace should always be preferred to single shared
subspace.
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Label ranking average precision to assess performance
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where f(xz)] is the probability (or the score) associated to the label
§ by the learnt model f applied to z?, 14 is a d-dimensional row
vector of ones.

Higher score if true labels have a higher probability (score) than the
false labels.
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Decision tree performance converges with m = 200
Gaussian random output projections
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Delicious dataset (983 labels)
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Faster convergence with ensemble of randomized trees
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Delicious dataset (983 labels, k = /p, t = 100, nin = 1)

Randomly projecting the output space reduces computing time
from 3458 seconds (no projection) to 311 seconds (m = 25,
individual subspace) without accuracy degradation.
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Systematic analysis on 24 datasets

Increasing m leads to convergence in LRAP

eoe m=1 .
eee m=log(d)[
oee m=d

EUR-Lex (subj.)
bibtex
tmc2017
reuters
emotions
Expression-GO
WIPO

yeast

medical
Yeast-GO
mediamill

enron

SCOP-GO
EUR-Lex (dir.)
genbase

scene
drug-interaction
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protein-interaction
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corel5k

CAL500
delicious
bookmarks o

0.8 1.0 1.2
LRAP(random forest on Gaussian output subspace) / LRAP(random forest)

(k= /p, t =100, nmin = 1, averaged over 10 repetitions)
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Output randomization could be more effective than input
randomization
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Drug-interaction dataset(1554 labels, t = 100, 1y, = 1)
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Alternative random output subspace
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Delicious dataset(981 labels, & = |/p, t = 100, nyin = 1)
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Random forests with random projections of the output space
for high dimensional multi-label classification

Conclusions

» Lower computing time, without affecting accuracy.

» Optimizing input and output randomization could improve
prediction performance.

Future work
Efficient technique to adjust random output space parameters so as
to reach the best accuracy and computing time trade-off.

Source code is available @
github.com/arjoly/random-output-trees.
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github.com/arjoly/random-output-trees
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