

What you may have missed last time...

Séverin HATT^{1*}, Frédéric FRANCIS²

¹ AgricultureIsLife.be, Gembloux Agro-Bio Tech (ULg), ² Functional and Evolutionary Entomology Unit, Gembloux Agro-Bio Tech (ULg)

From Landscape Infrastructures to Conservation Biological Control Why the concept of Functional Diversity may be useful?

AgricultureIsLife Seminar - Gembloux Agro-Bio Tech - 19th September 2014

What is it?

Landscape infrastructures...

Picardie (France)

Find the difference...

Hedgerows

Landscape infrastructures...

Gembloux (Belgium)

Wood land

Landscape infrastructures...

Gembloux (Belgium)

Wildflower strips

... provide Ecosystem Services

To limit soil erosion and nutrient leaching

Zhang et al., 2007

Soil erosion

Edgerows to limit soil erosion

saisons-vives.com

Algae proliferation due to nutrient leaching

Grass strips to limit nutrient leaching

... provide Ecosystem Services

Loss of insect diversity

Wildflower strips support insect conservation

Haaland et al., 2011

Wildflower strips for biological control For insect conservation

1 Food resource (nectar, pollen, alternative preys)

(2) Shelter (for reproduction and wintering)

Wildflower strips provide to insects...

...because they are...

3) Species diversed

4) Relatively undisturbed

5 Not treated with insecticide

Landis et al., 2000 ; Pfiffner & Wyss, 2004

Wildflower strips for biological control **For pest control?**

...to pest control?

Do wildflower strips sown at field margin help to control pests in the adjacent crops?

References	They help to control pests	They do not help to control pests
Lee & Heimpel, 2005	•	
Balzan et al., 2014	•	
Pfiffner et al., 2009		•

Conclusions are not unanimous

Wildflower strips for biological control This is not that easy !

Floral ressources should be adapted to the targeted natural enemies

Dongbufarmceres.com

Parasitoid

Anthriscus sylvestris

en.wikipedia.org

Wildflower strips for biological control This is not that easy !

Flowering period should be adapted to pest attack period

THINK

FUNCTIONAL

Uyttenbroeck et al., 2014

Wildflower strips for biological control Think functional !

Functional diversity: what is it?

Diversity of flower functional <u>traits</u> into a group of species

Petchey & Gaston, 2006

Example

Wildflower strips for biological control **Think functional !**

Insects are sensitive to flower characteristics (= traits)

Wildflower strips for biological control Think functional !

Hypothesis: Higher Functional Diversity

Higher diversity of insects attracted

4 flower mixes have been sawn in the field... How constrasted are there? Mix 1: Very Low FD Mix 2: Low FD Mix 3: High FD Mix 4: Very High FD

Summary

Landscape infrastructures provide ES

Wildflower strips support insect conservation

For biological control?

Currently tested in Gembloux Agro-Bio Tech

Applying the concept of Functional Diversity could provide interesting improvement !

Thank you for your attention

For more information

severin.hatt@ulg.ac.be

Agriculture Is Life.be

References

• Balzan M. V., & Moonen A.-C. (2014). Field margin vegetation enhances biological control and crop damage suppression from multiple pests in organic tomato fields. *Entomologia Experimentalis et Applicata*, **150** (1), p. 45–65.

• Campbell A. J., Biesmeijer J. C., Varma V., & Wäckers F. L. (2012). Realising multiple ecosystem services based on the response of three beneficial insect groups to floral traits and trait diversity. *Basic and Applied Ecology*, **13** (4), p. 363–370.

• Colley M. R., & Luna J. M. (2000). Relative Attractiveness of Potential Beneficial Insectary Plants to Aphidophagous Hoverflies (Diptera: Syrphidae). *Environmental Entomology*, **29** (5), p. 1054–1059.

• Haaland C., Naisbit R. E., & Bersier L.-F. (2011). Sown wildflower strips for insect conservation: a review. *Insect Conservation and Diversity*, 4 (1), p. 60–80.

• Hatt et al. (2014). Wildflower strips, a help for crop protection? Proceedings of the ENVITAM PhD Student Day 2014, p.35. http://hdl.handle.net/2268/164330

• Landis D. A., Wratten S. D., & Gurr G. M. (2000). Habitat Management to Conserve Natural Enemies of Arthropod Pests in Agriculture. *Annual Review of Entomology*, **45** (1), p. 175–201.

• Lee J. C., & Heimpel G. E. (2005). Impact of flowering buckwheat on Lepidopteran cabbage pests and their parasitoids at two spatial scales. *Biological Control*, **34** (3), p. 290–301.

• Petchey, O. L., Gaston, K. J. (2006). Functional diversity: back to basics and looking forward. Ecology letters, 9(6), 741-758.

• Pfiffner L., & Wyss E. (2004). Use of sown wildflower strips to enhance natural enemies of agricultural pests. *In* G. M. Gurr, S. D. Wratten, & M. A. Altieri (Eds.), *Ecological engineering for pest management*. CABI-Publishing, Collingwood, Australia, p. 167–188.

• Pfiffner L., Luka H., Schlatter C., Juen A., & Traugott M. (2009). Impact of wildflower strips on biological control of cabbage lepidopterans. *Agriculture, Ecosystems & Environment*, **129** (1–3), p. 310–314.

• Uyttenbroeck et al. (2014). Biodiversity and ecosystem services: think functional! Poster session of the National Symposium on Applied Biological Science, 7th September 2014, Gembloux. <u>http://hdl.handle.net/2268/163605</u>

• Zhang W., Ricketts T. H., Kremen C., Carney K., & Swinton S. M. (2007). Ecosystem services and dis-services to agriculture. *Ecological Economics*, **64** (2), p. 253–260.