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List of symbols and notations

If units are complex or manifold, the symbol [!] is used.

Latin symbols

B Solid volume [-]
∂B Boundary of B [-]
C Tangent stiffness operator [!]
Dr Relative density [%]
D Diameter of the suction caisson [m]
e Thickness of the suction caisson [m]
e Void ratio [-]
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Introduction

The only true wisdom is in knowing you know
nothing.

Socrates
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1.1 Motivations and context

From the cyclic behaviour of soils...
Nowadays civil engineering is continuously evolving. More and more, architects and engi-

neers push the limits citius, altius, fortius. New constructions are taller, slender and lighter,
built in inhospitable environments and subject to the assaults of nature (earthquakes, wind,
waves...). These extreme conditions coupled with the increasing complexity of structures re-
quire an accurate understanding of underlying phenomena and a detailed modelling for the
design.
Classic design standards and guidelines are sometimes limited when complex loadings are
involved. Security must be ensured in each circumstance, during and after the building of a
structure. Computational power has also increased for the last decades and allows to perform
detailed analyses. Structural engineering has already taken the plunge and complex simula-
tions are already common. Soil mechanics follows closely, but it is faced with its inherent
difficulties. Soils are non-homogeneous media, have a strongly non-linear behaviour and im-
possible to inspect entirely.
Engineers and researchers have always resorted to physical modelling and laboratory experi-
ments to understand what they ignore. However, it is not conceivable to perform costly scale
modelling for each project. Therefore, numerical modelling is gathering momentum since it
is flexible, suitable for parametric studies and it allows many cheap computations.

Figure 1.1: Cyclic loading types, after [Andersen et al., 2013].

Constitutive laws are the centre of gravity of this work. Indeed, a suitable model is the
basic component of a finite element code since it represents the behaviour of a material what-
ever the loadings and the boundary conditions. This work principally aims at modelling the
cyclic behaviour of soils with the finite element code LAGAMINE. Although it is not as famous
as commercial FE codes, LAGAMINE is used and developed around the world.
Cyclic loading belongs to a family of loading processes, encompassing distinct realities and
timescales (see in Figure 1.1). High speed trains induce small amplitude and moderate period
cycles, but the number of cycles encountered over the lifetime of the foundation is very large.
On the other hand, earthquakes engender a small number of very large amplitude at high
frequency. Offshore loading lies in between. Obviously the consequences of such loadings are
not identical, although they share similar features.
Cyclic loading of soil gives birth to very particular behaviours and failure modes. Whatever
the type of loading, the deformation is progressively or sharply accumulated, with regard to
the number of cycles. Soil stiffness tends to decrease accordingly. Very brutal and disastrous
failure might occur where the so-called liquefaction is triggered. All these phenomena are not
taken into account by classic soil constitutive laws.
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Numerical methods must be used very cautiously. Indeed, numerical simulations, if not en-
dorsed by experimental backup, can demonstrate anything. With a little imagination, they
could even prove the existence of god(s). Therefore, it is of uttermost importance to evaluate
the quality of the results. Two principal steps of control for any model should be considered,
[Brinkgreve, 2013].

1. Validation : process of determining the degree to which a model (including the set of
parameters selected) is an accurate representation of the real world from the perspective
of the intended use of the model. This encompasses the selection of the model and its
parameters that better calibrate the application to be modelled.

2. Verification : process of determining that a computational model accurately represents
the underlying mathematical model and is capable of reproducing the theoretical solution.

... to offshore geotechnics.
The name of the scholarship endorsing this work is FRIA, i.e. "Research foundation for

industry and agriculture". Therefore, the development of a theoretical constitutive law should
not be the only motivation of the thesis. It should contribute to improve the knowledge of a
field of engineering beneficial to Belgian industry.
Offshore engineering provides many interesting and relevant case studies, where cyclic mod-
elling is involved. For instance, offshore wind energy is developing exponentially. Wind
turbine of 5GW capacity were installed within the EU at the end of 2012, mainly in UK.
A 40GW installed capacity is expected by 2020 and 150GW by 2030 [Caprace et al., 2012].
Indeed, the EU climate and energy package targets three main objectives :

• 20% reduction of EU greenhouse gas emissions from 1990 levels;

• 20% of the EU energy consumption produced from renewable resources;

• 20% improvement in the EU’s energy efficiency.

Seven concession areas in Belgian North Sea are devoted to wind farms, representing 9−10% of
the total electricity consumption in Belgium [Verkest, 2013]. The C-Power project is already
installed and consists of six 5MW and forty-eight 6MW windturbines, 30km off the coast.
Such structures face both technical and economical challenges.
Indeed, competitive electricity costs is the sine qua non condition to ensure the viability of
offshore projects. The cost of foundations represents up to a third of the total cost of a project
[Senders, 2008]. Wind turbine structures are very light and subject to a large overturning
moment. They must be designed to resist extreme storm events. Furthermore, offshore wind
turbines are growing in size and implanted in deeper water.
Therefore, offshore foundations are a leading-edge technology. A compromise must be found
between these technical and economical constraints, creating a large scientific emulation.
However, this very ongoing topic and competition between private companies create a lack of
available data in the literature, since they are often jealously guarded.
Fortunately, geotechnical conditions in the North Sea are remarkably uniform (see Figures
1.2a and 1.2b). Most of the deposit encountered are very dense layers, of the order of 100%.
Therefore, data available from previous projects can be reused.
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(a) Map of the North Sea with distribution of bot-
tom sediments, [Bjerrum, 1973]
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(b) Grain-size distributions of soil samples ob-
tained at shallow depths at different sites in North
Sea, [Bjerrum, 1973].

Figure 1.2

1.2 Objectives

The objectives of any thesis can be summed up in two single words : "why" and "how".
The former answer is to provide the finite element code LAGAMINE the capability of modelling
cyclic behaviour of cohesionless soils and to illustrate it with a suitable case study. How this
objective is completed lies in a much longer sequence of intermediate goals.

1. What happens ? Initially, the salient features of the cyclic behaviour of soil must
be identified through laboratory experiments. Pertinent characteristics are the basic
requirements any constitutive law must fulfil.

2. How to represent it ? Among many possibilities, a constitutive law must be adopted
to numerically reproduce the cyclic behaviour of sands.

3. Which parameters ? Parameters representative of the studied materials must be
determined from experimental data. This step allows to understand the capabilities
and limitations of the constitutive law adopted. The sensitivity of the response to these
parameters must also be assessed.

4. How to use it ? The constitutive law must be implemented into the finite element
code LAGAMINE. An integration scheme must be adopted and the algorithm must be
verified with regards to the analytical model. Accuracy, efficiency and robustness of the
algorithm must be ensured.

5. Additional tools ? An interface finite element must be updated to take into account
the hydro-mechanical soil structure interaction. Its efficiency and robustness must be
verified to ensure the global convergence of numerical simulations.

6. Which application ? The selected application is dissected to highlight the contribu-
tion of the model to the physics of observed phenomena. This last step emphasises the
key issues of the functioning of an offshore foundation and draws attention to crucial
parameters.
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1.3 Outline

The backbone of this thesis consists of five main chapters briefly described hereafter. They
are organised in a logical sequence, from the laboratory to a numerical application.

Chapter 3 presents an overview of the experimental behaviour of sand. Monotonic and cyclic
experimental results are described and discussed. Salient features that are pertinent
for the modelling of offshore foundations are highlighted. They consist of the minimum
requirements a numerical model has to take into account.

Chapter 4 summarises the main constitutive models that are able to reproduce the cyclic behaviour
of sands. The Prevost model is finally adopted and its basic equations are developed.
The last part of this Chapter deals with the validation step. Indeed, the model must be
able to reproduce real behaviour of a given material. Three calibrated sets of parameters
are calibrated.

Chapter 5 fills the gap between an analytical constitutive model and its practical implementation
in the finite element code LAGAMINE. A closest point projection algorithm is adopted in-
volving an implicit integration of the constitutive law. Consequently, a special hardening
rule must be adopted and a non-linear set of equations must be iteratively solved. A
verification step is performed to ensure the discrete integration procedure corresponds to
the analytical constitutive law. Convergence and accuracy of the model are illustrated.

Chapter 6 displays the theory related to hydro-mechanical interface finite elements. The element
developed manages sliding, fluid flow through and along the interface as well as suction
effect created by unsticking of both sides. The full derivation of energetically equivalent
nodal forces and stiffness matrix as well are provided. Finally, numerical simulations
illustrate performance of the element and emphasises the partially drained behaviour of
soils.

Chapter 7 concludes this work in dissecting an offshore case study. The response of a vertically
loaded suction caisson is deeply studied. Monotonic push and pull simulations are in-
vestigated under drained and partially drained conditions. The final example consists
of a pseudo-random and a sinusoidal-equivalent loadings acting on the caisson. Conse-
quences on pore pressure settlement accumulations are explored.
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Chapter 2

Mechanical modelling of geomaterials

Le conformisme commence à la définition.
(Conformism starts with a definition.)

Georges Braque
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2.1 Mathematical notations

The main mathematical beings that populate this work are vectors and tensors. They are
denoted in bold characters, e.g. X. A particular treatment is given to fourth order tensor,
which are denoted in blackboard bold characters, e.g. X. δ is the identity tensor and δij is
the special Kronecker delta,

δij =

{
1 if i = j
0 if i 6= j

(2.1)

Indicial (or Einstein) notation convention is adopted in the following in order to increase
readability. This system of notations adopts the summation convention, i.e. dummy indices
replace the summation symbol if they appear exactly twice in each term of a sum, e.g.

ai bi =
n∑

i=1

ai · bi. (2.2)

The transpose of a vector or matrix is denoted (·)T .

The dot product is designated by ":". It represents a two-indice contraction between two
tensors

a : b = aij · bij. (2.3)

Consequently, it represents a scalar if a and b are second-order tensors. It follows that the
norm of that tensor is defined as

‖a‖ =
√
a : a (2.4)

Finally the Macauley brackets 〈〉 are defined according to

〈β〉 = 1

2
· (β + |β|) (2.5)

2.2 Referential, stress and strain

x1

x2

x1

x2

x1

x2

x1

x2

Initial Deformed Initial Deformed

Lagrangian mesh Eulerian mesh
Grid node
Material point

Figure 2.1: Difference between Eulerian and Lagrangian meshes, inspired by [Donea et al.,
2004].

The finite element code LAGAMINE was initially devoted to the modelling of metal forming
[Charlier, 1987]. Thence, large strains and/or displacements as well as rigid body motions
had to be taken into account. Equilibrium equations of any body B stand whatever its con-
figuration. These equilibrium equations hold over a volume and are stated in an orthonormal
basis. Different possibilities are available but the possible formulations divide roughly into
two families [Malvern, 1969].
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1. Lagrangian description. The equilibrium is formulated with respect to the reference
configuration but the basis evolves with the deformed body ei. Lagrangian mesh is
linked to the material points and moves with it (see Figure 2.1).

2. Eulerian description. The equilibrium is formulated with respect to the deformed
configuration but in the reference fixed basis Ei. Eulerian mesh is fixed in the space
and material points move through it (see Figure 2.1).

Let us now consider a deformable body B. At time t ∈ R
+, ϕt : B → R

ndim is the
mapping1 that associates a point X of the reference configuration B onto its current position
x = ϕt (X). This transformation is characterised by the deformation gradient F (Jacobian
tensor) which relates tangent vectors in the initial configuration to tangent vectors in the
deformed one, i.e. a material line element dX in B is associated to the line element dx in
ϕ(B), such as

dx = F · dX. (2.6)

Components of the deformation gradient are given in indicial notations by

Fi,j =
∂xi
∂Xj

. (2.7)

Conditions on F hold to preserve uniqueness of the mapping and prevents self-penetration of
the body, i.e.

J = detF > 0. (2.8)

Thence, transformation of area from reference configuration B (dA) to current configuration
ϕ(B) (da) can be derived [Wriggers, 2006] from the Nanson formula

da = n da = J · F−1 ·N dA = J · F−1 · dA (2.9)

where n is the normal vector associated to da in the current configuration and N is the normal
associated to dA in the reference configuration. A similar relation associates reference volume
to current one

dv = J · dV. (2.10)

In this work, the updated Lagrangian formulation is adopted (see Figure 2.2):

• the mesh is Lagrangian and moves with material particles;

• stress and strain measurements are Eulerian, i.e. they refer to the current configuration;

• derivatives and integrals are computed with respect to the Eulerian coordinates x;

• the orthonormal basis is related to the body B evolution in space. However, in the finite
element code LAGAMINE, the direction of unit vectors remains constant.

The updated Lagrangian formulation can be related to the Lagrangian one by stating that
stresses and strains refer to the reference configuration that evolves at every step, i.e. the
reference configuration becomes ϕ(B).

The velocity of a material point x in the current configuration ϕ(B) reads

v =
dx

dt
. (2.11)

1ndim is the number of dimension of the space considered.



10 CHAPTER 2. MECHANICAL MODELLING OF GEOMATERIALS

E1

E2 dA0

dV0

B0

B

dA

dV

N0

N

da

dv

n

Bφ(   )

φ

e1

e2
1

2

'

'

Figure 2.2: Updated Lagrangian formulation : B0 and (E′
1, E

′
2) are the initial configuration

and basis respectively; B and (E1, E2) are the updated reference configuration and basis;
B and (e1, e2) are the current configuration and basis; dA0, dA, da and dV0, dV, dv are the
elementary surfaces and volumes associated to each configuration; ϕ is the mapping of the
reference configuration B to the current configuration ϕ(B).

Consequently, the velocity gradient L in the current configuration is given by

L =
∂v

∂x
=
∂v

∂X

∂X

∂x
, (2.12)

which can be split into a symmetrical and anti-symmetrical part

L =
1

2

(
L+ LT

)
+

1

2

(
L− LT

)
. (2.13)

The rate of strain tensor (or stretching tensor) is defined as the symmetrical part of L

D =
1

2

(
L+ LT

)
, (2.14)

and the spin rate is the anti-symmetrical one

ω =
1

2

(
L− LT

)
. (2.15)

The definition of the rate of the stretching tensor, Equation (2.14), is meaningless in the
field of large rotations and deformations. In others words this equation holds only for small
deformations. Thence natural deformation tensor G is used instead,

G = lnU, (2.16)

where U is the stretching tensor obtained from the polar decomposition of the Jacobian tensor
F, [Charlier, 1987]

F = R ·U, (2.17)

where R is the rigid body rotation tensor, i.e. which implies no deformation. Furthermore,
D is an approximation of the tensor U for small rotations. It is noteworthy that the strain
measure G coincides with the integral of Equation (2.14) in principal axes if they remain
unchanged.

In the following, the rate of the stretching tensor is termed ǫ̇ irrespectively of its definition.
Moreover, the local integration of the constitutive law requires a hypothesis on the evolution
of this tensor over a time step. In this work, it is assumed the velocity gradient L is constant
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over step. The detailed justification of the method is out of the scope of this work, but
interested reader should refer to [Charlier, 1987; Cescotto, 1992; De Montleau et al., 2008].

The large displacement/deformation process requires an objective stress rate computation,
i.e. independent of rigid body rotation. Therefore, the Jaumann objective stress rate σ̃ is
adopted in the following

σ̃ = σ̇ − ω · σ − σ · ωT . (2.18)

Other schemes can be used instead, as shown in [Ponthot, 2002].

Finally, the sign convention of soil mechanics is adopted, i.e. compression stress and
compaction strains are positive.

2.3 Granular medium, effective stress

In the field of soil mechanics, modelled media are most of the time composed of several
phases : solid, fluid and gas, [Coussy, 1991; Detournay and Cheng, 1993; Lewis and Schrefler,
1998]. Therefore, if a representative elementary volume of soil dΩ is considered (see Figure
2.3), the porous medium can be considered as a juxtaposition of

• the soil skeleton, which is a continuous arrangement of solid grains. The volume of this
medium dΩs is equal to the volume of the grains. Their specific mass is noted ρs and
they are most of the time deemed incompressible. Consequently, the global behaviour of
the medium is not due to the deformation of the grains but to the relative slip between
them.

• the void medium, noted dΩv, which can be filled with fluid(s) and/or gas. Void volume
can be filled either by a liquid phase only or by liquid and gas phases. The soil is referred
as saturated in the former case and partially saturated in the latter. In this work, only
water is considered for either fluid or gas phases.

.

Figure 2.3: Description of a porous medium : cross-section of a representative elementary
volume dΩe, after Barnichon [1998]

Homogenisation at a macroscopic scale allows to define an equivalent continuous medium
Ω. Thence, solid Ωs and fluid Ωf phases are superimposed and defined at any geometrical
point of the represented volume. The open porosity n is defined as

n =
Ωv

Ω
=

Ωv

Ωs +Ωv
∈ [0, 1]. (2.19)

Thence, the specific mass of the porous medium ρ is obtained from

ρ = (1− n) · ρs + n · ρf , (2.20)
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where ρf is the specific mass of the fluid.

Solid kinematic description defined in Section 2.2 can be applied to the solid skeleton of
the continuum porous medium. However, these concepts cannot be applied to the fluid phase
straightforwardly. Indeed, the major difference with classic continuum description is that
any elementary volume dΩ might exchange fluid or gas with its environment. Moreover, the
mechanical behaviour, e.g. the relative slip of the grains, might reduce or increase the void
volume Ωv and influences fluid behaviour. This effect of one phase to another is defined as a
"coupling". Eulerian and Lagrangian descriptions are both available.

1. Eulerian description. The Eulerian relative flow of fluid mass vector fw, [Coussy,
1991; Bourgeois and Dormieux, 1996], is defined as

fw = ρf · vd, (2.21)

where vd is the Darcy velocity, i.e. the relative velocity of the fluid with respect to the
solid skeleton. It is written

vd = n · (vw − vs) (2.22)

where vw is the average spatial velocity of water phase and vs is the spatial velocity of
the solid phase. vd is insensitive to rigid body motion. Let us consider an infinitesimal
surface da, whose the normal is n. At time t and per unit of time, a fluid mass Jm

f flows
through da such as

Jm
f = fw · n da. (2.23)

2. Lagrangian description. The Lagrangian relative flow fluid vector Fw is equivalent
to fw. Thence, the fluid mass Jm

f flows through an infinitesimal surface in reference
configuration dA of normal N reads

Jm
f = Fw ·N dA. (2.24)

Vectors fw and Fw become equivalent if displacement velocity is much smaller than the
fluid one, [Barnichon, 1998].
In the finite element code LAGAMINE, the description may be qualified as hybrid. Indeed the
mesh follows the solid skeleton that deforms while the description of the fluid is Eulerian
inside this solid framework.

The interstitial fluid is characterised by its pressure pf . In presence of water, the so-called
pore water pressure is referred as uw. Thence, total σ and effective σ′ Cauchy stress tensors
must be distinguished thanks to the Postulate of Terzaghi which states generally

σ = σ′ + pf · δ, (2.25)

where δ is the second order identity tensor.

2.4 Problem statement

2.4.1 Mechanical part

The full description of the mechanical problem requires the statement of boundary con-
ditions. The reference boundary ∂B of the body B can be decomposed into non overlapping
parts
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• ∂Bf , which is load free ;

• ∂Bx̄, where displacements (x̄) are imposed ;

• ∂Bt̄, where traction loads (t̄) are imposed;

such that
∂B = ∂Bf ∪ ∂Bt̄ ∪ ∂Bx̄ and ∂Bf ∩ ∂Bt̄ ∩ ∂Bx̄ = ∅. (2.26)

Consequently, the strong form of the initial boundary value problem under quasi static con-
ditions consists in finding the field of displacement ∆x for all x ∈ ϕ (B) such that

divσ + f̄ = 0 inϕ (B) , (2.27)

x = x̄ onϕ (∂Bx̄) , (2.28)

[σ]T · n = t̄ onϕ (∂Bt̄) , (2.29)

where n is the unit normal vector to ϕ (∂Bt̄) and f̄ are the volume body forces, e.g. the gravity
forces. The equilibrium equations hold within the current configuration, i.e. ϕ (B) since the
approach is updated Lagrangian. In addition, it is assumed that initial field of displacement
x0 = x(t = 0) verifies Equation (2.27), (2.28) and (2.29). Up to that point, no hypothesis has
been formulated on the behaviour of the material. However, a constitutive relation has to be
stated in order to relate stress rate and strain rate, i.e.

σ̃′ = f(ǫ̇,σ′,κ) (2.30)

where κ are internal parameters of the law.

Finite element codes such as LAGAMINE are derived from a weak formulation of the equi-
librium equations [Borja, 2013; Zienkiewicz and Taylor, 2000]. Let us consider an admissible
virtual velocity field δẋ, i.e. a field of velocities that verifies solid continuity and boundary
conditions. Therefore, the principle of virtual power implies that, for any δẋ, the solid is in
equilibrium if internal virtual power δẆI is equal to external one δẆE , i.e.

∫

ϕ(B)
σ · ǫ[δẋ] dV

︸ ︷︷ ︸

δẆI

=

∫

ϕ(B)
f̄ · δẋ dV +

∫

ϕ(∂Bt̄)
t̄ · δẋ dΓ

︸ ︷︷ ︸

δẆE

. (2.31)

2.4.2 Hydraulic part

Since fluid flow occurs inside a porous medium, additional boundary conditions are nec-
essary to fully describe the boundary value problem. Thence, from a hydraulic point of view,
the boundary ∂Bf of the body B can be decomposed into non overlapping parts

• ∂Bff , which is free;

• ∂Bfq̄ , where fluid fluxes (q̄) are imposed ;

• ∂Bfūw
, where fluid pressures (ūw) are imposed;

such that
∂Bf = ∂Bff ∪ ∂B

f
q̄ ∪ ∂Bfūw

and ∂Bff ∩ ∂B
f
q̄ ∩ ∂Bfūw

= ∅. (2.32)
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Thence, the strong form of the initial boundary value problem consists in finding the field of
variations of pore water pressure ∆uw for all ϕ (uw ∈ B) such that

Ṡ + div fw = Q̄ inϕ (B) , (2.33)

uw = ūw onϕ
(

∂Bfūw

)

, (2.34)

fTw · n = q̄ onϕ
(

∂Bfq̄
)

, (2.35)

where Q̄ is the source term, Ṡ the rate of variation of stored fluid mass and n is the unit
normal vector to ϕ (∂Būw). This variation of fluid mass content is given by [Biot, 1977]

∆S = (J · ρf · n)|t+∆t − (ρf · n)|t , (2.36)

where J is defined in Equation (2.8) and n is the porosity. It must be pointed out that
this variation stems from both the deformation of solid skeleton (coupling term) and the
compressibility of the fluid. Indeed, considering an isotherm evolution, the fluid state equation
relates its specific mass ρf to its pressure uw. The linearised fluid state equation is obtained
from [Burger, 1985]

ρt+∆t
f = ρtf ·

(

1 +
ut+∆t
w − utw
χf

)

, (2.37)

where χf is the fluid compressibility. The determinant of the Jacobian matrix J is related to
the volumetric strain ǫv = trǫ by2

J = 1 + ǫv, (2.38)

which is the origin of the coupling solid-fluid, since ǫv depends on the constitutive law adopted
to describe the solid behaviour.

A relation similar to the constitutive law, Equation (2.30), for the solid skeleton has still
to be determined. THe Darcy’s law derives from the balance of momentum equation for the
pore water [Lewis and Schrefler, 1998]. The interaction force between the skeleton and the
fluid is proportional to the relative motion between the two phases. This law is only valid in
case of laminar fluxes, which is verified in many geotechnical applications.

vd = − k

µf
(∇uw + ρf · g ·∇z) , (2.39)

where k is the intrinsic permeability (unit [L2]) and µf is the fluid dynamic viscosity (unit
[ML−1T−1]), equal to 10−3 Pa.s for water at 20◦C.

Considering an admissible virtual displacement of pore pressure δuw, the principle of
virtual power can be derived from equilibrium Equations (2.33), (2.34) and (2.35). Thence,
the weak formulation of the problem can be stated in the updated configuration

∫

ϕ(B)

(

Ṡ · δuw − fw ·∇ (δuw)
)

dV

︸ ︷︷ ︸

δWI

=

∫

ϕ(B)
Q̄ · δuw dV +

∫

ϕ
(

∂Bf
q̄

)

q̄ · δuw dΓ

︸ ︷︷ ︸

δWE

(2.40)

2.5 Discretisation

In the classic finite element method, each continuum body is discretised by ne finite
elements of volume Ωe. The approximate body Bh is defined such that (see Figure 2.4)

Bh =
ne⋃

e=1

Ωe. (2.41)

2This relation only holds in case of small deformations.
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For the sake of simplicity, equations and pictures are provided for a 2D formulation but
the transition to 3D is straightforward. Primary unknowns are the nodal coordinates (either
mechanical or hydraulic). They are interpolated over the element using shape functions. In the
finite element code LAGAMINE, isoparametric elements are extensively employed. This concept
is developed and discussed extensively in many books devoted to finite element method, see
for instance [Zienkiewicz and Taylor, 2000] or [Schrefler and Lewis, 1998]. Thence the author
feels free to avoid theoretical developments that could only be less elegantly presented.
Coordinates and pore water pressures are computed over a single element using the same
shape functions φi(ξ) (see Figure 2.4)

ue (ξ) =

nn∑

i=1

φi (ξ) · ui and ∆ue (ξ) =

nn∑

i=1

φi (ξ) ·∆ui, (2.42)

where

• nn is the number of nodes of the element Ωe ;

• ue (ξ) is the generalised coordinate vector of any point belonging to Ωe. Each node has 3
degrees of freedom : two global coordinates (x1, x2) and a pore water pressure uw. The
element has an equal order of interpolation for both mechanical and hydraulic degrees
of freedom. They do not mathematically fulfil the inf-sup condition, but oscillation
problems within the results. Further developments about this condition might be found
in [Mira et al., 2003] ;

• ∆ue (ξ) are the generalised displacements corresponding to ue (ξ) ;

• ui are the nodal generalised coordinates of the ith node of element Ωe ;

• φi are the shape functions associated to the local coordinates ;

• ξ = (ξ1, ξ2) are the local isoparametric coordinates.

B

Ωe

B
h

ξ1

ξ2

Continuum Discretisation

Figure 2.4: Discretisation of the continuum. B stands for the continuum volume . Bh is its
discrete counterpart composed by ne finite elements Ωe. (ξ1, ξ2) are the isoparametric local
coordinates.

Let us consider δẋΩe
a vector that contains the velocities δẋΩe

i associated to each node
i of the of the nn nodes composing the single element Ωe. Following Equation (2.31), the
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virtual internal power can be written for that element

δẆΩe
I =

∫

ϕ(Ωe)
σ · ǫ[δẋΩe ] dV

=
nn∑

i=1

[
∫

ϕ(Ωe)
σ · ǫ[φi] dV

]

· δẋΩe
i

=

nn∑

i=1

[

FΩe
I,i

]T
· δẋΩe

i (2.43)

=
[

FΩe
I

]T
· δẋΩe , (2.44)

where Equation (2.44) is the vectorial form of Equation (2.43). FΩe
i is the vector of internal

energetically equivalent nodal forces associated to node i of the element Ωe. Since the global
discretised body is composed of ne elements, they must be assembled together according to
Equation (2.41). Thence, the global vector of mechanical nodal forces reads

FI =

ne⋃

e=1

FΩe
I . (2.45)

Equation (2.44) only defines the mechanical internal nodal forces. However, hydraulic nodal
forces can be derived similarly, considering the expression of internal virtual work Equation
(2.40). Hydraulic and mechanical nodal forces can be grouped together in the same vector
FI , which becomes the generalised equivalent nodal forces of different natures (mechanical
and fluxes). External energetically equivalent nodal forces FE are derived in the same way
from external virtual power, i.e. Equations (2.31) and (2.40).

The last step is the numerical integration of FΩe
i . The integration over the deformed

element can be carried out numerically using Gauss quadrature. The result of the integral is
the sum of the evaluation of each integrand at the integration point (IP), i.e.

∫

ϕ(Ωe)
σ · ǫ[φi] dV =

∑

IP

[σ · ǫ[φi]]IP · J t · t ·WG (2.46)

where IP is the number of integration points, t is the thickness of the element Ωe (in case
of plane state), J t is the determinant of the Jacobian matrix (corresponding to the trans-
formation of the isoparametric element) and WG is the Gauss weight corresponding to the
integration point IP.

2.6 Solving the global problem

Equilibrium is reached when energetically equivalent internal nodal forces FI are equal to
external ones FE . However, due to the evolution of the loading or the transient behaviour of
the studied solid, these nodal forces are probably not balanced at the beginning of an arbitrary
time step. Therefore, the so-called out of balance forces are defined such that [Borja, 2013]

FOB = FE − FI , (2.47)

which are a measurement of the imbalance within the system. A numerical criterion has to
be adopted in order to differentiate between equilibrium and no equilibrium. Indeed the out
of balance forces will never be exactly equal to zero and are different in nature (forces or fluid
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fluxes), so they cannot be summed roughly. This discussion is out of the scope of this thesis
but can be found in [Charlier, 1987].
The out of balance forces are expanded in a Taylor series, limited to the first order,

F
(t+∆t)
OB = F

(t)
OB +

∂F
(t)
OB

∂∆u
·∆u, (2.48)

where ∆u gathers the generalised displacements, either mechanical or hydraulic. The equi-
librium is reached at time t+∆t, if out of balance forces are null, i.e.

F
(t+∆t)
OB = 0. (2.49)

Generalised degrees of freedom are corrected by ∆u , that is derived from a rearrangement of
Equations (2.48) and (2.49).

∆u = −
[

∂F
(t)
OB

∂u

]−1

· F(t)
OB = −

[

K(t)
]−1
· F(t)

OB, (2.50)

u(t+∆t) = u(t) +∆u, (2.51)

where the stiffness matrix K(t) at time step t naturally appears. Each component of the
stiffness matrix is then computed as the variation of equivalent nodal forces at node i, FOB,i,
due to a variation of generalised coordinates at node j, uj ,

[K]i,j = −
∂FOB,i

∂uj
. (2.52)

The apparently trivial inverse operation of the stiffness matrix in Equation (2.50) is one of the
most CPU time consuming operation in a finite element code, especially for very large systems.
Algorithms and numerical tricks, adapted to contact mechanics or not are the theme of many
books and won’t be developed here. Interested reader should refer to [Simo and Taylor, 1985].

The ordinary differential equation governing the motion of the discretised medium is writ-
ten in a canonical form as [Canor, 2014; Bathe et al., 1975]

M ·∆ü+C ·∆u̇+K ·∆u+∆g(u, u̇) = ∆f(t) (2.53)

where M is the mass matrix, C is the damping matrix, ∆g gathers non-linear forces and
∆f(t) is the vector of external forces. In case of dynamic or viscous analyses, the temporal
integration is ruled by a particular integration scheme, for instance the Newmark algorithm. In
this work, the analysis is quasi-static, viscous effects are neglected and there are no additional
non-linear forces. Thence the equation (2.53) reduces to

K ·∆u = ∆f(t). (2.54)

This equation holds for any time t. The temporal variable must also be discretised in order to
solve the problem. All the variables are known at discrete moments, termed tn. The amount
of time elapsed between two successive discrete moments tn and tn+1 is termed time step.

Equilibrium equations are established for any time t. Therefore the out of balance forces
can be written for any time t, FOB(t). It is unlikely that these out of balance forces are
continuously equal to zero between two successive moment ta and tb. Thence, it can be
written

tb∫

ta

P (t) · FOB(t) dt = 0 (2.55)
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where P (t) is a weighting function. In the LAGAMINE code, P (t) = δ(t − tθ) reduces to a
collocation and the equilibrium is established for a given time tθ such that

tθ = (1− θ) · ta + θtb. (2.56)

If θ = 0, the equilibrium equations are written using configuration at the beginning of the
time step and the integration is explicit since all the matrices M,C,K are known. If θ 6= 0,
the scheme is implicit are requires an iterative scheme since the matrices are not known a
priori. The scheme is proved to be unconditionally stable if θ ≥ 1/2. Finally, solving the
problem consists in solving Eq.(2.50) and (2.51) at a given discrete time.

2.7 Stress representation

(a) Components of the stress tensor in 3D,
over a infinitesimal volume, dV .

(b) Mohr circle for a three dimensional state
of stress

(c) Position of a stress state in the principal stress space (left) and the devi-
atoric plane (right). σ∗

i are the traces of the principal stress directions in the
deviatoric plane.

Figure 2.5

In this work, the geomechanics sign convention is adopted, i.e. compressive stress and
strains are positive. In the general case, the stress tensor σ is composed of 6 non-zero com-
ponents, i.e.

σ = σ =





σ11 σ12 σ13
σ22 σ23

Sym. σ33



 . (2.57)

The principal stresses are defined such that

σ =





σ1 0 0
0 σ2 0
0 0 σ3



 . (2.58)
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The stress state is thus decomposed into three components perpendicular to the principal
planes in a new coordinate system. Each principal stress is associated to a principal vector. A
physical representation of this tensor is illustrated in Figure 2.5a for an infinitesimal volume
dV. The Mohr circle was proposed by [Mohr, 1882] in order to geometrically represent pos-
sible stress states (see Figure 2.5b). Three circles are bounded by the principal stress values
[σ1, σ2, σ3]. The admissible stress states lie within the greyed zone.
Let us consider the stress state corresponding to a facet dA = dA · n, i.e. an infinitesimal
plane surface dA perpendicular to the vector n = [ν1, ν2, ν3], where νi are the direction cosine
of the vector. All the stress states corresponding to a constant component νi are depicted
by a dashed line in Figure 2.5b. Therefore, the stress state corresponding the combination of
three fixed components [ν1, ν2, ν3] is univocally defined at point S. However this formulation
is not very adapted to the development of modern constitutive laws.
The stress tensor can be conveniently described by a triplet of stress invariants [Iσ, IIs, IIIs].
The first one is described as

Iσ = σii, (2.59)

which is the trace of the stress tensor. The deviatoric stress can then be defined as

s = σ − Iσ
3
· δ. (2.60)

The second invariant of the stress tensor thus reads

IIs =

√

1

2
sij · sij =

√

1

2
· s : s. (2.61)

The third invariant is computed according to

IIIs =
1

3
· sij · sjk · ski. (2.62)

Therefore, this triplet of invariants acts as a new polar coordinate system. The Π-plane, or
deviatoric plane, encompasses all the stress states that lead to an identical first invariant Iσ.
In this plane, the second invariant IIs described how far from the hydrostatic axis is the
stress state. The third invariant is used to compute the Lode angle β, which determines a
"direction" from a reference (see Figure 2.5c). The Lode angle is obtained from

β = −1

3
sin−1

(

3
√
3

2

IIIs
II3s

)

, β ∈ [−30◦, 30◦]. (2.63)

The first two invariants are frequently reformulated into the mean and deviatoric stress in-
variant (p,q)

p =
Iσ
3

(2.64)

q =
√
3 · IIs (2.65)
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Chapter 3

Experimental characterisation of

undrained behaviour of sands

In theory there is no difference between theory
and practice. In practice there is.

Yogi Berra

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 In situ stress state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Seismic loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2 Offshore loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Monotonic undrained behaviour of sand . . . . . . . . . . . . . . . 27

3.3.1 Contractancy/dilatancy of the sand . . . . . . . . . . . . . . . . . . 27

3.3.2 First observations of monotonic undrained tests . . . . . . . . . . . . 28

3.3.3 Steady state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.4 Quasi-steady state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.5 Phase transformation line . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.6 CSR line - collapse line . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.7 Liquefaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.8 Remarks on the experiments . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Cyclic undrained behaviour of sands . . . . . . . . . . . . . . . . . 40

3.4.1 Insight into the cyclic undrained behaviour of sands. . . . . . . . . . 40

3.4.2 Cyclic mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.3 Link between monotonic and cyclic loadings . . . . . . . . . . . . . . 42

3.4.4 Initial and cyclic deviatoric amplitudes . . . . . . . . . . . . . . . . . 44

3.4.5 Density effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.6 Cyclic behaviour vocabulary . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Evaluation of in situ resistance to liquefaction . . . . . . . . . . . 48

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

21



22 CHAPTER 3. UNDRAINED BEHAVIOUR OF SANDS : EXPRIMENTS

3.1 Introduction

Saturated cohesionless soil layers are frequently encountered in geotechnical engineering.
In many fields, especially in offshore or earthquake engineering, the behaviour of the soil is
undrained or partially drained. Therefore an accurate understanding of several phenomena is
a prerequisite for the design of foundations. In situ experiments (field trials or reduced scale)
are most of the time expensive and impractical. However, it has been shown that similarities
exist between in situ stress states and laboratory experiments, which are more convenient
[Youd and Idriss, 2001].

The monotonic undrained behaviour of sands has been studied for many years in labora-
tories across the world [Seed et al., 2003]. It strongly depends on many factors such as the
relative density, the initial mean effective stress, the fine content, the orientation of principal
axes... Loose and medium sands might exhibit instabilities and softening behaviour after a
peak resistance. The state of local minimum shear resistance is termed quasi-steady state and
is characterised by a change of volumetric behaviour (=phase transformation) from contrac-
tive to dilative. The steady state differs from the quasi-steady state by the large deformation
encountered. It consists in a continuous deformation of a soil sample for constant shear stress.
It appears that all these states lie on a unique straight line in the p’-q plane, called the phase
transformation line [Ishihara et al., 1975].
From an engineering point of view, it is interesting to predict the triggering of instabilities.
The collapse boundary surface is used to delimit the states of soil samples in the e-p’-q space,
where instabilities start [Sladen et al., 1985; Alarcon-Guzman et al., 1988]. It is extended
to different orientations of principal axes in [Symes et al., 1984]. Seemingly, instabilities
are strongly dependent on the structure of the soil sample. For instance, loose sands are
metastable and prone to collapse.
Different phenomena, such as collapse of sand structure and steady state, involve large de-
formations and pore pressure increase within the soil sample. The liquefaction ragbag word
is frequently used to encompass many phenomena [Marcuson, 1978]. It was firstly used in
[Hazen, 1920] to describe the failure of a dam. The interest of engineers for this behaviour
arose after the earthquakes of Nigata and Alaska in 1964 that highlight its potentially disas-
trous consequences [Seed and Lee, 1966].

Cyclic loading is used generically to characterise variable loads that have clearly repeated
patterns and a degree of regularity in amplitude and return period [Andersen et al., 2013].
These loads can be essentially of environmental origin : seasons, waves, tides, earthquakes.
Wave periods and number of cycles are very different. In offshore engineering, periods of large
sea waves lie between 5-15s while the number of cycles is very high [Rahman et al., 1977]. On
the other hand, in earthquake geotechnics, few cycles of high amplitudes and periods around
0.1-3s have to be taken into account [Ishihara, 1996]. In this work, laboratory tests presented
are applicable to earthquake and offshore engineering. Few cycles are considered and induced
deformations may reach 10 to 20 per cent. Therefore, these tests are not applicable to all
cyclic loadings, such as railway or road solicitations, that involve million of cycles of very
small amplitude.
The main feature of cyclic loading of sands is the progressive pore pressure accumulation
with the number of cycles. As a corollary effect, the stiffness of the soil sample decreases
and deformation may accumulate. Cyclic mobility is a liquefaction phenomenon typical of
cyclic loading. It involves the accumulation of deformation and pore pressure during cycles
[Vaid and Sivathayalan, 2000]. It has been shown that monotonic stress paths can be used as
collapse boundary surfaces for cyclic stress paths [Alarcon-Guzman et al., 1988]. This allows
a unifying interpretation framework of cyclic tests, especially regarding with the influence of
initial deviator and cyclic amplitude.
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In this chapter, main features of the undrained monotonic behaviour of sand are defined
and described. The essential characteristics of steady state, quasi-steady state and phase
transformation are developed. Collapse surfaces are used to analyse the initiation of lique-
faction and extended to the interpretation of cyclic loading. Finally a brief review of in situ
methods is proposed for an insight into practical methods.
This chapter is consistent although non exhaustive. Many topics are not tackled despite their
inherent interest. For example all the tests are provided without distinction between direct
shear or triaxial experiments. The drained behaviour of sand is not addressed even if it is
related to the undrained one. Moreover it seems that early researchers tried to build a Babel
tower at the beginning since many terms seem to have divergent definitions. Finally it must
be pointed out that science is continuously evolving. Therefore concepts and interpretations
described hereinafter might be invalidated by new findings or technical methods in the future,
or even in the present.
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3.2 In situ stress state

3.2.1 Seismic loading

Triaxial apparatuses are frequently used in soil and rock mechanics (see Figure 3.1b).
They allow to model a broad range of engineering issues. This flexible device is adapted to
drained or undrained as well as monotonic or cyclic loading experiments. The purpose of this
section is to demonstrate the similarity between in situ and laboratory conditions.

(a) Stress state applied to a soil sample during
a triaxial test, after [Das and Ramana, 2010;
Seed and Lee, 1966].

(b) Schematic representation of a triaxial
apparatus.

Figure 3.1: Triaxial test

Let us consider a plane stress state before an earthquake. The stress state is readily
depicted by a Mohr circle in Figure 3.2, if it is assumed isotropic (K0 = 1) for the sake of
simplicity. There is no tangential stress acting on the representative element of soil.
Seismic loading mainly consists of vertically propagating shear waves, which modify the initial
stress state. If the effect of pressure waves is deemed negligible, the stress state within a soil
sample can be modelled by adding shear stresses acting on its faces [Seed and Lee, 1966], as
shown in Figure 3.2.

Ground

Ground Water Table

'= v

K0 v

'= v

K0 v

h

'= v

K0 v

h

during earthquakebefore earthquake

�3
�v

R

�h

-�h

K0=1

sh
ea

r 
 s

tr
es

s

sh
ea

r 
 s

tr
es

s

normal
 stress

normal
 stress

K0=1

Figure 3.2: Stress state within the soil before and during an earthquake, after [Das and
Ramana, 2010; Seed and Lee, 1966].
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By definition, in a soil sample subject to isotropic consolidation, the stress state is identical
whatever the plane considered within the specimen (see Figure 3.3a). If a compressive axial
load is added (12σd), the stress state is modified and shear stress τ = 1

2σd appears on planes XX
and YY, inclined of 45◦ to the vertical axis (see Figure 3.3b). Identical conclusion holds if the
total vertical load decreases (see Figure 3.3c), but the sense of the shear stress reverses. These
stress states existing on a diagonal plane in the soil sample are identical to those occurring
during an earthquake on horizontal planes previously described in Figure 3.2. Therefore, the
in situ seismic behaviour of a soil can be studied in laboratory.

(a) Isotropic stress conditions.

(b) Induced total stress state in an undrained soil
sample in compression.

(c) Induced total stress state in an undrained soil
sample in extension.

Figure 3.3: Total stress state in an undrained soil sample for simulating earthquake loading,
after [Das and Ramana, 2010; Seed and Lee, 1966].

From a practical point of view, the total stress state desired is illustrated in Figures
3.3b and 3.3c on a plane oriented of 45◦ to the vertical axis, which induces a variation of
both vertical and horizontal total stresses applied to the soil sample : σ3 ± 1/2σd and σ3 ∓
1/2σd (3.1a(I,IV)). These boundary conditions should be achieved by changing simultaneously
vertical and horizontal stresses, which is cumbersome.
Classically, only the vertical stress changes (see Figures 3.1a(II,V)). The desired stress state
might be recovered from the applied one by readily adding or subtracting 1/2σd (see Figures
3.1a(III,VI)). However, due to the undrained nature of the test, this change of confinement
only induces a change of internal pore pressure, without affecting the effective stress path,
then the deformations. Therefore, the test can be carried out under vertical stress change only.
The measured pore pressure has just to be corrected afterwards to correspond to earthquake
induced loading [Seed and Lee, 1966].
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3.2.2 Offshore loading

Similarly, offshore facilities are subject to waves and wind, which induce a cyclic loading
of the superstructure, then of the foundations. The combination of vertical, horizontal and
moment loads produces a complex stress distribution within the soil. An example of a poten-
tial failure surface under an offshore gravity based foundation is provided in Figure 3.4.
Stress conditions vary along this failure surface and loading approaches either triaxial com-
pression and extension or direct shear stress experiments. Therefore a wise design of offshore
foundations can be deeply studied in laboratory through the aforementioned experiments.

Figure 3.4: Simplified stress conditions along a potential failure surface in the soil beneath
a gravity structure under cyclic loading [Andersen, 2009]. DSS, direct shear test; TC, triaxial
compression; TE, triaxial extension.
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3.3 Monotonic undrained behaviour of sand

3.3.1 Contractancy/dilatancy of the sand

(a) Contractancy of a sand upon shearing (b) Dilatancy of a sand upon shearing

Figure 3.5: Volumetric behaviour of a soil sample, after [Reynolds, 1885; Charlier, 1987]

Although they are mainly modelled as continuum media, sands are inherently an assembly
of discrete particles. The macroscopic behaviour of a soil sample is strongly dependent on the
nature of these particles and on their arrangement. It can be distinguished between [Been
et al., 1991]

1. the state of a sand which is the description of the physical conditions under which it
exists : void ratio, stress, fabric (= arrangement of grains at particle scale)...

2. the intrinsic material properties of a sand, which are independent of its state : grain
size distribution, grain shape, mineralogy ...

If sand grains are sharp and angular, their resistance to sliding is higher than for rounded
grains. If they are poorly packed, the volume of void is high compared to the volume of grains,
the soil sample is called loose. On the other hand, a very packed volume of grains is deemed
dense.
Let us consider an assembly of rounded grain particles (see Figure 3.5) without water. If a
shear loading is applied to an initially poorly packed soil sample (see Figure 3.5a), grains are
prone to slip, to rearrange and the soil sample contracts. The behaviour is termed contractant
and the total volume of the sample decreases. On the other hand, a dense soil sample subject
to a similar loading tends to dilate and the total volume expands (see Figure 3.5b), [Bolton,
1986; Vaid and Sasitharan, 1992]. It is called dilatant.
Dilatancy of granular media was coined by Reynolds [1885] that carried out experiments on
rigid spherical particles. It was defined in the second half of the twentieth century as the
ratio of plastic volumetric strain increment dǫpv to plastic deviatoric strain increment dǫpv in
the triaxial space, i.e.

d =
dǫpv
dǫpq

(3.1)

where dǫv = dǫ1+2dǫ3 and dǫq = 2 (dǫ1 − dǫ3) /3 [Roscoe and Burland, 1968; Li and Dafalias,
2000]. Both Taylor [1948] and Rowe [1962] have demonstrated that the dilatancy is a unique
function of the stress ratio η and intrinsic material constants (C), i.e.

d = d (η,C) (3.2)

The consequences of contractancy/dilatancy are obvious when considering saturated soils,
e.g. the undrained shear loading of a contractive soil sample. The solid skeleton tends to
contract upon shearing, however an undrained test is synonym of no volumetric deformation.
Therefore, fluid pressure inside rises to compensate the tendency to contract and the mean
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effective stress decreases. On the other hand, the shearing of a dilative sand involves a drop
of pore pressure and an increase of mean effective stress. These two notions are of paramount
importance, since they underlie most of the analyses of this chapter.

3.3.2 First observations of monotonic undrained tests

Undrained monotonic test on Toyoura sand, proposed in [Ishihara, 1993], are depicted
in Figure 3.6. It must be pointed out that the material is identical (Toyoura sand) but the
arranging differs (increasing relative density). Different initial confining pressures are also
taken into account. For each void ratio, results in the deviatoric (q)-mean effective stress (p’)
and deviatoric-axial deformation (ǫy) planes are provided.

Figure 3.6: Compressive triaxial tests on Toyoura sand prepared by moist placement (see
in section 3.3.8.1 for the sample reconstitution method). © = initial state ; � = final state ;
triangle △= intermediate state. [Ishihara, 1993]

Let us consider first a loose Toyoura sand (see Figure 3.6(a)). Results are strongly initial
confinement dependent and three different shapes curves are depicted hereafter1.

1. p′ = 0.06/0.1MPa : the stress strain relationship exhibits a peak of deviatoric stress,
followed by a softening2 behaviour down to a local minimum and then hardening3 again
for large deformations. The stress path shows that the beginning of the test and the
softening part as well are contractive. The interstitial fluid pressure increases (then p′

decreases) and the stress path moves towards the left.

2. p′ = 0.02MPa : the stress strain relationship is continuously hardening, even if a plateau
spans over around 10 % of deformation. The stress path can also be decomposed between

1The range of confining pressures considered here is relatively low, since most of the cases studied involve
shallow foundations. However, for higher confining stress greater than 5MPa, a new phenomenon termed
particle crushing influences results [Hyodo et al., 2002; Toyota et al., 2004].

2In this chapter, softening is characterised by a decrease of shear resistance with increasing deformation.
3In this chapter, hardening is characteristed by an increase of shear resistance with increasing deformation.
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firstly contractive and secondly dilative behaviours. The plateau observed in the first
figure corresponds to the transformation of a contractive phase to a dilative one.

3. p′ = 0.01MPa : the stress strain relationship is similar to those observed in the p′ =
0.02MPa case. However, the behaviour is only dilative

It is noteworthy that all the curves finally merge at very high vertical deformation.

Results presented for a relative density of 38% are similar (see Figure 3.6). However the
peaks of resistance are smoother (the difference between peak value and local minimum value)
and the final state seems to reach a final constant deviatoric resistance. This latter effect is
more highlighted when considering the test on 64% relative density curves. In such case, all
the soil samples experience only dilative phases and reach an identical deviatoric stress.
Experimental work produces a large amount of curves and results that must be synthesised.
For instance, peak and residual resistances as well are interesting pieces of information for en-
gineers designing foundations. Therefore, experimenters have applied themselves to elaborate
concepts that summarise and describe different behaviours observed as a function of engineer
parameters. These concepts are described hereafter.

3.3.3 Steady state

An idealisation of two types of behaviour is reproduced in the Figure 3.7. It was previously
pointed out that in a large deformation state, typically an axial deformation of 20-25 %, the
deviatoric stress remains constant while deformation keeps increasing. The steady state of
deformation of a soil is referred as a state in which a mass of particles is continuously deform-
ing at constant volume, constant normal effective stress, constant shear stress and constant
velocity [Castro and Poulos, 1977; Poulos, 1981]. This state is similar to the critical state
defined in clays [Roscoe et al., 1958; Schofield and Wroth, 1968].

Axial strain, 1

SS line

Steady State

Quasi Steady State
SQSS

SSS

CSR line

Figure 3.7: Idealisation of steady and quasi-steady states, after [Vaid et al., 1990], at constant
relative density. SS line = steady state line ; CSR line = critical state ratio line.

This behaviour may occur in sands and clays as well, for any drainage and loading con-
ditions. Actually the shear deformation leads to a total breakdown of the initial structure.
When the steady state eventually starts, the soil is reworked into a new "flow structure", de-
scribed by [Casagrande, 1971]. Physically, the contractive behaviour of sand and pore water
pressure that occurs during shearing allow the reorientation of sand particles. Steady state
starts when grains reach a final flow structure that offers the minimum resistance to shearing.
It was demonstrated that the angle of friction mobilised at the steady state is constant [Mo-
hamad and Dobry, 1986; Vaid et al., 1990]. Moreover, the state of stress and the residual
resistance of a sand at this state is only a function of the void ratio and lies on the steady state
line in the p’-e plane [Verdugo and Ishihara, 1996], (see Figure 3.8). Thence, void ratio and
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mean effective stress at the critical state cannot be independently imposed and the relation
between them is unique for a given material.

Effective confining stress, p'=(�'1+�'3)/3 [MPa]
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Figure 3.8: Steady state line and initial states for a Toyoura sand, [Verdugo and Ishihara,
1996].

Riemer and Seed [1997]; Yoshimine and Ishihara [1998] also proved that steady state lines
are different in compression and extension triaxial tests in the e-p’ plane. The steady state
strength is actually lower in this case and the soil exhibits a more contractive behaviour. The
explanation might lie within the inherently anisotropy of the material or in a stress path effect,
[Riemer and Seed, 1997]. Indeed, strain path and deformation modes are different between
compression and extension tests.
Recent advances from [Li and Dafalias, 2012] based on DEM (discrete element method) seem
to question the classic definition of the critical state (and then of the steady state) based only
on a isotropic measurement (void ratio). In this paper, a fabric tensor is introduced to take
into account the anisotropic structure of the soil sample created by the loading.

3.3.4 Quasi-steady state

It was highlighted in Figure 3.6 that some of the tests encounter a drop in resistance after
a peak in q − ǫy plane. This contractive softening behaviour ends when the soil becomes
dilative and is marked by an elbow of the parent curve in p’-q plane. This state of minimum
strength was termed quasi-steady state, [Alarcon-Guzman et al., 1988; Been et al., 1991]. It
is different from the steady state because it appears for much lower strains. The choice of
steady state or quasi-steady state friction angles as residual strength is a major concern in
geotechnical engineering.
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(b) quasi-steady state line.

Figure 3.9: The quasi-steady state of Toyoura sand, [Ishihara, 1993].

The quasi-steady state (QSS) does not occur in each experiment. Actually the occurrence
or non occurrence of this state depends on the void ratio and the initial confining stresses,
Verdugo and Ishihara [1996]. An initial dividing line (IDL) separates initial states that lead
to QSS from those which do not (see Figure 3.9a). This state is particularly a feature of
loose soil samples sheared from large initial confining stresses, [Ishihara, 1993]. Similarly to
the steady state, a quasi-steady state line can be drawn in the e-p’ plane (see Figure 3.9b).
The QSS strength is strongly dependent on the initial mean effective stress, [Verdugo and
Ishihara, 1996] and on the loading mode. Indeed, the strength in extension is lower than in
compression, [Vaid et al., 2001].

3.3.5 Phase transformation line

If the stress states that characterise steady and quasi-steady states are plotted together,
it appears that they all lie on a straight line in the p’-q plane (see Figure 3.10). Moreover, the
change of behaviour from contractive to dilative in case of continuously hardening soil sample
(see Figure 3.6(c)) lies also on this line. This outcome is remarkably similar in compression
and extension. However, the uniqueness of such a straight line is still an open topic. Indeed,
some authors recently distinguish between phase transformation and failure or steady state
lines, [De Gennaro et al., 2004; Hyodo et al., 2002]
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Figure 3.10: Effective stress state at SS, QSS (softening) and phase transformation (harden-
ing) in triaxial compression, extension, simple shear (DSS) and torsional shear (HCT) tests,
[Vaid and Sivathayalan, 2000].

This line was termed phase transformation line by [Ishihara et al., 1975] referring to the
change of behaviour from contractive do dilative. This concept was largely adopted within the
scientific community [Mohamad and Dobry, 1986; Alarcon-Guzman et al., 1988; Vaid et al.,
1990; Hyodo et al., 1994; Verdugo and Ishihara, 1996] and unifies previous concepts. The
quasi-steady state degenerates in a particular case of phase transformation where the shear
strength temporarily drops over a limited interval of deformation. Interestingly, the phase
transformation line is identical to the characteristic line defined for drained tests [Lade and
Yamamuro, 1997].

A summary of the aforementioned concepts is described in Figure 3.11. The ultimate
steady state is the steady state that is finally attained, for a given void ratio, irrespective of
the initial stress conditions, [Yoshimine and Ishihara, 1998]. The critical steady state occurs
when phase transformation and ultimate steady state are merged. Thus, no hardening occurs
after the minimum strength resistance is reached (see Figure 3.11(a)). Interested reader should
refer to [Yoshimine and Ishihara, 1998] for more information about the influence of parameters
on curves presented in Figure 3.11.

3.3.6 CSR line - collapse line

The description of the peak resistance during shearing is a major concern in design. Indeed
the drop of resistance after the peak may lead to unstable behaviour. The locus of peak states
in the p’-q plane was denoted critical state ratio line by [Vaid and Chern, 1985]. Contrary to
the phase transformation line, this CSR line has different slopes in compression and extension
[Vaid and Thomas, 1995].
This line depends on the density of the sand [Alarcon-Guzman et al., 1988; Been and Jefferies,
1985]. The shape of the locus of peaks was found to be a straight line [Mohamad and Dobry,
1986] but it might deviates especially for low confinements of loose sands [Yamamuro and
Lade, 1997].
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Figure 3.11: General undrained shear behaviour of sand under large deformations,
[Yoshimine and Ishihara, 1998]. © = initial state ; � = final state ; triangle △= intermediate
state.

(a) Energy of an arbitrary
body as a function of its po-
sition. (1) metastable posi-
tion; (2) transient position;
(3) absolutely stable posi-
tion

(b) Idealisation of an undrained sand specimen.

Figure 3.12: Structural collapse

This particular undrained behaviour of sand is related to the structural collapse concept,
defined by [Alarcon-Guzman et al., 1988]. As a matter of fact, the structure of contractive
sands is metastable. An example of this concept is given in Figure 3.12a, in which the energy
function of an arbitrary body is depicted as a function of its position. Initially, the body is at
rest and stable in position (1) because any slight variation of displacement δX brings it to a
higher energy level. However, if it gains a sufficient amount of energy, it is allowed to reached
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a new position of equilibrium (3) by overpassing the (2) local maximum of energy.
In collapsive skeletons of some contractive sands, small shear strains are sufficient to create
a sudden rearrangement of the grains and a loss of contact points between them. Therefore,
the collapse results in a sharp transfer of the total load from the solid grains to the interstitial
pressure. For instance, let us consider the metastable collapsive skeleton presented in Figure
3.12b. The arrangement of grains creates a large cavity and grains around resist by vault
effect (I). A small shearing of the soil samples lead to a loss of contact of sand grains (II) and
eventually to a sudden rearrangement of the grains inside (III). Since the test is undrained,
the pore water pressure rises up to bear the total load. It must be pointed out that collapse
behaviour can also be observed during drained tests and is marked by a volumetric contraction.
This was demonstrated by [Skopek et al., 1994] for loose sands.

Figure 3.13: Silty sands structure, [Yamamuro and Lade, 1997]

Similarly, the addition of fines affects the behaviour behaviour of a soil sample (see Figure
3.13). Some of them affect the density of the soil sample, but they do not change its resistance
which is mainly borne by sand grains. On the other hand, particles might lie near contact
points between larger grains. Upon shearing or isotropic compression, these particles might
easily slide towards the inner void. This increases the contractive behaviour of the soil and
then the pore pressure rising was demonstrated for very loose sands [Yamamuro and Lade,
1997]. However, recent studies demonstrate that the fine content effects are much more
complex and depend on the nature of the fines (plasticity index,...), their concentration, the
relative density and the confinement [Tsukamoto et al., 2004; Boulanger and Idriss, 2006; Bray
and Sancio, 2006; Sadrekarimi, 2013].

For a given relative density of a soil sample, Sladen et al. [1985] define the CSR line as
a collapse line that delimits the states of stable and unstable behaviours. The concept is
extended to the state space where the collection of all the collapse lines for each void ratio
gives birth to a collapse surface (see Figure 3.14b). Actually Alarcon-Guzman et al. [1988];
De Gennaro et al. [2004] prove that the actual limit is delineated by a monotonic stress path
in p’-q plane (see Figure 3.14a). Sasitharan et al. [1993] eventually conclude that the CSR
line is an acceptable approximation of the actual collapse line. Symes et al. [1984] extended
the boundary surface to non vertically applied stresses.
However it must be mentioned that Been and Jefferies [2004] refute the concept of collapse
surface for very loose sand, which proves that the interpretation of such behaviours is still an
ongoing research topic !
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(a) Comparison of state boundary and collapse
surfaces proposed by [Alarcon-Guzman et al.,
1988] and [Sladen et al., 1985]

(b) Typical collapse surface in effective
mean normal stress (p’) - deviator stress
(q) - void ratio space (e).

Figure 3.14: Definitions of state boundary and collapse surfaces, [Sasitharan et al., 1993]

3.3.7 Liquefaction

Liquefaction is not a recent topic and has been widely studied for the late thirties [Casagrande,
1936]. However the term "liquefaction" encompasses a large variety of behaviours and its def-
inition is not unique. All the phenomena covered have in common an increasing interstitial
fluid pressure and large deformations, [Castro, 1975; Castro and Poulos, 1977].
Some authors relate liquefaction to the steady state previously defined, [Castro and Poulos,
1977; Hyodo et al., 1994]. Thence the soil sample undergoes very large deformation and a
constant resistance to shearing. The liquefaction is total since the shear resistance is very low
and the sand flows like a liquid, [Castro and Poulos, 1977]. However, this true liquefaction
is limited to a range of relative densities. They are more frequent in silty sands, [Yoshimine
and Ishihara, 1998].
Initial or static liquefaction also occurs, i.e. the soil sample reaches a null state which means
both effective and deviatoric stresses are null. This behaviour was defined in [Seed and Lee,
1966] and also represented in [Yamamuro and Lade, 1997] for loose sands.
The concept of flow failure was described by [Casagrande, 1976; Castro, 1969]. It consists
in a sharp pore pressure build up and a sudden increase in deformation. This flow failure is
not properly a state of deformation but it triggers it. Alarcon-Guzman et al. [1988] proposed
the structural collapse concept to explain this phenomenon and Sladen et al. [1985] relate its
triggering to a collapse surface in the void ratio - stress plane.
A transient state of partial liquefaction is also mentioned by [Lee and Seed, 1967; Vaid and
Sivathayalan, 2000] when the soil reaches the quasi-steady state, before hardening. It defines
the sharp increase of deformation encountered after the peak of strength. This definition is
identical to the flow failure.
A unifying definition is provided in [National Research Council, 1985; Vaid and Thomas, 1995]:
the terms liquefaction and liquefaction failure encompass all phenomena involving excessive
deformations of saturated cohesionless soils. Thence, the definition of failure should better
refer to a fixed amount of plastic deformation accumulated irrespective of the phenomenon
causing it, [Ishihara et al., 1975].

Figure 3.15 proposed by [Yamamuro and Lade, 1997] for a loose sand illustrates the insta-
bilities that might occur during the triaxial compression test, related to liquefaction concept.
Low confining pressures samples are prone to static liquefaction, i.e. (p′, q) = (0, 0). A tempo-
ral liquefaction is also observed, i.e. a loss of shear stress accompanied by an sudden increase
of pore pressure and deformation. Higher confining pressures exhibit either a temporal insta-
bility or an instability, i.e. the steady state is reached and no hardening occurs. For a given
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Figure 3.15: Four distinct general types of undrained effective stress paths of loose silty
sands, [Yamamuro and Lade, 1997]

loose relative density, the actual behaviour strongly depends on the initial confining stress. It
must also be pointed out that the instability line, equivalent to CSR line, deviates from the
straight line for low confining pressure.
Liquefaction is a very complex phenomenon involving many parameters. For example, Eli-
adorani and Vaid [2005] also prove that a partially drained behaviour is more damageable
than drained or undrained ones. Small expansive volumetric strains might transform an ini-
tially dilative sand to a contractive one. Finn et al. [1970]; Nemat-Nasser and Takahashi
[1985] studied the effect of pre-liquefaction and demonstrate that the weakening effect of a
preliquefaction is not mandatory. The fabric of the soil plays a very important role in this
resistance.

3.3.8 Remarks on the experiments

3.3.8.1 Sample reconstitution method

Generally, granular soil samples tested in laboratory are reconstituted from a virgin ma-
terial. Three methods of reconstitution are illustrated in Figure 3.16

• moist tamping/placement (MT) : wet sand is poured in successive layers ;

• air-pluviating/dry deposition (AP) : dry sand is poured in successive layers ;

• water pluviating/sedimentation (WP) : sand is poured under water in successive layers.

In each of these methods, a hammer can be used to increase the density.

The choice of a reconstituting method is not neutral. Indeed, a soil sample described by
identical void ratio and initial stress state might lead to very different behaviours (see Figure
3.17a). The moist tamped method creates sample much more prone to contactive and quasi-
steady state behaviours than the two others. As a matter of fact, this method tends to create
honeycomb structure, described in [Casagrande, 1976], which is likely to collapse. Evidence
of such a collapse as soon as the sample is saturated was reported in [Sladen et al., 1985].
The method that better represents the in situ soil conditions is the water pluviated one, [Oda
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Figure 3.16: Method of sample preparation, [Ishihara, 1996]

et al., 1978]. Actually this method mimics the natural way of sand deposition. A comparison
between laboratory reconstituted and in situ frozen samples is carried out (see Figure 3.17b).
Moreover, the water pluviated method leads to a better void ratio distribution uniformity
over the height of the soil sample [Vaid and Sivathayalan, 2000].

(a) Effect of reconstitution technique (fab-
ric) on the undrained simple shear response
of Syncrude sand, after Vaid and Thomas
[1995]. ec, void ratio; σ′

v and σ′

vc, verti-
cal effective stress and vertical consolidation
stress, respectively.

(b) Comparison of undrained simple shear
response of undisturbed in situ frozen and
equivalent water-pluviated sand at essen-
tially identical states, Vaid and Sivathayalan
[2000].

Figure 3.17

3.3.8.2 Direction of principal stress

The direction of principal stress has an important influence on the results measured
[Yoshimine et al., 1998; Vaid and Sivathayalan, 2000; De Gennaro et al., 2004]. It can be
described by two parameters

• α is the inclination of the major principal stress σ1 to the specimen axis (deposition
direction);
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• b = (σ2 − σ3)/(σ1 − σ3) describes the intermediate principal stress σ2. Thence, b = 0
and α = 0 stand for triaxial compression while b = 1 and α = 90◦ stem for triaxial
extension.

The influence of these parameters is illustrated in Figure 3.18 where a loose Fraser sand
was subject to various loading conditions. The sample exhibits a dilative response for the
compressive triaxial test. In contrast, a softening compressive behaviour is observed for the
triaxial extension tests. This divergence highlights the inherent anisotropy of sand, already
recognised in [Miura and Toki, 1982].
If compression and extension tests start from an identical hydrostatic state (qinit = 0), the
softening triggers earlier in extension than in compression, since the slope of the QSS line is
weaker in extension [Vaid and Sivathayalan, 2000]. As a matter of fact, deformation modes
are different in both cases. The greater deformability in horizontal plane is the main cause
of the divergences observed. The deformation path is of greater importance than the stress
path [Riemer and Seed, 1997; Vaid and Sivathayalan, 2000; De Gennaro et al., 2004]. Similar
difference was early demonstrated between triaxial and direct shear tests [Peacock and Seed,
1968]. This inherent shortcoming of triaxial tests can be overcome by the use of torsional
tests. The advantage of such a method is the similar form of the results in both direction of
loading, which better approach natural cyclic shear loading [Georgiannou et al., 2008].

Figure 3.18: Dependence of undrained response on the direction of principal stress and the
intermediate stress parameter. σ′mc, mean consolidation stress [Vaid and Sivathayalan, 2000].
Triaxial compression: (α,b)=(0◦,0) ; Triaxial extension: (α,b)=(90◦,1)

3.3.8.3 Non-homogeneities

The aforementioned state concepts implicitly induce the hypothesis of uniform fields of
deformation, stresses and pore pressure within the soil sample. Consequently, if the steady
state is achieved, an identical void ratio can be measured within the whole specimen.
Strain localisation was coined to describe the concentration of deformation into thin zones of
intense shearing (also shear banding) [Desrues and Viggiani, 2004]. These bands can be of
different shapes and depend on density, grain size or perturbations due to the test apparatus.
Thus, it is always an imperfection of the test (from sample and/or apparatus) that triggers
the localisation. Consequently, the unknown is not the likelihood of localisation occurrence
but its geometry. The main outcome of this particular phenomenon is the loss of uniformity
of deformation and stress distribution within the soil sample tested.
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Figure 3.19: Strain localisation during undrained plane strain shearing [Finno et al., 1996].

Shear banding is strongly associated with failure and post-peak drained softening be-
haviours in sands [Wang and Lade, 2001]. Therefore, steady state and quasi-steady state can
be reinterpreted in the light of this phenomenon. An example of results is illustrated in Figure
3.19 for a plane strain shearing test of a loose sand.
The global stress-strain response obtained by boundary measurements is provided in Figure
3.19(a). The final result should be interpreted as liquefaction or steady state since the defor-
mation seems to continue at constant deviatoric stress. However, considering measurements
of deformation at the top and the bottom of the sample (see positions of wu and wi in Figure
3.19(d)), it can be seen that the deformation is not uniform. The function |wu − wi| should
have been equal to zero if vertical deformation were uniform, i.e. upper and lower deformation
are identical. On the contrary, the non-zero values indicate that deformation is not uniform.
The triggering of localisation is marked by point O and is considered ended at point B. Fi-
nally, local lateral deformations in the Figure 3.19(c) depict the consequences of the shear
band. After localisation has been fully developed, the upper part of the sample slides along
the shear band as a rigid body (there is no additional lateral deformation of the upper part).
However, the lateral deformation of the lower part is still increasing, since the measure gauge
encompasses the shear band.
In short, consequences of steady state are globally observed, but the conditions of steady state
(constant volume, constant rate of shear strain...) hold only in the shear band [Finno et al.,
1996]). Identical conclusion was drawn for drained tests about the critical state, occurring
within the shear band [Desrues et al., 1996; Mooney et al., 1998].

It was also demonstrated that the increase of shearing resistance after a local minimum
might also come from non uniformities [Finno et al., 1996]. Moreover, Zhang and Garga [1997]
pointed out the effect of friction between the soil and the test apparatus that induces end
restraint. This behaviour is insignificant for loose sand but gains more importance for denser
sands. They finally postulated that the quasi-steady state might be a test-induced behaviour.
All the previously described concepts, such as steady or quasi-steady states, implicitly make
the hypothesis that the state of the soil specimen was homogeneous. This section demonstrates
it is probably not. However, the macroscopic behaviour reflects the local physics, which has
to be kept in mind for the development of constitutive laws and calibration of parameters.
Fortunately, the range of deformation that is of particular interest in this work lies far before
the failure. Thence the behaviour is still homogeneous and can be adequately modelled by
classic continuum mechanics.
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3.4 Cyclic undrained behaviour of sands

3.4.1 Insight into the cyclic undrained behaviour of sands.

The cyclic loading of a soil is characterised by the variation of shear stress qcycl around a
mean value qs which denotes an initial anisotropic consolidation state. A reversal exists if the
cyclic amplitude is greater than the initial mean value, i.e. compressive deviatoric stresses
coexist with extensive ones. The stress path and potential failure mode depend prominently
on the initial stress state, void ratio states and cyclic amplitude. Four different modes of
failure are presented in Figure 3.20.

Figure 3.20: Liquefaction due to (a) contractive deformation in compression during cyclic
loading; (b) contractive deformation in extension during cyclic loading; (c) cyclic mobility
with transient states of zero effective stress during cyclic loading; (d)cyclic mobility without
transient state of zero effective stress during cyclic loading; [Vaid et al., 2001]. Fraser river
sand : emin = 0.605, emax = 0.926.

Figure 3.20(a) illustrates a cyclic loading without reversal. A common feature of cyclic
loading is the pore pressure build up, due to the contractive behaviour of tested soil samples.
This tendency is marked by a continuous decrease of the mean effective stress within the soil
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specimen, i.e. cycles move towards the left in the p’-q plane. Finally, the stress path crosses
the CSR line, which triggers a flow deformation [Vaid and Chern, 1983], i.e. an instability
coupled with a sudden increase in deformation.
A cyclic loading with reversal is represented in Figure 3.20(b). Similar conclusions can be
drawn, but in this case the stress path reaches the initial liquefaction, i.e. a state of null mean
effective and deviatoric stresses. An identical flow deformation occurs but on the extension
side. It was shown in [Seed and Lee, 1966] that an alternate loading with reversal leads
frequently to initial liquefaction.
Figure 3.20(c) exhibits another common feature of cyclic loading, butterfly wing stress path.
The reversal loading triggers a nearly initial liquefaction state. However, the soil sample
starts hardening before the next reverse loading. This pattern is replicated and higher plastic
deformation are accumulated for each cycle each time the stress path crosses the hydrostatic
axis, either in compression and extension. This phenomenon is termed cyclic mobility.
Finally, Figure 3.20(d) denotes a combination of the two previous modes of failure. The
stress path initially encounters a limited flow deformation, i.e. the soil sample exhibits a
large deformation accumulation but cycles stabilise later on. However, even if the cycles are
stabilised in the p’-q plane, they accumulate axial deformation. This ratcheting effect is also
a type of cyclic mobility.

Figure 3.21: Schematic diagram for sveral stress path and axial displacements Hyodo et al.
[1994].

These different behaviours are summarised in Figure 3.21. The different patterns of ac-
cumulation of axial strain are highlighted between reversal and non reversal loading types.
It must be reminded that liquefaction is not a well-defined state but a matter of convention.
However, most of the results provided show the importance of the flow deformation in the
triggering of the liquefaction. Therefore the description of a triggering surface is of major
concern.
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3.4.2 Cyclic mobility

The cyclic mobility phenomenon was previously mentioned. Once again, this denomina-
tion includes several distinct phenomena. Some authors consider that cyclic mobility is the
progressive degradation of the stiffness of the soil sample due to the progressive increase of
pore pressure [Casagrande, 1976; Castro and Poulos, 1977; Pecker, 1984; Yoshimine and Ishi-
hara, 1998]. Some others used cyclic mobility to characterise the state of a soil subject to a
transient state of (nearly) null mean effective and deviatoric stress [Alarcon-Guzman et al.,
1988; Hyodo et al., 1994; Castro, 1975; Vaid and Thomas, 1995].
According to [Hyodo et al., 1994], liquefaction is peculiar to contractive soil while cyclic mo-
bility occurs in dilative ones. On the other hand, Castro [1975] assesses that cyclic mobility
may appear in any type of soil, independently of its initial state. Vaid and Sivathayalan
[2000] conclude in differentiating between cyclic mobility with or without initial liquefaction.
In each of the presented cases, the common feature is the degradation of the stiffness due to
the accumulated pore pressure coupled with a continuous increase of residual deformation.

3.4.3 Link between monotonic and cyclic loadings

It was previously demonstrated that a collapse surface could be established, that delineates
a zone of instability triggering. Alarcon-Guzman et al. [1988] represented on the same graph
a monotonic stress path and the stress at the beginning of flow deformation (see Figure 3.22).
It appears that the monotonic stress path for an identical initial mean effective stress acts as
a boundary surface of flow deformation triggering for a cyclic test.

Figure 3.22: Stress conditions at initiation of strain softening behaviour under cyclic loading
Alarcon-Guzman et al. [1988].

This was confirmed by experiments carried out in [Hyodo et al., 1994], represented in
Figure 3.23. The main outcome induced by this conclusion is that many cycles can be accu-
mulated even if the stress path crosses the CSR-line (see Figure 3.23b).
Figure 3.23 illustrates two modes of failure previously described. In Figure 3.23a, the stress
reversal leads to initial liquefaction of the soil sample. The specimen encounters few defor-
mation accumulation up to reach the unstable point that triggers a flow deformation, on the
extension side. Hardening is observed afterwards coupled with very high deformation. In
Figure 3.23b, flow deformation occurs on the compression side and cycles stabilise in the end.

The condition sine qua non to observe a flow deformation is that the maximum (or mini-
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Figure 3.23: Comparison between monotonic and cyclic test results on Toyoura sand [Hyodo
et al., 1994]. (a) instability and flow failure; (b) temporary instability; (c) Cyclic mobility.

mum) cyclic shear stress is greater than the residual shear resistance (SSS or SQSS), i.e.

qs + qcycl > SSS orSQSS, (3.3)

|qs − qcycl| > SSS orSQSS, (3.4)

where SSS and SQSS are respectively the residual resistance at the steady state and quasi-
steady state in compression or extension. These conditions are illustrated in Figure 3.24.
If the critical state is reached after the flow failure, a total instability occurs which can be
assimilated to total liquefaction, as shown in Figure 3.24(a). In case of quasi-steady state,
the crossing of the monotonic stress path triggers a temporary instability coupled with a high
deformation accumulation, but stabilises later (see Figure 3.24(b)). If the variation of cyclic
loading lies below the monotonic envelop, no flow deformation appears (see Figure 3.24(c)).
However, failure may be attained by cyclic mobility.
It must be pointed out that this schematic representation of possible failure modes does not
encompass all the possibilities. As a matter of fact, the actual failure mode depends on the
initial state of the soil (relative density, mean effective stress, initial deviatoric stress) and
on the cyclic applied loading. However, considering the monotonic stress path as a boundary
surface unifies the interpretation of flow deformation triggering under a unique concept.
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Figure 3.24: Flow failure and cyclic mobility [Yoshimine and Ishihara, 1998]. Stress path
and deviatoric-shear strain results. © = initial state; △ = quasi/critical steady state.

3.4.4 Initial and cyclic deviatoric amplitudes

Many researches have undertaken experiments to address the effect of initial deviatoric
stress qs and cyclic deviatoric amplitude qcycl on the occurrence of flow deformation [Lee and
Seed, 1967; Castro, 1975; Seed and Booker, 1977; Castro and Poulos, 1977; Vaid and Chern,
1983; Mohamad and Dobry, 1986; Hyodo et al., 1991]. They conclude either that an initial
deviatoric stress improve or deteriorate the resistance towards flow deformation.

Figure 3.25: Monotonic undrained triaxial test from non zero initial deviatoric stress qs.
PT, phase transformation line; FL, failure line; SPT , residual strength; ©, initial state.

First, let us consider a monotonic undrained triaxial test starting from an initial deviatoric
stress qs, resulting from an anisotropic consolidation of the soil sample (see Figure 3.25). If
qs = 0, the residual resistance SPT in compression is likely to be greater than in extension.
Therefore, the difference |SPT − qs|c in compression is greater than |SPT − qs|e in extension
(see Figure 3.25(a)).
If qs is shifted up, the stress path followed and the residual strengths SPT in extension and
compression slightly change (see Figure 3.25(b)). However, the difference |SPT−qs|c decreases
as qs approaches SPT . On the other hand, |SPT−qs|e increases, since qs moves away from SPT .
This explains Figure 3.26a, where |SPT − qs|e (extension) increases with qs and |SPT − qs|c
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(compression) decreases. Moreover, if qS becomes too high, anisotropic consolidation might
directly lead to the failure of the soil sample and |SPT − qs|c tends to zero.

(a) Relationship between |SPT −qs|/p
′

c and initial
deviator stress ratio for a monotonic undrained
test. SPT is the phase transformation strength,
corresponding to the quasi-steady state, it is pos-
itive for the compression side and negative either.

(b) Relationship between cyclic deviator stress ra-
tio and initial static deviator stress ratio to induce
flow deformation in each specified number of cy-
cles.

Figure 3.26: Flow deformation occurrence for monotonic and cyclic test on saturated loose
Toyoura sand [Hyodo et al., 1994]. Fl = failure line ; PT = phase transformation line; qs
mean deviatoric stress; p′c effective initial confining stress.

It was previously displayed that the monotonic stress path defines a collapse boundary surface
[Alarcon-Guzman et al., 1988; Ishihara et al., 1991; Sasitharan et al., 1993]. Therefore, it can
be stated that a flow deformation might occur during a cyclic test if |qs − qcycl| > |SPT − qs|,
i.e. the stress path intersects the unstable part of the monotonic path for an identical initial
qS (see Figures 3.27(a) and (b)).
Results in Figure 3.26a represent the maximum cyclic amplitude that can be applied with-
out triggering flow deformation. For an initial stress ratio qs/p

′
c a cyclic amplitude greater

than |SPT − qs| in compression or extension, indicates that the cyclic stress path crosses the
monotonic stress path, which acts as a collapse surface. Therefore, if qs/p′c < 0.2 the flow
deformation intersects the collapse surface on the extension side and flow deformation occurs
on that side. The flow deformation holds on the compression side if qs/p′c > 0.2.
Figure 3.26b depicts the combination of initial and cyclic deviatoric stresses that lead to a
flow deformation after N cycles. If qcycl > qs, a reversal occurs and the flow deformation lies in
the extension side. It is the opposite provided no reversal occurs. These results are consistent
with Figure 3.26a. Initially, qcycl that can be applied without flow deformation increases with
qs, since the stress path is shifted up and escapes from the unstable part of the extension
collapse surface (see Figure 3.27(a)). However, it starts decreasing afterwards because it gets
closer to the collapse surface in compression (see Figure 3.27(b)).
Actually, this collapse envelop is very flat and the behaviour is thus very sensitive to the
combination (qs, qcycl). A small variation of initial deviatoric stress or cyclic amplitude may
strongly affect the final behaviour and therefore the safety factors that should be adopted.
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Figure 3.27: Schematic diagram explaining the initiation of flow deformation in the effective
stress space during cyclic test [Hyodo et al., 1994]. PT = phase transformation line; FL =
failure line; SPT = residual strength.© = initial state

3.4.5 Density effect

As previously discussed, the relative density of a soil sample rules its failure behaviour.
The relation between initial and cyclic deviatoric stress amplitudes required to reach a given
deformation in 10 cycles is given in Figure 3.28. Loose sand shows parabolic shape curves
which indicate a kind of optimum mean deviatoric stress associated to cyclic variations. For
a given cyclic amplitude, any other τs considered would lead more quickly to a given defor-
mation threshold.
The medium dense sand exhibits a similar behaviour even if the position of the optimum
varies. The divergence of the curves appears in a non-reversal zone, where deformation ac-
cumulation rate is lower. Therefore a small variation of cyclic amplitude significantly affects
the accumulated deformation. The dense sand behaviour is characterised by a continuously
increasing τcycl, which indicates a greater resistance to liquefaction.

Figure 3.28: Effect of initial static shear stress on cyclic stress ratio required to cause various
levels of axial strain [1%,2.5%,5%] in 10 stress cycles. Toyoura sand [Vaid and Chern, 1983].
σ′nc is the static consolidation stress on the plane inclined at 45◦ to σ′1 plane.

3.4.6 Cyclic behaviour vocabulary

In addition to the previously described behaviours, some other concepts are frequently
used to described results, in the field of soil mechanics or merely mechanics. Three particular
concepts may appear during cyclic tests, sometimes for a very large number of cycles. They
are defined since they are employed in the following.
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Figure 3.29: Particular cyclic behaviours, after [Rascol, 2009].

There is adaptation if the cyclic stress path converges to a new elastic state (see Figure
3.29(a)). When this state is reached, a new cycle does not involve any dissipation and the
path is linear. This true state is never reached practically. A more likely effect is the accom-
modation (also plastic shakedown, see Figure 3.29(b)). The stress path accommodate to the
loading and follow a closed loop. Therefore it does not accumulate more plastic deformation,
but is still dissipating energy.
Ratcheting is the continuous accumulation of deformation for each new cycle (see Figure
3.29(c)). It is worth noting that a continuous ratcheting leads to infinite deformation. There-
fore this phenomenon cannot hold for ever.
Depending on the material tested, the effect of cycling might be an increase or a decrease of
the average stiffness of a loop (see Figure 3.29(d) and (e)). The former case is termed cyclic
softening and the latter cyclic hardening.
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3.5 Evaluation of in situ resistance to liquefaction

Laboratory experiments are mainly an academic luxury. Indeed, in situ stress states are
not easily reproducible and specimens of soils obtained from typical drilling and sampling
techniques are most of the time disturbed, [Youd and Idriss, 2001]. Ground freezing tech-
nique can provide undisturbed soil samples but the cost of such a technique is prohibitive.
Several field tests have become a common practice for evaluation of liquefaction resistance
in most of the day-to-day projects. Among many techniques, the standard penetration test
(SPT), the cone penetration test (CPT), the shear wave velocity measurement (Vs) and the
Becker penetration test (BPT) are currently employed. The purpose of these tests is not to
obtain parameters describing the complex cyclic behaviour of the soil but to assess the likeli-
hood of liquefaction triggering. Correlations have been elaborated for the last decades, based
on observations of sites where liquefaction occurred during earthquakes. Recent advances
aim at assessing the available post liquefaction strength and induced deformation. The exact
methodology for liquefaction potential assessment is out of the scope of this study but inter-
ested reader should refer to [Ishihara, 1993, 1996; Youd and Idriss, 2001; Seed et al., 2003] for
a deep insight into practical methods.

(a) Categorisation of liquefaction
phenomena [Yoshimine and Ishi-
hara, 1998]
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(b) SPT based curves for the cyclic resistance ratio available,
adapted from [Youd and Idriss, 2001] and [European Commit-
tee for Standardization, 2003].

Figure 3.30: In situ potential resistance to liquefaction.

SPT are widely used across the world and highly normalised. Roughly, the procedure consists
in the penetration of a thick walled sample tube due to the falling of a hammer. The N-SPT
value, i.e. the standard penetration resistance, is the number of blows required to drive the
sample to a given depth of penetration [Skempton, 1986]. Normalisation takes into account
many corrections in order to unify results obtained from different standards. For instance,
the blow count number is adjusted to encompass the effect of the test apparatus, the borehole
diameter and the hammer energy efficiency.
Many correlations have been elaborated based on this test. Figures 3.30a relates the N-value
of the standard penetration test to a likely liquefaction phenomenon. This might occur if
the residual strength after flow deformation is lower than the initial stress state within the
soil [Yoshimine and Ishihara, 1998]. However, a triggering effect is necessary to overcome
the onset resistance, i.e. to cross the collapse surface. This effect may be materialised by an
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earthquake event for example.

One of the oldest correlations was proposed in [Seed et al., 1985]. It relates a liquefaction
potential (or a cyclic resistance ratio, CRR) to the normalised4 blow count N1(60). This CRR
represents the cyclic resistance available at a given depth.
This relation was strongly improved throughout the last decades, benefiting of experience
gained after recent earthquakes, [Seed and Idriss, 1971; Seed, 1979; Seed et al., 1985; Youd
and Idriss, 2001]. Thence, effects of fine content and magnitude-duration of earthquakes are
taken into account. An example of deterministic criterion is presented in Figure 3.30b. The
proposed curve, for a given magnitude and fine content, describes the maximum available
resistance at a given depth. If the applied load is lower than the curve for a given N1(60),
liquefaction does not occur. Recent advances introduce the notion of probabilistic liquefaction
triggering correlation (see Figure 3.31). Uncertainties are introduced in the computation of the
available strength, which is more consistent with recent design methods. Similar correlation
curves have been developed for CPT-based methods.

Figure 3.31: Recommended probabilistic SPT-based liquefaction triggering correlation (for
Mw = 7.5 and σ′v = 0.65atm, after [Seed et al., 2003]. PL stands for probability of liquefaction.

In earthquake engineering, a safety factor against liquefaction can be derived from the
ratio of the resistance (CRR) to the excitation termed cyclic stress ratio (CSR). This latter
can be deduced from

CSR = 0.65 ·
(
amax

g

)

·
(
σv
σ′v

)

· rd (3.5)

where amax is the peak ground surface acceleration, g is the acceleration of gravity, σv and σ′v
4N1(60) is the SPT blow count normalised to an overburden pressure of approximately 100 kPa and a

hammer efficiency of 60%.
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are the total and effective vertical stresses and rd is the non-linear shear mass participation
factor. This factor is a non-linear function modulating the shear loading and depending on
the depth, the earthquake magnitude, the shaking intensity and the site stiffness [Seed and
Idriss, 1971; Cetin et al., 2002].
However, despite correlations are more and more complex, they are still not able to provide
enough information to adequately calibrate convoluted constitutive models. Too complicated
models or too low budget allocated to soil investigations are both facets of an identical reality:
soils are really difficult to model.
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3.6 Conclusion

This chapter consists in a review of the principal features of the undrained behaviour of
soils, for both monotonic and cyclic loading. A large amount of papers and experiments exist
on numerous distinct sands. However, many common phenomena were identified. During the
last decades, concepts were developed to interpret and unify experiments on sands. These are
the basic ingredients that should be represented by any numerical model.
Contractancy and dilatancy are obviously crucial since they underlie most of the other phe-
nomena. The phase transformation line is one of the most important approach and allows to
unify steady state, quasi-steady state and phase transformation. Although steady state is very
important in experimental work, it is less essential from a numerical point of view. Indeed,
it is related to very large deformations, which most of the time correspond to a post-failure
behaviour of structures and is of lower interest for the design.
On the other hand, the quasi-steady state and the peak descriptions of stress paths are very
relevant since they correspond to threshold and residual resistances. This residual resistance
appears for a limited amount of deformation and can be followed by hardening. Therefore any
numerical model should be able to reproduce temporal instabilities and peak resistances. Co-
herence between monotonic and cyclic loading must also be reproducible since it was demon-
strated that a monotonic test represents a collapse surface for cyclic ones. Cyclic mobility
and typical butterfly wings are also deemed indispensable.
It must be kept in mind that failure and post-failure behaviours mainly correspond to non-
homogeneous soil samples. Therefore the macroscopic measurements indicate a change of
behaviour of the soil sample, but the physics of deformation might be localised.
Additional phenomena such as the initial mean effective stress dependency, the variation of
the results with orientation of principal axes or the relative density effect are important.

We shall keep in mind that the laboratory experiment is only an idealisation of reality.
Initial stress state and fabric of the sand are reconstituted. The method of sample preparation
has therefore a crucial impact on the results observed and might not correspond to actual
behaviour. On the other hand, in situ tests are the only ones that truly represent the actual
behaviour of the soil. However, they most of the time do not provide enough information
to characterise a complex cyclic behaviour of a soil, then to calibrate complex models. The
main purpose of these tests is to elaborate correlations between in situ measurements and
potential of liquefaction. Researchers may act as an interface between laboratory and in situ
experiments, between science and practitioners. Their knowledge of complex behaviours is
necessary to summarize comprehensive design charts for day-to-day projects.
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Chapter 4

From experiments to numerical

modelling

If the facts don’t fit the theory, change de facts.

Albert Einstein
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4.1 Introduction

4.1.1 General introduction

Development and use of complex constitutive models has become widespread for he past
decades. However it appears talented scientists did not wait the advent of personal computers
to think about mechanics of materials. A short review of the developments in this domain is
provided hereafter. It is probably incomplete, but includes most of the principal contributors.
Advances and scientists are classified chronologically. However, it is interesting to note that
they are roughly classified by country. Indeed, the history of sciences seems to follow golden
ages of nations. Therefore Italian scientists dominated the Renaissance, French school was
born during the Enlightenment and endured afterwards, many English researchers hatched
out with industrial revolution and finally Prussian/German Universities arose in the late 19th
century.
The history of strength material and solid mechanics starts with the famous Leonardo da Vinci
and Galileo Galilei. The former carried out first experiments on wires, beams and columns.
However, his notes were buried into his huge written production that was not published during
his lifetime. Galileo Galilei is accepted as the originator of contemporary mechanics [Osakada,
2010]1. He introduced modern experiments in his book "Two new sciences"2 [Galilei, 1638],
e.g. the strength of a stone beam (see Figure 4.1a), and had a great influence on scientists of
his time.

(a) Galileo illustration of a bend-
ing test, from [Lemaitre, 2001].

(b) Torsion test by Coulomb, in
[Bell and Truesdell, 1984]

Figure 4.1

The next step forward was achieved by Robert Hooke who laid the foundations of the further
elasticity theory. His major outcome in this field lies in the sentence "ut tensio sic vis"3,
literally "as the extension, so the force", published in the book "Of spring" [Hooke, 1678].
He was followed by Charles Augustin Coulomb who measured the shear modulus of an iron

1The backbone of the historic part of this introduction is based on this paper. For a review of the history
of strength materials, focusing more on the structural aspect, interested reader should refer to [Timoshenko,
1983].

2This book was published by Lodewijk Elzevir, originated from Leuven, who founded a small print house,
active up to 1712. The modern Elsevier founded in 1880 took its name in reference to this historic house,
http://www.elsevier.com/about/history.

3Firstly published under the anagram ceiiinosssttuv in order to keep it secret, scientists are a bit of a tease!
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wire. He also studied the recoverable and irrecoverable angle of that wire under successive
rotations (see Figure 4.1b). In 1773, he submitted his first paper on the fracture of sandstone
[Coulomb, 1773]. He concluded that fracture of sandstone occurred when the shear stress
reached a certain value, similarly to the yield condition due to maximum shear stress [Os-
akada, 2010].
The École Polytechnique of Paris revealed a series of geniuses in the early 19th century.
Simeon Denis Poisson introduced the famous coefficient bearing his name [Poisson and Gar-
nier, 1838]. Henri Navier distinguished between yield and strength limits. Augustin Cauchy
and Gabriel Lamé described the law of elasticity in a mathematical and usable form [Lamé,
1866]. Simultaneously, on the other side of the Channel, Thomas Young and George Green
also developed the concept of elasticity [Young, 1845]. The latter is still present in every
mechanical book since the Young modulus is termed after his name.
The work of Henri Tresca interested Barré de Saint-Venant who wrote in 1871 a paper on
the partly plastic problems treating the bending of rectangular beams. He assumed that
[Osakada, 2010]

• the volume of material does not change during plastic deformation ;

• the directions of principal strains coincide with those of the principal stresses ;

• the maximum shear stress at each point is equal to a specific constant (Y) in the plastic
region. This last assumption is known as the Tresca criterion,

σ1 − σ3 = Y (4.1)

where σ1 is the maximum principal stress and σ3 the minimum one.

The second half of the 19th marked the advent of German schools in the fields of plasticity.
Johann Bauschinger installed a compression tension testing machine and carried out numerous
tests on the stress-strain relations of materials. He noticed that the yield stress in compres-
sion after plastic extension was lower than the initial yield stress in tension [Bauschinger,
1886]. This phenomenon is now termed Bauschinger effect. Otto Mohr presented a graphical
representation of the stress state at a point [Mohr, 1882]. This method is now widespread as
Mohr’s circle. He suggested that the envelop of those circles was a yield condition and gave
birth to the Mohr yield condition. In France the brothers Cosserat also developed a complex
theory of elasticity [Cosserat and Cosserat, 1896].
Ludwig von Mises presented a yield criterion that would become largely used up to now [von
Mises, 1913]. He also elaborated an incremental formulation that related increments of plastic
strain to deviatoric stresses. Ludwig Prandtl4 [Prandtl, 1920] and Reuss [Reuss, 1930] showed
that in the plastic range, elastic and plastic deformation should be handled separately, which
preluded the advent of modern elastoplastic theory. The first book in English5 tackling plas-
ticity was written in 1931 by Arpad Nadai [Nadai, 1931].
The era of modern mechanics opened with the remarkable book on the theory of plastic-
ity [Hill, 1950] and the advent of finite element and computers [Zienkiewicz and Cheung,
1967]. Afterwards the number of models and researchers started increasing continuously and
exponentially, which closes this historic digression.

The following chapter opens with definitions of concepts widely used in elastoplasticity.
This first section aims at ensuring a unique definition for each term. The next part is a review
of existing models developed in the last decades that aims at describing cyclic modelling of

4Ludwig Prandlt was the teacher of eminent scientists such as Theodore von Karman, Stephen Timoshenko,
Arpad Nadai and William Prager

5Translated from German.
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geomaterials, although this review is closer to philology than to applied sciences. Some models
have different designation but a common basic idea, while some others share vocabulary but
are mathematically different. Therefore, a subjective ordering was adopted which is not a
ranking but a presentation of popular families of models.
A developed formulation of the adopted model is presented afterwards. Only the continuous
formulation is presented since the numerical integration is the purpose of the next chapter.
The basic model equations are stated as well as recently published variants. Parameters
required for the model are developed further on, based on a simplified triaxial formulation.
Drained and undrained monotonic triaxial tests on Nevada and Lund sands are presented
and parameters are calibrated. Cyclic tests are then modelled based on this calibration.
Sensitivity analyses are provided to test the influence of the model parameters.

4.1.2 Concepts of the elastoplasticity framework

Constitutive laws compose a particular field of engineering mechanics that requires clear
premises and definitions. Most of the models described in the following, lie within the frame-
work of elastoplasticity that possesses its own jargon. Therefore, some major concepts have
to be introduced before any review of the literature. They were established many years ago
and did not change a lot. Therefore references to pioneering researchers endorse them.

1. Elasticity/Plasticity
Elasticity means that the current stress is a function of the current strain, i.e. it does
not depend on the stress or deformation path [Kolymbas, 1991]. The material can al-
ways recover its original configuration, i.e. it is reversible, and does not dissipate energy
during deformation.
Plasicity characterises the non elasticity of the material. It is characterised by ir-
reversible deformations. Moreover the current stress state depends on the previous
stress/strain path.

2. Elastoplasticity
Elastoplasticity is a conjunction of elasticity and plasticity [Kolymbas, 1991]. The basic
hypothesis admitted hereafter is the decomposition of the total strain (ǫ) between elastic
(ǫe) and plastic components (ǫp) [Prager, 1949],i.e.

ǫ = ǫp + ǫe. (4.2)

It means that the current deformation is the addition of a recoverable and irrecoverable
components. It must be pointed out that the multiplicative formulation should be
adopted to rigorously model large elastoplastic deformations. The total deformation
gradient F is decomposed into elastic Fe and plastic Fp components, such that

F = FeFp. (4.3)

For example, this formulation is adapted to the modelling of crystalline plasticity. In
this case, Fp is caused by dislocation motion of the material, while Fe stretches and
rotates the crystal lattice [Simo and Hughes, 1998]. This decomposition was also used in
the developments of inelastic constitutive equations for soils, see for instance [Armero,
1999].

3. Yield surface
The domain of the stress states, within a stress space, where no yielding occurs, is
termed elastic domain [Koiter, 1953]. The boundary of this region is called yield surface,
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which is a hyper-surface in a general stress space (6 dimensions for a symmetric stress
tensor) or a 2D surface in the principal stress space (3 dimensions). If it is continuously
differentiable, it can be described by

f (σ,κ) = 0. (4.4)

where κ is the vector of internal variables characterising the state of the material. The
sign of f (σ,κ) is chosen in order to be negative within the elastic domain. Therefore
a stress state can only be twofold : elastic or plastic. The former lies within the yield
surface and the latter on it. Thence, stress states out of the yield surface are not
admissible (see Figure 4.2). Furthermore, Prager [1949] demonstrated the condition of
irreversibility that holds for the particular case of work-hardening materials (defined
hereafter)

σ̇ : ǫ̇p > 0, (4.5)

i.e. the second order work is positive, whenever a change of plastic strain occurs (‖ǫ̇p >
0‖). Thence, the angle between the vector pointing to any stress state on the yield
surface σ and the exterior normal of the yield surface must be acute. Therefore, the
yield surface enclosing the origin must be convex. This requirement can be extended to
each material, as good practice rule.

Figure 4.2: Definition of a yield surface in the stress space.

4. Consistency condition
The loading from a plastic state verifying Equation (4.4) might lead to another plastic
state that must verify again Equation (4.4). Thence the so-called consistency condition
holds between these states

ḟ = 0. (4.6)

This condition ensures that the stress state always lies on the yield surface during a
plastic loading.

5. Plastic multiplier
The variation of plastic deformation ǫ̇p between two plastic states can be decomposed
into a scalar (λ̇) and a tensor (nǫ̇

p). The mathematical formulation of the evolution of
the deformation is termed flow rule,

ǫ̇p = λ̇ · nǫ̇
p . (4.7)

The scalar λ̇ characterises the amount of plastic strain rate and nǫ̇
p its direction. λ̇

is determined from the consistency condition, i.e. it represents the necessary plastic
deformation that must occur to enforce a stress state lying on the yield surface. It is
termed the plastic multiplier λ̇. It is positive if the stress state is plastic and null if
it is elastic. Therefore, definitions of consistency equation and plastic multiplier can
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be grouped together in the so called Karush-Kuhn-Tucker condition [Simo and Hughes,
1998; Borja, 2013]

f(σ,κ) ≤ 0 λ̇ λ̇ · f (σ,κ) = 0. (4.8)

In case of plastic loading, f = 0 and λ̇ 6= 0. If f < 0 and λ̇ = 0, the final state is elastic
(unloading from plastic state).

6. Plastic potential
In the previous developments, the direction of plastic deformation remained arbitrary.
The derivative to a surface termed plastic potential g at the current stress state gives
the direction of the plastic deformation, i.e.

nǫ̇
p =

∂g

∂σ
(4.9)

If plastic potential and yield surface are merged, the variations of stresses and strains
have identical direction and the deformation is denominated associated. Conversely,
deformation is called non-associated [Koiter, 1953].

7. Hardening/Softening
In case of perfect plasticity, the shape of the yield surface remains constant. However,
it was previously shown that a material can harden or soften (see Chapter 3). Odqvist
[1933] firstly introduced isotropic hardening of a yield surface. The size of this surface
expands to represent soil hardening (see Figure 4.3a). This effect is due to the accumu-
lation of plastic deformation. On the other hand, the soil might also experience a peak
followed by a decrease in resistance, which might be modelled by a contraction of the
yield surface (softening).
Another type of hardening was introduced to take into account the Bauschinger effect:
the kinematic hardening. The yield surface is translated into the stress space without
any modification of its shape (see Figure 4.3a). In that case, the back-stress tensor is
an internal variable memorising the position of the centre of the surface. Whatever the
hardening type, the so-called hardening rule must be elaborated in order to describe the
evolution of the yield surface size, of its position or both of them.

It must be noticed that hardening is differently interpreted from experimental and

(a) Isotropic (left) and kinematic (right) hardening. (b) Hardening yield surface, soft-
ening behaviour.

Figure 4.3

numerical points of view. Undrained stress paths for loose sands are typical of such
behaviours (see Figure 4.3b). From a physical point of view, the deviatoric stress de-
creases with deformation, there is softening of the material. However, from a numerical
point of view, the surface size expands, i.e. it hardens.
Mathematically the hardening/softening corresponds to the evolution of the internal
variables characterising the yield surface. Thence, the hardening rule reads

κ̇ = λ̇ · h(σ,κ) (4.10)
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where h is a vectors or functions defined by the model adopted describing the direction
of evolution of internal variables.

4.1.3 Mathematical formulation of elastoplasticity

The mathematical formulation of elastoplasticy gathers the aforementioned concepts. All
the following equations give birth to a system of equations that can be solved for a given
increment of deformation ǫ̇.

1. Decomposition of deformation rate

ǫ̇ = ǫ̇e + ǫ̇p (4.11)

2. Stress-strain relation
σ̇′ = E : (ǫ̇− ǫ̇p) (4.12)

where E is an fourth-order elastic stiffness tensor

3. Flow rule

ǫ̇p = λ̇ · ∂g
∂σ

(4.13)

4. Elastic domain (E), yield function and Karush-Kuhn-Tucker condition

E = f { (σ,κ) | f(σ,κ) ≤ 0} (4.14)

f ≤ 0 λ̇ ≥ 0 λ̇ · f = 0 (4.15)

5. Hardening rule
κ̇ = λ̇ · h(σ,κ) (4.16)

6. Consistency condition
ḟ = 0 (4.17)

This set of equations represents the general framework of elastoplasticity. It is established
here for arbitrary yield functions, plastic potentials... Moreover, the consistency condition
Eq.(4.17) can be expanded as

∂f

∂σ
· σ̇ +

∂f

∂κ
· κ̇ = 0.

Introducing Eq.(4.12), Eq.(4.13) and Eq.(4.16) yields

∂f

∂σ
· E :

(

ǫ̇− λ̇ · ∂g
∂σ

)

+ λ̇ · ∂f
∂κ
· h = 0 (4.18)

which can be rearranged to isolate λ̇

λ̇ =

>0
︷ ︸︸ ︷

∂f

∂σ
· E : ǫ̇

∂f

∂σ
· E :

∂g

∂σ
−∂f
∂κ
· h

︸ ︷︷ ︸

Hp

︸ ︷︷ ︸

Kp

(4.19)
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In this equation, Hp is termed plastic modulus

Hp = −∂f
∂κ
· h. (4.20)

There is no restriction on its sign, thence it can be positive, null or negative. However, it is
necessary the denominator Kp is positive. Indeed, it mus be ensured the plastic multiplier λ̇,
if it exists, is positive. The numerator is always positive if the trial state E : ǫ̇ lies outside the
yield surface and the yield surface is convex. Therefore the choice of a suitable h ruling the
evolution of the internal variables must fulfil this condition.

4.1.4 Inappropriate isotropic hardening models

Classic isotropic hardening models are unable to capture the main features of cyclic loading
[Prevost, 1977]. Let us consider the cyclic loading of a soil sample described by the classic
isotropic hardening Mohr-Coulomb conical yield surface in Figure 4.4.
The stress path starts from the point A, for a given initial mean effective stress. Initially, the
behaviour is elastic since the stress state lies within the yield surface. The stress path crosses
the initial position of the yield surface in B and the behaviour becomes elastoplastic. It is
assumed that the plastic potential is non associated and the plastic volumetric behaviour is
contractive. Therefore, the pore pressure rises and the stress path moves towards the left.
The yield surface hardens up to reach the reversal point C.
This first loading part can be modelled adequately by an isotropic hardening model. However,
when the stress path reverses, the behaviour is elastic again as it evolves within the yield
surface. The elastic state remains up to the point D, which is the symmetric of the point
C on the yield surface. However, D is a reversal point and no plasticity occurs. Therefore,
the loading continues without plasticity effect between C and D in the p’-q plane unless the
amplitude increases. This outcome is definitely inappropriate since it was previously shown
in Chapter 3 that a non-linear stress path is observed both in loading and unloading.

Figure 4.4: Cyclic loading and isotropic hardening of a classic Mohr-Coulomb yield surface.
A : initial stress state ; B : initial crossing of the yield surface ; C : unloading ; D : symmetric
stress state to C.
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4.2 Cyclic models

4.2.1 Multi-surfaces

The multi-surface concept is one of the first attempts conceived to overcome limitations
of classic isotropic hardening problems [Mroz, 1967; Iwan, 1967]. The concept is illustrated
for a uniaxial loading in Figure 4.5.

ε, 2 ε, 2

ε, 2

1 1

1

ε, 2

1

ε, 2

1

Current stress state

Figure 4.5: Idealised stress-strain behaviour with multi-surface plasticity, inspired by [Yu,
2006].

Let us consider an actual loading-unloading stress-strain relation presented in Figure 4.5(a).
The actual (dashed) curve can be idealised by a succession of straight segments (solid lines),
each associated to a given slope. The squared markers denote the transition from one segment
to another. Each segment is associated to a yield surface and all of these surfaces are nested
and homothetical.
Initially the stress path lies within the first surface, the behaviour of the modelled material
is elastic (see Figure 4.5(b)) and the position of the surfaces remains constant. When the
stress path crosses the first surface, the behaviour becomes plastic and the slope of the σ − ǫ
curve changes (see Figure 4.5(c)). The surface is subject to kinematic hardening. The stress
state lies on it and they are translated together up to get into contact with the next surface.
Therefore, the slope changes again, the two first surfaces are tangent at the stress space and
move together. This continues up to the reversal point.
When the unloading part of the curve takes place, the behaviour is elastic again since the
stress path lies within the first surface (see Figure 4.5(d)). Therefore, the slope of the first
unloaded segment is elastic. Then the stress path reaches the first yield surface, the slopes
changes again (see Figure 4.5(e)) and so on.

The multi-surface concept is a way of discretising the field of plastic moduli which has been
recognised [Dafalias and Popov, 1975], as the main factor inducing softening, hardening,
ratcheting... It has been adapted to the modelling of clay behaviour in [Prevost, 1977, 1978].
The multiaxial formulation of the model involves Von Mises type yield surfaces. Their trace
in the deviatoric plane is circular, but their section is constant along the hydrostatic axis (see
Figure 4.6a). The α value is the back-stress tensor locating the centre of each yield surface in
the deviatoric plane (see Figures 4.6a and 4.6b). In last decades, one of the main drawbacks
of the multi-surfaces method was the large amount of computational memory required to
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(a) Von Mises yield surfaces in principal effective
stress space.
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(b) Conical yield surfaces for the Prevost model
in principal effective stress space, after [Prevost,
1985; Yang et al., 2003].

Figure 4.6: Multi-surface models.

store information about each surface [Prevost, 1982]. Nowadays this argument ceases to be
pertinent, since the storage capacity of computers has grown exponentially.
The extension of such a model to cohesionless soils is not straightforward [Prevost, 1985].
One of the main feature of granular materials is the dependence of their resistance to the
mean effective stress. Consequently, the yield surface family is of the Drucker Prager type,
i.e. conical [Drucker and Prager, 1952]. However, the trace of the considered surfaces in the
deviatoric plane is still circular (see Figure 4.6b).
The second major change to represent sand behaviour is the non-associated volumetric plastic
potential. As it was previously described, the volumetric behaviour of the soil might be either
contractive or dilative. Within the framework of elastoplasticity, the dilatancy reads

d =
dǫpv
‖dǫpq‖

, (4.21)

where ǫpv is the volumetric component of the plastif deformation and dǫpq is its deviatoric
part [Li and Dafalias, 2000]. Furthermore, Rowe [1962] demonstrate that the dilatancy rate
depends on the stress ratio η = q/p′. The original formulation of the Prevost model separates
the p’-q plane into contractive and dilative zones. The limit between them corresponds to
the phase transformation line, defined in Section 3.3.5. The original model is extended in
[Elgamal et al., 2002, 2003] to better take into account the cyclic mobility at low confinement.
Further improvements adapt the model to the Lode angle dependence [Lade and Duncan,
1975; Yang and Elgamal, 2008; Zerfa and Loret, 2003].

4.2.2 Generalised plasticity

Generalised plasticity was originally introduced in [Zienkiewicz and Mroz, 1984] and ex-
tended later in [Pastor and Zienkiewicz, 1986; Pastor et al., 1990] to the modelling of soils.
This model is an hybrid between hypoplasticity and elastoplasticity. It lies within the frame-
work of the latter, but neither yield surfaces nor plastic potential are defined. Loading (n)
and plastic flow (m) directions are postulated a priori for any given stress state σ. It is worth
noting that classic surfaces (yield or plastic potential) could be established a posteriori by
integration of n and m.
This formulation assumes distinct behaviours in loading and unloading. Therefore a criterion
has to be adopted to distinguish between both states. The sign of n : dσe, where dσe is the
elastic increment of stress, separates loading (> 0) from unloading (< 0). Plastic flow direc-
tions and their associated plastic moduli are then differentiated between loading (mL,HL)
and unloading (mU ,HU ). The flow rule is non associated since m is different from n. If
n : dσe = 0 the behaviour is termed neutral and corresponds to a reversible stress path.
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Finally the tangent elastoplastic compliance tensor reads [Mira et al., 2009]

(
Dt,L/U

)−1
= (De

t )
−1 +

1

HL/U
·
[
mL/U ⊗ n

]
(4.22)

where De
t is the tangent fourth order elastic stiffness tensor and L/U distinguished between

loading and unloading. Since flow direction and plastic moduli are continuously defined over
the stress state, the generalised plasticity model can be viewed as a generalisation of multi-
surface models with an infinite number of surfaces.

(a) Components of the flow direction m =
(mv,md) as a function of η. The PT ratio cor-
responds to the slope of the phase transformation
or critical state line in the p’-q plane.
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(b) Reconstituted family of yield surfaces. The
PT line is the phase transformation line also
termed critical state line.

Figure 4.7

The dilatancy was assumed to be linearly dependent on the stress ratio η = q/p [Pastor
et al., 1990]. The generalised plasticity model takes into account the phase transformation line
delimiting the contractive zone from dilative ones. An example of the plastic flow deformation
direction as a function of η is illustrated in Figure 4.7a. The phase transformation (PT)
ratio delimits arrows that point to the right (contractive) from those which point to the left
(dilative). The shape of plastic potential surfaces corresponding to m in a classic elastoplastic
framework is depicted in Figure 4.7b [Pastor et al., 1990].
The last component of the model is the plastic modulus HL/U . It allows the representation
of the softening post peak behaviour in drained tests and critical state as well. A discrete
memory factor is introduced to take into account the degradation of the plastic modulus with
plastic shear deformation [Mira et al., 2009].

4.2.3 Bounding surface

Bounding surface models were introduced in the seventies by Dafalias and Popov [1975].
An example for triaxial compression and extension is illustrated in Figure 4.8a, where four
surfaces are drawn

1. The bounding surface (slope M b
c ) has the shape of an open wedge and separates admis-

sible from non admissible stress states.

2. The critical state surface (slope M c
c ) was previously defined in Section 3. It is unique for

a given material in the e-p’ plane and is defined from material parameters. This state
is characterised by a continuous deformation at constant volume and shear strength.
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(a) Bounding surface concept, after [Papadim-
itriou et al., 2001]. η is the current stress state
and ηim,b is its projection on the bounding sur-
face. Mb

c , Mc
c and Md

c are the slopes of the bound-
ing, critical and dilatancy surfaces.

(b) Generalisation of the bounding surface model
to multiaxial formulation, after [Papadimitriou
and Bouckovalas, 2002].

Figure 4.8: Bounding surface models.

3. The dilatancy surface (slope Md
c ) delimits contractive from dilative zones.

4. The yield/loading surface (opening m, back-stress α) encompasses the elastic zone. This
latter can be translated within the bounding surface by kinematic hardening [Dafalias,
1986]. Therefore, the back-stress α acts as a memory variable.

The critical state surface is univoquely defined for a given material and relates the current
void ratio to the mean effective stress. On the other hand, bounding and dilatancy surfaces
are dependent on the state of the material [Papadimitriou et al., 2001]. They are function of
the critical state surface and on the so called state parameter defined in [Been and Jefferies,
1985] such that

Ψ = e− ec, (4.23)

where ec is the void ratio at the critical state for a given mean effective stress p′. The state
parameter is a measurement of how far the current state e is from the critical state ec. A
tendency for contraction is expected for positive ψ and a tendency for dilation otherwise.
Therefore, bounding surface models take into account the critical state theory [Li et al.,
1999].
The plastic modulus and the volumetric behaviour are ruled by the distance between the
current stress state on the yield surface and the dilatancy or bounding surfaces. An image
point is computed on these surfaces through a mapping rule. For instance, the current state
in Figure 4.8a is denoted by η and its image point on the bounding surface by ηim,b = M b

c .
Therefore, in this simplified triaxial representation, the distance is readily computed

db =M b
c − η. (4.24)

The plastic modulus is a function of the distance db and is null when the yield surface reaches
the bounding surface (= failure). Therefore the hardening rule of the yield surface is easily
obtained. The extension to multiaxial case is not trivial and requires more complex develop-
ments [Andrianopoulos et al., 2010] (see Figure 4.8b). Similarly, a distance to the dilatancy
surface is computed and the flow rule that describes the volumetric behaviour is derived

dd =Md
c − η. (4.25)
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Thus, dd < 0 indicates a contractive volumetric plastic behaviour.
The boundary surface model formulation was extended to multiaxial formulation [Wang et al.,
1990; Papadimitriou and Bouckovalas, 2002]. Surfaces considered are still of wedge type but
their trace in the deviatoric plane is a function of the Lode angle (see Figure 4.8b). The scalar
back-stress variable becomes a tensor α and the scalar distances describing hardening and
flow rules are given by

db,d =
(

αb,d −α
)

: n, (4.26)

where αb,d are the "image" back-stresses associated to the boundary and dilatancy surfaces
respectively ; n is the deviatoric component of the normal to the yield surface at the current
stress state.
Bounding surface models incorporate other refinements such as an hypoelastic formulation
in which moduli depend on the mean effective stress [Wang et al., 1990]. The effect of sand
fabric during cyclic loading is taken into account through a modification of the dilatancy rule,
which allows the modelling of classic butterfly wing stress paths [Dafalias and Manzari, 2004].
Among recent alternative formulations, Oka et al. [1999] propose a description based on a
generalised flow rule and non-linear kinematic hardening. Khalili et al. [2005] take into account
the plasticity that can appear for an hydrostatic compression, due to the grain crushing, by
modifying the shape of the bounding surface in the p’-q plane. Yu et al. [2007] develop a
model based on Cam-clay like shape function unified for both sands and clays. Recently
Wang et al. [2014] modify the classic formulation to take into account the post liquefaction
behaviour of sand.

(a) Subloading surface model concept. (b) Application to elastic perfectly plastic be-
haviour.

Figure 4.9: Subloading surface model after [Hashiguchi, 2009].

Another family of bounding surface models deserves attention. The subloading surface
model was coined in [Hashiguchi and Ueno, 1977]. This model is a kind of bounding surface
model or as it is claimed by the author [Hashiguchi, 2009], the bounding surface model is a
kind of subloading model6. The formulation is based on an elastic region, a subloading surface
and a normal yield surface (see Figure 4.9a). All of them are homothetic in such a way that
if the outer surface can be written

f (σ) = F (H) , (4.27)

where H is a collection of internal variables, then the subloading surface can be computed as

g (σ) = R · F (H) , (4.28)

6This hot topic is not settled here.
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where R ∈ [0, 1]. Elastic region is described by the special case R = Re. Contrary to previous
models in which the yield surface is translated due to kinematic hardening, the subloading
surface expands or contracts. In the special case R = 1, subloading and normal yield surfaces
are merged and the classic theory of elastoplasticity holds. The aims of such a technique,
among many advantages underlined in [Hashiguchi, 2009], is that result curves are smoothed
and do not encounter sharp changes of slopes. This salient feature is illustrated in Figure 4.9b
in the case of perfect plasticity. Classic theory assumes an elastic behaviour up to reach the
yield surface, then a perfectly plastic behaviour. On the other hand, subloading surface model
involves a smooth divergence starting from the elastic limit Re and finally a convergence to
the plateau. The model has been extended to cyclic modelling [Hashiguchi and Chen, 1998;
Hashiguchi, 2009]

4.2.4 Explicit accumulation

(a) Explicit calculation strategy of the cumulative
deformation, after [Niemunis et al., 2005].
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Figure 4.10: Explicit accumulation models.

Cyclic loading may involve a very large number of cycles of constant or variable amplitude,
e.g. modelling of an offshore foundation subject to a storm (undrained case) or progressive
settlement of railways due to high speed train vibrations (drained case). In such cases, mod-
els developed previously describing accurately the complex behaviour of the soil, suffer two
drawbacks. The former is the cost of a simulation for a very high number of cycles. The latter
is the loss of accuracy that may arise from the numerical implementation, the non conserva-
tive reversible part of the stress-strain relation, the forward Euler scheme... [Niemunis et al.,
2005].
The evolution of the deformation can be decomposed into a trend and a transient signals
(ǫav and ǫampl respectively in Figure 4.10a) [Wichtmann et al., 2011]. If the cyclic amplitude
is low (ǫ < 10−3), the transient part of the deformation becomes negligible with respect to
the accumulated one for a large number of cycles. Therefore, the backbone idea of explicit
formulation is to describe the trend of the deformation accumulation rather than the exact
deformation signal.
The accumulation model does not replace a complex model, but it allows to extrapolate its
results to a very large number of cycles. Therefore, according to [Niemunis et al., 2005], the
algorithm proceeds in several steps.

1. Computation of the initial stress field within the boundary value problem using a con-
ventional model.
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2. For any integration point, the "exact" deformation for the two first cycles is computed.
Indeed, the first cycle is most of the time irregular (see Figure 4.10a) and not suitable
for the computation of a trend. The cyclic amplitude applied during the first cycle is
assumed constant up to a control cycle, where it is computed "exactly" again.

3. The accumulation strain rate Dacc is computed from the second cycle previously recorded.
This trend depends on many factors that can be separated through

Dacc = m · fampl · ḟN · fp · fY · fe · fπ, (4.29)

where m is the direction of accumulation, fampl depends on the cyclic amplitude ǫacc,
ḟN takes into account the number of cycles N, fp encompasses the influence of the mean
effective stress and fY of the stress ratio, fe is a function of the void ratio and fπ reflects
the consequence of the polarisation of the cycles.

4. Finally the variation of the stress distribution caused by N additional cycles is computed.

Wichtmann et al. [2010] demonstrate that the sequence of application of the cycles is of
minor importance, i.e. the Miner rule [Miner, 1945], known from fatigue mechanics in metal,
is applicable. Despite its accuracy, it must be pointed out this method requires experimental
data based on tests involving very large number of cycles [Wichtmann et al., 2005].

Rahman et al. [1977] develop a similar method that accounts for the pore pressure build-up
during earthquakes. It is based on the pore pressure evolution described in [Seed and Booker,
1977], as shown in Figure 4.10b,

uw
σ′0

=
2

π
arcsin

[(
N

Nl

)1/2α
]

, (4.30)

where uw is the current pore water pressure, σ′0 is the initial mean confining stress, Nl is the
number of cycles of a given amplitude required to reach liquefaction, N is the current number
of cycles and α is a material parameter. This equation accounts for the development of plastic
deformation and non-linear pore pressure generation and has to be coupled with a classic
model, such as Mohr-Coulomb [Taiebat and Carter, 2000; Versteele et al., 2013]. Therefore,
the ratio uw/σ′0 is equivalent to a damage index. When the pore water pressure attains the
initial mean effective stress, initial liquefaction occurs and the soil looses its stiffness.
A shortcoming of the method is the necessity of converting an actual signal to equivalent
cycles. As a corollary, many experimental results are also required. Instead of Nl, Green
et al. [2000]; Polito et al. [2008] adopt a criterion based on the energy dissipated per unit
volume of soil during the loading.

This idea was also adopted by Pecker et al. [2001] who decouple the pore pressure evolution
between the fast time and the slow time phenomena. The former is modelled as a linear elastic
problem for an incompressible medium and the second as a non-linear poroelastic problem
with a strain source term. This latter one requires an evolution curve similar to Figure 4.10b.
Similarly, Di Prisco and Zambelli [2003] elaborate two decoupled plastic mechanisms. The
former is associated to the global evolution of the fabric and the latter one to small strains
and small size cyclic loads disturbance.

4.2.5 Others

Other models have been developed and used all around the world for the cyclic modelling
of soils. Some of them may have deserved a longer explanation and some other may have been
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displaced to one of the previously described families. Whether a model has been described is a
subjective choice and may depends on the ease to be explained without complex mathematical
framework.

1. Hypoplasticity
According to [Kolymbas, 1991] hypoplasticity includes all plastic ( i.e. path dependent
and dissipative) constitutive models which do not use any yield surface. Constitutive
equations are referred as rate type, i.e.

σ̇ = h(σ, ǫ̇, ...) (4.31)

where the function h must be non-linear with respect to ǫ̇. It means that a relationship
is defined for every stress state between deformation and stress rates [Gudehus, 1996].
This formulation assumes a priori this relation. A factorised representation of this basic
equation was adopted by [Bauer, 1996] to ease the comprehension and the calibration
of the model. This consists in separating the basic Equation (4.31) into independent
factors that are only function of physical variables such as density. These kinds of mod-
els incorporate classic concept such as critical state or Drucker-Prager limit state [von
Wolffersdorff, 1996].
Among the close cousins of this kind of models Darve and Labanieh [1982] develop an
incremental constitutive law that already incorporates the absence of yield surface and
relates increments of deformation to increment of stresses.
Hypoplasticity was sometimes related to bounding surface models [Dafalias, 1986; Wang
et al., 1990], despite the use of yield and bounding surfaces seems to contradict the afore-
mentioned definition. The key difference between them is that hypoplasticity does not
introduce a decomposition of the strain between reversible and irreversible components.

2. Multi-mechanism
Hujeux [1985] introduced an elastoplastic constitutive law containing three deviatoric
mechanisms and one isotropic. Each deviatoric mechanism represents a specific plane
of the space and might be activated or not. In the deviatoric plane associated to each
mechanism, yield functions are represented by concentric circles [Hicher and Shao, 2002].
It was adapted to cyclic loading by adding a cyclic yield surface that becomes active
when a reversal occurs [Foucault, 2010] and is subject to kinematic hardening.
Iai and Ozutsumi [2005] introduce a multiple mechanism models in the strain space
relating the micromechanical structure to macroscopic deformation. It consists of a
multitude of simple shear mechanisms oriented in arbitrary directions. Stress distribu-
tion is computed locally from the projection of the macroscopic strain field. The local
stress tensors are then averaged over a representative elementary volume to reconstruct
a macroscopic stress field. Dilatancy is taken into account through a fabric tensor and
allows to cyclic simulations [Iai et al., 2011].

3. Disturbed state concept
This model basically combines different states of the material, the relatively intact and
fully adjusted states [Park and Desai, 2000]. The former state is modelled using a
classic plastic hardening model. The fully adjusted state characterises the final state
of the material, for example the critical state. The principal idea of this model is to
couple them. Thence, observed behaviour tends asymptotically to the fully adjusted
state. The transition from one to the other is ruled by the disturbance function D. Its
formulation is close to damage model. If D = 0 the state is relatively intact and if
D → 1 it is fully adjusted. However, contrary to damage model, considering the cracks
such as a non-resistant part of the domain, the disturbed state concept involves a fully
adjusted state, that is not necessarily a zero resistance state.
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4.2.6 Choice of the model

Many models are able to reproduce salient features of the cyclic modelling of soils. There-
fore it is not easy to make a choice between one and the others. Several criteria have to be
taken into account

1. the capability of reproducing pertinent cyclic features for a given application;

2. the number of parameters that must be calibrated (including the initial conditions of
internal variables) ;

3. the practical implementation of the model in a finite element code.

The first two criteria must be combined. As a matter of fact, the model adopted must corre-
spond to the actual need of the designer. For instance, if the purpose is to avoid the failure
of a foundation, it is not useful to truly describe the post-liquefaction behaviour of a soil.
Indeed, liquefaction will probably induce very large deformation and the objective is to avoid
them. However, this might be convenient if failure occurs only locally. Therefore, post-failure
modelling is necessary to allow a redistribution of the stress state within the soil.
The number of parameters is very important in practice. Many models well-fitting experimen-
tal data require from ten to fifteen parameters. Their calibration is a luxury of science and
research but is not applicable to day-to-day projects. On the other hand, practitioners would
rather describe highly non-linear complex problems using two parameters models, which is
impossible. Therefore a balanced approach should be found to bridge the gap between prac-
titioner and researcher practices.
The ease of implementation of a model is the dark side of computational mechanics. The ele-
gance of a theoretical formulation does not mandatory imply an easy implementation. Many
issues such as stability, robustness and accuracy have to be considered. Models are mostly
developed on the basis of laboratory tests, such as the triaxial ones. However, general finite
element codes require tensorial formulations that are less straightforwardly derived.
In computational modelling and in poker game as well, the price must be paid to see behind
the cards. A sufficient experience can only be acquired in programming and implementing
models which is the only way to reveal the drawbacks of a formulation. The Prevost model
was chosen in this work mainly for the simplicity of its formulation and its relation with
physical parameters. In its basic formulation, extension and compression triaxial tests are
sufficient to calibrate the parameters.
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4.3 The Prevost model

The aforementioned Prevost model is a member of the multi-surfaces family. All of the
nested surfaces considered are homothetic. Therefore, the description of yield functions and
hardening rules as well is limited to one single surface hereafter and identical for the other
ones. Practical implementation is the purpose of the next chapter which better describes how
to manage the succession of yield surfaces.

4.3.1 Constitutive equations

The Prevost model is based on the already mentioned assumption that the total strain
rate ǫ̇ can be split into elastic ǫ̇e and plastic ǫ̇p components. Therefore, Equation (4.32) is
stated and relates the stress rate7 σ̇′ to the elastic strain rate ǫ̇− ǫ̇p

σ̇′ = E : (ǫ̇− ǫ̇p), (4.32)

where E is the fourth-order tensor of elastic coefficients (linear elasticity), that can be written
in the simplified formulation

[E]ijkl =

(

K − 2

3
·G
)

· δij · δkl +G · (δik · δjl + δil · δjk) , (4.33)

where K and G are respectively the bulk and shear moduli. The flow rule ǫ̇p is factorised into
[Lubliner, 1975],

ǫ̇p = P · 〈λ̇〉, (4.34)

where P is a symmetric second-order tensor defining the direction of plastic deformation. The
plastic loading function λ̇ (= plastic multiplier), is a scalar depicting the variation of plastic
deformation and is defined in [Lubliner, 1975] as

λ̇ =
1

H′
·Q : σ̇′, (4.35)

where Q is a second-order tensor defining the unit outer normal to the active yield surface
and H’ the plastic modulus associated to this surface. Therefore, combining Equations (4.32),
(4.34) and (4.35) leads to

σ̇′ = E : ǫ̇− E : P〈λ̇〉, (4.36)

which is the basic continuous equation of elastoplasticity. Thus, the variation of stress state
associated to an arbitrary variation of deformation can be viewed as an elastic predictor (E : ǫ̇)
reduced by a plastic corrector (E : P〈λ̇〉) to bring the stress state back to the yield surface.

4.3.2 Yield functions

4.3.2.1 Basic model

The Prevost model belongs to the J2 plasticity family, i.e. plasticity occurs when the
second invariant of the stress tensor reaches a threshold. It means that the trace of that
criterion in the deviatoric plane is a circle. The shear strength of cohesionless soils is mean
effective stress dependent. Therefore, the family of considered nested surfaces is composed

7Objective Jaumann stress rate.



4.3. THE PREVOST MODEL 71

Figure 4.11: Three views of a Prevost conical yield surface : (a) principal stresses space, (b)
deviatoric plane, (c) p’-q plane.

of conical yield surfaces in the principal stress space. Their apex is fixed at the origin of the
axes and their mathematical formulation reads

f i ≡
(
s− p′ ·αi

)
:
(
s− p′ · αi

)
− 2

3
·
(
p′ ·Mi

)2
= 0 (4.37)

where p′ is the mean effective stress, αi is the back-stress tensor and Mi is a material parameter
denoting the half-aperture of the surface. A representation of this surface is provided in Figure
4.11(a) in the principal stresses space. The back-stress tensor points to the centre of the surface
in the deviatoric space (see Figure 4.11(b)). The trace of this surface in a p’-q plane is denoted
by two straight lines (see Figure 4.11(c)).
It must be pointed out that the surface is conical, but is not a true cone in the principal stress
plane. If the back-stress tensor α is null, the surface is centred on the hydrostatic axis and its
trace in the deviatoric plane is a circle, i.e. the axis of the surface and the perpendicular to
the deviatoric plane are collinear. If the back-stress tensor is not null, the trace of the surface
in the deviatoric plane remains a circle even if the central axis ceases to be collinear.
The normal to the surface at the stress state σ′ is computed through

∂f

∂σ′
= 2 ·

(
s− p′ · αi

)
+

2

3
·
[

p′ ·
(

αi : αi − 2

3
·
(
M i
)2
)

− s : αi

]

· δ.

Finally the corresponding unit-norm normal tensor is derived and is decomposed into devia-
toric (Q′) and volumetric (Q”) parts

Q =

∂f

∂σ′
∥
∥
∥
∥

∂f

∂σ′

∥
∥
∥
∥

= Q′ +Q” · δ. (4.38)

4.3.2.2 Variants

Most of the time, actual materials are not truly cohesionless, e.g. silty sands. On the other
hand cohesion is sometimes necessary for numerical purpose, in order to facilitate convergence
or to avoid spurious local or superficial failure. Thence, cohesion is simply taken into account
through a shift p′0 of the apex from its actual position to the origin of the axis (see Figure
4.12a). Computations are carried out for shifted surfaces and stress paths, and then brought
back to initial configuration.

It was also shown that the direction of principal stresses has a great importance on the sand
behaviour and shear resistance [Lade and Duncan, 1975]. Therefore, it is possible to adapt
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(a) Shift of the yield surface along the hydrostatic axis. (b) Lade-Duncan failure criterion for a fric-
tion angle of 45◦, and comparison with a
centre-shifted J2 function, [Yang and Elga-
mal, 2008] citing [Lade, 1984].

Figure 4.12: Variants of the basic Prevost model

the yield criterion to take into account the effect of Lode angle. Several criteria encompass
the Lode angle dependency of the yield surface. They are smooth approximation of the
Mohr-Coulomb criterion. The Lade-Duncan criterion is presented in Figure 4.12b. It is worth
noting that other formulations such as Van Eekelen [Van Eekelen, 1980] or Matsuoka-Nakai
[Matsuoka and Nakai, 1974] criteria can be adopted.
The classic J2 plasticity surface can be shifted to coincide with the Lade-Duncan criterion for a
particular stress path, e.g. triaxial. However, the shear resistance is then poorly approximated
for other loading paths (see Figure 4.12b). Although a Lode-dependent surface was shown to
improve accuracy, it was chosen not to take it into account for the sake of simplicity of the
developments.

4.3.3 Flow rule

4.3.3.1 Basic model

The tensor P indicates the direction of plastic deformation in the flow rule Equation
(4.34). It can be decomposed into its deviatoric P′ and volumetric P” components

P = P′ + P” · δ. (4.39)

The deviatoric component is associated, i.e. its direction in the principal stress space is
identical to the deviatoric component of the normal at the current stress state

P′ = Q′ =
2 · (s− p′ ·α)

∥
∥
∥
∥

∂f

∂σ

∥
∥
∥
∥

. (4.40)

On the other hand, the volumetric part is non-associated in order to take the dilatancy/con-
tractancy of the material into account and reads

P” =
1

3
· η̄

2 − η2
η̄2 + η2

where η =

√

3/2 · s : s
p′

=
q

p′
. (4.41)

The PT ratio η̄ takes into account the aforementioned phase transformation line. This param-
eter rules the volumetric behaviour and separates the p’-q plane into two zones. Stress ratios
(η) lower than η̄ indicate a plastic contractive behaviour, whilst the other zone depicts a dila-
tive plastic behaviour (see Figure 4.13a). The amount of volumetric dilation or contraction
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is also a function of η. Contraction is maximum for η = 0 and dilation tends asymptotically
to −1/3 for high η values (see Figure 4.13b). This parameter does not depend on the state
parameter, contrary to the previously described bounding surface model [Dafalias and Popov,
1975]. Thence, the model is not able to reproduce the critical state conditions.

(a) Limit between contractive and dilative zones,
PT line = phase transformation line

(b) Volumetric component of the plastic potential
P” as a function of η, PT ratio = slope of the PT
line.

Figure 4.13

4.3.3.2 Variants

The original volumetric plastic potential is not very accurate since it depends only on
a unique parameter η̄. Once the phase transformation ratio is defined, the magnitude of
dilatancy is not adjustable. Thence, a constant scale parameter ψ can be readily introduced

P” =
ψ

3
· η̄

2 − η2
η̄2 + η2

, (4.42)

which might be sufficient to fit monotonic curves. However, a more elaborated formulation is
necessary to represent more accurately cyclic mobility, especially at low confinement and ψ
depends on the state of the soil. Elgamal et al. [2003] presented such an improvement (see
Figure 4.14). This potential allows the shear stress-shear strain relation to mark a plateau
when the stress phase reaches the phase transformation line (phases 1-2, 6-5, 7-8 in Figure
4.14). The length of this plateau increases at each loops and is ruled by a damage-like law.
However, this yield phase is only significant at low confinement < 10kPa, [Elgamal et al.,
2003]). Obviously, the cost of this formulation is the addition of new parameters that must be
calibrated. The applicability to complex stress paths is much more intricate than to triaxial
tests. Therefore, this special plastic potential is not employed in the following.

4.3.4 Hardening rule

A hardening rule is necessary to describe the kinematic translation of each of the yield
surfaces. Indeed, each of them hardens up to get into contact with the next one. A purely
deviatoric hardening rule is adopted in the basic model [Prevost, 1985], which reads

p′ · α̇ = a · µ (4.43)
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Figure 4.14: Shear stress - shear strain and effective stress path under undrained shear
loading conditions, [Elgamal et al., 2003].

where µ is a deviatoric tensor defining the direction of hardening of the yield surface and a
is its "amount" of translation. The consistency condition then reads

ḟ = 0

⇔ ∂f

∂σ′
: σ̇′ +

∂f

∂α
: α̇ = 0

⇔ Q : σ̇′ − p′ ·Q′ : α̇ = 0. (4.44)

Introducing Equations (4.35) and (4.43) into Equation (4.44) allows to compute the variable
a

a =
H ′

Q′ : µ
· λ̇ (4.45)

and finally the amount of translation of the yield surface

p′ · α̇ =
H′

Q′ : µ
· 〈λ̇〉 · µ. (4.46)
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Figure 4.15: Hardening rules after [Yu, 2006]. αi and αi+1 are respectively the centres of
surfaces fi and fi+1; P is the current stress state, Q and R are the projection of the point P
on the next yield surface along the hardening direction µ.

Up to that point, the direction of translation remains arbitrary. However it is one of the
basic ingredients of the model and its choice is crucial. Furthermore, it must be kept in mind
that the translation rule, despite described with regard to a single surface, is constraint by the
set of nested surfaces. Indeed, each surface is supposed to be enclosed by the next one and
its possibilities of translation are then limited. Therefore, explicit and implicit integration
schemes may lead to different results during integration.
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Iwan [1967] assumes that current yield surface translates in a direction parallel to the the
increment of plastic strain, which is formulated as

µ =
∂f

∂σ′
. (4.47)

A geometric interpretation of such a criterion is illustrated in Figure 4.15a. Two successive
nested surfaces (fi and fi+1) are represented. The former surface translates up to get into
contact to the next one, which in turn moves. The point P is the current stress state. The
hardening rule leads to a contact point Q, where outer normal tensors are not identical.
Therefore, two successive surfaces might intersect, which is not admissible.

Mroz [1967] introduce a hardening direction ensuring no possible crossing of two successive
surfaces. The normal at the current stress state on the surface fi is denoted n (see Figure
4.15b). The hardening direction is defined by the vector that relates the point P with the
point R of identical normal vector n. It makes the surfaces align gradually along the current
stress path direction.

The point R is straightforwardly identified since it can be shown that direction
−−→
αiP is parallel

to
−−−−→
αi+1R, which can be written in the deviatoric plane

sR − p′ · αi+1

sP − p′ ·αi
=
M i+1

M i
(4.48)

where sP and sR are respectively the deviatoric stress tensors at the current and projected
stress states. Mutatis mutandis, one obtains

µ =
M i+1

M i
·
(
sP − p′ · αi

)
−
(
sP − p′ · αi+1

)
(4.49)
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4.4 Parameters calibration

Surprisingly, the hardest step of the calibration of parameters is the finding of data to be
calibrated. Indeed, graphs and figures of many triaxial tests are available in the literature,
but rough numerical data are much scarcer. The main quality of the Nevada and Lund sands
calibrated in the following is the existence of freely available data reports that allow an exact
description of the test results.

4.4.1 Nevada Sand

Triaxial tests on Nevada sand are part of an extended report on the VELACS (VErification
of Liquefaction Analyses by Centrifuge Studies) program. This freely available database was
already used to calibrate the Prevost model in [Elgamal et al., 2002; Yang et al., 2004].
General properties of that material are provided in Table 4.1. Permeability of the soil is also
measured and varies between 6.6× 10−5m/s for a relative density of 40% and 2.3× 10−5m/s
for a relative density of 90%.

γs [kN/m3] γd,max [kN/m3] γd,min [kN/m3] emax [-] emin [-]

26.7 17.33 13.87 0.511 0.887

Table 4.1: Properties of the Nevada sand : γs, density of the solid grains ; γd,max, maximum
dry density ; γd,min, minimum dry density ; emax, maximum void ratio ; emin, minimum void
ratio.
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shear deformation (Dr= 40%).
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Figure 4.16: Resonant column tests on soil samples at different confinements p′0, after [Arul-
moli et al., 1992].

Figures 4.16a and 4.16b present results on resonant column tests on Nevada sand at
Dr= 40% or Dr= 60%. The former figure illustrates the evolution of the shear modulus with
shear deformation, at different confinements. Measured data are only constant at a very low
shear strain and decrease linearly with increasing shear deformation afterwards. Therefore, it
calls into question the definition of a true elastic zone and the choice of its size is a key issue.
The evolution of the shear modulus with the confinement is illustrated in Figure 4.16b. The
represented G values correspond to the data measured at the lowest strain deformation in
Figure 4.16a. A calibrated relationship was superimposed to the measured data for both
relative densities, i.e.

G(p′) = Gref ·
(

p′

pref

)0.5

, (4.50)
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where pref is a reference pressure (100kPa) and Gref is the corresponding shear modulus.
Estimated and measured data coincide very well. Therefore it is assumed in the following
that both elastic (G,K) and plastic (H ′) moduli are confinement dependent, i.e. they verify

X(p′) = Xref ·
(

p′

pref

)0.5

, (4.51)

where X is either G, K or H’. It must be pointed out that for numerical stability, the ra-
tio p′/pref is limited to a lower bound p′lim/pref in order to avoid H ′ → 0 in numerical
simulations.
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4.4.2 Nevada sand Dr= 40%

4.4.2.1 Experimental results
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Figure 4.17: Monotonic drained triaxial test (p’=cst) on Nevada sand, Dr= 40%, after
[Arulmoli et al., 1992]. p′0, initial mean effective stress.

Special drained triaxial tests (p’=constant) on Dr= 40% Nevada sand are provided in
Figure 4.17. They consist of six tests at three distinct initial mean effective stresses p′0 =
[40, 80, 160]kPa. Initial data provided in [Arulmoli et al., 1992] reach up to 20% of axial de-
formation. However, the tests fail after much less vertical deformation. It is clear in Figure
4.17c that the shear stress is bounded and deformation continues. This might be the sign of a
loss of uniformity along the sample. As a matter of fact, shear band occurrence was observed
between 10% and 15% of the test.
Compressive and extensive samples exhibit different behaviours (see Figure 4.17a). For in-
stance, extensive tests encounter a strong contractive phase while compressive are nearly
dilative from the beginning. Compressive result curves in Figure 4.17c indicate a nearly
unique failure friction angle that corresponds to a slope of around 1.4 (friction8 angle= 35◦).
The failure slope of extensive tests is roughly 2/3 lower.
The phase transformation slope corresponds to the maximum of volumetric deformation in
drained triaxial test, i.e. ǫ̇v = 0. This behaviour is clear for extensive results but is absent for
compressive test (see Figure 4.17d). Therefore, additional information is required to overcome
scatter of the data.

On the other hand, undrained tests, at least compressive tests, show remarkably similar
behaviours (see Figure 4.19). Moreover, the phase transformation can be more easily located
by identifying a maximum of pore water pressure, i.e. u̇w = 0. However, it is worth noting

8sinφ′ = (3η)/(6 + η) if cohesion is equal to 0.
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Figure 4.18: Monotonic undrained triaxial test on Nevada sand, Dr= 40%, after [Arulmoli
et al., 1992]. p′0, initial mean effective stress.

that results are scattered, especially in extension. For instance, two tests starting from an
identical state (p′0 = 160kPa) exhibit distinct pattern of pore pressure accumulation (dia-
mond markers, in Figure 4.19a). However, their stress path are similar in the sense that
they overcome a peak of shear strength followed by an unstable part (decreasing q) and a
final hardening (see Figure 4.18b). This example exhibits the large scatter that might exist
between laboratory tests.
It is also interesting to note that during the unstable part of the stress path, the deviatoric
stress q decreases (see Figure 4.18b) with increasing deformation, i.e. the soil softens. How-
ever, the reduced deviatoric stress η monotonically increases (see Figure 4.18c). Therefore,
from a numerical point of view, the stress state is supposed to lie on a hardening yield surface,
since η increases.

Two undrained cyclic triaxial tests are provided in Figure 4.19. These tests are theoreti-
cally identical. The initial mean effective stress p′0 is equal to 160 kPa, the deviatoric offset
qcycl is equal to approximately 21kPa and the deviatoric cyclic amplitude qcycl to 28kPa. The
final behaviour of the soil sample is identical, i.e. cyclic mobility occurs, but the stress path
is distinct.
During the first test, there is initially a strong accumulation of deformation followed by the
so-called butterfly wing shape cycles. Each cycle accumulates more vertical deformation up
to a maximum positive vertical deformation of about 12%. On the other hand, the second
test encounters seven close cycles before triggering a strong accumulation of deformation up
to 28%.
Thence, it is illusory to succeed in modelling exactly a cyclic test from a unique set of pa-
rameters. Results are scattered and difficult to analyse. However, experimenters should not
be blamed. Indeed, such tests are not easy to carried out, since they involve unstable phases
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Figure 4.19: Cyclic undrained triaxial test on Nevada sand, Dr= 40%, after [Arulmoli et al.,
1992]. p′0 = 160kPa, initial mean effective stress ; qoff = 21kPa and qcycl = 28kPa.

and are very sensitive to imperfections and small variations of the loading. Therefore, the
calibration task becomes difficult and unrewarding since it is not possible to find a unique set
of parameters that perfectly depicts experimental data. Moreover, a choice must be made to
distinguish acceptable from unacceptable results of simulations.
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4.4.2.2 Calibration of drained/undrained tests

Simplified equations describing the model in the simple triaxial case are provided in Ap-
pendix A. An explicit integration of these equations was carried out in Matlab in order to
"simply" calibrate parameters.
An arbitrary monotonic test can be readily calibrated to obtain a set of parameters. Figure
4.20 represents the calibration of both drained and undrained triaxial test on a Dr= 40%
Nevada sand, at p′0 = 80kPa. Calibrating independently drained and undrained experiments
leads to the definition of two distinct sets of parameters. Therefore, an iterative procedure of
calibration should be followed to ensure a good average fitting of the two sets of data.

Drained (S1)

Undrained (S2)

Gref [MPa] Kref [MPa] η̄[-] Ψ[-] Mel[-] ηf,c[-] ηf,e[-]

40 - 0.85 0.60 0.10 1.28 -0.95

40 40 0.75 0.19 0.125 1.40 -0.80

Table 4.2: Drained and undrained sets of parameters for the calibration of Dr= 40% Nevada
sand. Gref , reference shear modulus; Kref , reference bulk modulus; Mel, opening of the elastic
yield surface; η̄ and Ψ, parameters of the volumetric flow rule; ηf,c and ηf,e, failure slope.

Both of them are given in Table 4.2. Thirteen nested surfaces are used in each case but the
corresponding parameters are omitted for the sake of readability and would be summarised
afterwards. A common elastic shear modulus was adopted for both simulation types. Its order
of magnitude is consistent with data obtained from resonant column tests (see Figure 4.16a).
However, its determination is uneasy since few data are measured at the early beginning of the
test, when the behaviour is truly elastic. It must be pointed out that bulk modulus cannot be
determined with the drained test since the mean effective stress is kept constant. Therefore
the elastic component of the volume change is null. Thence, the volumetric drained behaviour
is theoretically the consequence of plastic deformation only.

Calibrated parameters of the volumetric flow rule diverge for both tests. Indeed, η̄ parameters
are close but results are very sensitive (see in the next Section). Ψ parameters are clearly
divergent, but it is worth noting that Kref and Ψ have a similar influence on the results and
are therefore uneasily calibrated together.
Elastic yield surfaces have similar opening in both cases. On the other hand, the Prevost
model implemented does not explicitly take into account a failure, since no bounding surface
is implemented. However, if the plastic modulus of the last surface is low enough, the result is
similar to a null modulus. Therefore a failure line can be distinguished. These limits are not
identical in drained and undrained cases, which is probably due to the scatter of the results.

It is interesting to know if both sets of parameters previously calibrated are equivalent or
lead to distinct results. Thence, both sets of parameters obtained from drained (S1, in Table
4.2) and undrained (S2, in Table 4.2) are compared in Figure 4.21. Drained and undrained
triaxial tests are reproduced for three initial mean effective stresses p′0 = [40, 80, 160]kPa.
They clearly lead to dissimilar results from volumetric and deviatoric points of view. In the
latter case, the slopes of the failure envelopes are distinct (see Figure 4.21d and 4.21b), which
only reflects the divergences observed in the laboratory tests. As a consequence, a unique set
of parameter can be obtained solely by averaging the calibrated data. Nevertheless, a study
of their respective influence is firstly carried out in the next section.
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Figure 4.20: Comparison of measured and calibrated results for a Nevada sand (Dr= 40%)
and an initial mean effective stress p’0 = 80kPa, after [Arulmoli et al., 1992].
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Figure 4.21: Comparison of the two sets of data (S1 and S2, in Table 4.2) for simulated
drained and undrained tests.



4.4. PARAMETERS CALIBRATION 83

4.4.2.3 Influence of parameters

Parameters obtained from undrained tests (S2, in Table 4.2) are modified in this section
to highlight their influence. Only those altering the volumetric behaviour are investigated in
Figure 4.22. Thence, it must be pointed out that the influence of each parameter on the ǫy−η
curve is nearly null. As a matter of fact, the flow rule is split into associated deviatoric and
non associated volumetric parts. Therefore, volumetric parameters have nearly no effect on
this curve, but they have on q − ǫy.
First of all, it can be observed in Figure 4.22 that all the results present similar patterns. In
compression, the behaviour is firstly contractive and dilative afterwards after the stress path
has crossed the phase transformation line. On the other hand, extensive tests are not so easily
analysed. From the volumetric point of view, they are composed of three phases :

Phase 1 The rate of pore pressure variation is negative. As a matter of fact, the elastic effects
dominate and u̇w < 0 since the test is extensive. The stress path (not represented)
translates towards the left, i.e. ṗ′ < 0 since σ̇1 < 0. It is interesting to note that this
phase spans over a clear range of η, for instance η ∈ [−0.18, 0] (see Figure 4.22b) but
only corresponds to a tiny range of ǫy ∈ [−0.016, 0]%9 (see Figure 4.22a).

Phase 2 Afterwards, a classic plastic contractive phase takes place since η < η̄ (see Figure
4.22b). The stress path continues to be translated towards the origin of the axes (not
represented).

Phase 3 The maximum of pore water pressure is then reached when the stress path crosses the
phase transformation line. A plastic dilative phase takes place and pore water pressure
becomes negative.

The influence of the reference bulk modulus Kref is illustrated in Figures 4.22a and 4.22b.
It does not affect the initial slope of the ǫy − uw curve since it only depends on the shear
modulus. Therefore the slopes of ǫy − uw and η − uw are symmetric at the origin.
Its influence is less obvious to understand afterwards since equations governing the undrained
behaviour of the soil are complex. Mathematically, it is demonstrated in Appendix A that
for a loading part (q̇) of the stress path, the following equation holds

q̇

ṗ′
= η − H ′

K
·
√
6

2
· 1 + (η/η̄)2

1− (η/η̄)2
·
√

1 +
2

9
η2. (4.52)

Let us assume that elastic yield surface vanishes, i.e. M1 → 0 (soil behaviour is directly
elastoplastic), and initial stress state is on the hydrostatic axis, i.e. η = 0. Therefore,
Equation 4.52 can be reorganised as

ṗ′ = −q̇ · K
H ′
· 2√

6
. (4.53)

The influence of K is then easy to understand for the beginning of the test, and then to
extrapolate. For a given positive q̇, the mean effective stress decreases, since the stress state
lies within the contractive zone. Therefore, the higher the bulk modulus, the higher the
variation of ṗ′ and the higher the pore pressure accumulated.
It can also be observed that a higher Kref involves a higher rate of pore water pressure
decrease during the dilative phase. It also slightly shifts the η value corresponding to the

9This strong change of behaviour and variation of η over a very small range of deformation will be of
uttermost importance for the numerical implementation of the model.
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maximum uw, at least in compression. It means that the phase transformation line is not
ruled only by η̄. It must also be kept in mind that the current bulk modulus depends on the
mean effective stress, accentuating the divergence.
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Figure 4.22: Influence of parameters related to volumetric behaviour for Nevada sand, Dr=
40%, p′0 = 80kPa.

The effect of η̄ is more straightforward (see Figures 4.22c and 4.22d). All the aforemen-
tioned phases still hold but the difference between the curves is more significant. Obviously,
a change of η̄ strongly affects the position of the maximum pore water pressure, since the
transition from contractive to dilative is ruled by

P” =
Ψ

3
· η̄

2 − η2
η̄2 + η2

. (4.54)

The maximum accumulated uw is higher for higher η̄. Indeed, if η̄ is higher, yield surfaces of
lower plastic moduli are reached, which increases the rate of pore water pressure. Finally, a
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constant Ψ parameter has an effect similar to Kref (see Figures 4.22e and 4.22f). It is worth
noting the extreme sensitivity of this parameter since a slight change induces non negligible
variations of the results.

4.4.2.4 Final calibration

A final set of parameters was adopted which is an averaging of the two previously calibrated
sets (see in Table 4.2). The number of yield surfaces is a key issue. It could be defined at the
beginning of the calibration process, but if there is no memory limitation, it can be adapted to
each material. It must be kept in mind that surfaces discretise the evolution of the hardening
modulus over the stress space. Therefore, the higher the number of surfaces, the higher the
precision. However, too many surfaces can decrease the convergence rate of the algorithm
during the integration of the constitutive law, since the number of active surfaces oscillate.
A minimum number of surfaces must be ensured at low η = q/p in order to ensure a plastic
contractancy even at low deviatoric stress, which corroborates experimental tests. On the
other hand, more surfaces might be added at high η = q/p. Indeed, during the dilative phase,
the increase of the confinement, coupled with the confinement dependency of the modulus,
can introduce spurious hardening. In this calibration, thirteen yield surfaces are defined and
characterised by their opening M, their plastic modulus H’ and their backstress α (see in
Appendix A.4 to convert triaxial scalar backstress into a tensorial variable).

Gref [MPa] Kref [MPa] η̄[-] Ψ[-] ηf,c[-] ηf,e[-]

40 40 0.85 0.40 1.28 -0.95

Table 4.3: Dr= 40% Nevada sand parameters (elastic and volumetric). Gref and Kref ,
reference shear and bulk moduli; η̄ and Ψ, parameters of the volumetric flow rule; ηf,c and
ηf,e, failure slopes.

N◦ surf

M [-]

H’ [MPa]

α [-]

N◦ surf

M [-]

H’ [MPa]

α [-]

1 2 3 4 5 6 7

0.1 0.175 0.245 0.325 0.44 0.55 0.615

400 200 80 20 12 7 3

0.05 0.105 0.155 0.175 0.21 0.25 0.265

8 9 10 11 12 13

0.695 0.775 0.835 0.93 1.025 1.11

2.3 1.4 0.9 0.4 0.2 0.01

0.255 0.275 0.265 0.23 0.195 0.16

Table 4.4: Dr= 40% Nevada sand parameters (surface description). M, opening of the yield
surface; H ′, plastic modulus; α, back stress in triaxial format.

The comparison of laboratory results and calibrated simulations is provided in Figure 4.23
for drained and undrained monotonic tests as well. Adopted parameters lead to reasonable
discrepancies for both types of tests. From a volumetric point of view, variation of volumetric
strain is a bit not steep enough during the dilative phase (see Figure 4.23a). On the other
hand, the pore pressure generation seems to be too sharp during the dilative phase (see Figure
4.23b). However the difference is kept acceptable.
The slope of the failure surface has the expected order of magnitude, with regard to the
scatter observed in laboratory experiments (see Figures 4.23c and 4.23d). The main features
of the stress paths are correctly represented. They present distinct undrained behaviours in
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compression and extension, i.e. an unstable stress path (decreasing q) in extension and a
continuously increasing shear strength in compression (see Figure 4.23f).
Finally, the phase transformation line is an averaging of experimental values. Then the fitting
does not represent exactly each test but the general trend of volumetric features is well
captured (see Figures 4.23g and 4.23h).
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Figure 4.23: Comparison of drained and undrained simulations for a unique set of parame-
ters, Nevada sand, Dr= 40%. NUM stands for numerical simulation.
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4.4.2.5 Cyclic tests

For the given set of parameters, the comparison of undrained cyclic laboratory results and
numerical simulations is provided in Figure 4.24. The initial mean effective stress is equal to
160kPa and the deviatoric stress varies within the range q = 21± 48.4 kPa.
Obviously, the pre-failure pattern is similar but not identical when comparing measured and
simulated data (see Figure 4.24a). However, the stress path follows the right tendency to-
wards the origin of the axes and initial liquefaction. A flow failure/deformation occurs on the
extension side (see Figure 4.24a), creating an instability (sudden decrease of q).
This flow is marked by a sudden increase of negative vertical plastic deformation (extension),
that can be observed in Figure 4.24c. There is then a clear distinction between laboratory and
numerical results. In the former case, positive vertical deformation is quickly accumulated
and rises up at a constant rate. In the latter case, there is a slow accumulation of vertical
settlement after a minimum value. Moreover, the butterfly wing pattern seems to stabilise
and vertical deformation is accumulated at a constant rate of deformation, which is typical of
ratcheting.

−50 0 50 100 150 200
−30

−20

−10

0

10

20

30

40

50

60

70

p’ [kPa]

q 
[k

P
a]

 

 

EXP
NUM

Flow

Liqu.

(a) Flow deformation and liquefaction in the
p’-q plane.

−0.5 −0.25 0 0.25 0.5
−30

−20

−10

0

10

20

30

40

50

60

70

ε
y
 [%]

q 
[k

P
a]

 

 

EXP
NUM

(b) Vertical deformation - deviatoric stress
for the 5 first cycles. Zoom of Figure 4.24d
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Figure 4.24: Comparison of laboratory results (EXP) and numerical simulations (NUM) of
an undrained test at Dr= 40%.

A zoom on early cycles exhibits a positive accumulation of vertical deformation, i.e. a set-
tlement which is consistent with laboratory observations (see Figure 4.24b). However, the
flow deformation on the extension side involves a great accumulation of negative deformation
which does not exist in laboratory measurements (see Figure 4.24d).
Nevertheless, experiments are load-controlled. Thus, instabilities are not easy to manage
since large deformation is accumulated for a load lower than the applied one. Moreover, the
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zone of initial liquefaction (origin of the axes in Figure 4.24a) is prone to accumulate large
deformation. It is also clear that experimenter loses the mastery of the test since it behaves
strangely after initial liquefaction, e.g. the deviatoric shear stress varies a bit anarchically
and does not reach any more the theoretically imposed extreme values of -27kPa or 70kPa.

On the other hand, the Matlab routine used to simulate the test has a mixed control.
The integration of the constitutive law is deformation controlled. At each step, the algorithm
verifies if the stress path lies within the imposed boundaries qoff±qcycl and modifies the sense
of loading if necessary. The instability is then "mastered". Consequently, one of the possible
explanation of these huge discrepancies observed between numerical and experimental results
might be the control of the tests.
Additional comments should be formulated. The basic Prevost model only reproduces roughly
post-liquefaction behaviour, e.g. cyclic mobility. Unfortunately, the main part of laboratory
experiments actually lies typically in the zone of initial liquefaction (measured p’ can reach
-5kPa). Simulated stress path approaches very close to the initial liquefaction zone and de-
scribes the butterfly wing pattern. This close proximity and the following ratcheting is only
possible with numerical simulations. In practice, imperfections break the regularity of the
pattern and liquefaction is reached.
However, the homogeneity of the sample after liquefaction is doubtful. Consequently, com-
parisons between macroscopic measurements obtained from a soil specimen and numerical
simulation of a homogeneous soil becomes specious. Furthermore, there is probably a distinct
failure mode between triaxial test and in the field behaviour. As a consequence, the important
information that has to be modelled is the likelihood of the liquefaction and flow deformation,
which is correctly captured.
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Figure 4.25: Comparison between cyclic (CYCL) and monotonic (compression MONc, ex-
tension MONe) triaxial tests from an identical initial state.

It was stated in the previous chapter that the monotonic stress path and/or the CSR
line could be viewed as a failure surface for a cyclic test, starting from the identical initial
state. A numerical comparison between cyclic and monotonic stress paths from an identical
initial state (p′, q) = (160, 21.4)kPa is illustrated in Figure 4.25. It is carried out to verify
the model is able to reproduce the failure surface. The instability is triggered when the stress
path crosses the CSR line. However, both monotonic and cyclic stress paths are quite close.

For a given distribution of yield surfaces, parameters that mostly influence the cyclic stress
path are the related volumetric ones, i.e. K/η̄/Ψ. Their effect is synthesised in Figure 4.26.
The evolution of the total vertical deformation and the normalised pore pressure accumulation
with the number of cycles applied are illustrated. All results present similar features.
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Phase A a slow accumulation of vertical deformation ǫy with the number of cycles (pictures on
the left) coupled with the increase of normalised pore water pressure uw/p′0 (pictures
on the right).

Phase B a sudden increase of vertical deformation coupled with a jump of pore water pressure.
This is the consequence of the instability previously observed and corresponds to a flow
failure.

Phase C a repeated pattern of pore water pressure variations (which corresponds to the but-
terfly wing pattern in the p’-q plane) coupled with an accumulation of plastic vertical
deformation (either negative or positive).
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Figure 4.26: Influence of parameters on the cyclic stress path. ǫy is the vertical deformation
and uw/p0 is the initial mean effective stress. A, slow accumulation; C, sharp increase; B,
butterfly wing pattern.

Influence on Kref is depicted in Figures 4.26a and 4.26b. The higher the bulk modulus
the lower the number of cycle to reach instability (see Figure 4.26a). It means that pore water
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pressure is accumulated more slowly, when the soil has a lower elastic compressibility, which
can be observed in Figure 4.26b. This modulus also influences the number of cycles required
to reach the minimum ǫy. After this minimum, the rate of vertical deformation becomes
positive again. The consequences of a change in Kref can be derived from Equation (4.53) as
well.
A higher η̄ = 0.95 parameter enlarges the contractive zone and creates a stronger flow de-
formation that appears slightly before two others results (η̄ = 0.75 and η̄ = 0.85, see Figure
4.26c). However, the post flow deformation behaviour marks a greater rate of positive accu-
mulation of deformation.
Finally, Ψ does not strongly affect the behaviour. Nevertheless its effect on the rate of accu-
mulation of pore water pressure increases with the number of cycles (see Figure 4.26f), i.e. it
increases for a stress path approaching liquefaction.
Furthermore, undrained cyclic simulations are very sensitive to a modification of the param-
eters of the constitutive law. Indeed, a slight variation of one of them affects the position or
the value of the peak strength, which controls the triggering of the instability.
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4.4.3 Nevada sand Dr= 60%

4.4.3.1 Experimental results : comparison Dr= 40%

A comparison between drained and undrained laboratory tests for Dr= 40% and Dr= 60%
is provided in Figure 4.27. Once again, the range of represented deformations is limited since
shear bands were observed. Undrained triaxial tests especially become meaningless when very
large negative pore pressures and deformations are measured. Results presented span over
three initial mean effective stresses : p′0 = [40, 80, 160]kPa.
The natural trend is the increasing of the strength with relative density, which can be clearly
observed in compression in Figure 4.27a. There is also a little increase in compression in
Figure 4.27b for undrained experiments. However, the trend in extension is dubious in both
figures. Final strength is equal or lower than those measured for Dr= 40%. Moreover, there
is a large dispersion of the results. Nevertheless, a ratio of 2/3 can be accepted between shear
strength in extension and compression.
The contractive phase is weaker for the Dr= 60% soil samples, i.e. maximum positive volume
or pore water pressures are lower. This is clearer on the extension side of the tests in Figures
4.27c and 4.27d. Once again, the dispersion of the data makes the determination of the phase
transformation line uneasy.
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Figure 4.27: Monotonic drained and undrained triaxial test on Nevada sand, comparison
between Dr= 40% and Dr= 60%, after [Arulmoli et al., 1992]. p′0, initial mean effective stress.
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4.4.3.2 Calibration of monotonic tests

The set of parameters adopted to simulate Nevada sand behaviour at Dr= 60% is provided
in Tables 4.5 and 4.6. Elastic parameters are consistent with resonant column tests provided
in [Arulmoli et al., 1992]. The reference moduli are higher than in the Dr= 40% case, which
is obvious. The failure envelope has a final friction angle of 39◦. This limit is only reached
after several per cent of deformation. The failure limit in extension is just slightly lower than
in the Dr= 40% case. The model is composed of thirteen yield surfaces. This number of yield
surface might be distinct from the Dr= 40% Nevada sand since parameters for each density
range of a given material must be independently calibrated. The identical number of surfaces
is then purely fortuitous.
Comparison between laboratory and simulated tests is illustrated in Figure 4.28 for both
drained and undrained triaxial tests. Results finally match reasonably even if a large disper-
sion might be observed, especially for extension tests (see Figures 4.28c and 4.28d). Similarly,
the phase transformation line slope is an averaging of the scattered values.
The fitting of the experimental data is not easy in this case since there is only few measure-
ments at the beginning of the test. Therefore, elastic properties and first yield surfaces are
more idealised than calibrated. Moreover, results are very sensitive to parameters such as η̄,
Ψ or Kref . As a matter of fact, a Kref = 60.5MPa leads to a better fit of monotonic tests
but a weaker of cyclic. Finally, the large dispersion of data does not facilitate the process.

Gref [MPa] Kref [MPa] η̄[-] Ψ[-] ηf,c[-] ηf,e[-]

54.5 30 0.9 0.6 1.6 -1.01

Table 4.5: Final set of parameters used for the modelling of Dr= 60% Nevada sand (elas-
tic and volumetric). Gref , reference shear modulus; Kref , reference bulk modulus; η̄ and
Ψ, parameters of the volumetric flow rule; ηf,c and ηf,e, failure slopes in compression and
extension.

N◦ surf

M [-]

H’ [MPa]

α [-]

N◦ surf

M [-]

H’ [MPa]

α [-]

1 2 3 4 5 6 7

0.15 0.25 0.37 0.5 0.65 0.775 0.9

200 100 40 20 10 5 3

0.05 0.1 0.13 0.2 0.2 0.225 0.25

9 10 11 12 13

1.0 1.075 1.14 1.18 1.21

1.5 0.6 0.3 0.15 0.05

0.25 0.245 0.26 0.24 0.23

Table 4.6: Dr= 60% Nevada sand parameters (surface description). M, opening of the
surface; H ′, plastic modulus; α back stress in triaxial format.
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Figure 4.28: Comparison of drained and undrained simulations for a unique set of parame-
ters, Nevada sand, Dr= 60%. NUM stands for numerical simulation. p′0, initial mean effective
stress.
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4.4.3.3 Cyclic tests

A cyclic test was simulated using this set of parameters (see Figure 4.29). The mode of
failure is different between laboratory experiments and simulated results. In the latter, a flow
failure is triggered while laboratory test seems to exhibit cyclic mobility. Moreover, numerical
results show a ratcheting effect. It is possible to artificially better fit the results by decreasing
the bulk modulus. However, this operation deteriorates the monotonic match.
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Figure 4.29: Comparison experimental (EXP) and simulated (NUM) triaxial tests, Nevada
sand, Dr= 60%.
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4.4.4 Lund sand Dr= 90%

4.4.4.1 Properties

Sandy soils in the North Sea are very uniform and might reach very high densities [Bjerrum,
1973]. Therefore, data for such a dense material are necessary. The Lund sand comes from
Denmark where it is obtained from a gravel pit near Horsens and open source data are available
for high densities. Main properties of this material are provided in Table 4.7.

γs [kN/m3] emax [-] emin [-] d50 [mm] Cu [-]

26.5 0.889 0.524 0.35 1.7

Table 4.7: Properties of Lund sand, from [Ibsen and Jacobsen, 1996; Ibsen, 1998]

4.4.4.2 Calibration

Drained triaxial tests for a relative density equal to 90% were calibrated and parameters
are provided in Tables 4.8 and 4.9. Unfortunately, only compressive tests are available in
[Ibsen and Jacobsen, 1996]. It is assumed that initial lower trace of the yield surface in the
p’-q plane was 2/3 of the upper trace (see Figure 4.30). A complete set of parameters can
then be deduced.

Figure 4.30: Extrapolation of the extensive strength of the Lund sand, Dr= 90%.

The calibrated phase transformation parameter η̄ corresponds to an angle of 28.8◦, which is
very close to the angle of 30◦ described in [Ibsen, 1998] for the Lund sand, irrespectively of
the density.

Gref [MPa] Kref [MPa] η̄[-] Ψ[-] ηf,c[-] ηf,e[-]

47 65 1.15 1.0 1.7 -1.25

Table 4.8: Final set of parameters used for the modelling of Dr= 90% Lund sand (elas-
tic and volumetric). Gref , reference shear modulus; Kref , reference bulk modulus; η̄ and
Ψ, parameters of the volumetric flow rule; ηf,c and ηf,e, failure slopes in compression and
extension.
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N◦ surf

M [-]

H’ [MPa]

α [-]

N◦ surf

M [-]

H’ [MPa]

α [-]

1 2 3 4 5 6 7 8

0.05 0.10 0.167 0.292 0.458 0.667 0.792 0.875

700 500 100 70 50 30 20 12

0.01 0.02 0.033 0.58 0.092 0.133 0.158 0.1750

9 10 11 12 13 14 15 16

1.00 1.125 1.23 1.292 1.367 1.4251 1.475 1.517

5 2.5 1.2 0.8 0.4 0.3 0.1 0.025

0.2 0.225 0.247 0.258 0.273 0.285 0.295 0.303

Table 4.9: Final set of parameters used for the modelling of Dr= 90% Lund sand (surface
description). M : opening of the surface ; H ′ : plastic modulus ; α back stress in triaxial
format.

Superposition of experimental tests and simulations is provided in Figure 4.31 for com-
pressive drained triaxial tests. In this case, triaxial tests are classic drained tests, i.e. the slope
of the stress path in the p’-q plane is equal to 3. It can be observed that the failure slopes
tend to increase with decreasing mean effective stress (see Figure 4.31c). Despite this is not
explicitly modelled by the Prevost model, such a behaviour can also be simulated. Final shear
strength corresponding to lower p′0 are slightly shifted. However the distribution of maximum
η spans over a narrower range of failure slopes ηf,c than observed during experiments.
From the volumetric point of view, simulations are in very good agreement with experiments
(see Figure 4.31a). Results presented in Figure 4.31d are scattered due to the aforementioned
p’ dependency of ηf,c.
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Figure 4.31: Monotonic drained triaxial tests on Lund sand, Dr= 90%, after [Ibsen and
Jacobsen, 1996]. Comparison of laboratory tests and numerical simulations (NUM).
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Results of simulations of undrained triaxial tests are illustrated in Figure 4.32. They are
just provided to depict the global trend of undrained tests since they cannot be compared to
experimental results. Actually few undrained tests are available in [Ibsen, 1998] but they are
not accurate enough at the early beginning of the test to be exploited. Observed stress paths
are classic (see Figure 4.32b) and asymmetric in compression and extension.
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Figure 4.32: Simulations of monotonic undrained triaxial tests on Lund sand, Dr= 90%.
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4.4.4.3 Cyclic tests

Synthetic cyclic tests (qcycl = 20kPa) for three initial deviatoric stresses (qoff = [5, 25, 45]kPa)
are provided in Figure 4.33. All the simulations exhibit similar very contractant first cycles
and the stress paths moves towards the left. However, the modes of failure are different.
In the former case (see Figures 4.33a and 4.33b), where reversal occurs, a flow failure is trig-
gered on the extension side and a negative vertical deformation holds. It is followed by a
butterfly wing pattern of the stress path and an accumulation of settlement.
In two other cases, there is no flow deformation since the stress path never moves to extension
side. However, if the failure is defined by a maximum deformation, it can be reached by accu-
mulation of deformation. Interestingly, the highest deviatoric offset simulation accommodates
more quickly, i.e. deformation and stress path stabilise.
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(c) Undrained cyclic test, q = 25± 20kPa
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(d) Undrained cyclic test, q = 25± 20kPa
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(e) Undrained cyclic test, q = 45± 20kPa
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Figure 4.33
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4.4.5 All together

Monotonic drained (p’=cst) and undrained simulations corresponding to the three sets of
parameters (Nevada 40%, Nevada 60%, Lund 90%) are compared in Figure 4.34. They cor-
respond to an initial isotropic state of 80kPa and illustrate a range of variation of the results.
Obviously, the higher the density, the higher the failure stress ratio η (see Figures 4.34c and
4.34d).
Volumetric behaviour is much divergent (see Figures 4.34a and 4.34b). The Lund sand ex-
hibits variation of volumetric deformation and pore pressure much sharper than the Nevada
sand Dr= 40%. Finally, all of the soil samples present an elbow and a non symmetric ex-
tension/compression behaviour in the p’-q plane, during undrained simulations (see Figure
4.34f).
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Figure 4.34: Comparison of drained and undrained simulations for Nevada sand (Dr= 40%
or Dr= 60%) and Lund sand (Dr= 90%).
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4.5 Conclusion

Elastoplasticity offers a robust framework for the constitutive modelling of soils. Many
conceptual ways of representing cyclic loading of soils have been investigated in the past
decades since the advent of personal computers and the generalisation of finite element codes.
Among all of them, the Prevost model was adopted for its conceptual simplicity and its phys-
ically related parameters.
This model is able to reproduce monotonic drained and undrained behaviours of cohesionless
soils. It includes contractive and dilative behaviours, hardening and softening, failure... The
trend of the cyclic behaviour is also represented. Pore water pressure accumulates during tri-
axial tests due to the plastic contractive zone. Therefore the stress path is translated towards
the left and the origin of the axes in p’-q plane. It is most of the time impossible to exactly
simulate stress paths obtained from laboratory, but simulations and laboratory experiments
are in good agreement.
On the other hand, the Prevost model is not able to reproduce post-failure behaviour and
accurate cyclic mobility. However this shortcoming is not really relevant. Firstly, post-cyclic
failure is out of the scope of this study. Secondly, failure might involve the loss of homogeneity
of the samples which lapses the continuum modelling of the soil.
Parameters of the Prevost model do not depend on the density. Therefore, a unique set of
parameters for a given material does not exist. They must be calibrated independently for
each sample of different density. Phase transformation line has a constant slope. The shape
of the yield surfaces belongs to the J2 family. Therefore, its trace in the deviatoric plane is a
circle, which is not exact for representing cohesionless soil behaviours. Though not negligible,
the use of such a criterion is not critical to a first approximation.
Calibration of parameters is not an easy task. The first difficulty is the finding of accurate
data. Afterwards, the calibration process is not so complex if adequate simplified routines
are available, e.g. simplified triaxial routine on Matlab. However, the definition of a unique
set of parameters is not obvious. Indeed, results might be very sensitive to plastic potential
parameters. Furthermore, the low-deformation behaviour of the soil sample is very important,
since it accumulates large variations of stresses over a narrow range of deformation. However,
measures are often scarce in this zone and the calibration looses its accuracy.
The Prevost model does not takes into account plastic effects for hydrostatic stress path, i.e.
grain crushing is not taken into account. It was shown that this effect holds for confinement
on the order of 3-5MPa, which is out of concern in this work.
All the recognised drawbacks of this model are known or of minor importance. Therefore, the
model was adopted to represent cyclic behaviour of a cohesionless soil in the following.
In this chapter, the calibration of parameters for two sands and distinct densities was car-
ried out. They allow to model various soil conditions and accurate data are available in the
literature. A systematic comparison of laboratory tests and simulations has highlighted the
possibilities and the limitations of the model. Globally, monotonic tests match reasonably
well in both cases. The fitting of cyclic tests is much less obvious. The trend of increasing
pore water pressure and the flow deformation on the extension sides are well reproduced.
However, an exact correspondence of stress path was never reached. The relative complexity
of such experiments, their sensitivity to imperfections and the difference between deformation
and load control tests are factors that might explain the discrepancies between them.
Finally, even if a numerical simulation perfectly represents a laboratory experiment, it reflects
only the ability of the model to reproduce experiments. This does not induce straightforwardly
the ability to reproduce actual in situ field behaviour which is inherently heterogeneous. Con-
sequently, there is no need to be very strict on the fitting of data. Finally, a strong conclusion
about the ability of the model to reproduce the behaviour of a geotechnical structure could
only be drawn if experimental data were available for that particular material.
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5.1 Introduction

Only few letters separate model and modelling. However, there is a large gap between
them. For scientists, a model is a physical, mathematical or conceptual representation of
reality1. Many sub-definitions are encompassed in this word, inducing a neverending ambigu-
ity. A model can be a small scale physical representation of an object (e.g. centrifuge small
scale tests) or a set of numerical data defining a real body (e.g. a mesh which relates physical
properties to each material point it depicts) or a mathematical relation describing a particular
phenomenon (e.g. constitutive law that describes a material). In this work, the term model
only defines the latter case and especially a constitutive law.
A model is amorphous, it exists, it is. The modelling is the animation of the model. It implies
other actions from the researcher such as measurements of acceleration in a centrifuge test,
introduction of a time dependent loading that distorts a geometric mesh or the integration of
the constitutive law. The modelling is a way to obtain a result that corresponds to a given
situation. In the previous chapter, results are provided for a very simple loading case, i.e.
triaxial test. However, if real situations have to be represented, e.g. designing a foundation, a
mathematical model ceases to live by itself and must be included into a more general entity,
e.g. a finite element code. This step, moving from an analytical model to its discrete coun-
terparts, is termed implementation.
Most of the time the hurried researcher acts such as a Frankenstein doctor. It uses a model
from X, a finite element code from Y, an algorithm from Z and tries to give birth to a functional
suitable usable routine. However many traps and ambushes lie on the long way to conver-
gence. Sources of mistakes and discrepancies are numerous, pernicious and hidden in details.
Continuous models are transformed into discrete ones, variables have to be defined according
to a given precision, many subroutines have been used and coded by previous old-timer sci-
entists who forget their functioning, iterative processes accumulate error, the researcher had
a party the night before and so on.
Starting from a known stress state σn, corresponding to a material point, the purpose of
implementation is to elaborate a robust, efficient and accurate method able to compute the
new stress state σn+1 corresponding to a discrete increment of deformation ∆ǫ. This chapter
deals with salient features related to this target.
The first objective presented is the transformation of a continuous description of the model
to a discrete scheme. Equations are linearised, since a computer can only solve this type of
equations. The return mapping algorithm class is described and two families of integrations
schemes are presented. An implicit closest point projection is adopted in this work, enforcing
the choice of a suitable hardening rule. Indeed, the multi-surface approach requires that they
never intersect. A final set of linearised equations can finally be solved, which is practically
achieved by using a Newton procedure.
The second part of the chapter is dedicated to paradoxical numerical experiments. Implicit
algorithm eventually implemented in the LAGAMINE code is compared to exact simplified equa-
tions of triaxial conditions. A multiaxial test is carried out as an illustration and compared
to an exact solution, consisting in applying the algorithm for very small time steps. Finally
isoerror maps are generated to illustrate the accuracy of the algorithm and an insight into
convergence of the local problem is given.

1Actually some fashion models are also a truncated representation of reality and not the reality.
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5.2 Discrete formulation : generalities

5.2.1 General integration schemes

The continuum formulation of the constitutive law has been defined incrementally in the
previous chapter. The objective Jaumann effective stress rate σ̃ is a function of the current
stress state2 σ, current internal plastic variables κ and the deformation rate ǫ̇, i.e.

σ̃ = g(σ,κ, ǫ̇). (5.1)

Let us consider that the evolution of σ is studied over the time interval t ∈ [0, T ]. The
integration of the constitutive laws requires the discretisation of the time into N steps such
that3

t0 = 0 , ∆t =
T

N
and tn+1 = tn +∆t. (5.2)

The Prevost model is rate independent. Therefore, the time is a fictitious variable and the
deformation rate does not really matter. Let us assume the stress state σn of the material at
time step tn is known. Basic Euler scheme assumes that its variation ∆σ is linear between tn
and tn+1. Therefore, Equation (5.1) is discretised for a given finite variation of deformation
∆ǫ corresponding to a time step ∆t

∆σ = g(σn+θ,κn+θ,∆ǫ) (5.3)

σn+θ = (1− θ) · σn + θ · σn+1 θ ∈ [0, 1] (5.4)

κn+θ = (1− θ) · κn + θ · κn+1 θ ∈ [0, 1] (5.5)

which is termed the generalised midpoint rule, since the increment of stress depends on vari-
ables evaluated in n + θ. The integration is termed explicit if all the variables required to
compute g are known at the beginning of the step. On the other hand, if variables have to be
computed in n+1, they are unknown at the beginning of the step and the integration scheme
is called implicit. Particular values of θ lead to classic integration schemes

θ = 0, forward (explicit) Euler scheme, i.e. the slope of the assumed linear variation between
tn and tn+1 is computed in tn;

θ = 1, backward (implicit) Euler scheme, i.e. the slope of the assumed linear variation between
tn and tn+1 is computed in tn+1;

θ = 1/2, midpoint rule (implicit), i.e. the slope of the assumed linear variation between tn and
tn+1 is computed in tn+1/2.

The first explicit method is straightforward since variables used to compute the slope are
already known. Conversely, the two other methods require an iterative process. A second
order accuracy of the integration is only obtained for θ = 1/2 (in case of small time steps)
and unconditional linearised stability requires that θ ≥ 1/2, [Simo and Hughes, 1998].

5.2.2 Discretised constitutive equations

Equation (4.36) can be recast, taking into account the midpoint rule. This equation is
true for a yield surface, whatever the kinematic or isotropic hardening rule adopted. However

2Either effective or total stresses can be used. Therefore, the ’ symbol is dropped for the sake of generality.
3Time steps are not necessarily equal.
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in this case, internal plastic variables κ are identified to the backstress tensors α, as

∆σ = E : ∆ǫ− E : Pn+θ ·∆λ, (5.6)

where E is the elastic fourth order tensor, Pn+θ is the direction of plastic deformation and
∆λ is the discrete plastic multiplier. The evolution of the backstress tensor can be established
without any loss of generality such as

∆α = ∆λ · h(σn+θ,αn+θ), (5.7)

where h is a function describing the hardening of internal plastic variables. The final state
has to verify the Karush-Kuhn-Tucker condition at the end of the step, i.e.

f(σn+1,αn+1) ≤ 0, ∆λ ≥ 0, f(σn+1,αn+1)·,∆λ = 0 (5.8)

where f(σn+1,αn+1) denotes the yield criterion at step n + 1. Thence, if the stress state is
elastic, no plastic deformation occurs and ∆λ = 0. The evolution of the plastic deformation
can then be established such that

ǫ
p
n+1 = ǫpn +∆λ ·Pn+θ. (5.9)

5.2.3 Return mapping algorithm

Solution of this set of Equations 5.6-5.9 is based on a two-step algorithm, termed return
mapping. The first step consists of the computation of an elastic predictor state (σtr,αtr, ǫ

p
tr)

for a given ∆ǫ, as

σtr = σn + E : ∆ǫ (5.10)

ǫ
p
tr = ǫpn (5.11)

αtr = αp
n, (5.12)

which is the variation of stress corresponding to a zero plastic deformation. Thence the yield
criterion is evaluated at this state and there are two distinct possibilities (see in Figure 5.2)

f(σtr,αtr) ≤ 0 ⇒ Elastic step (5.13)

f(σtr,αtr) > 0 ⇒ Elastoplastic step. (5.14)

If the first condition holds, the trial state lies within the yield surface. It means that the final
state is elastic and equal to the trial stress, as shown in Figure 5.1. If the second condition is
verified, the stress state is out of the yield surface, which is not admissible. Then the second
step consists of a plastic corrector that brings back the final state onto the yield surface, i.e.
it restores the consistency condition f(σn+1,αn+1) = 0.

The plastic corrector emerges naturally from Equation (5.6) after reorganisation

σn+1 −✟✟σn = σtr −✟✟σn − E : Pn+θ ·∆λ. (5.15)

A geometric interpretation of this equation is illustrated in Figure 5.2. Starting from a
converged stress state σn, the direction of the return mapping Pn+θ can be viewed as a
combination of the normal vector at the beginning Pn and at the end Pn+1 of the step.

Therefore, integrating the constitutive law for a given increment of deformation ∆ǫ reduces
to finding ∆λ that verifies Equations (5.7), (5.8) and (5.15). Most of the time, this set of
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Figure 5.1: Geometric interpretation of trial stress state σtr and plastic corrector.

Figure 5.2: Geometric interpretation of the trapezoidal rule, after [Ortiz and Popov, 1985].
σn, initial stress state; σtr, trial stress state; σn+1, final stress state.

equations is highly non-linear and an iterative procedure must be performed. Two families of
return mapping algorithms can be distinguished4.

These families are developed hereafter for a simplified single surface configuration. Let us
denote σ(i) = σ

(i)
n+1 and α(i) = α

(i)
n+1 the stress state and backstress tensor at iteration (i).

Consistency condition for this couple of variables reads f (i) = f (i)(σ(i),α(i)). Finally, let us
assume that there is a linearised relation at iteration (i) between the variation of stress state
∆σ, the variation of backstress tensor ∆α and the variation of plastic multiplier ∆λ, i.e.

∆σ(i) = ∆λ(i) ·G(i) (5.16)

∆α(i) = ∆λ(i) ·H(i) (5.17)

where G(i) and H(i) are non linear arbitrary functions depending on σ(i) and α(i). They
indicate respectively the direction of the evolution of ∆σ(i) and ∆α(i). More precisely, H(i)

is the hardening direction defined in section 4.1.2.

1. The cutting plane algorithm
The consistency condition is linearised around the current variables, i.e.

f (i+1) = f (i) +

[
∂f

∂σ

](i)

: ∆σ(i) +

[
∂f

∂α

](i)

: ∆α(i) (5.18)

= f (i) +

[
∂f

∂σ

](i)

: ∆λ(i) ·G(i) +

[
∂f

∂α

](i)

: ∆λ(i) ·H(i) (5.19)

Thence the correction ∆λ(i) that must be applied in order to recover f (i+1) = 0 is easily

4A more rigorous development of the equations that underlines these concepts can be found in [Simo and
Hughes, 1998].
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computed from Equation (5.19),

∆λ(i) =
−f (i)

[
∂f

∂σ

](i)

: G(i) +

[
∂f

∂α

](i)

: H(i)

(5.20)

and iterative variables are updated

σ(i+1) = σ(i) +∆λ(i) ·G(i) (5.21)

α(i+1) = α(i) +∆λ(i) ·H(i) (5.22)

If f (i+1) is greater than a given tolerance, the procedure is started again until conver-
gence is reached.

A geometrical interpretation is illustrated in Figure 5.3a. At every iteration, updated
stresses are computed by projecting the previous iteration σ(i) onto a hyperplane defined
by the linearised equation f around the current stress σ(i). In the limit, this plane
becomes tangent to the yield surface and plastic consistency is restored at the end
of the step, [Simo and Taylor, 1985; Wilkins, 1964]. This method solves linearised
equations by relaxation. In case of perfect plasticity with associated flow rule, this
scheme corresponds to the steepest descent path corresponding to the function f, [Simo
and Taylor, 1985].

2. The closest point projection algorithm
The set of linearised equations can be solved by the Newton method. In the simplified
configuration considered, the consistency condition is a residual function of one variable,
∆λ.

f ≡ f(σn +∆λ ·G
︸ ︷︷ ︸

σn+1

,αn +∆λ · .H
︸ ︷︷ ︸

αn+1

). (5.23)

Therefore, the simplified sequence of solutions is given by

∆λ(i+1) = ∆λ(i) − f (i)
[
∂f

∂∆λ

](i)
(5.24)

A geometrical interpretation of this method is represented in Figure 5.3b. At each
iteration, the trial state is projected onto a plane that is getting closer and closer to
the final position of the yield surface. Thence the direction of the normal at the final
state changes at each iteration and the projected stress state is identical, i.e. σtr. It
was shown in [Simo and Hughes, 1998], that for perfect plasticity and associated flow
rule, the method corresponds to the closest point projection onto the yield surface in
the energy norm.

The cutting plane method is an explicit method that only involves functional evaluation at
the initial known iterate. On the other hand, closest point projection is an implicit formulation
where the direction of return mapping is computed at the final unknown iterate. Nevertheless,
one of the shortcomings of this method is the requirement of analytical derivatives. In case of
normal return, it requires second order derivatives of f which can be cumbersome to obtain
for complex models. However this method is known to be very powerful, [Armero and Perez-
Foguet, 2002; Perez-Foguet and Armero, 2002] and is adopted hereafter.

Radial return is a special case of return mapping that is used for J2 plasticity, i.e. for
circular shape yield functions in the deviatoric plane. It belongs to the closest point projection
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(a) Cutting plane algorithm (b) Closest point projection algorithm

Figure 5.3: Geometrical interpretation of two families of return mapping algorithms, after
[Simo and Hughes, 1998]. (·)(i) denotes the iteration number

family. However in this case, the elastic predictor σtr, the final state σ
(i)
n+1 and the centre

of the surface α
(i)
n+1 are collinear since the surface is a circle, i.e. the normal to each point

belonging to the surface passes through the centre.
A radial return algorithm is illustrated in Figure 5.4 in the case of kinematic hardening.
Indeed, the size of the surface remains constant but its centre is translated. A each iteration
of the algorithm, the final state σ

(i)
n+1 only depends on the position of α(i)

n+1, which simplifies
the computations.

Figure 5.4: Closest point projection with radial return. (·)(i) denotes the iteration number
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5.3 Discrete formulation : particular case

5.3.1 Suitable hardening rule

The transition between two successive nested surfaces using the classic Mroz rule described
in Section 4.3.4 is purely explicit. Firstly both surfaces must be put into contact. Secondly
the next surface becomes active and starts translating. The implicit scheme adopted would
overcome the splitting of the time step into different phases. Two possibilities are described
hereafter to define a suitable hardening rule: the implicit Mroz translation rule and the
Prager rule. Both of them are presented for a fully implicit scheme, i.e. θ = 1, for the sake of
simplicity.

5.3.1.1 Implicit Mroz translation rule

Figure 5.5: Hardening direction for the implicit Mroz translation rule, after [Montáns, 2000].
fi,n, i = 1, 3 are the surfaces at the beginning of the step (dashed line) and fi,n+1, i = 1, 3
at the end of the step (solid line); sn is the initial deviatoric stress tensor; str is the trial
deviatoric stress tensor; αn is backstress tensor of the active yield surface; β is the backstress
tensor of the target surface; µi

n+1 is the hardening direction of internal activated surfaces.

An implicit formulation of the Mroz rule is described in [Montáns, 2001]. A geometric
interpretation is provided in Figure 5.5. Let us consider the converged configuration in Figure
5.5a. sn is the converged deviatoric stress tensor and str is the trial deviatoric stress tensor.
The procedure for determining the hardening direction is based on the definition of

• the active surface, denoted by the superscript a, which is assumed a priori and which
is the outermost surface that translates ;

• the target surface, which is the surface next to the active one and does not move.

In the geometric interpretation illustrated in Figure 5.5a, the second (f2,n) and third (f3,n)
surfaces are respectively the active and target surfaces. A target tensor t̂ is then defined

t = str − ptr · β (5.25)

t̂ =
t

‖t‖ (5.26)

where ptr ·β is the trace of the centre of the target surface in the deviatoric plane that contains
str. This tensor is used to compute the backstress tensor ᾱ which is the extreme position
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that the active surface could occupy (see in Figure 5.5a), i.e. tangent to the target surface
such that

ᾱ = β +
(
Ma+1 −Ma

)
·
√

2

3
· t̂, (5.27)

where Ma and Ma+1 are respectively the radii of the active and target surfaces. Therefore,
it is assumed that active yield surface will hold a position between αn and ᾱ at the end of
the step and its hardening direction can be established (see Figure 5.5a,b)

µa = α̂−αa
n (5.28)

µ̂a =
µa

‖µa‖ (5.29)

This hardening direction can be used in the consistency condition and the new backstress
tensor αn+1 can be updated (see Figure 5.5b). Therefore, direction of radial return n̂n+1 can
be defined

nn+1 = str − pn+1 · αa
n+1 (5.30)

n̂n+1 =
nn+1

‖nn+1‖
(5.31)

This formulation is implicit since the direction of return n̂n+1 depends on the final stress state
and is not a priori known. Furthermore, a translation rule for each surface i such that i < a
must still be defined. This rule is based on the assumption that all the surfaces within the
active one are finally tangent to the converged stress state sn+1. Therefore, the position of
each inner surface, αi

n+1 is aligned with sn+1 and αa
n+1 (see Figure 5.5c), i.e.

µi
n+1 = sn+1 − pn+1 ·

√

2

3

(
Ma −M i

)
· n̂n+1 (5.32)

µ̂i
n+1 =

µi
n+1

‖µi
n+1‖

. (5.33)

In this formulation, the outermost active surface drives the algorithm, i.e. the position of
all other internal surfaces are computed as a function of its position. Therefore an iterative
process is necessary to solve the equations for a given assumption on this surface. Moreover,
if this assumption is wrong, an additional iterative process must be superimposed to find the
correct active yield surface.

5.3.1.2 Prager translation rule

The Prager rule is illustrated in Figure 5.6. The hardening µ1 and normal n̂n+1 directions
are always computed in reference to the smallest yield surface. Actually, both directions are
identical and computed at the end of the step, i.e.

µ̂1 = n̂n+1 =
str − pn+1 · α1

n

‖str − pn+1 · α1
n‖
. (5.34)

This direction is expressed implicitly since it depends on the mean effective stress at the end
of the step pn+1. Once this position is updated, all surfaces that are intersected by the yield
surface are updated and shifted successively. Provided a is the number of the outermost
activated surface such that [Montáns, 2001]

‖αa+1
n −α1

n+1‖ ≤
√

2

3
·
(
Ma+1 −M1

)
and ‖αa

n −α1
n+1‖ >

√

2

3
·
(
Ma −M1

)
. (5.35)
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Figure 5.6: Hardening direction for the implicit Prager translation rule, after [Montáns,
2001]. fi,n, i = 1, 3 are the surfaces at the beginning of the step (dashed line), fi,n+1, i =
1, 3 are the surfaces at the end of the step (solid line), sn is the initial deviatoric stress tensor,
str is the trial deviatoric stress tensor, αi

n is backstress tensor of the surface i.

This criterion readily identifies the outermost surface that is crossed by the first surface after
its hardening. Two surfaces can not intersect if the distance between the positions of their
centres is less than the difference between their radii. Thence, for each surface i such that
1 < i ≤ a, the hardening direction of the centre of the surface is given by

µ̂i
n+1 =

αi−1
n+1 −αi

n

‖αi−1
n+1 −αi

n‖
(5.36)

The geometrical interpretation of such a hardening rule is provided in Figure 5.6b. The final
position is easily obtained through

αi
n+1 = αi−1

n+1 +

√

2

3
·
(
M i−1 −M i

)
· µ̂i

n+1. (5.37)

One of the major difference with regard to the Mroz rule, is that the contact point between
successive surfaces is not located at the final deviatoric stress state sn+1 (see Figure 5.6b).
Aside, in this case, the innermost surface drives the algorithm and no hypothesis on the active
solution is necessary. Furthermore, the Prager rule verifies the maximum dissipation principle,
[Montáns and Caminero, 2007].

5.3.1.3 Yield/hardening surface

Nested surfaces are a key issue of the Prevost model. Up to that point, all of them
were termed yield surfaces. From a theoretical point of view however, this denomination is
not neutral. Elastic domain, consistency condition, flow direction and plastic modulus are
dependent on the surface chosen as yield surface.
Let us assume that the last converged stress state is sn (see Figure 5.7). Two different feasible
stress paths exist to reach the next stress state sn+1. The first one consists of a total elastic
unloading within the first surface f1, followed by an elastoplastic part up to sn+1 (see Figure
5.7a). The active surface is then f1 in the end. The second possibility is a virtually fully elastic
stress path that follows the f2 yield criterion (see Figure 5.7b). However, it is not admissible
to reach an identical stress state, from elastic and elastoplastic stress paths, [Montáns and
Caminero, 2007].

If the radial return mapping is adopted, the flow direction n̂ depends on both trial state and
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Figure 5.7: Possible elastic and elastoplastic stress paths from sn to sn+1 after [Montáns
and Caminero, 2007].

the centre of the active surface (see Figure 5.8). Therefore, let us consider two converged

stress states s
(1)
n and s

(2)
n infinitesimally close. The former lies on the first smallest surface

(f1), which is very close but not tangent to the next surface (f2). In Figure 5.7b, both surfaces
are supposed tangent and the stress state lies on both surfaces.
When an infinitesimal change of the stress conditions induces a change from the first surface
to the second, the flow direction changes abruptly from n̂(1) to n̂(2). This fact certainly
contradicts the continuity postulate of Prager [1949]; Hashiguchi [2009], which establishes
that the stress rate changes continuously for a continuous change of the strain rate. Moreover,
there is a jump in the definition of the elastic zone that suddenly changes from the domain
enclosed within f1 to the one enclosed in f2. Furthermore, such a change of active surface can
be merely due to numerical inaccuracies and the adopted formulation should be insensitive
to them.

Figure 5.8: Discontinuity in the flow direction for two infinitesimally close stress states, after
[Montáns and Caminero, 2007].

All these discrepancies disappear if yield and hardening surfaces are distinguished. The yield
surface defines the elastic domain and the flow direction. In this case, it can be chosen as the
innermost surface. The elastic domain is constant during the loading, i.e. it is not affected by
an unloading event and a continuity in the flow direction exists within the stress space. All
the other surfaces are termed hardening surfaces, i.e. they are just a numerical tool used to
describe the anisotropic hardening space and to compute the hardening modulus, [Montáns
and Caminero, 2007]. Therefore, the model is said to be composed of a yield and n-1 hardening
surfaces, where n is the total number of surfaces.
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5.3.1.4 Choice of a hardening rule

In this work, both Mroz and Prager hardening rules were successively implemented. How-
ever, it appears that the choice of the Prager rule is more judicious. Indeed, the Mroz rule
corresponds to a particular case: each surface can become a yield surface. The assumption
of the outermost active yield surface involves a sudden change in the elastic domain and in
the flow direction. The Mroz rule in [Prevost, 1985] was introduced essentially for numerical
purpose, i.e. to avoid a crossing of two successive surfaces. On the other hand, if the size
of the Prager rule tends to zero, flow direction tends to the direction of deformation in the
deviatoric plane, which might be more physical, [Montáns and Caminero, 2007].

Furthermore, from a practical point of view, the Mroz rule for the Prevost model was
observed to be less robust. This is not inherent to the hardening rule but due to the combi-
nation with the non associated volumetric hardening. Indeed, it was shown in [Montáns and
Caminero, 2007] that this rule can be very cleverly adapted to be extremely efficient, in the
case of pure J2 plasticity.
The midpoint integration scheme is adopted, i.e. directions of return are computed in the
middle of the step, i.e. in n+ 1/2. Therefore, the return direction is recast into

n̂n+θ =
(1− θ) · n̂n + θ · n̂n+1

‖(1− θ) · n̂n + θ · n̂n+1‖
. (5.38)

5.3.2 Plastic multiplier

The computation of the plastic multiplier at the end of the step ∆λn+1 is not a straightfor-
ward process. Indeed, plastic modulus and then plastic deformation depend on the outermost
hardening activated surface. Since a multi-surface model can be viewed as a multi-mechanism
model, an additive decomposition of the plastic multiplier was adopted, i.e.

∆λn+1 =

a∑

i=1

∆λin+1 (5.39)

where ∆λin+1 is the component of the plastic multiplier associated with the activated surface i,
[Montáns, 2001]. Each of these components can be related to the amount of translation of
the corresponding surface as

∆λin+1 = pn+1 ·
‖αi

n+1 −αi
n‖

H̄ i
·
〈
Q′

n+θ : µ̂
i
n+θ

〉
(5.40)

where
〈
Q′

n+θ : µ̂
i
n+θ

〉
ensures convexity of the function ∆λ(∆ǫ) in every condition [Montáns

and Caminero, 2007]. It consists of the projection of the amount of translation of the surface
i onto the deviatoric direction of flow deformation n̂n+θ. This formulation corresponds to the
continuous amount of translation of an arbitrary active yield surface, (see Equation (4.46) in
section 4.3.4). Equation (5.40) refers to a modified plastic modulus H̄ i such that

H ′1 = H̄1 and
1

H̄ i
=

1

H ′i
− 1

H ′i−1
. (5.41)

This modified plastic modulus is necessary since a duality exists between the plastic multiplier
and the plastic modulus. Thence formulations associating a global plastic multiplier to the
plastic modulus of the active surface, i.e. (∆λn+1,H

′i) are equivalent to (∆λ1n+1, H̄
1), which

are associated to the yield surface only.
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5.3.3 Set of equations

The last step of the integration process is the elaboration of the set of equations to be
solved. Firstly, the plastic correction Equation (5.15) is split into deviatoric and volumetric
components, i.e.

sn+1 = str − 2 ·G ·∆λn+1 ·P′
n+θ (5.42)

pn+1 = ptr − 3 ·K ·∆λn+1 · P ′′
n+θ (5.43)

where the return mapping direction is defined such that

Pn+θ = P′
n+θ + P ′′

n+θ · δ = Q′
n+θ + P ′′

n+θ · δ. (5.44)

The deviatoric part is associated. Thus Q′
n+θ is the deviatoric component of the normal to

the yield surface. By definition, n̂n+θ and Q′
n+θ have an identical direction, therefore the

following equation holds
Q′

n+θ = ‖Q′
n+θ‖ · n̂n+θ. (5.45)

Otherwise, by definition one gets

‖Q′
n+θ‖ = 2 · ‖s− p · α1‖n+θ

∥
∥
∥
∥

∂f

∂σ

∥
∥
∥
∥
n+θ

. (5.46)

The volumetric plastic potential is simply obtained by

P ′′
n+θ = (1− θ) · P ′′(ηn) + θ · P ′′(ηn+1). (5.47)

The evolution of the yield surface, i.e. the backstress variation of the first surface, is deduced
from Equation (5.40)

α1
n+1 = α1

n +
∆λ1n+1

pn+1
·H∗,1

n+θ · n̂n+θ (5.48)

where a new projected plastic modulus is introduced for the sake of readability

H∗,1
n+θ =

H ′1

Q′
n+θ : n̂n+θ

. (5.49)

Finally, the definition of the consistency condition is modified into

fn+1 = (sn+1 − pn+1 ·αn+1) : n̂n+θ − pn+1 ·
√

2

3
·M1 = 0 (5.50)

Equations (5.42) to (5.50) together with the Prager hardening rule and the plastic mul-
tiplier definition fully describe the model. Theoretically, they can be recast into a function
of only ∆λ1n+1, which is the plastic multiplier associated to the yield surface. However, due
to the non-associated volumetric plastic potential, the computation of exact derivatives for
a Newton procedure would be very cumbersome. Thus, four primal variables are chosen as
primary unknowns which would be associated to four residual equations to be minimised,
[de Borst and Heeres, 2002; Mira et al., 2009],

1. ∆λ1n+1 : plastic multiplier associated to the yield surface at the end of the step ;

2. pn+1 : mean effective stress at the end of the step ;
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3. H∗,1
n+θ : projected plastic modulus in n+ θ ;

4. ‖Q′
n+θ‖ : the norm of the deviatoric component of the normal to the yield surface,

in n+ θ.

The number of unknowns is unconventional with regard to other works such as [Mira et al.,
2009]. Indeed, most of the time, the unknowns are the components of the final stress tensor
σn+1, the components of the backstress tensor of the yield surface α1

n+1 and the variation
of the plastic multiplier ∆λ. Using only four unknowns considerably reduces the size of the
Jacobian matrix that must be computed during the Newton-Raphson process. Thence the
number of derivatives analytically computed is also reduced.

Introducing Equation (5.45) into (5.49), leads to the first residual equation

r1 =
H∗,1

n+θ

H̄1
· ‖Q′

n+θ‖ − 1. (5.51)

The second one enforces the consistency condition at the end of the step. Thus inserting
Equations (5.42) and (5.43) into (5.50) reads

r2 = (str − pn+1 ·αn) : n̂n+θ−
√

2

3
·pn+1 ·M1−2 ·G ·∆λn+1 ·‖Q′

n+θ‖−∆λ1n+1 ·H∗,1
n+θ. (5.52)

The plastic corrector Equation (5.43) and definition of ‖Q′
n+θ‖ (5.46) as well are directly used

as a residual equation

r3 = pn+1 − ptr + 3 ·K ·∆λn+1 · P ”
n+θ, (5.53)

r4 = ‖Q′
n+θ‖ − 2 · ‖s− p ·α1‖n+θ

∥
∥
∥
∥

∂f

∂σ

∥
∥
∥
∥
n+θ

. (5.54)

Residual have distinct order of magnitudes. First and fourth ones are dimensionless while
second and third ones have the dimension of stresses. Therefore it is wise, for numerical
purpose, to normalise r2 and r3 in dividing them by ptr.

5.3.4 Solution

Solving of the local set of equations is performed with the iterative Newton method coupled
with a line search algorithm, i.e.

xk+1 = xk − αk ·
[

Jk
]−1
· rk, (5.55)

where r is the vector of residual equations previously defined, x = [∆λ1n+1,pn+1,H
∗,1
n+θ, ‖Q′

n+θ‖]T
is the vector of unknowns and α is the line search parameter. It is possible to find an optimum
parameter α ensuring the norm of the residual vector ‖r‖ monotonically decreases, [Borja,
2013]. The line search method is useful to overcome oscillations that might appear during the
Newton algorithm. The original Newton procedure is recovered by imposing α = 1.
A geometric interpretation of the line search algorithm is illustrated in Figure 5.9 to solve
the equation r(x) = 0. A solution exists but the function presents a local minimum. Starting
from an initial guess x0, the Newton Method may be trapped into the local minimum (see
Figure 5.9a). On the contrary, the line search algorithm searches, for a given iterate, the α
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parameter that leads to a reduction of the residual. Then the process overcomes the local
maximum. An example is illustrated in Figure 5.9b. At iteration 1, the slope of the Newton
method J−1 is multiplied by α. The final α value adopted is the one which produces a new
iterate, x2 corresponding to a residual function r2 < r1.
Line search methods can be very sophisticated and interested reader might refer to [Bierlaire,
2006]. However in this work, the algorithm is activated only in case of bad convergence. A
secant method over the interval α ∈ [0, 1] is adopted to find an optimum α parameter5.

Figure 5.9: Illustration of Newton (a) and line search (b) algorithms.

The Newton method may be asymptotically quadratic. However the solution can oscillate or
even diverge if the initial iterate is not close enough to the solution, i.e. within the radius of
convergence [Rouainia and Wood, 2001]. Therefore the line search method might be essential
in this case. Convergence is quadratic only if derivatives are exact. In this work, exact ana-
lytical derivatives are computed in Appendix B.
The last key feature is the convergence criterion that has to be adopted to stop the local itera-
tive process. Convergence is deemed reached if residual equations are small enough. Another
point of view is to check the primary unknowns variation with respect to their current value,
i.e.

‖δx‖
‖x‖ . (5.56)

In this work, both criteria are tested simultaneously. The first one ensures residual equations
are verified and the second that the current state is nearly stationary.

5.3.5 Elastoplastic tangent operator

Once the local iterative procedure is solved, the final stress state σn+1 corresponding
to the increment of deformation ∆ǫ is computed. However, this outcome only holds for a
particular integration point. On the other hand the global finite element code requires the
determination of a consistent tangent operator in order to assemble the global stiffness matrix.
This is a fourth-order tensor, defined for a given integration point as

Cn+1 =
dσn+1

dǫn+1
. (5.57)

The consistent elastoplastic tangent operator must be differentiated from a classic continuum
one. Indeed, the former is obtained by enforcing the consistency condition of the discrete
algorithmic problem at the end of the step whereas the last results from the classic consistency
condition of the continuum problem, [Simo and Taylor, 1985; Simo and Hughes, 1998].
An accurate tangent operator is necessary to ensure the convergence of the global iterative
scheme, necessary to solve the boundary value problem. However a close form of Cn+1 is

5This induces assumptions on the convexity and uniqueness of α that have not been verified.
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not easily derived. This has been done for J2 plasticity [Simo and Taylor, 1985; Montáns,
2004; Montáns and Caminero, 2007; Mira et al., 2009]. However, in this particular case of
non associated volumetric flow rule and confinement dependent yield surface, Cn+1 is derived
by numerical perturbations. The method is described in
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5.3.6 Sub-stepping

The cost of a numerical simulation is measured by the cpu time spent

1. at the local scale : updating σn+1, computing the consistent tangent operator ;

2. at the global scale : inverting the global stiffness matrix.

The cost of the first local scale increases linearly with the number of unknowns. The growth
is cubic during the global solving. Consequently, the size of the time step is a key feature
to ensure an acceptable accuracy of the results. However, if deformations are localised over
several elements that are part of a large mesh, it is very inefficient to reduce the global time
step, only to increase the accuracy of the integration of few integration points.
Sub-stepping schemes are a solution to this shortcoming [Sloan, 1987; Manzari and Prachathananukit,
2001]. In this work, if Sub-stepping is required at a particular integration point, the defor-
mation increments ∆ǫ is decomposed into a succession of N identical subincrements δǫ. The
hypothesis that underlines the method is that the higher the norm of deformation increment
the higher the number of subincrements required to ensure a sufficient accuracy, i.e.

N = max

(‖∆ǫ‖
DIV

, 1

)

(5.58)

δǫ =
∆ǫ

N
(5.59)

where DIV is a user defined parameter. Indeed, more sophisticated procedures exist which
can update the direction of deformation during the Sub-stepping scheme or rule the step size
in controlling the error. The use of a Sub-stepping scheme might be very useful for closest
point projection methods. Indeed, if the initial guess in the Newton scheme if too far from the
solution, it does not converge. Therefore a Sub-stepping procedure increases the robustness
of the local algorithm. The effect of Sub-stepping on the computation of consistent tangent
operator is also a salient issue that is not tackled here. However, interested reader should
refer to [Perez-Foguet et al., 2001].

5.3.7 Algorithm

In this work, the midpoint rule is adopted to define the plastic return direction, i.e.
θ = 1/2. Indeed, it has been shown that this rule provides a second order accuracy for small
strain increments [Ortiz and Popov, 1985]. It was also observed during simulations that this
value provides a better accuracy of the results, especially when the variation of η is large over
a small deformation increment. Moreover, θ = 1/2 leads to unconditionally stable schemes,
[Ortiz and Popov, 1985; Mira et al., 2009]. Algorithms 1, 2 and 3 are provided in order to
summarise the procedure of the implemented algorithm which the steps are previously defined.
Shear, bulk and plastic moduli are updated at the beginning of each time step. Indeed, their
confinement dependency is not taken into account during the integration process. Therefore,
in the following algorithm, elasticity is assumed linear and plastic moduli are deemed constant
over a time step.
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Algorithm 1 Computation of ∆σ(∆ǫ)

1: INPUT : ∆ǫ, internal parameters

2: INITIALISE : ∆λ1n+1, H
∗,1
n+1/2, ‖Q′

n+1/2‖ and pn+1

3: INITIALISE : rk and Jk

4: while CRIT > TOL do

5: if GOOD CONVERGENCE then

6: xk+1 ← xk −∆x

7: COMPUTE rk+1, GO TO Algorithm 2

8: else

9: min
α

∥
∥rk+1

(
xk − α ·∆x

)∥
∥ GO TO Algorithm 2

10: end if

11: COMPUTE Jk+1

12: COMPUTE ∆x =
[
Jk
]
−1 · rk

13: k ← k + 1

14: end while

15: UPDATE : σn+1,αn+1

16: return

Algorithm 2 Computation of residual vector r

1: INPUT : ∆λ1n+1, H
∗,1
n+1/2, ‖Q′

n+1/2‖ and pn+1, internal parameters

2: α1
n+1 = α1

n +
∆λ1n+1

pn+1

·H∗,1
n+1/2 · n̂n+1/2

3: n̂n+1/2 =
sn − pn · α1

n + str − pn+1 · α1
n+1

‖sn − pn · α1
n + str − pn+1 · α1

n+1‖
4: Q′

n+1/2 = ‖Q′

n+1/2‖ · n̂n+1/2

5: COMPUTE ∆λn+1, GO TO Algorithm 3

6: sn+1 = str − 2 ·G ·∆λn+1 ·Q′

n+1/2

7: P ′′

n+1/2

(
ηn+1/2

)

8: COMPUTE

∥
∥
∥
∥

∂f

∂σ

∥
∥
∥
∥
n+1/2

and ‖s− p ·α‖n+1/2

9: COMPUTE r

10: return r
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Algorithm 3 Computation of ∆λn+1

1: ∆λ1n+1, H
∗,1
n+1/2, ‖Q′

n+1/2‖, pn+1 and internal parameters

2: α1
n+1 = α1

n +
∆λ1n+1

pn+1

·H∗

1,n+1/2 · n̂n+1/2

3: i =1 ; TEST =1 ; ᾱ← α1
n+1

4: while TEST >0 do

5: i=i+1

6: TEST = ‖ᾱ−αi
n‖ −

(
M i −M i+1

)
·
√

2

3
7: if TEST > 0 then

8: µ̂
i
n+1 =

ᾱ−αi
n

‖ᾱ−αi
n‖

9: ᾱ← ᾱ+

√

2

3
· (M i−1 −M i) · µ̂i

n+1

10: ∆λin+1 = pn+1 ·
‖ᾱ−αi

n+1‖
H̄i

·
〈

Q′

n+1/2 : µ̂i
n+1

〉

11: end if

12: end while

13: return ∆λn+1
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5.4 Examples

The purpose of this section is the verification of the integration scheme. It must be en-
sured that implemented algorithm corresponds to the analytical model. This step must be
distinguished from the validation step, ensuring the analytical model corresponds to reality
(see in previous Chapter). Therefore, the fully implicit general integration scheme imple-
mented in the finite element code LAGAMINE is firstly compared to an explicit scheme devoted
to simplified triaxial conditions in Matlab. A multi-axial loading is then investigated.
Unfortunately, data available in the literature about the Prevost model are scarce or even
non-existent. As a matter of fact, results of simulations are often provided but parameters
corresponding to nested surfaces are rarely mentioned. Therefore, it was not possible to
benchmark the results.

5.4.1 Triaxial simulations

A first comparison between classic drained monotonic triaxial tests in compression and
extension is provided in Figure 5.11. Parameters adopted for that comparison are provided in
Tables 5.1 and 5.2. They correspond to another set of parameters calibrated for Nevada sand
(Dr= 40%) that is presented in [Cerfontaine and Charlier, 2014]. The parameter n ruling the
confinement dependency of the moduli has been set to zero. This ensures stiffness parameters
are constant during the whole simulation and the scheme proposed is purely implicit.
The first two Figures 5.11a and 5.11b present a good concordance between explicit (dashed
and solid lines) and implicit (markers) formulations. Failure and phase transformation are
well represented. However, the graph of the reduced deviatoric stress ratio η = q/p′ is more
pertinent to assess the behaviour of the algorithm (see Figures 5.11c and 5.11d). Indeed, dur-
ing triaxial simulations, the stress state, backstress tensors, trial state and return deviatoric
directions are aligned. Therefore a variation ∆η is an indication of the translation of the
active surface.

Gref [MPa] Kref [MPa] η̄[-] Ψ[-] n [-]

40 66.67 0.8 1.0 0

Table 5.1: Set of parameters used for numerical verification of the model. Gref , reference
shear modulus; Kref , reference bulk modulus; η̄ and Ψ, parameters of the volumetric flow
rule; n, confinement dependency of the plastic moduli.

N◦ surf

M [-]

H’ [MPa]

α [-]

1 2 3 4 5 6 7 8 9

0.08 0.15 0.30 0.4250 0.64 0.775 0.92 1.045 1.14

150 100 30 10 2 1 0.4 0.15 0.01

0 0.05 0.1 0.175 0.26 0.225 0.22 0.155 0.14

Table 5.2: Set of parameters used for numerical verification of the model. M, opening of the
surface; H ′, plastic modulus; α, back stress in triaxial format.

It must be pointed out η is monotonically increasing. It means there is no unloading, nor
change of direction of the yield surfaces, simplifying the integration of the constitutive law.
The tricky point the algorithm has to manage is the transition from one active hardening
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surface to another. Indeed, in explicit integration scheme, the stress integration might be di-
vided into several sub-steps in order to manage the transition from one surface to another (see
Figure 5.10). The implicit algorithm manages this change adequately without intermediate
step.

Figure 5.10: Comparison of explicit and implicit scheme for the surface transition.

Table 5.3 summarises the range of deformation modelled and the number of steps required to
reproduce it. The average increase of deformation per step varies a bit between the tests but
is around 0.3 %/step. However, the size of the step varies during the simulation. As a matter
of fact, the loading process in LAGAMINE is ruled by an automatic strategy. The step size is
increased in case of good convergence and reduced otherwise.

p′0 [kPa]

ǫy [%]

Nb. steps [-]

Average [%]

50 150 250 50 150 250

8.7 8.7 8.7 -8.0 -8.0 -8.0

27 23 22 33 25 25

0.322 0.378 0.395 -0.243 -0.320 -0.320

Table 5.3: Number of steps necessary to reach the maximum |ǫy| deformation for implicit
algorithm (Classic monotonic drained triaxial test).

For instance, the extension simulation for an initial p′0 = 50kPa presents three step reductions.
The first two occur around the maximum of ǫv (see Figure 5.11d). Indeed, in this case, the
volumetric deformation is nearly constant and the direction of volumetric plastic deformation
P ′′ is close to zero. Then, there is a large variation of η where ǫv is very flat, which is not
easy to manage. Indeed, this change occurs for P ′′ = 0, might introduce some instabilities
within the iterative process.
The third step reduction occurs when the last surface (Nb. 9) is activated. There is a sharp
change in Figures 5.11c and 5.11d. Actually, the discretisation of plastic modulus evolution
should have encompassed several additional hardening surfaces in order to smooth the failure
behaviour.
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Figure 5.11: Monotonic classic drained triaxial test (strain-driven). Comparison between
implicit and analytical (explicit) formulations. Solid lines, compressive explicit simulations ;
dashed lines, extension explicit simulations ; markers, implicit simulations.

Constant mean effective stress triaxial tests are illustrated in Figure 5.12. They allow the
use of larger steps from 0.4%/step to -0.7%/step and seem to encounter less step reductions.
Implicit and explicit simulations match very well.

Undrained monotonic triaxial tests are provided in Figure 5.13. Classic asymmetric be-
haviours in compression and extension are observed. Implicit compressive tests match nicely
explicit simulations and the elbow created in the p’-q plane (see Figure 5.13a).
However, extension simulations exhibit discrepancies with "exact" results. The divergence
slightly starts during the contractive phase (see Figures 5.13b and 5.13d). Furthermore, the
difference between explicit and implicit curves is accentuated after the maximum of pore water
pressure δ∆uw = 0, i.e. when the behaviour switches from contractive to dilative. Actually,
it can be shown that all simulations are merged in a unique curve if they are plotted in the
plane η − ∆uw/p

′
0 (see Figure 5.13d). The plateau in Figure 5.13d corresponds to a phase

of quasi-liquefaction, since the ratio ∆uw/p
′
0 is very close to 1. However surfaces still harden

since η decreases. It can be observed in Figure 5.14b that this variation of η holds over a
very small range of vertical deformation. The final divergence occurs because the implicit
algorithm more slowly "escapes" from the initial liquefaction zone (see Figure 5.13d).
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Figure 5.12: Monotonic p’=cst drained triaxial test (strain-driven). Comparison between
implicit and analytical (explicit) formulations. Solid lines = compressive explicit simulations
; dashed lines = extension explicit simulations ; markers = implicit simulations.

The only way to overcome this difficulty is to adopt a Sub-stepping scheme (see Figure
5.14). The Sub-stepping scheme decomposes the time step into smaller ones with regard to the
increase of deformation encountered. Final results are of much better quality since the sharp
increase of η is better captured. However, the Sub-stepping scheme based on deformation
is not adapted since it is applied at each step, but it is only necessary for large variation of
η. As a matter of fact, a Sub-stepping scheme based on the stress variation should be much
suitable but more cumbersome to implement.

Three cyclic triaxial simulations are depicted in Figure 5.15 and in Table 5.4. They consist
in two undrained stress-driven and one drained strain driven LAGAMINE simulations. The stress
control ensures the stress path strictly varies within the bounds q = qoff±qcycl. On the other
hand, the Matlab routine is mixed controlled, i.e. increments of deformation are enforced and
a correction is applied if the stress path exceeds the prescribed bounds.

Simulation 1

Simulation 2

Simulation 3

Drainage Loading

Undrained q = 45± 40kPa

Undrained q = 30± 40kPa

Drained ǫy = ±0.083%

Table 5.4: Cyclic simulation parameters.
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Figure 5.13: Monotonic undrained triaxial test (strain-driven). Comparison between implicit
and analytical (explicit) formulations. Solid lines = compressive explicit simulations ; dashed
lines = extension explicit simulations ; markers = implicit simulations.
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Figure 5.14: Monotonic undrained triaxial test (strain-driven) with subintegration (S-).
Comparison between implicit and analytical (explicit) formulations. Solid lines = compres-
sive explicit simulations ; dashed lines = extension explicit simulations ; markers = implicit
simulations.
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There is a very good agreement between these curves although a small error is propagated
with regard to increasing number of cycles (see Figure 5.15a). Quantification of the error
is not easy between two time dependent responses. An attempt to do it is illustrated in
Figure 5.15d. Two stress states that share identical deviatoric stress and number of cycles are
compared since they are supposed to be in the same configuration. The error measurement
can be done on the mean effective stress, the deformation or the pore water pressure. This
last possibility was adopted. Absolute difference on the accumulated pore water pressure
is provided in Figure 5.15c with regard to the accumulated vertical deformation. The error
plot alternates maximum and minimum q values. The divergence increases linearly at the
beginning and starts oscillating when the stress path creates a close loop. Error observed
when q is maximum is lower than the error when q is minimum

The second couple of Figures 5.15e and 5.15f presents a similar good agreement between
the simulations. However, the stress path lies partially on the extension side and a flow
deformation is triggered (see Figure 5.15e). This is well managed by the explicit routine,
describing a butterfly wing loop before reaching initial liquefaction. On the other hand, the
implicit scheme is unable to overcome the instability and simulation stops. This stop may be
analysed as a failure (see Figure 5.15e) which finally also occurs for explicit simulation.

The third simulation in Figures 5.15g and 5.15h are fully strain-controlled. Pore water
pressure increases gradually with the number of cycles and the envelop of deviatoric stress
invariants decreases. In this case, the implicit model describes the butterfly wing pattern
while the explicit model reaches initial liquefaction.
Once again, the simulations depicted prove the high sensitivity of the modelling of cyclic
tests. However the major discrepancies are observed near the initial liquefaction or close to
failure. Reality and numerical modelling have in common to be very sensitive, if the stress
path reaches the initial liquefaction zone. Therefore it can be admitted the soil will fail and
the algorithm does not need to present a surgical accuracy.
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Figure 5.15: Cyclic undrained triaxial test. Comparison between implicit and analytical (ex-
plicit) formulations. Solid lines = compressive explicit simulations ; dashed lines = extension
explicit simulations ; markers = implicit simulations.
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5.4.2 Multiaxial simulations
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Figure 5.16: Prescribed displacement for complex loading.

Triaxial examples, though interesting, do not really highlight the capabilities of an inte-
gration scheme. Indeed, in this case, elastic predictor, normal and hardening directions of
each surface are collinear. In this section, multiaxial drained simulations are carried out on a
3D finite element. Simulations are strain-controlled and the loading consists of a combination
of two directions of displacement such that

x1(θ) = A1 · sin θ (5.60)

x2(θ) = A2 · sin(nθ · θ + φ) θ ∈ [0, 720]◦ (5.61)

where x1 and x2 are the two prescribed displacements, A1 and A2 are their amplitudes, nθ
and φ are parameters to be defined. The displacement imposed path describes a Lissajous
curve. An example of such a displacement is provided in Figure 5.16a. In this case, imposed
displacements, X and Y, of the upper face of the finite element, describe this pattern (see
Figure 5.16b). In a second simulation provided hereafter, normal Y and Z displacements are
imposed (see Figure 5.16c) and vary according to an identical Lissajous curve. In this section,
contrary to simplified triaxial expression, the invariant of deviatoric stress is always positive,
even in extension, i.e. q 6= σ1 − σ3.

A comparison of the results for different numbers of increments is provided in Figure 5.17.
The first Figure 5.17a depicts variations of shear stresses, describing a hourglass shape. The
loop is unclosed due to residual plastic deformation. The stress path related to this figure
is not easily analysed (see Figure 5.17b). The non-associated volumetric behaviour induces
variations of p producing an original stress path.
Information enclosed in this couple of figures is not sufficient to fully describe the stress state
within the soil sample. Indeed, the six components of the stress state vary during the loading
and a third invariant of stresses would be useful but once again difficult to interpret. A large
error seems to be accumulated between D and F if only 37 load steps are used. As a matter of
fact, between D and E, the variation of η = q/p is high and therefore the volumetric behaviour
is a source of error which introduces a deviation amplified between E and F. If the number of
time steps is multiplied by four, the integration leads to a more acceptable accuracy.

Starting from (x1, x2) = (0, 0), the Lissajous curve can be described in two opposite
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Figure 5.17: Multi-axial simulations with imposed displacement in the X-Y plane. Starting
point A, final point G. Influence of the number of time steps.
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Figure 5.18: Multi-axial simulations with imposed displacement in the X-Y plane : initially
positive or negative tangential shear stresses. Starting point A, final point B1 or B2.

senses of rotation. Final results obtained are not symmetric, although a kind of scaling can
be observed (see Figure 5.18a). This outcome underlines again that the volumetric plastic
hardening rule strongly affects results. This is obvious in Figure 5.18b where the stress paths
are definitely neither symmetric nor homothetic. Furthermore, reached final stress states are
quite different.

A second example of multi-axial loading is illustrated in Figure 5.19. It consists in an
identical 3D finite element but normal displacements are imposed onto two orthogonal faces
(normal oriented towards Z and Y axis, see Figure 5.16c). The stress path followed by the
material point is less complex than for a rotation. Thence, 36 time increments are nearly
sufficient to provide its accurate representation.

It is interesting to compare the effect of the hardening translation rule, i.e. Mroz or Prager
rule, on the stress path. This is done in the case of normal loading and results are provided
in Figure 5.20. Initially, the results are identical but rapidly diverge. Finally the relations
σyy−σzz are totally distinct and the stress paths, though presenting both a V shape, are also
different.
This figure shows that Mroz and Prager rule are not two ways of defining an identical hard-
ening rule. They define two distinct models, since they do not represent the same behaviour,
even for very small time steps. A comparison between two geometrical interpretations of
these rules is illustrated in Figure 5.21. In this figure, hardening µ and normal return n̂

directions are computed, as a function of an identical elastic predictor str. They are shown
to be completely distinct from each other, especially the µ1 direction. Therefore, results are
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Figure 5.19: Multi-axial simulations with imposed displacement in the Y and Z planes.
Starting point A, final point F. Influence of the number of time steps.
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Figure 5.20: Multi-axial simulations with imposed displacement in the Y and Z planes.
Comparison between Prager and Mroz hardening rules. Starting point A, final point BM
(Mroz) or BP (Prager).

obviously not identical. It must be pointed out that this divergence may only appear if a mul-
tiaxial loading path is considered. Indeed, during trixial simulations, all the aforementioned
directions are collinear and both hardening rules lead to identical results.

5.4.3 Convergence of the local iterative process

The local convergence of the Newton iterative procedure can be easily checked in repre-
senting the evolution of the residual equations. Indeed, if derivatives of theses equations are
correct and the initial guess of the solution is close enough, a quadratic rate of convergence is
supposed to be asymptotically reached. A quadratic convergence rate induces that a residual
ri reduces between iterations k and k + 1, such that [Mira et al., 2009]

rk+1
i ≈ C ·

(

rki

)2
, (5.62)

where C is a constant. Therefore in a logarithmic space, this relation leads to

log rk+1
i = logC + 2 · log rki (5.63)

which describes a straight line with a slope equal to 2 in logarithmic space. An example of
such a rate of convergence is provided in Figure 5.22a for two steps of a drained triaxial test.
Four residuals are represented and their tendency approaches to the quadratic convergence
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Figure 5.21: Comparison between Mroz and Prager hardening rules for nested surfaces.
Distinct hardening directions for a similar initial stress state.

rate. Results are not straight lines but oscillate around the mean tendency. This can be due
to several causes

• there are four unknowns that must be minimised together and describe a strongly non
linear set of equations ;

• exact derivatives are cumbersome to obtain and some mistakes can still exist ;

• the implementation of these derivatives adds many possibilities of discrepancies ;

• the Jacobian matrix is really ill-conditioned, due to the disparity in the nature of un-
knowns.

However, most of the time, the algorithm converges and its efficiency is deemed acceptable.
An example of divergence of the algorithm is provided in Figure 5.22b. Residuals clearly
oscillate around their initial values and keep increasing. The line search algorithm is then
applied to this case and finally leads to the convergence of the process (see Figure 5.22c).
The initial guess of the solution is of paramount importance. Indeed, the final solution ob-
tained is clearly dependent on this value. For example, a non-linear set of equations possessing
two unknowns (x1, x2) and four roots is solved for different initial conditions. The final solu-
tion provided by the Newton method as a function of the initial guess is provided in Figure
5.22d which clearly demonstrates this dependency.
However, in the Newton procedure implemented in the algorithm, this initial guess is difficult
to evaluate a priori, which may cause the divergence of the algorithm. Demonstration of the
uniqueness of a solution is a must in computational engineering. However such a mathemati-
cal demonstration is very cumbersome even for simple case, such as Von Mises surface type,
[Simo and Hughes, 1998].

5.4.4 Accuracy

The accuracy of the integration algorithm might be assessed by numerical experiments.
However, it does not replace a rigorous accuracy and stability analysis. Such a mathematical
approach are very inaccessible especially for complex models and algorithms. The so-called
isoerror maps, based on strain-controlled increments, are derived for that purpose, [Ortiz and
Popov, 1985; Simo and Hughes, 1998]. It consists in applying a combination of increments of
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Figure 5.22: Local convergence of the Newton method for a drained triaxial test.

deformation in two directions (∆ǫ1,∆ǫ2), from a converged stress state (σn,αn) at step n (see
Figure 5.23). Then, the updated stress state returned by the algorithm, σn+1, is compared
with an exact solution σ∗, obtained from a high number of smaller steps, e.g. 200 hereafter.
Thence, the error can be defined through

Error =

√

(σ∗ − σn+1) : (σ∗ − σn+1)√
σ∗ : σ∗

. (5.64)

Four isoerror maps are illustrated in Figures 5.24-5.27, in a complexifying sequence. The
first two maps are obtained for a single surface model. The last two consider nested surfaces.
All the surfaces are deemed to be isotropically centred at the beginning of the test and
their initial mean stress is equal to 100kPa. Details of the simulations are provided in Table
5.5. Increments of deformation are applied in vertical and horizontal directions, while the
deformation perpendicular to this plane is kept equal to zero. These increments are normalised
by the volumetric reference strain as

k =
p′0
Kref

= 1.5 · 10−3. (5.65)

The first isoerror map in Figure 5.24a starts from an isotropic stress state. The pattern
of this figure can be explained in the light of the absolute error in Figure 5.24c, the mean
stress in Figure 5.24d and the deviatoric stress in Figure 5.24d. The symmetry is obvious
since the starting state is isotropic. Thence increments of deformation in both directions have
an identical effect. If (∆ǫ1,∆ǫ2) → (0, 0), the error is null. In this case, the stress state lies
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Simul. 1

Simul. 2

Simul. 3

Simul. 4

Nb. surfaces [-] Start Active surf. ηinit.

1 elastic / 0.0

1 plastic / 0.448

9 elastic / 0.0

9 plastic 3 0.358

Table 5.5: Salient parameters that define the different isoerror maps. "Nb. surfaces", is
the number of surfaces that compose the model; "Start", is the state at the beginning of the
algorithm; "Active surf.", is the active surface at the beginning; "ηinit.", is the initial reduced
deviatoric stress.

Figure 5.23: Isoerror map concept in the deviatoric plane. σn is the converged stress state;
σ∗
i are the projection of the principal stress axes in the deviatoric plane; ∆ǫ1 and ∆ǫ2 are the

directions of increments of deformation.

within the elastic zone and no error is possible.
The highest absolute error is encountered when ∆ǫ1 and ∆ǫ2 are maximum (see Figure 5.24b),
which is expected, since the global deformation is maximum. In this case, the final deviatoric
stress (see Figure 5.24d) is maximum but so is the mean stress (see Figure 5.24c). Therefore
the relative error is not the highest. On the contrary, relative error is maximum when either
∆ǫ1 or ∆ǫ2 is maximum and the other one is null. This corresponds to a high deviatoric stress
but a moderate mean stress increase, i.e. a high reduce deviatoric stress η (see Figure 5.24e).
In this case, the predictor and return directions are collinear, since initial position of the yield
surface αn is equal to zero, thence

n̂n+1 =
(1− θ) · n̂n + θ · n̂n+1

‖(1− θ) · n̂n + θ · n̂n+1‖
=

str

‖str‖
. (5.66)

Thus, the error encountered is only due to the linearisation of the volumetric plastic variation
which depends on P ′′

n+θ(η) and the highest error appears for the highest variation of η.

The second simulation depicted in Figure 5.25 ceases to be symmetric. Indeed, the ini-
tial stress state before tracing the map is obtained after a drained compressive triaxial test.
Thence, increments ∆ǫ1 or ∆ǫ2 do not have a similar effect. Furthermore, the pattern is not
easy to analyse in this case. An interesting observation is that the initial reduced deviatoric
stress, initially equal to 0.448 decreases for a non negligible number of (∆ǫ1,∆ǫ2) combina-
tions, as shown in Figure 5.25b. This is the indication the stress state describes a rotation
onto the yield surface. This spiralling effect is not easy to represent and is more accurately
described with numerous substeps.
Two points near the origin of the axes have a final elastic state. Therefore, a final unloading
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Figure 5.24: Simul. 1, single surface model, starting point = elastic.

occurs. This unloading might only hold for a small part of the stress path over the time step
and can be ignored for a unique increment. This explains the high relative error observed for
(∆ǫ1/k,∆ǫ2/k) = (0.13, 0). Finally, this error is relatively important where η varies a lot, as
in the previous case.

The model composed of multiple surfaces provides a pattern more complex to dissect
(see Figure 5.26). The initial isotropic state leads again to a symmetric map. However, the
pattern is not as smooth as shown in the single surface case. Actually, a new source of error
is introduced by the nested surfaces. If the final active surface is different from the reference
solution, the plastic deformation is miscalculated. Figure 5.26b represents the combination of
(∆ǫ1,∆ǫ2) which finally activates a wrong surface with regard to the reference solution. The
dispatching of the wrong final surface explains the non smooth pattern observed in Figure
5.26a.

The last isoerror map combines nested surfaces and a non-isotropic initial state (see Figure
5.27a). Once again, it presents a pattern similar to the one described for a single surface.
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Figure 5.25: Simul. 2, single surface model, starting point = plastic.
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Figure 5.26: Isoerror map for a multi-surface model : Simul. 3 (starting point = elastic)

However, the error is amplified by the wrong final activated surface (see Figure 5.27b).
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5.5 Conclusion

This chapter highlights salient features of the numerical implementation of the Prevost
model in the finite element code LAGAMINE. The first part is dedicated to the choice of an
integration scheme. In this work, a closest point projection algorithm is adopted. The mid-
point rule is selected for the return mapping direction, i.e. it is computed at step n+ θ. This
scheme theoretically ensures an unconditional stability and a second order accuracy as well.
In this work, the Prager implicit translation rule is adopted to rule the kinematic hardening of
the surfaces. It overcomes discrepancies of the Mroz translation rule, such as the non-smooth
variation of flow direction. Finally a set of non-linear equations is elaborated and solved by
a Newton procedure coupled with a line search algorithm in case of bad convergence. The
elastoplastic tangent operator is computed by perturbation, to avoid cumbersome derivatives.
Numerical triaxial simulations are proposed to ensure the implicit integration algorithm cor-
responds to the actual model. The method exhibits a satisfactory accuracy with respect to
the step size. However, it is shown that it encounters sometimes step reduction due to a loss
of convergence in the Newton procedure. Undrained triaxial tests highlight the requirement
of Sub-stepping for extension triaxial simulations. As a matter of fact, the Sub-stepping re-
quirement should only be necessary for few time steps, describing the well-known elbow of the
stress path. In this particular case, a large variation of reduced deviatoric stress η spans over
a narrow range of deformation. Therefore, a Sub-stepping strategy based on stresses rather
than strains should be employed.
Cyclic triaxial undrained tests also present a good accuracy. However it is shown that error
is accumulated progressively with each cycle. In one particular case, the algorithm is not able
to reproduce an unstable stress path. However, this discrepancy is due to the stress-control
strategy rather than to the algorithm itself.
Although they can not be compared to an explicit integration of the equations of the model,
a self-comparison of results obtained for different time step sizes shows that the algorithm
manage pretty well complex loading paths. A comparison between Mroz and Prager rules for
such a loading highlights they finally define two distinct models. This effect is reinforced by
the non associated volumetric plastic behaviour.
Convergence of the algorithm was proven to be locally of quadratic rate, even if slightly os-
cillating. It assumes the derivatives of the analytical local Jacobian are correct. A special
case of non convergent procedure is depicted and its overcoming by a line search algorithm as
well. Finally the accuracy of the method is illustrated by the mean of isoerror maps. They
present complex patterns difficult to analyse. However, compared with the step size, error
encountered is more than acceptable.



Chapter 6

Interfaces

The meeting of two personalities is like the
contact of two chemical substances: if there is
any reaction, both are transformed.

Carl Jung
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6.1 Introduction

According to the Encyclopaedia Britannica, the tribology is the study of the interaction
of sliding surfaces. This very complex interdisciplinary topic is the cross-breeding between
mechanical engineering, material science and chemistry. It involves many different phenomena
such as friction, wear, lubrication and spans over many fields from metal forming to medicine.
Although the word tribology was only coined fifty years ago, empirical knowledge of the surface
interaction effects is far much older [Dowson, 1998]1.

History of tribology started during the paleolithic period, when the man conquered fire
and gave it birth by heating friction of wood on wood. Early Egyptian builders were known
to pour water in front a wood sledge in order to reduce friction during the transportation of
statues, in 2400 b.c. ! Aristotle in his book Quaestiones Mechanicae recognized the force of
friction and further observed that it was lower for round objects. Romans and Celts also dealt
with friction phenomena for their chariots, mills and other revolving wooden platforms.
However, a long time passed before the Renaissance and its brilliant torch bearer, Leonardo
da Vinci, brought science out of its torpor. He theorised the first laws of friction and stated,
in his Codex Atlanticus (see in Figure 6.1), that

• the force of friction is directly proportional to the applied load ;

• the force of friction is independent of the apparent area of contact.

Figure 6.1: Extracted of codex Atlanticus, Leonardo da Vinci’s notebooks.

The still unnamed tribology continued to develop, especially in the clock and machinery fields.
Impulsed by Francis Bacon, the advent of modern science started stimulating researchers
and great scientists worked on friction topics between 17th and 18th centuries. Guillaume
Amontons rediscovered classic rules and identified the roughness of the surface as the origin
of friction. Hooke worked on the rolling of a body. Euler introduced the greek letter µ
to describe friction resistance and wrote the first mathematics about friction [Euler, 1750].
Newton related friction and viscosity [Newton, 1686]. All the foundations were then laid for the
industrial revolution. The rise of machines increased the demand of tribology understanding
and it started scattering over all fields of science which are impossible to track extensively.
Charles Augustin Coulomb [Coulomb, 1821] and Charles Hatchett are two more distinguished
contributors that deserve to be cited.

Afterwards, friction and mechanical contact became only a part of the tribology. Math-
ematicians such as Hertz, resolved analytically equations of contact mechanics [Hertz, 1881].
The advent of computer opened a new field of possibilities and the first contact finite element
arose in the last sixties [Goodman et al., 1968] and after [Ghaboussi et al., 1973]. The eight-
ies marked a big step forward in contact mechanics, see for instance [Beer, 1985],[Curnier,

1The major part of the historical content of this introduction is based on this reference.
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1984],[Charlier and Cescotto, 1988] and [Gens et al., 1988]. An early nineties review about
contact mechanics shows an already abundant literature [Zhong and Mackerle, 1992].

From that point, contact and interface should be differentiated. While the contact is re-
stricted to a physical link between two solids, interface relates any different media. According
to the Encyclopaedia Britannica the Interface is a surface separating two phases of matter,
each of which may be solid, liquid, or gaseous. This field is much more large than the contact
mechanics and tribology. However, in this chapter, the focus is restricted on the hydro-
mechanical behaviour of the interface medium between two solids. An exhaustive review of
literature, even limited to this particular case would be a herculean task since many topics
are involved and extensively developed in many books. Therefore a subjective bibliography
summary is adopted and representative references are grouped in different topics hereafter.

• Analytic solutions. Analytic method field is still a seething domain of research. A
formulae-free review of recent advances can be consulted in [Barber and Ciavarella,
2000].

• Geometric considerations. Accurate and efficient search algorithms are of uttermost
importance to detect contact between two solids, to compute gap distance in between,
see for example [Wang and Nakamachi, 1997] and to ensure an impenetrability constraint
[Belytschko and Neal, 1991].

• Numerical formulation. Different approaches are addressed to solve the contact
problem within the finite element framework. Some authors adopt a continuum de-
scription of the interface with remeshing [Wang and Wang, 2006]. Some others use thin
layer elements [Sharma and Desai, 1993] or limit models [Wang et al., 2003]. The most
widespread approach is the zero-thickness interface element, see for example [Cescotto
and Charlier, 1993] or [Day and Potts, 1994] for a mixed formulation.

• Algorithmic. Each formulation requires special tools to integrate constitutive laws
[Christensen et al., 1998] and [Giannakopoulos, 1989]. Several algorithms are also avail-
able in order to ensure the contact constraint : Simo and Laursen [1992] develop an
augmented Lagrangian method; Habraken et al. [1998] adopt a penalisation method;
Zavarise et al. [1998] use a cross-constraint based method. A material point method has
been frequently applied to the mechanical contact problem in [Ma et al., 2014].

• Physics and constitutive laws. Exact physical behaviour of interfaces is not yet
perfectly known. The first mathematical description of the friction laws in [Coulomb,
1821] is frequently used to characterise the mechanical behaviour of interfaces. Thanks
to necessary experimental back-up, many constitutive laws have been developed related
to numerous materials [Wriggers, 2006]. Multiphysics couplings [Alonso et al., 2013] for
example are at the leading edge of research. The cyclic behaviour of interfaces is also of
paramount importance in many engineering applications [Shahrour and Rezaie, 1997].

• Applications. Practical use of interface modelling spans over many fields. Rock me-
chanics was the historical cradle of contact finite elements with the study of jointed
rocks [Goodman et al., 1968]. It is still an ongoing topic with the hydro-mechanical
coupling of the joints [Guiducci et al., 2002] and [Segura and Carol, 2004]. Mechanics
produces many fields of interest such as metal forming, which mobilises many researchers
[Charlier and Cescotto, 1988] and [Wriggers, 2006]. Soil mechanics also contributes to
the diversification with pile installation [Sheng et al., 2005] or offshore foundation [Cer-
fontaine et al., 2014] modelling. Finally medicine and biomechanics are an expanding
and very complex fields of applications [Rojek and Telega, 2001].
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In this chapter, the bases of contact mechanics are briefly reviewed. Contact kinematics
and geometric considerations are established. They allow the definition of the weak continuous
formulation of the mechanical contact. In rock and soil mechanics, interfaces and fault offer
most of the time preferential paths for fluid flow. Therefore, the contact theory is extended
to hydro-mechanical couplings.
The particular case of the 1D hydro-mechanical element implemented in the finite element
code LAGAMINE is then extensively developed, from the constitutive laws to the assembling of
the stiffness matrix. A geometric storage flow is added to the mass equilibrium in order to
tackle the unsticking problem. Simple 1D examples are then provided to highlight the physics
hidden behind this phenomenon. A comparison between 1D and 2D geometries and a simple
loading case is also addressed.



6.2. GENERAL CONCEPT OF CONTACT PROBLEM 143

6.2 General concept of contact problem

In the following, theoretical approach is mainly based on and influenced by the prolific
work of Peter Wriggers, and more precisely refers to [Wriggers, 1995; Wriggers and Zavarise,
2004; Wriggers, 2006] for the mechanical part. This section is only a humble summary and
interested reader should refer to the abundant literature for more details.

6.2.1 Definition of the problem
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Figure 6.2: Statement of the problem, mapping of two deformable bodies in their current
configuration, after [Wriggers and Zavarise, 2004]. ∂B1c denotes the boundary part on which
contact might occur, ∂B1t̄ stands for the traction loads imposed and ∂B1ū stems for imposed
displacements.

Mechanical part
Let us consider two deformable bodies Bα with α = 1, 2 (see in Figure 6.2). At time t ∈ R

+,
the mapping ϕα

t : Bα → R
3 associates the points Xα of the reference configuration Bα onto

their current positions xα = ϕα
t (X

α).
Both bodies are subject to boundary conditions on ∂Bα, identical to those defined in Section
2.4.1. However, a new non-classic condition holds in addition on ∂Bαc , where the contact
occurs. The movement of solids is considered quasi-static, i.e. inertial effects can be neglected.
Finally the mechanical behaviour of the solid is deemed rate independent.
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Figure 6.3: Example of fluid flows for an opened or a filled fracture between two rock blocs.
Arrows stem for fluid flux.

Hydraulic part
In rock mechanics, fractured media are either empty or filled with altered material. Their

proximity, even if they do not contact, creates a coupling between the flows that occur in
both volumes (see Figure 6.3). If both walls of a fault are in contact, a head loss might occur
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due to the altered material in between. Moreover, the fault creates a preferential path for
fluid flow to the outer world. If the fracture is open and both sides do no contact, there is a
convective exchange with ambient atmosphere. Consequently mechanical and hydraulic effects
are coupled, since an opening or closing of the fracture influences the hydraulic behaviour.
In soil mechanics, the role of interfaces (soil-structure interaction) is of uttermost importance
(see Figure 6.4).

(a) During the driving of a pile into the soil, a close layer of sand might be progressively
altered [White and Lehane, 2004; Holeyman and Kikuchi, 2005]. The dilation or con-
traction of that thin layer alters its permeability properties and the normal effective
stress.

(b) The horizontal loading of the pile may give birth to the unsticking between soil and pile
at the interface [Stuyts et al., 2011]. Therefore, the hydraulic flow is perturbed. When
dealing with offshore foundations, the void between both sides of the interface is filled
with water. Moreover, if the horizontal load is cyclic, the fault opens and closes which
involves a succession of contacts and losses of contact.

(c) Anticipating on the chapter 7, it can be shown that suction caissons combine these
effects. The soil might be altered along the shaft, which modifies its permeability.
Inside the caisson, unsticking of the soil and the structure occurs when the latter is in
tension. This unsticking vertical effect causes the "suction effect" resisting to the uplift
loading.

These examples endorse the need of interface boundary conditions able to reproduce the
fluid flows appearing in that particular conditions. Let us consider the two previous bodies
Bα with α = 1, 2, which are deemed sufficiently close from each other to involve hydraulic
interactions. Therefore, in addition to the classic hydraulic boundary conditions defined in
Section 2.4.2, a non-classic boundary condition, which is fluid pressure dependent, holds on
∂Bf,αc .
The mechanical contact interface ∂Bαc is different from the hydraulic contact interface ∂Bf,αc .
Indeed, considering the case of an open fracture between two rock blocs (see Figure 6.3),
mechanical contact between walls of the interface occurs only on a part of the total length
of both blocks. On the other hand, hydraulic flow holds for the whole interface between the
blocks, for the open and close parts of the fracture as well.

6.2.2 Contact kinematics

When dealing with contact mechanics, the concept of gap function, measuring the distance
between two bodies is of uttermost importance. Every point x2 lying on the contact boundary
∂B2 can be related to a point x̄1(ξ̄) ⊂ ∂B1 (see Figure 6.2), such that

gN
(
ξ̄
)
= min

x1⊆ϕ(∂B1
c )
‖x2 − x1(ξ)‖, (6.1)

where ξ is the vector of convective coordinates describing the surface ∂B1 and ξ̄ = (ξ̄1, ξ̄2) are
the coordinates of the projected point x̄1 in this basis. The uniqueness of that point induces
the implicit hypothesis that the boundary is at least locally convex. The unit normal vector
n̄1 and the tangent (non-unit) vector ā1 are defined at point x̄1. Thence, the gap function
reads

gN =
(
x2 − x̄1

)
· n̄1. (6.2)
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Figure 6.4: Examples of the role of interface in soil mechanics. (a) pile driving (b) pile
horizontal loading (c) offshore suction caisson.

Equation (6.2) means that the point x̄1 is the closest point projection of the so called "slave"
point x2 onto the master surface ϕ1(∂B1). Though its name, the gap function gN defines
either a gap (gN ≥ 0) or a penetration distance (gN < 0), if interpenetration of both solids is
allowed.

The partition of the two bodies into a slave and a master breaks the symmetry and attaches
more importance to one of the surfaces. This difference tends to vanish when the exact non
penetration condition is exactly satisfied [Wriggers and Zavarise, 2004]. Some authors propose
to manage equally both sides of the interface [Habraken et al., 1998], which requires a special
algorithmic treatment.

6.2.3 Ideal Mechanical contact constraint

Normal constraint
Two approaches can be adopted to ensure the contact constraint. A first low-precision con-

tact approach readily ensures that no geometric penetration of both bodies occurs and that
the stress distribution on the contact zone is accordingly computed [Wriggers, 2006]. The
low-precision terminology is adopted in the sense that the contact is described on a geometric
basis and is not ruled by a specific constitutive law. The second approach describes the contact
phenomena with a higher precision. It involves a precise knowledge of the micro-mechanical
behaviour of the interface and computes stress distribution based on a more complex consti-
tutive law.
The former approach will be described hereafter. However this description is "ideal" and is
mathematically more convenient. Indeed, it does not correspond to reality where asperities
introduce non-linearities in the normal behaviour, as it would be described later on.

The condition that prevents the penetration of body B1 into B2 is stated as gN ≥ 0. If
contact occurs (gN = 0), the associated normal component (p

′1
N ) of the effective Cauchy stress

vector (t1) along the interface must be non-zero

t1 = p′1N · n̄1 + t1T,β · ā1β β = 1, 2, (6.3)

where t1T,β are the tangential components of the stress tensor in two orthogonal directions.
The action-reaction principle entails t2 = −t1 at the contact point. The Hertz-Signorini-
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Moreau condition (Equation(6.4) [Wriggers, 2006]) is verified if the contact is frictionless, i.e.
t1T,β = 0, such that

gN ≥ 0, p′N ≥ 0, p′N · gN = 0. (6.4)

If a gap exists between both solids, i.e. gN > 0, the contact pressure is null. On the other
side, a contact gN = 0 involves positive contact pressure. This condition is referred to the
Karush-Kuhn-Tucker condition in optimization theory [Luenberger and Ye, 2008].

Tangential constraint
When both sides are in contact, two cases have to be distinguished : the stick and slip states.

In the former, two points in contact are not allowed to move in the tangential direction. In
the latter case, they are. The first condition implies that no relative tangential motion occurs
during the displacements of the bodies, meaning that the relative coordinates of the closest
point projection x̄1 does not change

˙̄ξ = 0. (6.5)

The transition from stick to slip state is ruled by a criterion defining a threshold of admissible
shear stress. Anticipating on constitutive law definitions, it can be defined as

f(t1) ≤ 0. (6.6)

If f = 0, the slip condition stands and a plastic relative tangential displacement occurs
ġslT ≥ 0. Otherwise, both bodies are stuck and no relative motion occurs, i.e. ġslT = 0. A
formalism identical to Equation(6.4) [Laursen and Simo, 1993] might be employed to write
these conditions

ġslT ≥ 0, f(t1) ≤ 0, ġslT · f(t1) = 0. (6.7)

Stress and deformation
In the following, normal and tangential deformation rates are grouped together in the vector

ġ =
[

ġN [ġT ]
T
]T
, (6.8)

where ġT is the vector of the variation of relative tangential displacement. It is a scalar in
case of 2D geometry. Normal and tangential stresses are merged into the tensor t previously
described in Equation(6.3)

t =
[

p′N [tT ]
T
]T
. (6.9)

6.2.4 Continuum description of the mechanical contact

First of all, a mechanical contact problem is nothing but a classic problem of solids me-
chanics with an additional constraint [Zavarise et al., 1998]. Therefore, each body Bα verifies
the classic equilibrium equations stated in Section 2.4.1, i.e.

divσ + f̄ = 0 inB, (6.10)

x = x̄ on ∂Bx̄, (6.11)

[σ]T · n = t̄ on ∂Bt̄, . (6.12)

The solution of the problem consists in finding the field of displacement ∆x for all x ∈ B that
verifies Equation(6.10)-(6.12), but is subject to the constraint inequality gN ≥ 0 over ∂Bαc .
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Therefore, considering a field of virtual velocities δẋ, the classic weak form of virtual power
principle, Equation(2.31), including contributions of both solids is rewritten as

2∑

α=1

∫

ϕα(Bα)
σ · ǫ [δẋ] dV ≥

2∑

α=1

[
∫

ϕα(Bα)
f̄ · δẋ dV +

∫

ϕα(∂Bα
t̄ )

t̄ · δẋ dΓ

]

, (6.13)

where the inequality in the weak formulation finds its origin in the contact constraint inequal-
ity. This latter can be removed if the contact boundary ∂Bαc is known. This is not trivial a
priori since the contact zone changes during the loading. Nevertheless searching algorithm
for contact area are out of the scope of this study. Then let us assume the contact zone has
been previously established. Consequently, the equality Equation(6.14) stands instead of the
inequality Equation(6.13).

2∑

α=1

∫

ϕα(Bα)
σ · ǫ [δẋ] dV

︸ ︷︷ ︸

δẆI,m

=

2∑

α=1

[
∫

ϕα(Bα)
f̄ · δẋ dV +

∫

ϕα(∂Bα
t̄ )

t̄ · δẋ dΓ

]

︸ ︷︷ ︸

δẆE,m

+δẆ c
E,m (6.14)

where δẆ c
E,m is the mechanical contact contribution to external virtual power. Plenty of

methods are available to take this component into account. The most widely used are shortly
listed hereafter but interested reader should refer to [Wriggers, 2006] for a deeper insight into
science.

1. The Lagrange multiplier method.

Lagrange multipliers are used to add a constraint to the weak form of the problem.
This method is the only one capable of dealing with exact contact constraint2. The
contribution of the Lagrange multipliers to virtual power reads

δẆ c,LM
E,m =

∫

∂Bc

(λN · δġN + λT · δġT ) da+
∫

∂Bc

(

δλ̇N · gN + δλ̇T · gT
)

da, (6.15)

where (λN ,λT ) are the Lagrange multipliers corresponding to (p′N , tT ) and (gN ,gT ) are
the normal and tangential gap functions.
In case of sliding, tangential stresses (tT ) have to be determined according to a consti-
tutive law, then

λT · δġT → tT · δġT , (6.16)

δλ̇T · gT → 0. (6.17)

2. The penalty method.

Penalty parameters (Kp > 0,KT > 0) are used to enforce the contact constraint while
authorising an interpenetration ḡN . Thence the contribution to the external virtual
power reads

δẆ c,P
E,m =

∫

∂Bc

KN · ḡN · δ ˙̄gN +KT · gT · δġT da (6.18)

Therefore, the constraint contact ceases to be exact since both bodies intersect each
other. It can be shown that the exact solution of the Lagrange multiplier method
can be recovered for (Kp,KT ) → ∞ [Laursen and Simo, 1993]. However, very high
penalty parameters might lead to ill-conditioned systems, numerical troubles and loss
of accuracy of the results [Kaliakin and Li, 1995]. Once again, if slipping occurs, the
product KT · gT · δgT must be replaced by tT · δgT .

2However it is not applicable for the modelling of a real contact, due to the non linearity that has to be
taken into account for the normal stress-strain relationship
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3. The augmented Lagrange method.

This method combines the penalty method or the constitutive interface laws with La-
grange multipliers in order to regularise the non-differentiable normal contact and fric-
tion terms. For the normal contact, the following formulation can be adopted

δW c,AL
E,m =







∫

∂Bc

(

λ̂N · δġN + δλ̇N · gN
)

dΓ for λ̂N ≤ 0,
∫

∂Bc

− 1

KN
· λNδλ̇N dΓ for λ̂N > 0,

(6.19)

where λ̂N = λN +KN · gN . This functional stands also for λ̂N > 0 which means that
the gap is open.

6.2.5 Hydro-mechanical continuum interface description

The strong form of the hydraulic equilibrium Equation(2.33)-(2.35) was already developed
in Section 2.4.2. It can be applied to both solid porous volumes. Due to the interface that
might exist between the two solid bodies, a non-classic pressure dependent boundary condition
q̃, holds on the surface ∂Bf,αc , such that

fTw,c · n = q̃ (∇uw) on ∂Bf,αc . (6.20)

The higher the pressure gradient between the solids and the inner interface, the higher the
fluid flow q̃. The fluid flows through the interface creates a hydraulic coupling between the
two volumes.
An idealisation of an open fracture is depicted in Figure 6.5. Both sides of the fault are con-
sidered to be independent solid volumes in their current configurations : ϕ1(B1) and ϕ2(B2).
The void between both solids can be either filled with altered material or empty. However
whatever the actual condition, this vacuum can be modelled as a third equivalent medium
ϕ3(B3) in which a fluid flow holds.
In case of empty fracture, the flow is most of the time considered as a laminar flow between
two parallel plates along the coordinates ξ [Boussinesq, 1868]. Thence, the third medium
ϕ3(B3) is subject to the classic equilibrium Equations(2.33), (2.34), (2.35) and to the reaction
of the non-classic boundary condition Equation(6.20).

The weak form of the equilibrium equations is stated in the same way that the mechanical
formulation. Starting from the Equation(2.40) of the virtual power, with δuw an admissible
field of variation of pore water pressure,

2∑

α=1

[
∫

ϕα(Bα)
Ṡ · δuw − fw ·∇ (δuw) dV

]

︸ ︷︷ ︸

δẆI,f

+δẆ c
I,f = (6.21)

2∑

α=1

[
∫

ϕα(Bα)
Q̄ · δuw dV +

∫

ϕα(∂Bα
q̄ )
q̄ · δuw dΓ

]

︸ ︷︷ ︸

δẆE,f

+δẆ c
E,f .

The contribution of the interface to the internal virtual power stands for the fluid flow inside
ϕ3(B3)

δẆ c
I,f =

∫

ϕ3(B3)
Ṡ · δuw − fTw ·∇(δuw) dV. (6.22)
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On the other hand, if the source term inside the interface is deemed null, the contribution of
the interface to the external virtual power comes from the fluid flow q̃ from the solid volumes
ϕ1(B1) and ϕ2(B2),

δẆ c
E,f =

∫

ϕ3(B3)
Q̄ · δuw dV +

∫

ϕ3(∂B3)
q̃ · δuw dΓ. (6.23)

Figure 6.5: Hydraulic characterisation of the interface between two solid volumes in their
current configurations ϕ1(B1) and ϕ2(B2). The flow is idealised to lie between two parallel
plates. f cw,1 and f cw,2 are transversal fluxes from the solids to the interface. f cw,3 and f cw,4 are
longitudinal fluxes inside the interface.

6.2.6 Constitutive laws for interfaces

6.2.6.1 Mechanical laws

The role of the constitutive mechanical law is to relate stress variations to displacements
variations, i.e.

ṫ = f(ġ). (6.24)

Many distinct laws are available for any type of material and strongly depend on param-
eters such as roughness, adhesion and micromechanical considerations. This short review
only focuses on rock and soil mechanics since they are the purpose of this thesis. However,
interested reader should refer to [Wriggers, 2006] for a deeper insight into constitutive laws
devoted to more mechanical topics (metal, rubber...). Most of the constitutive laws lie within
the framework of elastoplasticity. On one side, there is an analogy between the stick state
of the interface and classic elastic behaviour. On the other side, an analogy exists between
plasticity and slip behaviour. Therefore, the constitutive law requires some basic ingredients:

• an elastic compliance tensor, which rules the stick behaviour ;

• a yield criterion, distinguishing the stick and slip states ;
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• a flow rule describing the evolution of the yield surface.

The Coulomb description of friction is widely adopted [Curnier, 1984; Coulomb, 1821]
for its simplicity. This model is able to take into account non-associated flow rule [Charlier,
1987]. It will be described more extensively in Section 6.3.2. Nonetheless, this formulation
encounters a lack of smoothness, then existence and uniqueness can only be proved in partic-
ular cases [Oden and Pires, 1983]. Moreover the linear behaviour during the stick state and
the application to cyclic loading is brought into question.
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Figure 6.6: Normal stress-displacement behaviour in a rock joint, after [Tsang and Wither-
spoon, 1981] |gN | stands for the absolute value of the interpenetration function.

Some authors decide to start from the asperities level to describe the mechanical behaviour
of the interface. Majumdar and Bushan [1991] develop a fractal representation of the contact
surface. Tsang and Witherspoon [1981] start from the elliptical representation of a crack to
derive a model describing the behaviour of jointed rocks (see Figure 6.6). Relation between
normal stress and displacement ceases to be linear, which better coincides with experimental
results. Oden and Pires [1983] develop a non-local friction law based on the deformation of
asperities and on an averaged stress distribution.
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Figure 6.7: Hyperbolic yield criterion and softening law, after [Alonso et al., 2013]. c stands
for the cohesion and ϕ′ is the friction angle describing the yield criterion. gvpt,s is the viscoplastic
shear relative displacement.

Gens et al. [1990] propose a modified hyperbolic yield criterion as well as a hardening
law for friction angle and cohesion (see Figure 6.7). They adopt a non linear normal stress-
displacement relation. Such a law, called normal law is also described in [Bart, 2006] and
involves an asymptotic closure of a rock fault.

Desai et al. [1985] and Desai and Nagaraj [1988] merge two decoupled model to take
into account monotonic and cyclic behaviours of interfaces. A Ramberg-Osgood model is
suggested to take into account the shearing behaviour of the interface (see Figure 6.8). The
normal behaviour is also ruled by a virgin curve and allows loading/unloading non-linear
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Figure 6.8: Ramberg-Osgood model, after [Desai et al., 1985]. Ki and Ks are respectively the
initial and secant moduli. tr and grT are respectively stress and displacement that correspond
to a load reversal.

behaviours (see Figure 6.9). An application is provided to model a concrete-sand interface.
Mortara et al. [2002] develop a classic multi-surface model for describing cyclic behaviour of
the interface (see Figure 6.10). The first elastic surface move within the bounding surface that
may harden. This allows plasticity effect in both loading and unloading. Characterisation of
steel or concrete sand interface is still an open ongoing research topic. For instance, DeJong
et al. [2006] use particle image velocimetry in order to study localised shear band in the
interface and derive simple models which could be applied to boundary value problems.
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Figure 6.9: Normal behaviour of a thin layer interface, after [Desai and Nagaraj, 1988].
Kn0 is the initial loading modulus. Reloading moduli kt1 and kt2 evolve with the normal
displacement.

6.2.6.2 Hydraulic laws

The study of fluid flow into faults and interface media is mainly a rock mechanics concern.
It is well-established that fluid flows between two sides of a fault can be described by analogy
with the so called cubic law stated in [Boussinesq, 1868]. It is applicable to steady laminar
flow of viscous incompressible fluids in a fracture composed of two smooth parallel horizontal
walls and states that the flow rate is proportional to the cube of the fracture aperture [Segura
and Carol, 2004; Guiducci et al., 2002; Alonso et al., 2013]. Therefore the mass flux per unit
length reads

Qf = ρw ·
e3

12 · µw
·∇uw, (6.25)

where ρw is the fluid density, e is the hydraulic aperture, µw is the dynamic viscosity of the
fluid and ∇uw is the gradient of pore water pressure parallel to the plates.
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p

t

Stress state

Figure 6.10: Bounding surface constitutive law for interface behaviour, after [Mortara et al.,
2002].

However most of the time, this flow rule cannot be so straightforwardly applied. The hydraulic
aperture e is different from the mechanical aperture of the fault E, due to the roughness and
the tortuosity. Tsang and Witherspoon [1981] prove the validity of the cubic law in which
the cube of the hydraulic aperture e3 is computed as a weighted averaging of the cube of
the variable aperture 〈e(x, y)3〉 over the fault. Olsson and Barton [2001] derive an empirical
relation between them depending on the joint roughness (see Figure 6.11) and extend it to
predict the relation between fluid flow and shearing. Many interesting papers are available
about hydraulic behaviour of rock joints but are out of the scope of this study, for example
[Jing, 2003; Boulon et al., 1993].
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Figure 6.11: Relation between hydraulic aperture e and mechanical aperture E of a fault,
depending of the joint roughness JRC, after [Olsson and Barton, 2001]
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6.3 1D Hydro-mechanical interface element in LAGAMINE

This section aims at describing the 1D zero-thickness hydro-mechanical finite element
actually implemented in the finite element code LAGAMINE. The discretisation of the domain,
mechanical and hydraulic constitutive laws, the energetically equivalent nodal forces and the
derived stiffness matrix as well are addressed. This summary is mainly based on the work of
Charlier [1987], Habraken et al. [1998] and Barnichon [1998].

6.3.1 Discretisation

The continuum interface ∂B is approximated by the discretised nce finite elements (see
Figure 6.12)

∂Bh =

ne
c⋃

e=1

Γe. (6.26)

The 1D element developed possesses three nodes. Thus shape functions are parabolic, [Zienkiewicz
and Taylor, 2000]. The primary unknowns are the nodal generalised coordinates u, interpo-
lated along the element through

ue (ξ) =

nc∑

i=1

φi (ξ) · ui and ∆ue (ξ) =

nc∑

i=1

φi (ξ) ·∆ui. (6.27)

In the finite element code LAGAMINE, designations structure and foundation replace master and
slave to denote the both sides of the interface3. Interface elements (foundation and structure
as well) are merged with the external segments of volume elements Ωe (see Figure 6.13c).
Thence they use the same nodal unknowns and create a coupling between the two solids.
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   B c   |B

Continuum Discretisation

Figure 6.12: Discretisation of the continuum, inspired by [Wriggers, 2006]. B1 and Γ1 stand
for the continuum volume and contact boundary respectively. B1,h and Γ1,h are their discrete
counterparts composed by finite elements Ωe and Γe.

It has been shown in Section 6.2.5 that interior of the fault has also to be modelled. Therefore,
degrees of freedom have to be added between the sides of the interface. Since the hypothesis
of a laminar flux between two parallel plates is adopted, the longitudinal flux depends only on
the longitudinal pressure gradient. Therefore only pressure degrees of freedom are necessary
in between. A three node formulation is adopted, i.e. the fluid flow through the interface is

3No gods, no masters.
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modelled by three successive nodes (foundation, interior, structure) [Segura and Carol, 2004].
If parabolic elements are assumed in front of each other (see Figure 6.13b), the discretisation
leads to

• three nodes on the structure side, associated to three DOFs : xS, yS , uSw ;

• three nodes in between the interface, associated to a single DOF : uIw ;

• three nodes on the foundation side, associated to three DOFs : xF , yF , uFw .

Interpolation functions for mechanical and hydraulic degrees of freedom are of equal order.
Fields of pressure are discretised on both walls of the interface and inside. Therefore, gradients
of pressure exists longitudinally and transversally.
However, structure and foundation are free to slip relatively and nodes are not aligned a
priori. Thence the treatment of geometry is not an easy job. For a given time step, one has
to find the current foundation segment vis-à-vis the structure element. The geometrical and
algorithmic implications are out of the scope of this study, since special search algorithms
are required. However the interested reader should refer to [Cescotto and Charlier, 1993]
or [Habraken et al., 1998] or [Wang and Nakamachi, 1997] to dig into the wonderland of
algorithmic tricks.
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(a) Mechanical discretisation :(e1, e2) is the global
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Figure 6.13: 1D Hydro-mechanical interface element in LAGAMINE code.

Mechanical constitutive laws for contact elements must be defined depending on normal
and tangential stresses at the current contact interface. Consequently a corotational La-
grangian formulation is adopted in the following and a local basis (e′1, e

′
2) evolving with the

structure has to be defined. A mapping ϕ : R2 → R relates global to local coordinates. The
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global coordinates of the structure (xS1 , x
S
2 ) are interpolated from nodal coordinates over the

element with,

xS =

[
xS1
xS2

]

=

[
φSi (ξ) · xS1,i
φSi (ξ) · xS2,i

]

, (6.28)

where φs(ξ) are the shape function of the structure side of the interface element and xS1,i the
nodal coordinates. The Jacobian of the transformation and its norm are easily computed
based on

JS =







∂xS1
∂ξ
∂xS2
∂ξ






=







∂φSi
∂ξ
· xS1,i

∂φSi
∂ξ
· xS2,i







and |JS | =

√
(
∂xS1
∂ξ

)2

+

(
∂xS2
∂ξ

)2

. (6.29)

The Jacobian matrix is nothing but a vector tangent to the element at any point (xS1 , x
S
2 )

belonging to the element. Therefore, a local basis of two orthonormal vectors (e′1, e
′
2) is easily

constructed. The so-called rotation matrix is composed of these two unit vectors

R =
[
e′1 e′2

]
=

1

|JS | ·







∂xS1
∂ξ

−∂x
S
2

∂ξ
∂xS2
∂ξ

∂xS1
∂ξ






=

1

|JS | ·







∂φSi
∂ξ
· xS1,i −

∂φSi
∂ξ
· xS2,i

∂φSi
∂ξ
· xS2,i

∂φSi
∂ξ
· xS1,i






=

[
DX1 −DX2

DX2 DX1

]

.

(6.30)
The local basis is subsequently defined at each point of the element and a unique relation
exists between local (e′1, e

′
2) and global coordinates (e1, e2), as shown in Figure 6.13a,

[e1 e2] = R ·
[
e′1 e′2

]T
(6.31)

[
e′1 e′2

]
= RT · [e1 e2] . (6.32)

6.3.2 Mechanical constitutive law

The Lagrange multiplier method involves a continuously changing number of unknowns
(due to the activation or not of contact constraint), which is crafty and cumbersome [Zavarise
et al., 1998]. On the other hand the Penalty method is easily implemented in any finite element
code and is stable if the ill-conditioning risk is kept in mind by a careful user. Consequently
the latter has been implemented in the LAGAMINE code many years ago [Charlier, 1987].

Defining absolute deformation is senseless since both bodies may encounter very large
relative displacements. Therefore, the algorithm is incrementally defined and the purpose
of the mechanical constitutive law consists in relating effective stress rate (ṫ′) to relative
velocities (ġ) by means of the local compliance tensor Cst. The stiffness parameters that are
identified to the penalty coefficients are rate independent. There is consequently no viscosity
effect in the behaviour of the interface,

ṫ′ = Cst · ġ, (6.33)

where the two components of relative velocities ġ are

• ġT : the relative tangential velocity.

• ġN : the normal relative velocity.
It’s noteworthy that if both sides are close enough, the absolute displacement gN makes
sense and may be used to distinguish between contact and no contact conditions.



156 CHAPTER 6. INTERFACES

The two components of the local effective stresses are

• ṫT : the variation of local shear stress.

• ṗ′N : the variation of normal effective stress.
The total normal stress is computed according to the Terzaghi postulate for saturated
soils : pN = p′N + uw. The normal effective stress is positive in compression and
cannot be negative unless cohesion is allowed in the interface. In the finite element code
LAGAMINE, the contact condition is

p′N > 0. (6.34)

The compliance tensor Cst remains undetermined. As previously defined in Section 6.2.3
and summarized in Table 6.14a, the state of the interface is either stick (st), slip (sl) or
without contact (nc). All these states are gathered within the framework of elastoplasticity
[Gens et al., 1988] or [Sheng et al., 2005].
Obviously, when there is no contact, the compliance tensor as well as stresses are null, such
as

Cst = 0 (6.35)

p′N
|tT |
gN

Cst

E-P

No contact Stick Slip

= 0 > 0 > 0

= 0 ≥ 0 = µ · p′N
≥ 0 < 0 < 0

0 Equation(6.36) Equation(6.46)

Apex Elastic Elastoplastic

(a) Relation between elastoplastic parameters and stick/slip/no con-
tact state.

T

p'

Elastic 
domain

Plastic 

(b) Representation of the yield Mohrt-
Coulomb criterion.

Figure 6.14: Elastoplastic formalism for the mechanical behaviour of the interface.

The exact stick state (no relative displacement either normal or tangential) is regularised
by penalty parameters (KT ,KN ) in order to be more numerical-friendly to deal with. This
condition corresponds to an elastic state and the aforementioned compliance tensor becomes

Cst =

[
KT 0
0 KN

]

(6.36)

The Mohr-Coulomb yield criterion is widely used in soil mechanics either for describing vol-
ume or interface behaviours. Although it was shown by Mortara et al. [2002] that more
accurate constitutive laws have to be adopted in order to accurately capture monotonic or
cyclic behaviour of interfaces, the Mohr-Coulomb criterion with perfect plasticity was adopted
hereafter for the sake of simplicity. The justification is twofold. Firstly, only few parameters
are necessary to run computations. Secondly, in a suction caisson application, the suction is
the major source of resistance and the degradation of the friction along the shaft, although
existing, might be neglected as a first approximation.

A 2D representation of the Mohr-Coulomb criterion is depicted in Figure 6.14b and its
mathematical formulation reads

f = |tT | − µ · p′N ≤ 0, (6.37)
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where f < 0 indicates a stick (elastic) state and f = 0 stands for slip (plastic) state. The
total relative velocity is split into its stick ġst and slip ġsl components, such as

ġ = ġst + ġsl. (6.38)

Therefore the effective stress variation inside the interface is computed through

ṫ′ = Cst ·
(

ġ − ġsl
)

. (6.39)

The slip component is defined as

ġsl = λ̇ · ∂h
∂t′

, (6.40)

where λ̇ is the plastic multiplier and h stands for the plastic potential, which could be non
associated (α 6= µ)

h = |tT | − α · p′N (6.41)

When the slip state is activated, the so-called consistency condition must be enforced, i.e.

ḟ ≡ ∂f

∂t′
· ṫ′ + ∂f

∂µ
· µ̇ = 0 (6.42)

where µ̇ allows the hardening of the yield function f . It can be described by the general
equation

µ̇ = λ̇ · hµ (6.43)

where hµ is the hardening direction of the internal variable µ.

Introducing Equations(6.39), (6.40) and (6.43) into Equation(6.42) leads to the plastic
multiplicator Equation (6.44)

∂f

∂t′
·Cst ·

(

ġ− λ̇ · ∂h
∂t′

)

+
∂f

∂µ
· µ̇ = 0

⇔ λ̇ =

∂f

∂t′
·Cst · ġ

∂f

∂t′
·Cst · ∂h

∂t′
− ∂f

∂µ
· hµ

. (6.44)

Thence, the explicit computation of the final stress state is straightforward

σ̇c = Cst ·
(

ġ − λ̇ · ∂h
∂t′

)

= Csl · ġ (6.45)

In this document, two hypotheses are formulated

• α = 0 meaning that no coupling exists between the shearing of the interface and the
normal relative displacement. A non-zero α parameter is more suited for the simulation
of rock joints, which is not the purpose of this thesis.

• µ̇ = 0 meaning that the resistance of the interface does not vary. This hypothesis is
more subject to caution, since the friction available along the interface, particularly
during cyclic loading, is prone to evolve [Ho et al., 2011]. Different causes are likely to
explain these changes [White and Lehane, 2004; Lings and Dietz, 2005]:

– crushing of the sand grains ;

– hardening or softening of the soil close to the structure ;

– polishing of the structure due to the abrasive effect of the sand.
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Therefore, combining Equation(6.45) and Equation(6.44), the local elastoplastic compliance
tensor is eventually computed

Cst = Csl =




0 KN · µ ·

tT
|tT |

0 KN



 (6.46)

A summary of the different states is provided in Figure 6.14.

6.3.3 Hydraulic constitutive laws

Similarly to the mechanical laws, hydraulic constitutive laws relate the fluid flux fw to
the gradient of pressure ∇uw and the gap function variations

fw = h(∇uw, ġN ) (6.47)

As stated before, fluxes are of threefold natures

• longitudinal f lw; due to the preferential path created by any fault, fracture or interface;

• transversal f tw; exchange between sides of the interface and the fracture, fault, interface;

• storage f sw; due to the mechanical opening/closing of the fracture and/or to the variation
of ρw(uw). This term is necessary to ensure the mass conservation and creates a hydro-
mechanical coupling.

6.3.3.1 Transversal fluxes

Whatever the nature of the interior of the interface, filled with altered material or open
fracture, a fluid flow occurs within it, unless the interface is impermeable. Therefore, the
interior flow is connected with the flows in both solids surrounding it. They only depend on
the pressure gradient between each of the solid volume and the interior medium. They are
proportional to a transverse transmissivity T t

w. This transmissivity finds its physical meaning
in the hydraulic head loss encountered by the fluid flow, when the medium changes,

f tw,1 = T t
w,1 ·

(
uFw − uIw

)
· ρw, (6.48)

f tw,2 = T t
w,2 ·

(
uIw − uSw

)
· ρw, (6.49)

where uFw is the pore pressure on the foundation side, uIw the pore pressure inside and uSw on
the structure side. Obviously, this transmissivity differs if a fracture is open (fluid flow trough
the solid and atmosphere) or if the fracture is filled with water or altered material. These
particular cases have to be differentiated.

6.3.3.2 Longitudinal flux

Since the assumption of 1D laminar flux between two parallel plates was deemed valid,
the generalised Darcy flow law is adopted to describe the longitudinal flux, Section 6.2.6.2.
This hypothesis is valid for both filled or empty interior medium. Indeed, if an open fracture
is modelled, this law can be applied with an equivalent intrinsic permeability equal to e2/12,
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where e is the hydraulic aperture. On the other hand, if the fault is filled with a material, its
actual permeability can be adopted,

f lw =
−kl
µw
·
(
∇nξ

uw + ρw · g ·∇nξ
x2
)
· ρw, (6.50)

where kl [m2] is the permeability in the direction of nξ and g the gravity acceleration. The
full developments of ∇nξ

uw and ∇nξ
x2 are given in appendix C.

6.3.3.3 Storage

It was shown in Section 6.2.1 that walls of the interface can be unstuck, e.g. during
horizontal loading of a pile or tension of a suction anchor. Therefore, the interior medium is
a void that must be filled. As a main hypothesis, it is assumed the vacuum is fully saturated
with water (see Figure 6.15). It makes sense in the particular case of offshore engineering.
Moreover, the suction effect appearing in the case of offshore foundation in tension, generates
a drop of pore water pressure that may affect the specific mass of the fluid.

Foundation

Structure

gN=0

Stored fluid : V

Unsticking

e1

e2

gN>0

Figure 6.15: Unsticking of the interface element. Stored fluid between two neighbouring
elements.

Consequently, a storage flux Ṡ is necessary to verify the mass conservation equation,
defined in the weak formulation of the virtual power Eq (6.22). Let us consider a volume of
interior medium (see Figure 6.15), i.e. a space V between the walls of the interface filled with
water. The storage flux is equal to the variation of mass fluid stored in between, i.e.

Ṡ =
d

dt
(ρw · V )

= ρ̇w · gN · L+ ρw ·
(

ġN · L+✟✟✟✟
gN · L̇

)

=
∂ρw
∂uw

· ∂uw
∂t
· gN · L+ ρw · ġN · L

=
ρw,0

χw
· u̇w · gN · L+ ρw · ġN · L (6.51)

where

• V is the volume of the void to be filled in;

• L is the length of the void considered, its variation L̇ is deemed negligible ;

• gN > 0 is the gap between both sides ;

• ρw is the fluid specific mass which is assumed be pressure dependant through the lin-
earised relation

ρw = ρw,0 ·
(

1 +
uw − uw,0

χw

)

(6.52)
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where

– ρw,0 and uw,0 are the reference fluid specific mass and pressure, respectively ;

– χw is the water compressibility.

The storage flux per unit of surface is then obtained readily in dividing the storage expression
Ṡ Equation (6.51) by L. This flux is positive for storage and negative for emptying,

f sw =
ρw,0

χw
· u̇w · gN + ρw · ġN . (6.53)

6.3.4 Contribution of the interface element to the energetically equivalent
nodal forces

6.3.4.1 Internal energetically equivalent nodal forces (hydraulic part)

Energetically equivalent nodal forces were derived in Section 2.5 from the weak formulation
of the continuum equations. Contributions of the interface elements to equivalent forces can
be derived in the same fashion. Let us consider the contribution to internal power of the
contact, i.e. Equation (6.22), for an arbitrary element of the discretised interface Γe. If both
solids are close enough, the space between them is prone to develop fluid flow. Therefore the
following equation holds on ϕ3(B3), i.e. the equivalent medium created inside the interface,

δẆΓe
I =

∫

ϕ3(B3(Γe))
f sw · δuΓe

w − f lw ·∇nξ
(δuΓe

w ) dV

=

nc
n∑

i=1

[
∫

ϕ3(B3(Γe))
f sw · φi − f lw ·∇nξ

φi dV

]

· δuΓe
w,i

=

nc
n∑

i=1

FΓe
I,i · δuΓe

w,i (6.54)

=
[

FΓe
I

]T
· δuΓe

w , (6.55)

where Equation (6.55) is the vectorial form of Equation (6.54), ncn is the number of nodes of
the interface element, ∇nξ

is the directional gradient of uw and FΓe
I is the vector of internal

energetically equivalent nodal forces associated to the element Γe.

A generalised midpoint rule may be adopted to take into account the fluxes in the element
such as in mechanical integration of a constitutive law [Mira et al., 2009]. It means fluid fluxes
are evaluated a time t+ θ∆t, θ ∈ [0, 1], in which θ = 0 holds for an explicit integration of the
law and θ = 1 stems for implicit integration. Therefore, storage and longitudinal fluxes are
obtained by a linear combination

f lw

∣
∣
∣
t+θ∆t

= − k

µf
·
[

θ ·
(
∂uw
∂ξ

)∣
∣
∣
∣
t+∆t

+ (1− θ) ·
(
∂uw
∂ξ

)∣
∣
∣
∣
t

+ γw ·
∂x2
∂ξ

]

· ρw (6.56)

f sw|t+θ∆t = θ · f sw|t+∆t + (1− θ) · f sw|t . (6.57)

Therefore, the expanded expression of FΓe
I,i reads

FΓe
I,i =

∫

ϕ3(B3(Γe))

(

f sw · φi −
f lw
|J| ·

∂φi
∂ξ

)∣
∣
∣
∣
t+θ∆t

dV

=

∫

ϕ3(B3(Γe))

({
ρw,0

χw
· u̇w · gN + ρw · ġN

}

· φi −
f lw
|J| ·

∂φi
∂ξ
·
)∣
∣
∣
∣
t+θ∆t

dV

(6.58)
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where the derivation of ∇nξ
uw is given in appendix C.1. The gap variation ġN is developed

to depend on the global coordinates

ġN =
[
0 1

]
·RT ·

[
ẋS1 − ẋF1
ẋS2 − ẋF2

]

=
1

|J| ·
[

−∂x
S
2

∂ξ

∂xS1
∂ξ

]

·
[
ẋS1 − ẋF1
ẋS2 − ẋF2

]

=
1

|J| ·
[

−∂x
S
2

∂ξ
·
(
ẋS1 − ẋF1

)
+
∂xS1
∂ξ
·
(
ẋS2 − ẋF2

)
]

. (6.59)

Since the global discretised interface is composed of nce elements, they have to be assem-
bled together using Equation(6.26) to form the vector of hydraulic nodal forces associated to
interface elements Fc

I

Fc
I =

nc
e⋃

e=1

FΓe
I . (6.60)

6.3.4.2 External energetically equivalent nodal forces (hydraulic part)

External energetically equivalent nodal forces due to the transversal fluid fluxes can be
derived in the same way from the weak formulation Equation(6.23), if the source term on
ϕ3(B3) is deemed null, such that

δẆΓe
E =

∫

ϕ(Γe)
q̃ · δuΓe

w dΓ

=

nc
n∑

i=1

[
∫

ϕ(Γe)
q̃ · φi dΓ

]

· δuΓe
w,i

=

nc
n∑

i=1

FΓe,f
E,i · δu

Γe
w,i

=
[

F
Γe,f
E

]T
· δuΓe

w (6.61)

where F
Γe,f
E is the vector of hydraulic external energetically equivalent loads associated to

the element Γe and q̃ is the non-classic boundary condition that holds on the sides of the
interface. The same midpoint rule is used to integrate the transversal fluxes

q̃ = f tw
∣
∣
t+θ∆t

= θ · f tw
∣
∣
t+∆t

+ (1− θ) · f tw
∣
∣
t

(6.62)

However the expression of q̃ depends on the side of the interface considered.

• Structure side

FΓe,f
E,i =

∫

ϕ(Γe)

(
T t
w,2 · (uIw − uSw) · ρw

)∣
∣
t+θ∆t

· φi dΓ (6.63)

• Foundation side

FΓe,f
E,i = −

∫

ϕ(Γe)

(
T t
w,1 · (uFw − uIw) · ρw

)∣
∣
t+θ∆t

· φi dΓ (6.64)
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• Interior

FΓe,f
E,i =

∫

ϕ(Γe)

(
T t
w,1 · (uFw − uIw)− T t

w,2 · (uIw − uSw) · ρw
)∣
∣
t+θ∆t

· φi dΓ (6.65)

Finally the vectors FΓe
E are assembled together as

F
c,f
E =

nc
e⋃

e=1

F
Γe,f
E . (6.66)

6.3.4.3 External energetically equivalent nodal forces (mechanical part)

External energetically equivalent nodal forces due to mechanical coupling can be derived
in the same way, from the weak formulation Equation(6.23),

δẆΓe,m
E =

∫

ϕ(Γe)

(

pN · δġΓe
N + tT · δġΓe

T

)

dΓ

=

nc
n∑

i=1

[
∫

ϕ(Γe)
[tT , pN ] ·RT · φi dΓ

]

· δẋΓe
i

=

nc
n∑

i=1

[

F
Γe,m
E,i

]T
· δẋΓe

i

=
[

F
Γe,m
E

]T
· δẋΓe (6.67)

where F
Γe,m
E is the vector of mechanical external energetically equivalent forces associated

to the element Γe and R is the rotation matrix. It is worth noting that the local normal
stress pN is a total stress including the pore water pressure inside the interface uIw, creating
a coupling between hydraulic and mechanical behaviours

pN = p′N + uIw. (6.68)

Consequently, if a pore water pressure exists inside the interface, i.e. uIw 6= 0, nodal forces
are not null even if the contact is lost , i.e. p′N = 0. The relation between δġ and δẋ is
straightforward. For the sake of simplicity, the expression is derived hereafter for any virtual
variation of the velocity of the structure node (·)S .

δġS = ġ(ẋS + δẋS , ẋF )− ġ(ẋS , ẋF )

=

[
ġT (ẋ

S + δẋS , ẋF )− ġT (ẋS , ẋF )
ġN (ẋS + δẋS , ẋF )− ġN (ẋS , ẋF )

]

=
[
R
(
xS + δxS

)]T ·
[(
ẋS1 + δẋS1 − ẋF1

)
−
(
ẋS1 − ẋF1

)

(
ẋS2 + δẋS2 − ẋF2

)
−
(
ẋS2 − ẋF2

)

]

=






∂

∂ξ

(
xS1 + δxS1

) ∂

∂ξ

(
xS2 + δxS2

)

− ∂

∂ξ

(
xS2 + δxS2

) ∂

∂ξ

(
xS1 + δxS1

)




 ·
[(
ẋS1 + δẋS1 − ẋF1

)
−
(
ẋS1 − ẋF1

)

(
ẋS2 + δẋS2 − ẋF2

)
−
(
ẋS2 − ẋF2

)

]

= [R+ δR]T ·
[
φSi · δẋS1,i
φSi · δẋS2,i

]

= RT · φSi · δxS
i +✭✭✭✭✭✭✭

δRT · φSi · δxS
i

= RT · φSi · δxS
i (6.69)
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where (δẋS1,i, δẋ
S
2,i) are the nodal velocities of the structure nodes, φSi are the shape functions

associated to the structural part of the interface and the second order term δRT ·φSi · δxS
i can

be neglected.

Finally the FΓe
E are assembled together as

F
c,m
E =

nc
e⋃

e=1

F
Γe,m
E . (6.70)

6.3.4.4 Assembling

In this section, all the energetically equivalent nodal vectors were only computed for the
contact contribution, i.e. Fc

I , F
c,m
E and F

c,f
E . They still have to be assembled into the global

internal and external force vectors, i.e. FI and FE respectively. These vectors contain the
nodal forces associated to every discretised node of the structure. This step is carried out
using the classic assembling operator R, that adds the contact contributions to the global
vectors

FI = RFc
I (6.71)

FE = RF
c,m
E +RF

c,f
E (6.72)

The integration is numerically performed using the Gauss quadrature method, as it was
stated in Section 2.5.

6.3.5 Assembling of the stiffness matrix

The last step is the computation of the stiffness matrix defined in Section 2.5

FOB,i = FI,i − FE,i (6.73)

[K]ij = −∂FOB,i

∂uj
, (6.74)

where FOB,i are the out of balance forces at node i and uj the generalised displacement at
node j. Therefore, if both sides of an interface are perfectly matched, i.e. perfectly in front
of each other, the stiffness tensor associated to the interface is a 21× 21 matrix,

K =







[K]SS9×9 [K]SI9×3 [K]SF9×9

[K]IS3×9 [K]II3×3 [K]IF3×9

[K]FS
9×9 [K]FI

9×3 [K]FF
9×9







21×21

, (6.75)

associated with the nodal generalised coordinates vector,

uT =
[

xS,11 xS,12 uS,1w xS,21 xS,22 uS,2w xS,31 xS,32 uS,3w

uI,1w uI,2w uI,3w

xF,11 xF,12 uF,1w xF,21 xF,22 uF,2w xF,31 xF,32 uF,3w

]

, (6.76)

where x1 and x2 are the geometrical coordinates, uw the pore water pressure. The superscripts
(·)S , (·)I and (·)F stand for structure, interior and foundation respectively; the superscripts
(·)1, (·)2, (·)3 hold for the first, second and third node of the side considered. Full developments
to obtain the stiffness matrix are given in Appendix C.4. It must be pointed out that if
discretised elements are not perfectly matched, the size of the matrix increases.
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6.4 Basic features of the model : 1D example

In the previous sections, a 1D coupled finite element of interface has been described. Par-
ticularly, the capability of unsticking has been introduced by means of a storage flux. In the
following, a simple 1D example is provided to emphasise the main phenomena induced by
unsticking effect. Many references devoting to classic finite elements are already available in
the literature about mechanical behaviour of zero thickness finite elements [Habraken et al.,
1998]. However, it remains mainly unexplored when dealing with its hydromechanical be-
haviour [Segura and Carol, 2004]. A pull-out test is already provided to check the potential
instabilities and oscillating issues, notably observed in [Gens et al., 1988].

6.4.1 Definition of the case study
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Figure 6.16: Basic features of the 1D column example of transient consolidation test.

A 8m-high column of elastic soil which parameters are given in Table 6.1 is studied.
Hydraulic boundary conditions are drained at the bottom of the column and impervious
elsewhere. Two geometries are considered : the first one without interface element at the top
(see Figure 6.16a) and the second one with it (see Figure 6.16b). In the latter case, an element
represents the foundation that lies on the soil column. The soil column is initially equilibrated
by an effective stress in the interface of 40kPa and a pore water pressure of 100kPa.

E [Pa] ν [-] ρs [kg/m3] n [-] k [m2]

2 · 108 0.3 2650 0.36 10−12

Table 6.1: Basic parameters employed for the 1D case study

Both stress-controlled and displacement-controlled are considered in order to highlight
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different behaviours. However, whatever the driving strategy, the loading is composed of four
distinct phases whose the rate of variation is identical (see Figures 6.16c and 6.16d)

• phase 1 : short compressive phase (25s) ;

• phase 2 : strong extension phase in order to highlight the effect of unsticking (125s) ;

• phase 3 : compressive phase back to initial load/displacement (100s) ;

• phase 4 : dissipation of pore water pressure at constant load/displacement (up to the
end).

Results analysed are (see Figures 6.16a and 6.16a for their positions in the soil column) :

• ∆y : the displacement at the top of the soil column ;

• p′N : the contact effective pressure in the interface ;

• ∆uw : the pore water pressure variation at the top of the column ;

• σ′y : effective stress in the soil (first integration point of the first element of the soil,
near the top of the column) ;

• gN : distance which describes either a gap or an interpenetration between both walls of
the interface.

6.4.2 Stress-driven simulations

6.4.2.1 Without Interface element

A series of simulations without interface element (corresponding to Figure 6.16a) of the
soil column is firstly provided in order to progressively dive into the problem. An insight in
Figure 6.17 highlights the non-linearities of these behaviours due to the transient behaviour.
The pore water pressure uw-displacement ∆y curve is depicted in Figure 6.17a whilst time
evolution of displacement, pore water pressure variation and effective vertical stress are given
in Figure 6.17b.

Limit cases
In the former Figure 6.17a, it can be observed that drained and undrained behaviours

bound the intermediate solutions, i.e. configurations in which the permeability is not zero nor
infinite. These two limit cases are depicted by straight lines. Obviously, there is no variation
of pore water pressure in the drained behaviour and the displacement is maximum. On the
other hand, no deformation occurs in the undrained4 case but the pore water pressure varia-
tion is maximum.
In Figure 6.17b, the drained behaviour is depicted by the maximum instantaneous displace-
ment while it is null for the undrained curve. Evolutions of pore water pressure variations and
effective stress are a kind of yin and yang, both symmetrical and opposite. In the undrained
case, the loading is entirely equilibrated by a pore pressure variation. Therefore, the loading
curve merges with the t−uw curve. In the drained case, the loading is fully withstood by the
solid skeleton. Consequently the loading curve is identical to the t− σ′y curve. Tensile stress
is induced accordingly with the loading, which is non-physical if a sand is considered.

4In this case study, the compressibility of the water in infinite.
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Simulation k = 10−11m2

If the response curve with k = 10−11m2 is now considered in the Figure 6.17a, it can be
observed that it is stretched from the drained curve. Extreme displacements are very close
and pore pressure variations are moderate. However, different phases of loading are now
differentiated. The first compressive phase is marked by a positive uw and a negative ∆y, i.e.
a settlement of the column. Then a load reversal occurs and the curve exhibits a decreasing
uw and a positive ∆y, i.e. an extension of the column. During the third phase, the loading
is brought back to its initial value which is depicted by a new increasing uw and decreasing
∆y. Finally the loading reaches its initial value and the soil column recovers progressively its
initial configuration uw and ∆y.
The first three phases display linear and non-linear parts. The non-linear parts reveal a
transient state whilst the linear parts express a stationary behaviour. The observed plateaux
emphasise an equilibrium sets up between variations of effective stress, pore water pressure
and total load.
It can be observed in the Figure 6.17b that pore water pressure variation is not reinitialised
to zero simultaneously with the loading, i.e. there is a slightly delayed effect between loading
and soil behaviour. This is due to the partial consolidation encountered by the soil and is a
purely transient effect.
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Figure 6.17: Stress-driven simulation without interface element for four drainage conditions
(drained, undrained, k = 10−11m2, k = 10−12m2.)

Comparison between all the simulations
Result curves with k = 10−12m2 and k = 10−11m2 can be compared in Figure 6.17a.

The former curve is much stiffer than the latter one, the plateaux disappear and extreme
pore water pressures increase. Actually, the k = 10−12m2 response tends to the undrained
one, which is trivial since the permeability decreases. As a corollary effect, stationary part
disappears.
Consequently, the major part of the external loading is balanced by the pore water pressure
which can be observed on the t − ∆uw curve in Figure 6.17b. Due to the low permeability,
this overpressure is slowly dissipated and the total load is only partially transferred to the
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soil skeleton. Therefore, the difference between the drained and t− σ′y curves is equal to the
pore pressure variation depicted in the t−∆uw curve.
The delayed drainage effect is clearer for the t − ∆uw curve with k = 10−12m2 in Figure
6.17b. This fact can be viewed as a memory effect of the past loading. When the total load is
reinitialised, uw = 90 kPa. This effect is of paramount importance, since it allows the fluid to
participate to the global resistance in both compression and tension. The latter is much more
interesting if a sand is considered, since it can only sustain very low tensile drained loading.
Another avatar of the delayed effect is that extreme effective stress σ′y are postponed after
the peak of total load. Indeed, the fate of overpressures ∆uw is dissipated. However, if the
permeability is low, it requires a longer time and the effect on σ′y is deferred.
Actually any point of a drained curve at time t can be seen as a long time state that any
permeable material would reach at time t+∆t if the loading conditions remained identical.

6.4.2.2 Interface element

In this section, interface element is added at the top of the column (see Figure 6.16b) and
material parameters are identical to those given in Table 6.1. Three simulations are proposed
hereafter to evaluate its effect on the results (see Figures 6.18a and 6.18b).

• Simul 1 : interface element modified taken the storage into account;

• Simul 2 : no interface element, the loading is directly applied at the top of the column
(the foundation is deactivated, see Figure 6.16a);

• Simul 3 : interface element without storage possibility.

Firstly it is worth noting that all the curves are merged at the early beginning of the sim-
ulation (see Figure 6.18). This outcome is pretty comforting since only the tensile behaviour
of the interface element was modified. The Simul 3 curve diverges from the other ones after
a small extension displacement, as shown in the Figure 6.18a. Actually, the contact is lost
between foundation and structure. The simulation is stress-driven and unsticking is not taken
into account. Thence equilibrium cannot be reached and the computation stops.

The two other curves fit very well up to the unsticking of the soil and the foundation (see
Figure 6.18a). From this point, the gap is filled with water since both sides of the interface
move away. Therefore, the fluid flux is greater, involving more negative pore pressure at the
top of the caisson.
After reloading (start of the third phase) results strongly diverge. The Simul 2 curve without
interface element in Figure 6.18a was commented.
The plateau that can be observed in all the Figures 6.18a and 6.18b is an interesting outcome.
It starts when the total load is brought back to its initial value. Structure and foundation
keep unstuck during the whole third phase (the effective contact pressure p′N is equal to 0, in
Figure 6.18b). Consequently, the total load applied must be equal to the pore pressure inside
the caisson in order to ensure the equilibrium of the foundation element (see Figure 6.19).
When the initial load is restored, the pressure uw is constant and equal to 140 kPa5.

This plateau lasts until the contact is restored. Therefore effective normal stress in the
interface rises up and pore pressure is drained simultaneously (see Figure 6.18b, ∆uw and
p′N ).
Vertical effective is never in tension, due to the unsticking, which is more physical if a sand
is considered (see Figure 6.18b).

5The pressure measured uw is actually different from uI
w inside, but the gradient is very low and both value

are nearly identical.
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Figure 6.18: Stress-driven simulations for 3 configuration : Simul 1 (Interface element with
storage), Simul 2 (no interface element), Simul 3 (Interface element without storage).

Figure 6.19: Unsticking of the interface : creation of a filled void between structure and
foundation. The pore water pressure inside is equal to the applied total load.

6.4.3 Displacement-driven simulations

Three identical configurations (Simul 1, Simul 2, Simul 3) are provided for a displacement-
driven loading (see Figure 6.20). Once again, three curves of Figure 6.20a fit perfectly for
the first stages of the loading. The Simul 3 curve diverges when the contact is lost between
structure and foundation. However in this case, the computation does not stop because the
simulation is displacement controlled. Indeed, when the contact is lost, a convective exchange
with the atmosphere is assumed and uw tends to 100 kPa.

The reference curve without interface element (Simul 2) has now a symmetric shape in
compression and extension because of the displacement loading (see Figure 6.20a). A very
high pore water pressure holds when the initial displacement is restored. This one must be
dissipated progressively for a fixed ∆y. Obviously, extreme pore water pressures are either
too high or too low to be physical. For instance, cavitation of the fluid should occur a long
time before reaching the minimum [Byrne and Houlsby, 2002].

The Simul 1 curve fits perfectly the reference curve in Figure 6.20a up to the unsticking
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Figure 6.20: Displacement-driven simulations for 3 configuration : Simul 1 (Interface element
with storage), Simul 2 (no interface element), Simul 3 (Interface element without storage)

between structure and foundation. Thence variation of pore water pressure is more negative
and an equilibrium sets up between the storage and transversal fluxes at the top of the caisson
by simply equilibrating the fluid mass fluxes

f tw = f sw

✟✟ρw · T t
w,2 · (uIw − uSw) = ✟✟ρw ·∆gN

∆uw =
∆yF −∆yS

T t
w,2

(6.77)

where ẏF is given but ẏS depends on the consolidation rate of the soil column. The direct
consequence is a lower vertical tensile displacement of the soil, which can be observed in
both Figures 6.20a and 6.20b. It must be pointed out that in Figure 6.20b, the Simul 2
curve (without interface element) of t−∆y corresponds to the displacement imposed curve.
Therefore, the difference between Simul 2 and Simul 1 curve over the time is the measure of
the gap created between structure and foundation.
Interestingly, this gap enlarges during the re-compressive third phase. This is due to the
different distribution of effective vertical stresses and pore water pressures along the cross-
section (see Figure 6.21). Finally, both sides of structure and foundation come into contact
and all the excess pore pressures are dissipated.

6.4.4 Influence of parameters

The first parameter that influencing the results is the transmissivity T t
w between the soil

and the vacuum (see Figure 6.22a). This parameter eventually influences the uw −∆y curve
only if it is very small. Otherwise, the limiting quantity is the permeability of the soil that
bounds the flow escaping to fill in the void during unsticking.

The permeability of the soil has a very strong effect on the results observed (see Figure
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Figure 6.21: Comparison of cross sections in the soil column during re-compressive third
phase : pore water pressure (uw) and vertical effective stress (σ′y).

6.22b). Obviously, the lower the permeability the higher the water pore pressure and the
stiffness. As previously stated, a higher permeability induces a stationary phase that is
longer. Moreover, the unsticking occurs earlier in that case. The effect of unsticking is
also very distinct, marked by nearly straight parts of the curves and the absence of a plateau.
Theses phenomena highlight the equilibrium of vertical forces: if no contact holds, the applied
load is totally equilibrated by the pore water pressure of the fluid trapped inside the interface,
then variations of loading and interior pressure are identical

∆Pload = ∆uIw (6.78)

where ṗtot is the rate of variation of loading applied. If the permeability is very high, the
vacuum is very quickly filled or emptied and no plateau occurs. If the permability is very
low, no unsticking occurs and the response curve tends to the undrained response curve, i.e.
a vertical straight line.

These conclusions are directly transposable to analyse the effect of loading rate (see Fig-
ure 6.22c). Results present exactly the same features as the effect of permeability but in a
more progressive fashion. When the loading rate decreases, the stiffness descreases and the
unsticking occurs earlier.

Finally, if the constitutive law, describing the soil is the elastoplastic model of Prevost (see
Figure 6.22d and Chapter 4), the effect on displacement is very strong. However, the effect
on pore pressure variation is quite identical, whatever the constitutive law. Strong permanent
deformations occur because of the stress state that might approach very close to the apex of
the resistance cone, i.e. the liquefaction state, where the plastic effects are important.
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Figure 6.22: Influence of the main parameters : stress-driven simulations
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6.5 From 1D to 2D

1D simulations are of uttermost importance to well-understand basic concepts. However,
they neglect the spatial effects such as fluid and stresses diffusion which strongly influence the
results. A comparison is provided in Figure 6.23 between the previous 1D 8m column, a 1D
16m column and a 2D axisymmetric suction caisson. The latter is a 4m diameter caisson with
a 4m depth plug. The entire domain modelled is 24 × 26m. All the boundaries are drained
except the axis of symmetry. There is no friction resistance available along the shaft of the
caisson. Material parameters are obviously identical.
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Figure 6.23: Comparison between 1D and 2D axisymmetric geometry. The soil column is
16m high whilst the domain size of the 2D simulation is 24× 26m.

The height of the 1D soil column influences the results (see Figure 6.23a). They are
similar for the compression phase but diverge in extension. As a matter of fact, the height
of the column modifies the hydraulic conductivity, since the distance between the top of the
caisson and the drained boundary is higher. Therefore, drainage effects are modified. The
first compressive phase is too short to observe a difference but the following unloading phase
is not. Thence, no unsticking can be noted : the effective stress never reaches zero (see Figure
6.23b) and no plateau can be observed (see Figure 6.23a). This notion of drainage path is a
key factor in the understanding of partially drained behaviour of offshore foundations.

1D and 2D curves present a ∆y − uw curve different from each others (see Figure 6.23a)
even if their time evolution is close (see Figure 6.23b). Actually, pore water pressures gener-
ated are quite identical but the displacement is higher, which stretches the curve in the Figure
6.23a. The drainage path does not explain entirely the difference.

The generation of pore water pressure over a cross section is different for 1D and 2D cases
(see ∆uw curve in Figure 6.24). The graphs provided depict cross section during the first
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Figure 6.24: Comparison between 1D and 2D axisymmetric geometry. The soil column is
16m high whilst the domain size of the 2D simulation is 24 × 26m. Cross sections at time
[5, 11, 15, 25]s during compressive phase.

compressive phase. For the 1D geometry, it can be observed that a drainage front propagates
towards the top of the column. The uniform pore water pressure is equal to the applied load
and delineates the undrained zone. On the other hand, the 2D curve is nearly entirely par-
tially drained and the undrained zone is limited to the very top of the soil column. Actually,
the whole 2D domain6 contributes to the drainage of the pore pressure generated inside the
caisson (see Figure 6.25), which is much faster.
The pore pressure distribution directly affects the variation of ∆σ′y (see Figure 6.23b). Vari-
ations of σ′y are more important for the 1D curve, at the bottom of the soil column, where
drainage occurs. On the other hand, for the 2D geometry, variation of σ′y holds in a zone
concentrated under the caisson. This different repartition affects the displacement of the top
column since the consolidation is proportional to

∆y ÷
∆σ′y
σ′y

. (6.79)

Consequently a variation of ∆σ′y where σ′y is higher has less consequences on settlement ∆y
than a variation where σ′y is lower. This is illustrated in Figure 6.24.

The loading applied to the caisson (2D results) is distributed between the top of the
soil inside and the end-bearing resistance of the shaft. Consequently, pore water pressures
generated inside are lower. However this effect might be insignificant since the width of the
shaft sidewall is thin.
Moreover, the 2D effect must no be neglected from the diffusion of effective stress. Due to
the axisymmetric geometry, effective stresses diffuse under the caisson, implying a stress at
the bottom weaker that the applied load = 50kPa (see ∆σ′y in Figure 6.23b).

Last but not least, if the loading was kept constant after the compressive phase, the
final settlement after dissipation of pore pressures would be higher for the 1D geometry
(1.48 · 10−3m) than for the 2D one (1.12 · 10−3m). However, the ∆uw curve in Figure 6.23a

6For an axisymmetric case, the implicit 3D effect reinforces this conclusion.
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Figure 6.25: Variation of pore water pressure under the suction caisson at the end of the
compressive phase (t = 25s, ∆Pload = 50kPa).

yields to the paradoxical conclusion than 1D geometry is stiffer than 2D one. That outcome
highlights the inherently transient behaviour of the soil and remind the engineer not to forget
the fourth dimension in his/her interpretation.
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6.6 Oscillations and ill-conditioning

Accuracy of the solution is one of the main concern when dealing with numerical methods.
Different authors brought to light two inaccuracy sources :

• ill-conditioning of the global stiffness matrix [Pande and Sharma, 1979; Wriggers, 2006];

• oscillations of the solution [Kaliakin and Li, 1995; Gens et al., 1988; J.C.J. and De Borst,
1993].

The former issue is the natural consequence of the penalty method introducing very high
order terms in the stiffness matrix. The solution is very simple and consists in limiting the
value of the penalty parameters to one or two order of magnitude higher than the Young
modulus, for example.

Rigid grips
Strip of elements

Imposed 
displacements

Figure 6.26: Pull out test of a strip of elements between two rigid grips. The friction
coefficient is equal to 0.3 and the initial normal stress is initiated at 100 kPa.

The latter issue is more pernicious. Some authors tried to develop much accurate elements
[Kaliakin and Li, 1995] or to use different numerical integration schemes such as the Newton-
Cotes one [Gens et al., 1988] to overcome oscillations. However, it was stated in the latter
paper that oscillations cause lies within the concept of finite elements. Indeed, the field of
displacement is described by shape functions φ(ξ) that are most of the time parabolic or linear.
If the maximum shear resistance is reached, a front of sliding propagates in the interface as well
as a front of shear stress. Actually, this front might be too sharp to be accurately modelled
over a single finite element.
A pull test of a strip of solid elements (without water) out of two rigid blocks is carried out in
order to illustrate this phenomenon (see Figure 6.26). Displacements are imposed at the end
of the strip inside the grips. Parameters adopted for the test are given in Table 6.2. A normal
pressure of 100 kPa is assumed initially between the strip and the grips. A coarse mesh of 10
elements over 2m of interface and a fine mesh of 40 elements are compared.

E [Pa] ν [-] µ [-] KN [N/m3]

2 · 108 or 2 · 107 0.3 0.3 1 · 1010

Table 6.2: Parameters adopted for the pull test

An example of pull test is provided in Figure 6.27. Cross sections of tangential and normal
stresses are given for different time steps7. Propagation of the sliding front is obvious. The
decrease of normal stress is due to the Poisson’s effect implying a lateral deformation of the
elongated strip material. Therefore, the maximum shear stress decreases as well since it is
computed as

tt,max = µ · pN . (6.80)

Coarse and fine meshes provide a similar solution.
7The reference to time is just a reference to a given imposed displacement at the end of the strip, since the

behaviour of the interface is not rate dependent.
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Figure 6.27: Pull test for a young modulus of 2 · 108 Pa. Cross sections of both normal and
tangential stresses pN and tT along the strip. Comparison between fine and coarse meshes.

If the young modulus of the strip is decreased to E = 2 · 107 Pa, oscillations occur at
the beginning (see Figure 6.28) and are attenuated with time. It is noteworthy that these
oscillations are slightly attenuated if the mesh is finer.
Actually, the cause of these discrepancies do not lie within the integration scheme but in the
shape function order. Let us consider the early beginning of the pull out test (F > 0, see
Figure 6.29). Sliding occurs over a small part of the strip whilst the other part remains stuck.
Let us consider now that the interface was discretised with finite elements which the length is
greater than the physical sliding length. Therefore, the discretised distribution of tangential
displacement should be represented over the element by a parabolic function,

ux =

nn∑

i=1

φi(ξ) · ux,i. (6.81)

However, the parabolic approximation is not able to perfectly reproduce the sharp distribution
of displacement. Therefore the final solution is nothing but the set of nodal displacements
that minimise the error between actual and discretised field of displacement (see Figure 6.29),
leading to an oscillating solution. This phenomenon is also encountered when dealing with
consolidation of soils, see for example [White and Borja, 2008].
This was eventually established in [Day and Potts, 1994]. The only solution to overcome
oscillations is either to refine the mesh or to adopt higher order shape functions.
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Figure 6.28: Pull test for a Young modulus of 2 · 107 Pa. Cross sections of both normal and
tangential stresses pN and tT along the strip. Comparison between fine and coarse meshes.
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Figure 6.29: Partial deformation of a strip element
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6.7 Conclusion

In this chapter, the general concept of contact problem is described in the case of me-
chanical contact and extended to hydro-mechanical couplings. Indeed, when solids in contact
are porous media, fluid flow takes place inside. Their proximity induces fluid flow through
the interface which must be taken into account. This is achieved by the discretisation of an
equivalent porous medium between the two solids in contact if a gap exists between them.

A 1D hydro-mechanical interface finite element already implemented in the finite element
code LAGAMINE is improved. The unsticking capacity of the two sides of the interface is
developed and implemented. Consequently, the finite element is capable of taking into account

• sliding ;

• fluid flow parallel to the interface ;

• fluid flow from the solids through the interface ;

• unsticking and storage of water inside the interface.

A transient consolidation test is carried out on a 1D soil column. It is shown that the
behaviour of the soil is partially drained, i.e. pore water pressures generated instantaneously
are partially dissipated during the loading, resulting in particular uw − ∆y paths. If the
permeability is low, the pore water pressure generated participates to a large part of the
equilibrium of external loading. Consequences are twofold : effective stresses in the soil are
weaker, then likely tensile effective stresses are weaker in extension. As a corollary effect,
settlement encountered during the loading is also lower.

Using an interface element involves no tensile vertical stresses applied to the soil, which is
more physical if a sand is modelled. Moreover, when unsticking occurs, the total load is fully
balanced by pore water pressure inside the interface, creating a suction effect in tension.
Influence of parameters is also observed. The transmissivity between soil and interface is only
important if it is very low. On the other hand, permeability of the soil is the limiting factor
of the fluid flux available to fill in the void created by unsticking. This permeability is of
uttermost importance since it strongly affects the dissipation of overpressures and therefore
the capacity of partially drained resistance. The loading rate has the same consequence. The
use of an elastoplastic model has strong consequences on displacements. Since the generated
pore water pressure decrease the effective stresses, plastic deformation are greater.

Transition from 1D to 2D highlights effect of actual geometry. Dissipation of pore water
pressure is faster and the response curve tends to a more drained behaviour. This outcome
coupled with a diffusion effect of the stress involves a lower stiffness of the 2D geometry, for
the short-term behaviour. Results highlight that the time effect on the coupling is of great
importance.

Perspective of development are multitudinous. The formulation of interface elements can
be extended to multi-physical couplings, where gas phases of both air and water can be taken
into account. Therefore cavitation and partially saturated behaviours of the soil would be
accurately modelled. The constitutive law implemented is very limited and should be extended
to cyclic loading or viscosity effects. Finally, 3D finite elements of interface should be very
interestingly used to model more complex loading cases, such as the horizontal loading of a
suction caisson for example.



Chapter 7

Application to a case study

When we have eliminated the impossible,
whatever remains however improbable, must be
the truth.

Sir Arthur Conan Doyle
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7.1 Introduction

(a) Elevation view (b) Plan view

Figure 7.1: Sketch of a tripod foundation structure, inspired by [Kelly et al., 2006b; Houlsby
et al., 2005].

In this chapter, all the topics previously developed are integrated into an application
in offshore geotechnics. This consists in the modelling of a foundation that is a part of a
multipod support for wind turbines, e.g. a tripod foundation (see Figure 7.1). Such structures
are particularly used in deep waters where large moment is imposed on the foundation. This
global moment created by wind and waves is sustained by a push/pull action on the foundation
whatever its nature [Senders and Randolph, 2009].
In the following, this hypothesis on the prevalence of vertical loads is advanced to justify an
axisymmetric analysis. The modelling of the superstructure is out of the scope of this study.
Thence, interactions between wind turbine, its support and the environment are supposed
to be known. Interested reader should refer to [Leblanc, 2009] for more information. The
analysis is quasi-static. Thence inertial forces are neglected. This can be justified by the
relative low frequency of the loading.
These structures give birth to interesting loading conditions of the foundations. Indeed, they
are very light with regard to the overturning moment they have to sustain. For example,
Byrne and Houlsby [2003] provide an example of a 3.5MW turbine, which weights 6MN, has
to sustain 4MN of horizontal load and a maximum of 120MN of overturning moment. In
that case, the wind component represents 25% of the total horizontal loading but 75% of the
overturning moment since it is applied at the top of the mast.
The typical design loading case of offshore wind turbines consists of a storm. Such an event is
inherently transient. The corresponding loading signal can be generated by special techniques,
out of the scope of this study. It must correspond to a given climate, characterised by a wave
height and a given return period. That is, the signal embeds a given frequency content
and an extreme event, corresponding to the highest wave the structure must resist. Further
information about the generation of such a loading, is available in [Taylor et al., 1997; Jonathan
and Taylor, 1997; Van Der Tempel, 2006]

The foundation type investigated in this paper is a suction caisson, also termed skirt or
bucket foundations, suction anchors or suction piles, [Iskander et al., 2002]. It consists of
a hollow cylinder open towards the bottom (see Figure 7.2). The top of the caisson can
either be a stiffened plate or a dome, [Tran, 2005]. Stiffeners are often added inside to avoid
buckling of the skirt during installation. The wall thickness to diameter ratio lies generally
in the range 0.3-0.6%, [Byrne and Houlsby, 2002; Kelly et al., 2006a; Tran, 2005]. Examples
of documented suction caissons already installed in sand are provided in Table 7.1.
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(a) During installation. (b) After installation.

Figure 7.2: Installation of a prototype foundation at the test site of Fredereikshavn, [Houlsby
et al., 2005].

Site Hw [m] D [m] H [m] Reference

Wilhelmshaven 6.0 16.0 15.0 [Houlsby et al., 2005]

Frederikshavn 1.0 12.0 6.0 [Ibsen, 2004]

Frederikshavn 0.2
2.0 2.0

-
4.0 4.0

Sandy Haven 0.5 4.0 2.5
[Houlsby and Byrne, 2005]

Tenby 2.0 2.0 2.0

Burry Port 0.5 2.0 2.0 -

Luce Bay 0.2
3.0 1.5

[Houlsby et al., 2006]
1.5 1.0

Table 7.1: Examples of documented suction caissons installed in shallow water, from
[Houlsby et al., 2005]. Hw, design wave height; D, diameter of the caisson; H, its height.

The concept of suction caisson covers a large variety of situations and geometries. The idea
of suction anchor popped up in the early sixties, [Goodman et al., 1961], to replace inefficient
weight anchors, [Tran, 2005]. They were used mainly as temporary anchorages [Senpere and
Auvergne, 1982]. The geometry of such anchors have most of the time an aspect ratio H/D
higher than one, up to five. In 1989, the Gullfaks C was the first structure employing suction
caissons as a permanent foundation system [Tjelta et al., 1990]. This concrete gravity based
structure was founded on 16 concrete compartments (16m high, 28m in diameter) in a soft
clay (see Figure 7.3a). Structures corresponding to high H/D ratios were also used as deep
anchors for buoyant platforms in the Gulf of Mexico [Equihua Anguiano, 2008].
Draupner E and Sleipner T platforms, built in the early nineties marked the first time suction
caissons were used as permanent foundations in sand (see Figure 7.3b). They also demonstrate
that this method was feasible in very dense sand [Tjelta, 1994]. The success of these projects
started the increase of suction caisson use around the world. They are now applied to a large
variety of soil conditions and are utilised alone or as part of a multipod foundation [Byrne
and Houlsby, 2003; Houlsby et al., 2005].

Installation of suction caissons is quite straightforward [Houlsby et al., 2005]. Initially the
caisson is laid down on the ground and penetrates the seabed under its own weight. Water
trapped inside is allowed to escape during this phase by an opening. Afterwards, inner water
is pumped, creating a differential pressure at the top of the caisson and pushing it down
(see Figure 7.4). The pressure gradient generates a seepage flow within the soil, reducing
the penetration resistance at the tip and along the inner skirt [Senders and Randolph, 2009].
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(a) Gravity based
platform, Gullfaks,
[Tran, 2005]

(b) Draupner E platform. Source NGI.

Figure 7.3

Although the outer friction resistance is increased, the caisson encounters a global reduction
of resistance.
However, attention must be paid not to exceed the critical gradient. Indeed, this may generate
erosion channels along the skirts (pipping), the excessive loosening of the soil or a ground fail-
ure [Andersen et al., 2008]. The partial liquefaction that might appear during the installation
phase is prone to create a soil heave (see Figure 7.4), preventing the caisson to be installed
at the required depth [Iskander et al., 2002].
The foundation part in the global cost of an offshore wind turbine may reach up to 35% of
the total cost [Byrne and Houlsby, 2003]. The main advantage of suction caissons is their low
cost of installation. They require a basic equipment (no need for large barge cranes or heavy
hammer) and the duration of the installation process lasts less than 24 hours [Tran, 2005].
Furthermore they can be readily retrieved by reverse pumping and reused.

Figure 7.4: Installation of a suction caisson by pumping.

Suction caissons have received a special attention in the literature over the last decade.
Papers have mainly focused on laboratory [Byrne and Houlsby, 2002; Houlsby et al., 2005;
Kelly et al., 2006b] and in situ tests [Kelly et al., 2006a; Houlsby et al., 2006]. They aim at
defining work-hardening plastic surfaces, where the rupture is reached for a combination of
normal and horizontal forces and a moment [Mangal and Houlsby, 1999; Byrne and Houlsby,
2004; Coffman and El-sherbiny, 2004]. Their behaviour is inherently partially drained but
the purely drained behaviour is also investigated [Byrne and Houlsby, 1999; Villalobos et al.,
2009]. Simplified methods have also been developed to describe the installation of the caisson
[Senders, 2008]. Simplified methods and recommendations are also available in [Veritas, 2011],
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which is a world-famous standard.
Nowadays, design is more and more facilitated by the use of cyclic stability diagrams. These
diagrams relate average and cyclic loads to the state of serviceability of the foundation, [Puech,
2013; Stuyts et al., 2011]. However such diagrams require a large number of computations/-
experimental tests. Many papers are devoted to the modelling of offshore foundations, e.g.
[Cuéllar et al., 2014]. However, a fully transient modelling of such a structure requires many
numerical tools that are not available in each finite element code, [Andresen et al., 2011;
Versteele et al., 2013].

This chapter aims at modelling the fully transient vertical behaviour of a suction caisson.
The final purpose is not the design of a foundation, neither with simplified formulae nor
analytical methods. Indeed, information about real site and in place wind turbine is very
scarce. Moreover data corresponding to described experiments and necessary to calibrate a
complex constitutive model are often not available. Therefore, this chapter focuses on an
extended description of the phenomena ruling the modes of resistance of the suction caissons
during both monotonic and cyclic loading.
Initially, the vertical response of the caisson is investigated either in drained and partially
drained conditions. The influence of salient parameters (friction coefficient, permeability...)
is investigated. A pseudo random cyclic loading is then applied. It consists of a 600s part of
a storm loading that includes an extreme event. The pseudo-random behaviour is compared
with an sinusoidal equivalent signal. A final full storm is then computed in order to test the
behaviour of the model onto a long duration loading sequence.
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7.2 Definition of the case study

7.2.1 Reference geometry

Figure 7.5: Sketch of the geometry of the reference caisson and definitions of structural
elements.

A sketch of the axisymmetric reference case study is provided in Figure 7.5. The structure
is defined by its diameter D, its height H and the thickness of its skirt e. It is assumed to
have a circular cross-section. Actual geometries are more complex. However stiffeners along
the skirt of the caisson are not taken into account. The lid of the caisson is considered very
rigid in order to homogeneously distribute the loading and its thickness is equal to 0.4m.
Geometric parameters of the reference case study and the mesh as well are provided in Table
7.2. The mesh is sufficiently refined under the tip of the caisson, but the number of elements
is kept acceptable for the simulations to be launched on a laptop. Volume elements used are
Q8P8 elements.
The thickness of the skirt is a key factor. Indeed, a non-negligible component of the overall
resistance is mobilised under the tip of the caisson. However, for numerical purpose1 the
thickness of the structure was kept artificially large with regards to actual geometries. Real
e/D ratios are in the range 0.3-0.6% [Byrne and Houlsby, 2002; Kelly et al., 2006b; Tran, 2005],
but the adopted geometries has a ratio e/D= 1.2%. Consequently, the reaction sustained by
the tip might be unrealistic. An elastic toe (one element width) is defined underneath the tip
which can reduce its relative stiffness. A complete justification is provided in section 7.2.4.
A superficial elastic layer (0.8m) is also established at the top of the soil. Indeed, this layer has
a low contribution to the global resistance and is prone to liquefaction, since its confinement
is very low. Therefore, an elastic model allows to overcome local failures.

D [m] H [m] e [m]

7.8 4 0.1

Elements [-] Nodes [-]

2364 7085

Table 7.2: Geometric and mesh parameters of the reference case study.

Interface elements are distributed inside and outside the caisson between the skirt and the
soil. Horizontal elements allow unsticking between soil and the caisson with development of

1The structure is to be modelled with solid elements which can not be too narrow and do not take into
account flexural behaviour, contrary to shell elements. Furthermore, a too sharp tip would involve a deep
perforation of the structure into underneath finite elements, which would be tricky to manage.
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suction but are frictionless, i.e. µ = 0, in order to facilitate the convergence of the code. On
the other hand, vertical elements resist essentially by friction. Elements under the tip are
very localised. They are frictionless and no suction effect is taken into account. Indeed, the
rounded geometry induces a very painful convergence in case of unsticking.
Finally, the caisson is supposed in place and its installation is not modelled. The modelling
of this installation would require special numerical techniques, e.g. material point method or
remeshing, in order to manage the plug of the caisson. As a consequence, local perturbation
of soil density inside the caisson, initial stress distribution or scour under the tip are not
investigated.

7.2.2 Material parameters

Figure 7.6: Evolution of permeability with density, after [Andersen et al., 2008].

Parameters of the Dr= 90% Lund sand are adopted to represent the soil behaviour. They
are defined in Section 4.4.4 and only salient parameters are remembered in Table 7.3. The
elastic limit is reached for a mobilised friction angle of 1.7◦. The phase transformation ratio
η̄ corresponds to an angle of 29◦. Failure in both compression and extension corresponds to
44◦ and 30◦ respectively.
Data concerning the permeability of this material are not available. More generally, data in the
literature are scarce and sparse and the permeability strongly depends on the granulometric
curve and the density of the sand. An example of such a relation is illustrated in Figure 7.6
for Baskarp and Sleipner sands. They seem to converge to a similar value at high density.
Therefore, a permeability k= 5 ·10−12m2 is adopted although Lund sand does not present the
same granulometry distribution. This parameter is crucial and the effect of its sensitivity is to
be characterised cautiously. Furthermore, the modelled soil domain is assumed homogeneous
while actual configurations are most of the time heterogeneous. Thence, all the efforts made to
determine an "exact" permeability of the soil, must be nuanced by its inherent heterogeneity.
Finally, a small cohesion of 5 kPa is added for numerical purpose, in order to avoid very local
failure.

Elastic parameters of the superficial layer and the elastic toe are provided in Table 7.4.
Justification of this choice for the elastic toe is provided hereafter. The caisson is assumed to
be made of steel. The friction angle at the interface is strongly affected by the density of the
sand, the state of the steel (corrosion) and local conditions. In this work, a friction coefficient
µ equal to 0.5 is adopted, corresponding to an angle of 26.6◦. It seems to be a reasonable
assumption with regard to sparse data provided in the literature [Taiebat, 1999; Lings and
Dietz, 2005; Andersen et al., 2008; Senders, 2008].
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Physical

γs [kN/m3] k [m2] n [-]

26.5 5 · 10−12 0.36

Prevost model

Gref [MPa] Kref [MPa] η̄ [-] Ψ [-] c [kPa]

47 65 1.15 1.0 5

Table 7.3: Parameters adopted for the Dr= 90% Lund sand. γs, density of the solid grains; k,
permeability; n, porosity; Gref and Kref , elastic reference parameters; η̄, phase transformation
line ratio; Ψ, plastic volumetric parameter; c, cohesion.

Elastic soil

G [MPa] K [MPa]

4.36 4.72

Caisson

G [MPa] K [MPa]

7.6 · 104 1.66 · 105

Table 7.4: Parameters of elastic soil and caisson.

The initial state of the soil is deemed isotropic, i.e. K0 = 1. Indeed, this is a strong
assumption, although it is reported to consider K0 = 0.8 in [Andersen et al., 2008]. The main
reason is purely numerical. A non isotropic initial state induces, by definition, deviatoric
stresses. Thence, since the elastic yield surface is very narrow, the initial state might lie
outside it, which is not admissible. A remedy to this situation is the building of the soil
domain layer by layer, which is, at least, cumbersome. It would be also possible to carry out
oedometric simulation up to a given state of stress and to use the final state of parameters to
approach a realistic state of stress.

7.2.3 Loads

A sketch of the loads applied to the reference geometry is represented in Figure 7.7. A
confinement of 10kPa exists at the top of the domain. Indeed, it is assumed that the seabed is
not well defined, i.e. the limit between a solid soil and water, and then not explicitly modelled.
This confinement also increases the overall stability of the computation in limiting the risk of
local failure, i.e p′ = 0. The stress controlled loading is applied at the top of the caisson. It
still remains arbitrary and will be defined for both monotonic and cyclic loads.
Effective stresses corresponding to this loading and to the buoyant weight are initialised over
the whole domain. So are the initial stresses in the interface elements. The sea water level
is assumed to be ten meters higher than the seabed and initial pore water pressures (PWP)
are set up accordingly. It must be pointed out that this level has no effect on the results.
However, it would have if cavitation were taken into account in case of pulling out of the
caisson. This phenomenon bounds the most negative pressure that might be reached within
the soil.
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Figure 7.7: Sketch of the loading applied to the reference caisson.

7.2.4 Elastic toe

An elastic zone was introduced below the tip of the caisson. It is termed "elastic toe" in
Figure 7.5. The elastic modulus characterising it is softer than the modulus of the soil. The
purpose of such a zone is manifold.

1. The insertion of the narrow stiff tip of the caisson into the soils creates high stress con-
centrations that are not easy to manage. Moreover, the mesh should be very refined in
this zone, increasing the computational cost. The main advantage of elastic constitutive
laws is that a solution always exists even at very large deformations.

2. The corollary effect of stress concentration is the occurrence of local liquefaction of the
soil. This local failure of few single elements affects the global convergence of the code
but is not an indication of an overall physical failure.

3. For numerical purpose, the skirt of the caisson is numerically wider that it is in reality.
Therefore, a softer underlying soil decreases the part of the global load that is sustained
by the tip, decreasing its relative stiffness with regard to the top of the caisson or the
friction.
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(b) Partially drained simulation

Figure 7.8: Influence of the elastic toe (E in Pa) on the load-displacement curve.

Figure 7.8 summarises the global influence of this zone on the displacement-load curve.
∆y is the vertical displacement measured in the centre of the lid of the caisson. A simulation
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without elastic toe (Prevost model under the tip) is compared with three elastic moduli (in Pa)
for both drained and partially drained simulations. Obviously, the lower the elastic modulus,
the higher the displacement. The drained Prevost simulation is equally close to E= 107Pa
and E= 108Pa simulations (see Figure 7.8a). However, it is interesting to observe that the
results dispersion for the partially drained simulations is very narrow, i.e. it nearly does not
affect the final result.
Thence an elastic modulus of E= 107Pa is finally adopted for two main reasons. Firstly, such
a modulus attenuates the too stiff skirt of the caisson. Secondly, using E= 108Pa appears to
transfer stress concentration further in the soil which induces non convergent simulations.
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7.3 Monotonic behaviour

7.3.1 Components of reaction

In this section, Pload denotes the total pressure applied at the top of the suction caisson.
Ftot is the total vertical force applied to the caisson and ∆Ftot is its variation. Different
components of reactions can be distinguished (see Figure 7.9a). In the following, variations
of pressures and shear mobilised along the caisson are integrated and their resultants are
represented:

• ∆Fint, variation of total shear mobilised along the skirt, inside the caisson ;

• ∆Fext, variation of total shear mobilised along the skirt, outside the caisson ;

• ∆Ftop, variation of total vertical effective reaction under the top of the caisson ;

• ∆Fuw, variation of total vertical reaction due to pore pressure variation, inside the
caisson ;

• ∆Ftip, variation of total vertical reaction under the tip.

(a) Reaction involved during push tests. (b) Reaction involved during pull tests.

Figure 7.9

These reactions are not primary unknowns of the FE code. Therefore, they must be re-
constituted. Shear reactions along the skirt and vertical reactions under the lid are integrated
using the shear and normal stresses which are known at integration points. The numerical
integration is carried out with a Gauss scheme. The amount of PWP within the caisson is
obtained through the integration of the pressures, known at each node. The tip reaction is
the residual reaction that balances ∆Ftot. Indeed, due to the complex geometry of the tip, it
was deemed unwieldy to integrate the stresses known at its interface.
The rate of loading adopted is 8kPa/s. It does not influence the drained simulations since no
viscous effect is taken into account. However it influences the partially drained simulations.
Modifying the rate of loading or the permeability have similar consequences and only the
latter will be modified for monotonic simulations.

7.3.2 Push test

7.3.2.1 Drained

A drained monotonic compressive test was carried out on the reference geometry of the
caisson reaching to the non convergence of the code, corresponding to 160kPa. Displacement-
load curves are provided in Figure 7.10 where both total and normalised variations of reactions
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are illustrated. In Figure 7.10b, variations of reaction components ∆F are normalised by the
variation of total loading at step t ∆Ftot. Therefore, it is possible to understand the contri-
bution of each component to the global resistance. Consequently, the sum of all normalised
components is equal to one.
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Figure 7.10: Drained compressive simulation

In this configuration, the greatest reaction component is the external shear mobilised (∆Fext,
see Figure 7.10a). However, it can be observed that ∆Fext initiates a plateau. Actually this
plateau corresponds to the maximum mobilisation of the friction along the external side of the
caisson. Furthermore, it is not purely horizontal but slightly inclined, since the confinement
increases with the load, the maximum available friction increases as well. The contribution of
the outer shear mobilised in the overall resistance monotonically decreases since it is bounded,
as shown in Figure 7.10b.
The shear reaction inside the caisson, ∆Fint, is low at the beginning and increases with
displacement (see Figure 7.10a). However, its contribution to the global reaction is nearly
constant (see Figure 7.10b).
The distinct evolution of ∆Fext and ∆Fint depends on the different settlement and stress con-
ditions. Inside the caisson, the soil approaches oedometric conditions. It is vertically loaded
and the relative displacement between the soil and the skirt is low (see Figure 7.11). On the
contrary, there is a large relative displacement between the skirt and the outer sand, which
fully mobilises friction.
In this Figure 7.11, the deformation mode appears clearly. The caisson settles monolithically
and brings the surrounding soil with it. There is a clear slip outside but it is less marked
inside. The isocurves of vertical displacement also give an idea of the diffusion of the shear
stress within the soil.
Loads transferred to the top ∆Ftop or the tip of the caisson ∆Ftip increase almost linearly
(see Figure 7.10a) and their relative contribution gain importance (see Figure 7.10a). However
the curvature of the plot is convex for the top and concave for the tip evolutions. The soil
inside the caisson is confined, increasing its stiffness and reducing the deviatoric stress, i.e.
the stress state is kept away from the failure line. On the other hand, material around the
tip is submitted to a high deviatoric stress, i.e. the stress state around approaches the failure
line.
The distribution of the reaction between these components only depends on their relative
stiffness, which is not straightforward to determine since the problem considered is far from
beam-column structures. The stiffness of each reaction component depends on many pa-
rameters, such as permeability, Young modulus of the caisson, plastic moduli of the soil,
permeability, length of the skirt... The caisson structure has also a great influence. Indeed,
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the lid is assumed very rigid which tends to transfer a large part of the total load to the skirt2.
A less stiff caisson’s top would induce a greater ∆Ftop. Furthermore, ∆Fint diffuses inside the
caisson. Therefore ∆Ftop and ∆Fint can be gathered inside a common interior component for
the design.

Figure 7.11: Vertical displacement, monotonic drained compressive test, during simulation.

7.3.2.2 Partially drained

A partially drained push test is presented in Figure 7.12. It is composed of a compressive
phase with the increasing load pressure followed by a consolidation phase, i.e. ∆Pload = cst.
In this case, results exhibit features similar to the drained simulations. However, the pore
water pressure generated inside the caisson, ∆Fuw, represents the main contribution to the
total reaction during the push phase (see Figure 7.12a). As a consequence, the displacement
at the end of this phase (∼ 6mm) is lower than the drained one.
During the push phase, outer shear component ∆Fext presents a plateau (see Figure 7.12a).
However, this maximum reaction is slightly lower than the drained resistance. Indeed, the
pore pressure variation reduces the normal effective stress inside the caisson and at the inter-
face. The maximum friction available is then decreased.
∆Fint and ∆Fuw are correlated. It can be observed that for a displacement between 0 and
1 mm, the ratio ∆Fuw/∆Ftot decreases but increases afterwards (see Figure 7.12b). The de-
creasing slope of the PWP component is due to the progressive drainage of the soil. The slope
change corresponds to the beginning of the plateau of ∆Fext, i.e. a new load increment can
not be sustained by exterior shear and is dispatched between other reaction components, e.g.
∆Fuw.

Interestingly, the inner shear ratio, ∆Fint/∆Ftot, appears to be negative at the beginning.
However, its absolute value is nearly negligible. The difference might be understood in com-
paring the patterns3 of vertical displacements between Figures 7.13 and 7.11. Isocurves of
displacements inside the caisson for a drained simulation present a concave curvature. It
means that deformation is higher near the skirt of the caisson due to the diffusion of the shear

2A parallel can be drawn between this application and a foundation lying over an elastic soil. The skirt
creates a "hard spot".

3A comparison between the amount of displacement is meaningless since these two snapshots do not cor-
responds to an identical time step !



192 CHAPTER 7. APPLICATION TO A CASE STUDY

0 1 2 3 4 5 6 7 8

x 10
−3

−1000

0

1000

2000

3000

4000

5000

6000

∆ y [m]

∆ 
F

 [k
N

]

 

 

∆ Ftot
∆ Fint
∆ Fext
∆ Ftop
∆ Ftip
∆ Fuw

End pushing

(a)

0 1 2 3 4 5 6 7 8

x 10
−3

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

∆ y [m]

∆ 
F

/∆
 F

lo
ad

 [−
]

 

 

∆ Fint
∆ Fext
∆ Ftop
∆ Ftip
∆ Fuw

End pushing

(b)

Figure 7.12: Partially drained compressive simulation, k= 5 · 10−5m/s.

stresses. On the other hand, isocurves of the partially drained case inside and under the cais-
son present a convex curvature, i.e. settlement is higher near the centre. This distribution of
settlement affects the relative displacement between the soil plug and the caisson, explaining
the negative ∆Fint at the beginning.
At the end of the push phase, pore pressures are allowed to dissipate. Therefore, the pore
pressure component continuously decreases and the vertical displacement increases accord-
ingly. This load is redistributed between the other reactions components and the ∆Fext one
recovers its drained final value (∼ 2200kN in Figure 7.10a). The final displacement achieved
is also close to the drained one but not identical since plastic effects are path dependent.

Figure 7.13: Vertical displacement, monotonic undrained compressive test at the beginning,
k= 5 · 10−12m2.

7.3.2.3 Influence of permeability and Prevost model

Figure 7.14 illustrates the influences of the model (elastic or Prevost) and the permeability
on the push test. The comparison is limited to the first compressive phase, without consoli-
dation.
Obviously, it can be observed for both models that the lower the permeability, the higher the
pore pressure contribution, ∆Fuw/∆Ftot, to the reaction (see Figure 7.14a). Consequently,
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the final displacement at the end of the push phase is lower too. Moreover the elastic consti-
tutive law used does not take into account the confinement dependency of the stiffness. The
comparison between displacement-load curves is then limited.
Furthermore, the results presented for the Prevost model indicate a higher pore pressure
generation inside the caisson. This directly results from the plastic contractive behaviour of
the soil. The gap between elastic and Prevost results enlarges with increasing permeability.
Indeed, a higher drainage involves a transfer of the total load from the PWP to the solid
skeleton. Therefore, variation of deviatoric stress, plastic contractancy and PWP generation
are higher. An example of the distribution of η = q/p values is illustrated in Figure 7.15.
The whole domain lies within the contractive range, i.e. η < 1.15.
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Figure 7.14: Influence of permeability (k) and model type on the displacement-load curve.
Black curves (Prevost model) - gray curves (elastic model).

Elastic results better highlight the decreasing ratio ∆Fuw/∆Ftot with increasing permeability.
They also mark more strongly the slope breakage accompanying the beginning of the plateau
of outer shear, ∆Fext, highlighting the initiation of sliding. On the other hand, this transition
is smoothed when considering the Prevost model. The limit case of k= 10−13m2 does not
even exhibit the decreasing ratio ∆Fuw/∆Ftot nor the slope breakage. The PWP accumulates
continuously and the soil plug might reach a liquefaction state.

Figure 7.15: Reduced deviatoric stress during a push undrained simulation, k= 5 · 10−12m2.
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7.3.2.4 Influence of friction coefficient

Special interface conditions are illustrated in Figure 7.16 for both drained and undrained
simulations. The first limit case depicts a friction angle of the steel-soil interface equal to 0.
Thence, the caisson slips along the soil without any resistance. The stuck condition presents
an infinite angle of friction of the interface, i.e. there is no limitation of τ .
The difference between stuck and normal conditions is very slight, indicating the shear mo-
bilised nearly does not reach its maximum value along the skirt. However, the gap between
results increases, which indicates the inner shear is progressively mobilised. The absence of
friction strongly affects the results. In this case, only two reaction components balance the
total load : ∆Ftop and ∆Ftip. The former bears the major part of the load which induces a
uniform settlement of the soil inside and under the caisson.
The physical global failure is not reached for these simulations. Indeed, the computations
stops when local failure are attained.
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Figure 7.16: Influence of interface conditions during push test. "Friction", sliding is allowed;
"No friction", steel-soil friction angle equal to 0; "Stuck", friction angle is infinite.
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7.3.2.5 Influence of the caisson height
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(a) H4 : caisson height is equal to 4m
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(b) H6 : caisson height is equal to 6m

Figure 7.17: Undrained push test.

Two caissons which are 4m and 6m long were subject to an identical push loading. Their
displacement-load results are illustrated in Figure 7.17. The increase of the caisson height
has at least three consequences :

• the global outer shear resistance is increased due to the greater surface ;

• the drainage path is increased between the top of the caisson and the seabed ;

• the tip zone is shifted deeper, which increases p’.

The consequence of the increase of friction available is clearly visible in Figure ??. The
H4 component of outer shear, ∆Fext, presents a plateau that is absent of the H6 results.
Obviously, such a plateau would also appear in the latter case if the pushing was further
continued.
The increase of the drainage path can not be observed merely in Figure 7.17. A longer path
reduces the rate of dissipation of the pore water pressure inside. Moreover, in the H=4m case,
the soil skeleton is more loaded, generating in turn higher pore pressure. Therefore, a clear
consequence of increasing H is not obvious.
So is the consequence of a deeper tip. The component ∆Ftip is lower in the H= 6m case,
since the maximum outer friction is not yet attained. It is worth noting that if the tip lies
deeper, the stress concentration that might result from the plug of the caisson benefits from
the higher mean effective stress and decreases the liquefaction risk.
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7.3.3 Pull test

7.3.3.1 Drained

Shear along the shaft of the caisson is the only mode of resistance of the caisson during
drained pull tests. Results of such a simulation are illustrated in Figure 7.18 (initial point is
on the right of the graph). Computation is carried out up to failure, i.e. the caisson pops out.
∆Fext and ∆Fint represent 80% of the total reaction component and the exterior shear reaction
weights initially 60% of the total (see Figure 7.18b). Afterwards both components converge
towards each other. The slope change in the monotonically decreasing ∆Fext/∆Ftot ratio
corresponds to the maximum available outer friction. It corresponds to a simultaneous rise of
∆Fint/∆Ftot since further increments of loading are reported on this component.
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Figure 7.18: Drained extension simulation. Results start on the right and negative displace-
ments stand for extension.

It might seem strange to represent ∆Ftip and ∆Ftop since these components can not hold the
caisson by surface tractions. However the global resultants Ftip and Ftop are not represented,
but their variations. Therefore the non-null plateau of ∆Ftip and ∆Ftop, corresponds to null
values of Ftip and Ftop, i.e. it indicates a loss of contact between the soil and the caisson.
Interestingly, although the interface friction angle is identical on both sides of the caisson,
the reaction component associated to each of them is different. Final reactions especially are
close but not identical. Indeed, the traction applied to the top of the caisson modifies the
stress state within the soil. Hence, the normal stress on the skirt, σ′n. This directly affects
the maximum available shear since it reads

tT,max = µ · p′N . (7.1)
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The distribution of shear along the shaft is described in Figure 7.19b at the end of the
simulation and is homothetic to the distribution of normal stress (see Figure 7.19d), i.e. slid-
ing occurs. The difference between outer and inner resistance is due to the traction loading
which deconfines the soil inside and then the normal stress on the skirt.
At the beginning of the pulling, however, the maximum resistance is not reached inside nor
outside the caisson. Thence the normal stress does not influence the shear distribution (see
Figure 7.19c). The difference between ∆Fext and ∆Fint is simply due to the difference of
relative soil-interface displacement. Indeed, the soil plug is deconfined which increases its up-
ward movement. As a consequence the relative displacement caisson/soil is lower than outside
where the confinement does not change.
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Figure 7.19: Drained extension simulation, distribution of shear along the shaft.
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7.3.3.2 Partially drained

−4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

x 10
−3

−5000

−4000

−3000

−2000

−1000

0

1000

∆ y [m]

∆ 
F

 [k
N

]

 

 

∆ Ftot
∆ Fint
∆ Fext
∆ Ftop
∆ Ftip
∆ Fuw

(a)

−4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

x 10
−3

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

∆ y [m]

∆ 
F

/∆
 F

lo
ad

 [−
]

 

 

∆ Fint
∆ Fext
∆ Ftop
∆ Ftip
∆ Fuw

Sliding

(b)

Figure 7.20: Partially drained extension simulations, k= 5 · 10−12m2. Results start on the
right and negative displacements stand for extension.

Extension partially drained simulation of a pull test is illustrated in Figure 7.20. Results
present features already observed. Outer shear mobilised increases up to the initiation of
sliding (see Figure 7.20a). Variation of pore water pressure inside the caisson ∆Fuw, represents
the major component of the reaction. It decreases up to the initiation of sliding and increases
afterwards (see Figure 7.20b).
The inner shear is initially positive in absolute value (and negative in relative one). This
has little effect on the global result but might be questionable. An hypothesis that could
explain this phenomenon, is the non uniform displacement of the soil within the caisson. The
suction effect induces a larger displacement in the middle of the soil plug than near the skirt.
Thence the relative displacement involves shear stresses tending to pull the caisson (see Figure
7.21b)). The soil can be considered as stuck to the caisson since the relative sliding is very
limited. This was already observed at failure in laboratory experiments, [Byrne and Houlsby,
2002; Kelly et al., 2006b]

(a) Vertical displacement (negative if upward).
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Figure 7.21: Extension partially drained test, beginning of the simulation, k= 5 · 10−12m2.

Distribution of PWP at the end of the pull test is illustrated in Figure 7.22. It demon-
strates the usefulness of the skirt of the caisson. Indeed, pore pressure inside is negative,
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inducing a high suction that prevents the pulling out of the caisson. It appears that these
under-pressures are very quickly dissipated outside the caisson. Therefore, such an effect
could not be mobilised without the skirt or would be significantly less pronounced.
The partially drained effect and the suction pressure generated double the total resistance of
the caisson, with regard to a drained simulation. However this resistance is purely transient
and depends on the rate of loading. If the load applied is kept constant during a long period,
the final total resistance in traction is the drained resistance.

Figure 7.22: Pore water pressure distribution around the caisson at the end of the pull test,
k= 5 · 10−12m2.

7.3.3.3 Influence of permeability

It is interesting to observe the effect of permeability on the displacement-load curve,
presented in Figure 7.23. Obviously, the higher the permeability, the higher the flexibility
and the displacements reached for a given traction load (see Figure 7.23a). Observations are
similar for both the permeability or the rate of loading. Thence only the influence of the
former is investigated. Furthermore, the influence of k does not only affect the magnitude of
∆Fuw but also its shape, as shown in Figure 7.23b.
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Figure 7.23: Comparison of results for k= [5 · 10−10; 5 · 10−11; 5 · 10−12]m2.

The highest permeability results, i.e. k= 5 ·10−10m2, are interesting since they summarise
all the behaviours that might happen in such a test. They are depicted in Figure 7.24. The
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major component of reaction is the outer shear, ∆Fext, since there is a very high drainage
(see Figure 7.24b). ∆Fext increases up to reach the plateau of fully mobilised friction. Si-
multaneously, the contribution of the PWP ∆Fuw/∆Ftot decreases, due to the drainage (see
Figure 7.24b).
The beginning of sliding between the outer soil and the caisson reports additional increments
of load onto ∆Fuw and ∆Fint creating a change of slope (see Figure 7.24b). Thence, the
contribution of the internal shear rises up to attain its maximum. A second slope change
occurs for the Fuw curve which becomes the only mode of resistance of the caisson. Finally,
the contact is lost between the top of the caisson and the soil, ∆Ftop reaches its plateau in
Figure 7.24a and the pore pressure becomes more negative. It is also interesting to note that
the inner shear decreases slightly after its maximum. This is due to the continuous reduction
of normal effective stress acting on the skirt with deconfinement.
This simulation illustrates sequentially all the limits of resistance of each mode. However, it
is provided only for pedagogic purpose since it corresponds to either a high permeability or a
low stress rate.
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Figure 7.24: Partially drained extension simulation, k= 5 · 10−11m2. Results start on the
right and negative displacements stand for extension.
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7.3.3.4 Influence of friction coefficient

The influence of friction coefficient on the overall results is depicted in Figure 7.25a. Two
limit cases are presented. Obviously if no friction is allowed, the results are uninteresting
and correspond to the decompression of the initial confinement. On the other hand, if the
soil and the caisson are stuck together, the computation stops since the soil locally reaches
failure. These interface conditions imply a true traction of the soil, i.e. the caisson pulls the
soil, which is non-physical.
Partially drained simulations obviously present a higher stiffness and resistance than drained
simulations (see Figure 7.25b). Indeed, they can not reach full failure of the soil since local
failure or liquefaction are attained and the computation was not able to continue. However,
although this sharp stop is disappointing, it is not a big deal. Indeed, this state of local failure
involves a high loading level and has to be avoided in the design of such a structure. Therefore
it will not be modelled in the following.
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Figure 7.25: Influence of interface conditions during pull test. "Friction", sliding is allowed;
"No friction", steel-soil friction angle equal to 0; "Stuck", friction angle is infinite.

7.3.3.5 Influence of the caisson height
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(b) caisson height : 6m

Figure 7.26: Drained pull test

Drained pull test performed up to failure are provided in Figure 7.26. Not surprisingly,
final displacement, inner shear and maximum outer shear as well are greater if H is greater.
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It is worth noting that the caisson height is increased of 50% but the total resistance rises up
to 80%. This illustrates the varying maximum shear available with depth.
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(a) caisson height : 4m
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(b) caisson height : 6m

Figure 7.27: Unrained pull test

Undrained pull tests were carried out up to the loss of convergence of the code. It is not
a mandatory sign of physical failure. Indeed, local failure can influence the overall stability
of the computation process. For instance, when the contact is lost at the tip, the physical
material crumbles and filled in the void. The continuum description of the material is not
able to reproduce such a phenomenon.
Once again in Figure 7.27, it appears the shear increases with the length of the caisson.
Moreover, the coupling between the pore water pressure and the shear is more apparent in
Figure 7.27b, where the plateau of ∆Fext is not constant but slightly evolves. The decrease of
PWP inside the caisson increases the normal effective stress on the skirt, hence the maximum
resistance to sliding.

7.3.3.6 Influence of the Prevost model

−8 −7 −6 −5 −4 −3 −2 −1 0

x 10
−3

0

0.1

0.2

0.3

0.4

0.5

0.6

∆ y [m]

∆ 
u uw

/∆
 F

to
t [−

]

 

 

5*10−10

5*10−11

5*10−13

k [m2]

 

 

Prevost
Elastic

(a)

−8 −7 −6 −5 −4 −3 −2 −1 0

x 10
−3

−120

−100

−80

−60

−40

−20

0

∆ y [m]

 P
lo

ad
 [k

P
a]

 

 

5*10−10

5*10−11

5*10−12

k [m2]

 

 

Prevost
Elastic

(b)

Figure 7.28: Influence of the model type on the displacement-load curve. Black curves
(Prevost model) - gray curves (elastic model).

A comparison between elastic and Prevost models is illustrated in Figure 7.28. Variations
of pore water pressure inside the caisson are quite similar between both models (see Figure
7.28a). The displacement-load curve is stiffer for elastic results, which is partly due to the
non-dependency of the elastic moduli on the confinement. Furthermore, a pull test consists
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mainly in unloading the caisson, generating less plastic effects. However these plasticity effects
might affect the distribution of normal stresses along the inner and outer interfaces, then the
maximum shear stress.
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7.4 Cyclic behaviour

7.4.1 Load signal

Nature is in essence irregular and untidy. So is the loading acting on a suction caisson.
Initially, a first static drained loading is assumed to represent the dead weight of the wind
turbine and its support (20kPa). Afterwards, the cyclic loading is applied to a partially
drained soil and arises from the action of wind and waves on the structure. Variation around
the mean value is ±40.5kPa.
An example of vertical load signal that represents the action of a storm on foundation (leg of
a tripod structure) is provided in Figure 7.29. This example is a classic output result of the
analysis of the tripod structure for given climate conditions in the North sea (current, waves
and wind). This signal is the assembly of 11 pseudo-random sequences of 600s generated
independently. One of them includes an extreme event, i.e. it represents the worst wave that
is expected to hit the structure. They correspond to a storm characterised by a wave height
Hw = 10.8m.
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Figure 7.29: Storm signal including an extreme event. The signal is normalised by its
maximum value.

Lee and Ficht [1975]; Rahman et al. [1977] coined the concept of equivalent storm. The
entire signal is decomposed into its salient waves characterised by a height and a period. The
basic idea was to relate each wave type to an equivalent loading, such as a cyclic stress ratio
τcycl/σ

′
v, which is the amount of shear loading divided by the vertical effective stress. This ratio

can then be compared to a measured resistance, which depends on in situ measurements.
The sampling frequency of the pseudo-random signal is 20Hz. However this frequency is
unnecessary and non practical from a numerical point of view. Indeed, the high frequency
content does not influence the results, since its effect is purely undrained. Furthermore, it is
very costly to use so small size steps.

A relation between pore pressure variations and a number of shear cycles (of a given
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amplitude) was elaborated by [Seed and Idriss, 1971], as shown for instance in Figure 7.30b,

∆uw
p′0

=
2

π
sin−1

[(
N

Nl

) 1

2α

]

, (7.2)

where ∆uw is the variation of PWP, p′0 is the initial mean effective stress, Nl the number
of equivalent cycles necessary to reach liquefaction and N the current number of equivalent
cycles. This relation was adapted by [Taiebat, 1999] in order to be implemented into a finite
element code. For a given state of the material, the relation provides the increment of pore
pressure induced by a additional number of equivalent waves.
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(a) Equivalent storm, from [Taiebat, 1999].
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Figure 7.30

In the following, two types of load signals are considered : pseudo-random and equivalent.
The former is the result of a complex environment-structure interaction and the second is
sinusoidal equivalent and deduced from the former pseudo-random signal. The basic working
of the foundation is described firstly by a short simulation of a 600s loading of either pseudo-
random or equivalent signals. Their sampling frequencies are respectively 3.33Hz and 5Hz.
A simulation of the full storm (6600s) remains very costly at this sampling frequency. There-
fore, the full loading signal only considers the local peaks of vertical stresses and the signal
is linearly interpolated between them. This leads to an average sampling frequency of 0.5Hz.
Equivalent loading signals are discretised by 9 defined points. Their average sampling fre-
quency is around 1Hz.

7.4.2 Half cycle analysis

In this work, a fully coupled transient analysis is carried out. Therefore, a time signal must
be entirely taken into account. However, such a signal is not always easy to derive. Moreover,
results are sometimes more comprehensive to analyse if they are grouped into packets of waves
of similar amplitudes and periods. Such a method highlights the effect of each wave type on
the results.
The half cycle analysis, applied by [Byrne and Houlsby, 2002] to reduce the amount of infor-
mation contained in a signal is adopted here to transform the pseudo-random signal, obtained
from the structural analysis, into an equivalent sinusoidal signal. The first step is to establish
the mean value of the load signal, Pmean. A half cycle is the part of the signal that is included
between two successive crosses of σy,mean (see Figure 7.31). Corresponding half period ∆T
and amplitudes ∆P are then easily obtained.
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Figure 7.31: Half cycle analysis, after [Byrne and Houlsby, 2002]
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Figure 7.32: Short storm load signal containing the extreme event (see Figure 7.29).

The method is applied to the sequence of the storm signal containing the extreme event
(600s, short load signal). The adimensional signal provided in Figure 7.29 is scaled to corre-
spond to a mean vertical stress of 20kPa and a maximum cyclic amplitude of ±40.5kPa. This
signal is illustrated in Figure 7.32a where the markers denote the peak values of each half
cycle.
Half cycle amplitudes are classified into five categories which median values are provided in
Figure 7.32b. For each of these categories, a corresponding mean half period T/2 is computed.
The two greatest amplitudes correspond to the extreme event and are grouped together. Then
a complete sinusoidal load signal is reconstituted by gathering waves packets (characterised
by their periods and amplitudes) into a full transient signal. Characteristics of equivalent
signal are provided in Table 7.5. Two periods of loading clearly exist, 5s and 11s. The latter
can be compared to a typical wave period of around 10s. The relatively long duration of such
a loading is an argument for dropping inertial effects in the simulation.

Number of cycles [-]
∆P [kPa]

T [s]

A1 A2 A3 A4

50 28 4 1
4.5 13.5 22.5 40.5
4.6 11 11.6 11.1

Table 7.5: Number of equivalent cycles, associated amplitude and periods (short signal).
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The last step is the assembly of the signal. Equivalent cycles might be reorganised ran-
domly but such an order loses the advantages of the method, i.e. an improved readability
of the results. In this work, three types of arrangements are considered and are presented
in Figure 7.33. The former arranges the cycles in increasing order of amplitude up to the
extreme event, in the middle of the signal. Afterwards, cycles are assembled in decreasing or-
der of period and amplitude. This follows the pattern of equivalent storm defined previously
in Figure 7.30a. The two last configurations place extreme event respectively at the early
beginning or at the end of the simulation.
In the following, these signal types are compared in order to validate or invalidate their
equivalence. If they are equivalent, the knowledge of a pseudo-random signal becomes not
mandatory and an equivalent signal can be obtained by readily assessing a number of cycles
of given amplitude and periods. Moreover, it might be less costly to employ an equivalent
signal, which is regular and might require less time steps.
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Figure 7.33: Reconstituted equivalent short storm signals.

The same procedure was applied to the full storm load signal. Packets of waves are
characterised by amplitudes and periods provided in Table 7.6.

Number of cycles [-]
∆P [kPa]

T [s]

A1 A2 A3 A4 A5

380 344 58 4 1
3.7 11.25 18.76 26.23 45
6.4 9.9 11.4 11.7 11.7

Table 7.6: Number of equivalent cycles, associated amplitude and periods (long signal).

The half cycle analysis method can also be used to analyse and reduce the amount of
information embedded in result signals. If an arbitrary response signal X, e.g. displacement
or PWP evolution, corresponding to the load signal P was perfectly linear, it would recover
its initial mean value when P = Pmean. However, a deviation from this initial value is
most of the time observed (see Figure 7.34) and the deviation is termed δperm. Thence if
δperm corresponding to each crossing of the mean load are collected, a tendency curve can be
established. The tendency for a single cycle is defined as the mean value of the two successive
δperm. It often marks an accumulation, e.g. pore pressure or displacement. Peak values
corresponding to each half cycle either over or under the mean value can be collected to
delineate envelop curves, i.e. the range of variation of the signal (see Figure 7.34).
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Figure 7.34: Half cycle analysis of the results.

7.4.3 Short signal

7.4.3.1 Reference case

A comparison between equivalent and pseudo-random short loading signals is commented
hereafter. A consolidation phase is finally simulated where P = Pmean. It is impossible to
compare the stress distributions or the pore pressure variations over the whole domain for
each time step. Therefore, the displacement of the centre of the caisson and an average pore
pressure variation under its lid are chosen to be representative data. In order to increase the
readability of the results, a half cycle analysis is carried out on the outcomes.

Let us first consider a comparison between equivalent and pseudo-random signals, as shown
in Figure 7.35. Variations of PWP and total loading are plotted together. It can be observed
that the major part of the loading is sustained by inner PWP. Thence, the behaviour is
partially drained and even close to the undrained one. It is difficult to draw a clear tendency
when analysing the pseudo-random response.
On the other hand, equivalent signal clearly indicates that small amplitude waves (A1, between
0 and 100s) induce nearly no accumulation, i.e. PWP generated over a half cycle is dissipated
during the following. This phase of the loading is quasi stationary. Afterwards a very slow
accumulation rate holds and less than 1kPa of PWP is accumulated over 160s, for the second
batch of cyclic amplitude. The major part of the pore pressure accumulated then appears
for A3 and A4 cyclic amplitudes. It is about 4kPa over 30s. This accumulated PWP exists
during the next 300s and dissipates gently.

Figure 7.36 compares tendency curves of ∆uw and ∆y for the four types of loading signals
(Equivalent 1-2-3 and pseudo-random). The tendency are computed using the half-cycle
analysis method. Both sub-figures must be analysed in parallel. Indeed, displacement and
pore pressure are inherently linked. The initial displacement of 0.8mm corresponds to the
settlement due to the static loading.
Each displacement variation can clearly be separated into two phases (see Figure 7.36b).
During the first one, a quasi-linear increase of displacement takes place. Then the extreme
event occurs and a sharp variations of displacement holds. It is followed by a second phase of
settlement (concave curve) up to the final value. This latter corresponds to the consolidation
(with varying load) due to the progressive pore pressure dissipation.
It is interesting to note that the final settlement is nearly identical for all load signals even if
the "path" followed to reach this final value is different. However, the maximum displacement
encountered is slightly different. It is obvious since it corresponds to the extreme event. This
latter might affect the design of a structure, which is very sensitive to its rotation and then
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Figure 7.35: Comparison between Equivalent 1 (top) and pseudo-random (bottom) loading
signals

to a differential settlement of the parts of the foundation.
The maximum accumulated pore pressure is not identical for each load signal. Indeed the
highest maximum corresponds to the soonest occurrence of the extreme event. This might
indicate that low amplitude cycles "prepare" the soil and make it less sensitive to further
loading.
Finally, the pseudo-random response exhibits the lowest final settlement and pore pressure
accumulated. Indeed, during equivalent loading, cycles that generate PWP accumulation are
grouped together, which amplified this effect. On the other hand, the pseudo-random signal
consists of a succession of cycles that are prone to accumulate (high amplitude) or dissipate
(low amplitude) PWP. Thence the maximum accumulation is attenuated.
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Figure 7.36: Comparison between signal types.
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7.4.3.2 Influence of the model

A comparison of the cyclic behaviour of respectively purely elastic and Prevost models is
illustrated in Figure 7.37. Results are quite distinct in both cases. Elastic results also present
an accumulation of pore water pressure, as shown in Figure 7.37a. At the beginning of each
new packet of cycles, the flow regime is perturbed and a transient flow variation of pore water
pressure occurs, which is fast reduced.
Accumulated settlement is very limited with elastic constitutive law. It is due to sliding of
the steel-soil interface, which is nearly negligible. Indeed, an elastic constitutive law can not
accumulate deformation, by definition.
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Figure 7.37: Comparison of the effect of the constitutive law.

7.4.3.3 Influence of permeability
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Figure 7.38: Comparison of the effect of permeability along the skirt.

The influence of permeability is summarised in Figure 7.38. Evidently, the higher the
permeability, the lower the extreme PWP generated within the caisson and the PWP accu-
mulated. This can be observed in Figure 7.38a. The corollary effect is the transfer of the
total load onto the effective stresses. This implies a greater loading of the soil inside, then a
greater settlement (see Figure 7.38b).
It must be pointed out that the highest permeability simulation could not be continued up to
the end of the loading. Indeed, it can be observed in Figure 7.38b that the settlement starts
increasing sharply when the extreme event is reached. It actually appears that a great part
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of the soil is brought to zero mean effective stress state under the lid and near the outer skirt
(see Figure 7.39a). The sand fails which can not be reproduced by the model.
The comparison of the stress path under the centre of the lid confirms this observation in
each case (see Figure 7.39b). Only the tendencies of q and p’ are represented for the sake
of readability. It clearly appears the stress path corresponding to k= 5 · 10−3m/s converges
towards the origin of the axes, then to initial liquefaction (point D). On the other hand, the
k= 5 · 10−4m/s result follows the same direction but does not cross the PT-line (point C). A
longer load signal may have led to the same conclusion. Finally, the last stress path moves
away from that states (point B), which is stabilising.

(a) Mean effective stress if k= 5 · 10−12m2, when
computation stops.
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Figure 7.39: Permeability effect

7.4.3.4 Influence of friction coefficient
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Figure 7.40: Comparison of the effect of friction coefficient along the skirt.

The influence of the friction coefficient on cyclic results is illustrated in Figure 7.40. Ob-
viously, the lower the friction, the higher the pore pressure generated within the caisson.
Indeed, the entire loading is only sustained by vertical effort at the top, i.e. effective ∆Ftop

and pore water pressures ∆Fuw. Thence the maximum PWP is greater if µ = 0 (see Figure
7.41a).
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The PWP accumulation inside the caisson is also greater (see Figure 7.41a). If the entire load-
ing is borne by the total pressure under the lid of the caisson, the effective stress variation
within it is greater, involving a higher plastic contraction and then pore pressure generation.
The total vertical displacement also highlights the larger amount of plasticity. Firstly, the
initial vertical displacement, due to static loading, Vmean is higher. The shear stresses along
the skirt diffuse the loading within the surrounding soil, relieving the soil under. On the other
hand, if no friction is allowed, the entire load is reported on the soil within and under the
caisson. Finally, there is almost no difference between µ = 0.25 and µ = 0.5 results. This
induces that friction limit is hardly attained.
The settlement variation during cyclic loading with frictionless caisson (∼ 2mm) is twice the
other ones (∼ 1mm). The reason of this result is again greater plastic effects inside and under
the caisson. Distributions of displacements within the soil in both cases are portrayed in
Figures 7.41. They highlight the inherently distinct modes of resistance of the caisson and
the different diffusion patterns of the stresses within the soil.
Where friction is not null, the soil and a layer of soil around it settle monolithically. It means
shear stresses along the shaft are diffused within the soil around, which contributes to the
global resistance of the soil-structure system. Material under the centre settle much less. On
the other hand, if the friction coefficient is equal to zero, the load is transferred to the soil
only where the contact zones are horizontal (under the lid and under the tip). Therefore, the
highest settlement is located in these zones. The volume of soil contributing to the global
resistance is lower. Thence it is much loaded and settles more.
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Figure 7.41: Vertical displacement at the end of the extreme event batch.

7.4.3.5 Influence of PT ratio

The influence of the phase transformation ratio, η̄, is illustrated in Figure 7.42. This
parameter rules the contractivity of the soil, thence the lower this parameter, the lower the
PWP generated and accumulated during the simulation. For the same reason, the settlement
is lower (see Figure 7.42b). Results and especially settlement at the end of the simulation,
appear to be very sensitive to this parameter. Therefore, if it is reminded η̄ was a bit tricky
to determine from laboratory tests, it seems judicious to always assess its influence on simu-
lations.
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Figure 7.42: Comparison of the effect of phase transformation ratio.
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Figure 7.43: Comparison of the effect of the length of the caisson.

7.4.3.6 Influence of the caisson height

It can be observed in Figure 7.43 that the increase of the caisson height strongly reduces
the accumulated displacement. Indeed, the greatest friction that can be mobilised reduces the
level of loading of the solid skeleton, hence the amount of settlement and PWP accumulation.
Moreover, the increase of the height increases the drainage path. Pore pressures dissipate
more slowly and the partially drained effect is increased, meaning less settlement.

7.4.3.7 Influence of K0

As stated before, the introduction of non isotropic stresses within the soil implies initial
deviatoric stresses that might lie outside the yield surface. For a given effective initial state
of stress [σ′x = K0 · σ′y;σ′y;σ′z = K0 · σ′y], the initial reduced deviatoric stress ratio reads

q

p′
= 3 · 1−K0

1 + 2 ·K0
(7.3)

which is depicted in Figure 7.44. A coefficient equal to 0.9 is adopted hereafter, which corre-
sponds to η0 = 0.1071. This value lies outside the yield surface. Therefore, parameters of the
laws were adapted and the first surface was dropped, i.e. the set of parameters encompasses
only 15 surfaces instead of 16. A comparison of cyclic results obtained for either K0 = 1 and
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K0 = 0.9 is provided in Figure 7.45.
K0 mostly influences the final displacement accumulated rather than the pore pressure accu-
mulation inside the caisson. Actually, the effect of this parameter is twofold. On one hand,
the final η value reached in each point is higher, since the initial state is shifted up. Therefore,
surfaces of lower plastic moduli are activated which induces more settlement. On the other
hand, K0 < 1 reduces the normal effective stress acting on the skirt of the caisson, then the
maximum friction available, which might increase the skirt-soil slip.
Interestingly, the number of surfaces strongly influences the final settlement (see circle and
diamond curves in Figure 7.45b). Indeed, the swap between 16-surface and 15-surface config-
uration enlarges the elastic domain. As a consequence, a large part of the domain, which is
weakly loaded does not encounter any plastic effect, hence a weaker settlement.
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Figure 7.45: Comparison of the effect of K0. (16 surf) stands for the reference model with
16 nested surfaces while (15 surf) holds for the modified set of parameters.

Another possibility to take K0 into account would have been to modify the initial αi

values. The consolidation process of the sample could have been modelled from an isotropic
material up to the η-value corresponding to the K0 condition.
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7.4.3.8 Cyclic diagram

It would be interesting for designers to assess the effect of a storm event onto the final
displacement encountered by a foundation, without any complex simulation. Cyclic diagrams
presented in Figure 7.47 allow a quick estimation of the total settlement for a given com-
bination of mean (σy,mean) and cyclic (σy,cyc,max) amplitudes characterising the cyclic load
applied to the caisson.
This diagram is based on 32 simulations for a single caisson geometry and identical initial
conditions. They are subject to the same equivalent short storm signal but scaled and shifted
to correspond to each combination of vertical loads, as shown in Figure 7.46. The cyclic
amplitude represents the maximum variable vertical load applied during the extreme event.

Figure 7.46: Short storm signal applied. The mean vertical stress (σy,mean) and the cyclic
amplitude (σy,cycl) are adjusted for each simulation.

The first diagram (see Figure 7.47a) depicts the addition of the settlement encountered during
static and cyclic loadings. Settlement accumulates faster in the direction of static variable,
since this loading is fully drained. Figure 7.47b represents the settlement accumulated only
during the storm event. In this case, if the maximum displacement is imposed, the higher
the mean vertical stress, the lower the admissible variable stress. However, this relation is
definitely not linear.
Most of the time, such diagrams relate a combination of static and cyclic loads to the number
of cycles required to reach failure. However, failure must be defined for that purpose and
there is no clear criterion. Moreover, the finite element code encountered problems of conver-
gence when approaching local failure of the material. For both reasons, a representation of
the displacement after a given event was preferred.
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Figure 7.47: Vertical displacement [m] for a combination of mean (σy,mean) and maximum
cyclic (σy,cyc,max) amplitudes.
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7.4.4 Complete storm

A complete storm which has a duration of 1h50 has been modelled for both pseudo-random
and first equivalent signals. In both cases, the extreme event occurs in the middle of the load-
ing. The cpu time required to perform the full computation is more or less 30 hours.
The averaged pore water pressure accumulation is depicted in Figure 7.48a. In both cases,
the maximum accumulated pore water pressure observed within the caisson is lower than
during the short load signal. The low amplitude sequences of the long duration loading seem
to "prepare" the soil and the effect of the extreme event on the PWP is attenuated.
It is worth noting in Figure 7.48b the remarkably identical settlements accumulated during
the storm, for both signal. This figure demonstrates the half-cycle analysis is pertinent to gen-
erate load signals equivalent to pseudo-random ones. The overall final settlement is obviously
greater for the long duration storm than for the short one. However it is not proportional to
the duration of the storm. Indeed, the settlement accumulation over 6550s of storm is equal
to 2.9mm. On the other hand, the settlement accumulated during the short storm (600s) is
equal to 0.9mm. The sharp increase of settlement is close to 0.2mm during the short simula-
tion and equal to 0.5mm during the long simulation.
Moreover, considering the equivalent signal, it appears that the main part of the total settle-
ment occurs during the first half storm (2.5mm), encompassing the greater amplitude cycles.
More precisely, a settlement of 1.8mm is accumulated at the end of the extreme event. Indeed,
it can be observed that the settlement monotonically increases but its concavity is negative,
i.e. the slope of the increase of settlement decreases during the storm.
Results of accumulation of settlement for short and long duration storm exhibit similar pat-
terns. Therefore it could be interesting to investigate whether a relation exists between the
duration of the storm and the settlement accumulation. Thence, the final settlement could
be extrapolated for any given duration of a storm.
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Figure 7.48: Comparison of pseudo-random and first equivalent signals.
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Figure 7.49 exhibits the residual stresses within the soil. It distinguishes the deviatoric
reduced stress ratio before and after the storm. This representation is only an indirect indica-
tor of the plasticity, since it does not represent cumulated deformation. However, the higher
η, the higher the activated surface, hence the lower the plastic modulus.
Strong plastic effects are located near the outer skirt of the caisson over a width of one meter.
This fact implies that the use of a complex interface constitutive law and a classic Drucker-
Prager model for the solid elements would probably have not been sufficient, i.e. deformation
is not only localised near the interface. The representation of η shows the zone of soil influ-
enced by the loading. It is roughly limited to a length close to the caisson height H around
the caisson.

(a) After static loading. (b) After the storm.

Figure 7.49: Comparison of the reduced deviatoric stress ratio before and after the long
duration storm, for the pseudo-random signal.

The vertical displacement distribution around the caisson after the storm is represented in
Figure 7.50. The strong gradient of vertical displacement near the skirt highlights the shear
deformation due to soil-steel interface shearing. Finally, the settlement observed is mainly
located inside the caisson.

Figure 7.50: Vertical displacement at the end of the long duration storm (pseudo-random
signal).
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7.5 Conclusion

This chapter aims at describing the salient features of suction caissons in dense sand. A
fully transient analysis of such a foundation was carried out, taking into account plasticity
of the soil (Prevost model) and of the steel-sand interface (Mohr-Coulomb criterion). The
geometry adopted consists of a 7.8m diameter and 4m height caisson. It is assumed that
vertical loads are preponderant. Thence the mesh is axisymmetric and the loading consists
of a push-pull action.
Monotonic drained and undrained simulations highlight the role of the different components of
resistance during both push and pull simulations. Unsurprisingly, friction plays a major role
in the global resistance. During drained simulations, inner and outer friction are mobilised.
However, sliding of the outer interface occurs sooner than the inner one, due to a greater
relative displacement. Deformation of the soil is concentrated around the skirt of the caisson.
During undrained simulations, the inner friction is hardly mobilised. The suction effect in-
volves a quasi-monolithic movement of the soil plug and the caisson, which is consistent with
experimental observations. This suction effect is strongly dependent on the permeability of
the soil. Pull simulations highlight the inherently transient behaviour of such a foundation
system. Indeed, for a similar drained resistance, the higher the permeability, the lower the
maximum traction load sustained. Therefore, long term and short term resistances must be
distinguished during design.

Typical load design in offshore geotechnics corresponds to a storm. The signal of vertical
loading onto the foundation is not easy to derive since it depends on a complex interaction
between the structure and the environment. Complex pseudo-random signals can be furnished
by specialised software. An example of such a signal is used to highlight the influence of salient
parameters during cyclic loading.
A half cycle analysis was carried out to construct a sinusoidal-equivalent load signal. This
simpler signal is compared to the pseudo random one and all of them converge to an identical
final settlement. This leads to the conclusion that it is not mandatory to resort to complex
pseudo-random load signals. Equivalent sinusoidal ones can be used instead. They are easier
to determine since the major part of the cycles is characterised by a typical period of around
10s.
The partially drained behaviour of the caisson is obvious and the pore water pressure generated
sustains the main part of the loading. This implies the solid skeleton is hardly loaded which
in turn reduces the final settlement observed. Evolution of the settlement clearly highlights
the progressive accumulation of plasticity. Small cycles have nearly no effect but the extreme
event involves a large settlement coupled with a large pore pressure accumulation.
Permeability is a key factor. Indeed, a higher permeability involves a greater loading of the
solid skeleton. Therefore, plastic effects are stronger and the final settlement is larger. On
the other hand, depending on the characteristics of the soil, a higher permeability might lead
to a greater accumulation of pore water pressure, hence to a liquefaction of the soil around.
The friction parameter also plays a major role in the resistance. Indeed, friction along the
skirt allows the diffusion of the vertical loading to the soil around, reducing the loading inside
and under, then decreasing the final settlement, either after the static loading and the cyclic
one.
The caisson height influences the amount of maximum friction and the length of the drainage
path as well. It is worth mentioning the available shear stresses do not increase linearly with
the caisson height, due to the increasing confining stress. The coefficient of lateral earth
pressure at rest also influences the maximum friction and the amount of plasticity generated
within the soil. Finally, a cyclic diagram is elaborated, relating the settlement accumulated
during a short storm event to mean and cyclic amplitudes. Such a diagram can be used during
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pre-design phases.
A comparison of long duration storm events, for both pseudo-random and equivalent load
signals is carried out. The total settlement accumulated at the end of the storm is identical
in both cases. It justifies the use of half-cycle analysis to build to build an equivalent load
signal.

THe cpu time necessary on a standard laptop lies between 2.5h and 3h. From a technical
and cost point of view, such computations are affordable for design offices. The difficulty lies
in the calibration of parameters and the sometimes lack of robustness of the constitutive law,
especially near the liquefaction state.
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Chapter 8

Conclusion

Success consists of going from failure to failure
without loss of enthusiasm.

Winston Churchill
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8.1 Summary

The cyclic behaviour of sands, widely studied in laboratories is quite complex. Pertinent
features of their behaviour are highlighted and are the basic ingredients any constitutive law
should reproduce. The most pertinent are the occurrence of plasticity in both loading and
unloading; the phase transformation line, delineating contractive from dilative volumetric
behaviours; the triggering of flow deformation; accumulation of plastic deformations; asym-
metric stress paths in extension and compression.
Other phenomena are assumed to be less pertinent. They correspond to failure and post-
failure behaviours, e.g. steady state and cyclic mobility. Indeed, simulations consist mainly
in designing a foundation to service loading. The triggering of failure provides a limit resis-
tance that should not be reached. Therefore, the residual resistance does not really matter.
Furthermore such phenomena observed macroscopically in laboratory correspond to a loss of
homogeneity of the soil samples.

The Prevost model is adopted in order to represent the cyclic behaviour of soils. It belongs
to the family of multi-surfaces. The basic formulation of this model has two main advantages:
its conceptual simplicity and its physically related parameters. It is able to reproduce salient
features of the cyclic behaviour of soils. On the other hand, the post-failure behaviour can be
depicted, but the price to pay is a more complex volumetric plastic potential and additional
parameters. There is no dependency of the parameters on the void ratio of the material.
Therefore, a new set of parameters should be defined for each density range.
Three sets of parameters are calibrated based on experiments (triaxial tests) available in the
literature. Detailed and free data are scarce. Thence the calibration process focuses on two
distinct materials, the Nevada and Lund sands. A unique set of parameters is obtained for
each density. Monotonic drained and undrained triaxial tests are correctecly represented, with
regard to the scattered data.
On the other hand, cyclic simulations do not perfectly match the laboratory experiments.
Indeed, these tests are quite complex to carry out and are subject to instabilities since they
are stress-controlled. However the general trend of the cyclic behaviour is well reproduced.
A pore water pressure is accumulated and the stress path is translated towards the origin of
the axes, i.e. towards liquefaction.

An implicit integration scheme was developed to implement the constitutive law in the
finite element code LAGAMINE. The scheme corresponds to a midpoint rule, ensuring a second
order accuracy for reasonable sizes of time steps. A local iterative process must be solved,
requiring a line search procedure to improve the efficiency and the robustness of the algorithm.
Derivatives of the local Newton process are computed analytically.
An implicit hardening rule must be adopted in order to avoid the intersection of successive
nested surfaces. Both Mroz and Prager translation rules are compared. It is shown they
correspond to distinct models since their response are divergent when subject to a multi-axial
loading. The Prager rule is finally adopted.
The verification step ensures the implemented algorithm corresponds to the "analytical" so-
lution. This solution is obtained either from an explicit simplified integration of the model
(triaxial simulations), or from the implicit algorithm (multiaxial simulations)), using very
small time step. It is highlighted that a substepping scheme should be included to improve
the efficiency and the accuracy of the algorithm when a large variation of η holds over a small
variation of deformation. This corresponds to the quasi-steady state.
The convergence of the local iterative process is quadratic, ensuring the analytical derivatives
are correctly computed. Isoerror maps are elaborated to assess the accuracy of the algorithm.

An interface element is developed to better take into account the soil-structure interaction.
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The efficiency of an existing hydro-mechanical interface element is improved. The unsticking
capability is added, i.e. the loss of contact between both sides of an interface involves a suction
of the fluid inside. Therefore, a resistance to traction exists even if contact is lost. An example
of partially drained consolidation of a soil column is investigated and the consequences of an
unsticking are highlighted.

The cyclic behaviour of a suction caisson as a part of a wind turbine offshore foundation is
investigated. The adopted material is a very dense sand and employed parameters correspond
to the Lund sand at a relative density of 90%. The overall loading is assumed mainly vertical
and the mesh is axisymmetric.
Monotonic simulations up to failure highlight the modes of resistance of the caisson. Fric-
tion along the skirt plays a major role during drained simulations. Only the outer friction is
mobilised during partially drained simulations and the soil plug is considered as stuck to the
caisson.
The partially drained behaviour of the foundation is a key feature to sustain transient loads.
Indeed, the pore water pressure generated inside the caisson is progressively dissipated. How-
ever, it sustains the major part of the total transient load. Consequently, the permeability
and the rate of loading of the caisson are of paramount importance.
A transient load signal corresponding to a storm, including an extreme event, is applied to the
caisson. Firstly a pseudo-random signal resulting from the complex interaction of the wind
turbine structure and the environment is utilised. It is compared to a sinusoidal equivalent
load signal, encompassing the same number of main cycles. Accumulated settlement at the
end of a storm are identical. A cyclic diagram relating a final displacement to a combination
of average and cyclic loading is finally elaborated.

The methodology embraced in this work echoes the opening quote of Socrates, the only
true wisdom is in knowing you know nothing. Indeed, presumed ideas and obviousness are dis-
carded. Continuous questioning on the origin of observed or modelled phenomena sequentially
reveals the physics hidden behind the rough results. An extensive knowledge and mastering
of the complexity of reality is the first step to simplification, then to the creation of design
methods.

8.2 Contributions

The main objective of this thesis is to introduce a cyclic constitutive law in the finite
element code LAGAMINE. It can be deemed fulfilled. This achievement is the final outcome of a
sequence of scientific steps. The first step consists in a deep understanding of the constitutive
law. Influence of each parameter on the model is extensively described and explained. Three
sets of parameters are calibrated and compared for both monotonic and cyclic simulations.
An original implicit scheme is created to implement the constitutive law in the finite ele-
ment code. This apparently straightforward step is actually not obvious. It requires the
understanding of the LAGAMINE environment, the development of an efficient algorithm, its
implementation and its verification. A 3D formulation is now available for any type of cyclic
loading.

The second main contribution is the update and the improvement of the 2D hydro-
mechanical interface element. The efficiency of the already existing element is considerably
improved. A "suction effect" is introduced, allowing the unsticking of two solids. This ad-
ditional feature is dedicated to transient modelling of offshore foundation, where the loss of
contact of soil and foundations is not a synonym of global failure.
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The third main contribution is related to the dissection of the transient behaviour of
suction caissons. This offshore application is extensively investigated. Its salient features and
the influence of main parameters are abundantly described and explained. The comparison
of pseudo-random and equivalent load signals is also an interesting outcome that might have
practical implications. A diagram representing the displacement at the end of a storm event
for different combinations of mean and cyclic loadings can be derived.

Finally, the scientific path followed to achieve this work is paved with minor contributions.
They consist of all the tools developed either for debugging or post-processing the results. The
global experience of the research team about cyclic loading has also been increased.

8.3 Perspectives

Whatever the topic, a thesis always sows the seeds of following ones. Each progress induces
new problems; each answer new questions. Science is continuously moving and our knowledge
is perpetually perfectible. This thesis paves the way for the complex cyclic modelling of
cohesionless material in LAGAMINE. Improvements and perspectives concern three main axes :
constitutive law, tools and applications. These topics are obviously closely interrelated and
depend on each other.

8.3.1 Constitutive law

The constitutive law is the basic component required to model any practical example. Its
development and implementation are complex and sometimes cumbersome but lead to a very
flexible mean of modelling material in any conditions. The Prevost model is adopted in this
work for its conceptual simplicity and its physically-based parameters. It is suitable for the
modelling of cyclic behaviour of sand. However, calibration process highlights a need for a
more accurate volumetric plastic hardening rule. Such improvements should be a compromise
between the accurate modelling of a complex reality and the number of new parameters to
calibrate.
Furthermore, it would be interesting to extend a unique set of parameters to all initial states
of the material, i.e. to any initial void ratio. Indeed, up to now, a set of parameters must
be calibrated for each relative density of a given material, which is cumbersome and non
practical. A state dependency should be inspired by the bounding surface models already
embedding such features.
It appears a posteriori, that some others models would have been interesting. Recent advances
in bounding surface models make them very attractive and their structure seems easier to
implement. However, only the intensive use and the implementation of a model can reveal all
its advantages and drawbacks. Therefore it is impossible to peremptorily assert another model
would have been more suitable or not. The liquefaction and post-liquefaction behaviours are
still an ongoing topic. It is definitely illusory to model a failure behaviour accurately with
classic methods. However, it should be possible to develop a trick that overcomes local failure
and mitigates it. Indeed, liquefaction reached at a very local point strongly deteriorates the
convergence of the global numerical process, even if it does not correspond to a physical global
failure of a structure. Cavitation is a mode of failure that should be integrated to the model
since it limits the maximum suction resistance. Furthermore, the soil should desaturate in
this case. Thus a retention curve should be modelled accordingly.
Interface plays a major role in soil-structure interaction. It might seem contradictorily to
employ an elementary Mohr-Coulomb criterion for the interface and a complex constitutive
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law for the surrounding soil. Indeed, a large field of development is opened concerning the
cyclic behaviour of interfaces (degradation, dilatancy...). Many experimental studies exist but
their numerical counterparts are much more scarce and remain unexplored.
Last but not least, a vulgarisation effort should be undertaken in order to make such models
suitable for day to day projects. Indeed the gap between scientists using very complex models
and industry is deep and large. The key factors of these models, more than their inherent
intrinsic complexity is the calibration and mastering of parameters. An extensive amount of
work is still necessary to produce correlations and explanations that would relate both sides
of the chasm. Science should not be constrained by industry but scientists can not live in an
ivory tower.

8.3.2 Tools

Theoretical models must be converted to practical software in order to be employed in
practice. However simple and elegant ideas might be tricky and cumbersome to implement. So
is the Prevost model. Many improvements consist in increasing the robustness, the accuracy
or the efficiency of the algorithm. These perspectives are limited to a very narrow field of
research but may lead to a substantial gain of practicability and a cost reduction.
The implemented algorithm might be enhanced in many ways since only a basic version is
available. The effect of the Lode angle and a complex plastic potential can be taken into
account. More numerical improvements concern the control of the accuracy that should be
managed by a suitable sub-stepping technique. Analytical derivation of the tangent stiffness
operator is a key issue for reducing the cpu time spent during integration of the law by a
factor five in 2D and seven in 3D.

All the conditions are nearly fulfilled to move to 3D modelling. Only interface elements
with suction effect should be extended to 3D. They already exist in their basic formulation but
they should be improved. Furthermore, the unsticking effect must be taken into account. As
a corollary effect, special resolution techniques must be employed to solve very large systems
of equations. The iterative GMRES method is already implemented and available for that
purpose.

8.3.3 Applications

The tools developed throughout this thesis coupled with the finite element code LAGAMINE
offer a very flexible toolbox. The capability of reproducing cyclic behaviour of sand opens up
new horizons.
Indeed, the studying of suction caissons can be pushed forward. The main improvement
would be to confront numerical modelling with laboratory results. Several obstacles should
be overcome. Firstly, data representative of the soil conditions should be at least available
to perform a pertinent comparison. Secondly, limit analysis and failure laboratory tests are
not easily modelled. Indeed, they involve many local failures before reaching a state of global
collapse. These phenomena are, by essence, non-continuous and unstable. Representing ex-
actly post-failure should be put into question. Indeed, the purpose of the design is to avoid
the occurrence of a rupture.
The natural next step is the 3D simulation. Indeed, loading is never purely vertical but con-
sists of a combination of vertical, horizontal and moment loads. Validating such simulations
should open the door to the study of a large variety of geometry and soil conditions. In-
deed, laboratory and numerical experiments should not be viewed as rivals but partners. The
former are the only possibility to measure reality. However numerical simulations are much
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more flexible and cheaper. Only a comparison between laboratory experiments and numerical
simulations can provide reliable design procedures. The extensive understanding of complex
phenomena is the first step to simplification. The final outcome should be design charts and
diagrams adapted to given soil conditions and geometries.

Perspectives should not be restricted to suction caissons. Indeed, tools developed can
be applied to the numerical modelling of many fields of offshore geotechnics such as piles or
gravity based foundations. In the former the effect of initial stress distribution is a key issue
while local failure (near the top of the seabed) is of major importance for the latter.
Obviously, a suitable constitutive law is the first step towards dynamic and earthquake en-
gineering. However, additional tools have to be implemented before. Absorbing boundaries
are the most important tools since they avoid spurious reflections of the loading in the soil
domain. Any kind of cyclic modelling might then be tackled.
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Appendix A

Simplified Prevost model for triaxial

test

Zorro est le seul héros qu’on reconnait grâce à
son masque.
(Zorro is the only hero that can be recognised
thanks to its mask.)

Pierre Cerfontaine
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246 APPENDIX A. SIMPLIFIED PREVOST MODEL FOR TRIAXIAL TEST

The Prevost model was degenerated into two simplified Equations (A.1) and (A.2) adapted
to the modelling of triaxial tests, [Prevost, 1985]. Only two deformation and two stress
variables are then necessary. Deviatoric deformation and stress invariants are denoted by e
and q respectively. Volumetric deformation and stress are termed ǫv and p1.

ė

q̇
=

1

2G
+

1

H ′
· 1− ηṗ

′/q̇

1 + 2
9η

2
(A.1)

ǫ̇v
ṗ′

=
1

K
± 1

H ′
· 2√

6
· 1− (η/η̄)2

1 + (η/η̄)2
· q̇/ṗ′ − η
√

1 + 2
9η

2
(A.2)

where the ± sign distinguishes between loading and unloadig cases. These equations can be
adapted to the specific cases of triaxial test :

• drained ;

• drained (p′ = constant) ;

• undrained.

The purpose of such a formulation is an easier calibration of parameters. This couple of equa-
tions can be straightforwardly implemented apart from any finite element code. Simulations
are assumed stress driven and depend on the evolution of e. An explicit integration is adopted.
The following equations stand for original developments of the Prevost model. Therefore the
flow rule is modified according to [Elgamal et al., 2002], i.e.

P” = ψ · 1 + (η/η̄)2

1− (η/η̄)2
. (A.3)

1Effective stress.
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A.1 Drained triaxial test

During a triaxial test, the total stress is equal to the effective one and the variation of the
mean stress reads

ṗtot = ṗ′ =

(
σ̇1 + 2 · σ̇

3

)

=

(
σ̇1 − σ̇3 + 3 · σ̇

3

)

=
q̇

3
+��̇σ3 (A.4)

where σ1 and σ3 = cst are the principal stresses. Therefore the ratio q̇/ṗ = 3 is constant
during the simulation. Equations A.1 and A.2 are then rewritten

ė =

C1
︷ ︸︸ ︷(

1

2G
+

1

H ′
· 1− η/3
1 + 2

9η
2

)

·q̇ (A.5)

ǫ̇v =

C2
︷ ︸︸ ︷


1

K
± 1

H ′
· 2√

6
· 1− (η/η̄)2

1 + (η/η̄)2
· 3− η
√

1 + 2
9η

2



 ·ṗ′. (A.6)

The final set of equations allows for an explicit simulation of drained tests as a function of
the deviatoric deformation







q̇ =
ė

C1

q̇ = 3 · ṗ′

ǫ̇v = C2 · ṗ′.

(A.7)

A.2 Drained triaxial test (p’=constant)

In that particular case, the mean effective stress is kept constant along the simulation.
Therefore, Equations A.1 and A.2 are reorganised

ė =
q̇

2G
+

1

H ′
· q̇−

=0
︷ ︸︸ ︷

η · ṗ′
1 + 2

9η
2

(A.8)

ǫ̇v =

=0
︷︸︸︷

ṗ′

K
± 1

H ′
· 2√

6
· 1− (η/η̄)2

1 + (η/η̄)2
· q̇−

=0
︷ ︸︸ ︷

η · ṗ′
√

1 + 2
9η

2
(A.9)
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which finally lead to

ė =

C1
︷ ︸︸ ︷(

1

2G
+

1

H ′
· 1

1 + 2
9η

2

)

·q̇ (A.10)

ǫ̇v =

C2
︷ ︸︸ ︷

± 1

H ′
· 2√

6
· 1− (η/η̄)2

1 + (η/η̄)2
· 1
√

1 + 2
9η

2



 ·q̇ (A.11)

and then 





ṗ′ = 0

q̇ =
ė

C1

ǫ̇v = C2 · q̇.

(A.12)

A.3 Undrained triaxial test

During undrained triaxial simulation, the following equations can be stated that

ṗtot = ṗ′ + u̇w

=
q̇

3
+��̇σ3 + u̇w (A.13)

(A.14)

u̇w =
q̇

3
− ṗ. (A.15)

Moreover, the volume remains constant during undrained triaxial test, i.e. ǫ̇v = 0. Therefore,
Equation A.2 is recast into

0 =
1

K
± 1

H ′
· 2√

6
· 1− (η/η̄)2

1 + (η/η̄)2
· q̇/ṗ′ − η
√

1 + 2
9η

2
(A.16)

⇔ q̇

ṗ′
=

C1
︷ ︸︸ ︷

∓H
′

K
·
√
6

2
· 1 + (η/η̄)2

1− (η/η̄)2
·
√

1 +
2

9
η2 + η . (A.17)

If the ratio C1 is introduced into Equation A.1, one gets

ė =

C2
︷ ︸︸ ︷(

1

2G
+

1

H ′
· 1− η · C1

1 + 2
9η

2

)

·q̇ (A.18)

and the following set of equations holds






q̇ =
ė

C2

ṗ′ =
q̇
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u̇w =
q̇

3
− ṗ′

(A.19)
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A.4 From triaxial to tensorial backstress

It is worth noting that α is a scalar provided from calibration on triaxial tests. Therefore,
the corresponding tensor α that is used in the tensorial formulation can be reconstituted
readily

α = α22 − α33 (A.20)

α22 + 2 · α33 = 0 (A.21)

⇒ α =
1

3
·





−α
2 · α

−α



 (A.22)

where α22 and α33 diagonal components of the backstress tensor α. Equation (A.20) holds
by definition and Equation (A.21) expresses that the backstress tensor if purely deviatoric,
i.e. its trace is null.
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Appendix B

Analytical derivatives

Science sans conscience n’est que ruine de
l’âme
(Science without conscience is nothing but ruin
of the soul.)

François Rabelais
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In the following and for the sake of readability, M ′i =

√

2

3
·M i ∀i.

B.1 Preamble

Proposition B.1.1. Derivative of a unit second order tensor is self-orthogonal.

Proof. Let us assumed that a second order tensor n depends on ξ

n =

[
n11(ξ) n12(ξ)
n21(ξ) n22(ξ)

]

(B.1)

and n̂ the corresponding unit tensor, using the Frobenius norm.
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· 1
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B.2 Derivative of n̂n+1

nn+1 = str − p′n+1 ·αa
n −H∗
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∂nn+1

∂‖Q′
n+1‖

= 0

n̂n+1 =
nn+1

‖nn+1‖

∂n̂n+1

∂ξ
=

∂nn+1

∂ξ
· ‖nn+1‖ −

∂‖nn+1‖
∂ξ

· nn+1

‖nn+1‖2
=

∂nn+1

∂ξ
− ∂nn+1

∂ξ
: n̂n+1 · n̂n+1

‖nn+1‖

∂n̂n+1

∂H∗
a,n+1

=
−∆γan+1 · µ̂a +∆γan+1 · µ̂a : n̂n+1 · n̂n+1

‖nn+1‖
= ∆γan+1 ·

−µ̂a + µ̂a : n̂n+1 · n̂n+1

‖nn+1‖

∂n̂n+1

∂∆γan+1

=
−H∗

a,n+1 · µ̂a +H∗
a,n+1 · µ̂a : n̂n+1 · n̂n+1

‖nn+1‖
= H∗

a,n+1 ·
−µ̂a + µ̂a : n̂n+1 · n̂n+1

‖nn+1‖

∂n̂n+1

∂pn+1
=
−αa

n +αa
n : n̂n+1 · n̂n+1

‖nn+1‖

∂n̂n+1

∂‖Q′
n+1‖

= 0
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B.3 Derivative of ‖Q′n+1‖

‖sn+1 − pn+1 · αa
n+1‖ =

√(
sn+1 − pn+1 · αa

n+1

)
:
(
sn+1 − pn+1 · αa

n+1

)

∂

∂ξ
‖ · ‖ =

✄
✄✄
1

2
· 1

‖ · ‖ · ✁2 ·
[
∂

∂ξ
·
(
sn+1 − pn+1 · αa

n+1

)
]

:
(
sn+1 − pn+1 ·αa

n+1

)

=
1

‖ · ‖ ·





∂

∂ξ
·
(
str − 2 ·G ·∆γn+1 · ‖Q′

n+1‖ · n̂n+1 − pn+1 ·αa
n −∆γan+1 ·H∗

a,n+1 · µ̂a
)

︸ ︷︷ ︸

A




 : (·)

∂A

∂H∗
a,n+1

= −2 ·G · ‖Q′
n+1‖ ·

(

∂∆γn+1

∂H∗
a,n+1

· n̂n+1 +∆γn+1 ·
∂n̂n+1

∂H∗
a,n+1

)

−∆γan+1 · µ̂a

∂A

∂∆γan+1

= −2 ·G · ‖Q′
n+1‖ ·

(
∂∆γn+1

∂∆γan+1

· n̂n+1 +∆γn+1 ·
∂n̂n+1

∂∆γan+1

)

−H∗
a,n+1 · µ̂a

∂A

∂pn+1
= −2 ·G · ‖Q′

n+1‖ ·
(
∂∆γn+1

∂pn+1
· n̂n+1 +∆γn+1 ·

∂n̂n+1

∂pn+1

)

−αa
n

∂A

∂‖Q′
n+1‖

= −2 ·G · ‖Q′
n+1‖ ·

(
∂∆γn+1

∂‖Q′
n+1‖

· n̂n+1 +
✘✘✘✘✘✘✘✘✘
∆γn+1 ·

∂n̂n+1

∂‖Q′
n+1‖

)

− 2 ·G ·∆γn+1 · n̂n+1
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∂f

∂σ
= 2 ·

(
sn+1 − pn+1 · αa

n+1

)

︸ ︷︷ ︸

A

+
2

3
·
[

pn+1 ·αa
n+1 : α

a
n+1 − pn+1 ·

(
M ′a

)2 − sn+1 : α
a
n+1

]

︸ ︷︷ ︸

B

·δ

∥
∥
∥
∥

∂f

∂σ

∥
∥
∥
∥

=

√

4 ·A : A+
4

9
·B2 · 3

∂

∂ξ
·
∥
∥
∥
∥

∂f

∂σ

∥
∥
∥
∥

=
1

√

4 ·A : A+ 4/3 ·B2
·
✄
✄✄
1

2

(

4 · ✁2 ·
∂A

∂ξ
: A+

4

3
· ✁2 · B ·

∂B

∂ξ

)

∂B

∂ξ
=

∂

∂ξ
·
[

pn+1 ·αa
n+1 : α

a
n+1 − pn+1 · (M ′a)2 − sn+1 : α

a
n+1

]

∂B

∂ξ
=

[
∂pn+1

∂ξ
· αa

n+1 : α
a
n+1 + 2 · pn+1 ·

∂αa
n+1

∂ξ
: αa

n+1 − (M ′a)2 · ∂pn+1

∂ξ
− ∂sn+1

∂ξ
: αa

n+1 − sn+1 :
∂αa

n+1

∂ξ

]

sn+1 = str − 2 ·G ·∆γn+1 ·Q′
n+1 = str − 2 ·G ·∆γn+1 · ‖Q′

n+1‖ · n̂n+1

∂sn+1

∂ξ
= −2 ·G ·

(
∂∆γn+1

∂ξ
· ‖Q′

n+1‖ · n̂n+1 +∆γn+1 ·
∂‖Q′

n+1‖
∂ξ

· n̂n+1 +∆γn+1 · ‖Q′
n+1‖ ·

∂n̂n+1

∂ξ

)

∂αa
n+1

∂ξ
=

∂

∂ξ

(

αa
n +

∆γan+1 ·H∗
a,n+1

pn+1
· µ̂a

)

=

(
∂∆γan+1

∂ξ
·H∗

a,n+1 +∆γan+1 ·
∂H∗

a,n+1

∂ξ

)

· pn+1 −
∂pn+1

∂ξ
·∆γan+1 ·H∗

a,n+1

(pn+1)
2 · µ̂a
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B.4 Derivative of ∆γn+1

∆γn+1 = ∆γan+1 +
a−1∑

i=1

∆γin+1

∆γin+1 =
Q′

n+1 : µ
i
n+1

H̄ i
=
‖Q′

n+1‖ · n̂n+1 : µ
i
n+1

H̄ i

µi
n+1 = pn+1 ·

[

αa
n −αi

n +
(

M
′a −M ′i

)

· n̂n+1

]

+∆γan+1 ·H∗
a,n+1 · µ̂a

∂∆γn+1

∂ξ
=

∂∆γan+1

∂ξ
+

a−1∑

i=1

∂∆γin+1

∂ξ

=







1 +
a−1∑

i=1

∂∆γin+1

∂∆γan+1

if ξ = ∆γan+1

a−1∑

i=1

∂∆γin+1

∂ξ
otherwise

∂∆γin+1

∂ξ
=

∂‖Q′
n+1‖
∂ξ

· n̂n+1 : µ
i
n+1

H̄ i
+
‖Q′

n+1‖
H̄ i

·
(
∂n̂n+1

∂ξ
: µi

n+1 + n̂n+1 :
∂µi

n+1

∂ξ

)

∂µi
n+1

∂H∗
a,n+1

= pn+1 ·
(

M
′a −M ′i

)

· ∂n̂n+1

∂H∗
a,n+1

+∆γan+1 · µ̂a

∂µi
n+1

∂∆γan+1

= pn+1 ·
(

M
′a −M ′i

)

· ∂n̂n+1

∂∆γan+1

+H∗
a,n+1 · µ̂a

∂µi
n+1

∂pn+1
= αa

n −αi
n +

(

M
′a −M ′i

)

· n̂n+1 + pn+1 ·
(

M
′a −M ′i

)

· ∂n̂n+1

∂pn+1

∂µi
n+1

∂‖Q′
n+1‖

= 0
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B.5 Derivative of P”

P” =
1

3
· η

2 − η̄2
η2 + η̄2

∂P”

∂ξ
=

1

3
·
2 · η · ∂η

∂ξ
·
(
η2 + η̄2

)
− 2 · η · ∂η

∂ξ
·
(
η2 − η̄2

)

(η2 + η̄2)2

=
4

3
· η · η̄2
(η2 + η̄2)2

· ∂η
∂ξ

η =

√

3

2
·
√
sn+1 : sn+1

pn+1

∂η

∂H∗
a,n+1

=

√

3

2
· 1
2
· 1√

sn+1 : sn+1
· 1

pn+1
·
(

∂sn+1

∂H∗
a,n+1

: sn+1 + sn+1 :
∂sn+1

∂H∗
a,n+1

)

=

√

3

2
· 1√

sn+1 : sn+1
· 1

pn+1
· ∂sn+1

∂H∗
a,n+1

: sn+1

∂η

∂∆γan+1

=

√

3

2
· 1√

sn+1 : sn+1
· 1

pn+1
· ∂sn+1

∂∆γan+1

: sn+1

∂η

∂pn+1
=

√

3

2
·

1

2
· 1√

sn+1 : sn+1
·
(
∂sn+1

∂pn+1
: sn+1 + sn+1 :

∂sn+1

∂pn+1

)

· pn+1 −
√
sn+1 : sn+1

(pn+1)2

=

√

3

2
·

pn+1√
sn+1 : sn+1

· ∂sn+1

∂pn+1
: sn+1 −

√
sn+1 : sn+1

(pn+1)2

∂η

∂‖Q′
n+1‖

=

√

3

2
· 1
2
· 1√

sn+1 : sn+1
· 1

pn+1
·
(

∂sn+1

∂‖Q′
n+1‖

: sn+1 + sn+1 :
∂sn+1

∂‖Q′
n+1‖

)

=

√

3

2
· 1√

sn+1 : sn+1
· 1

pn+1
· ∂sn+1

∂‖Q′
n+1‖

: sn+1
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B.6 Derivative of e
(
H∗a,n+1,∆γan+1, pn+1, ‖Q′n+1‖

)

e =
H∗

a,n+1

H̄a
· ‖Q′

n+1‖ · n̂n+1 : µ̂
a − 1

∂e

∂H∗
a,n+1

=
1

H̄a
· ‖Q′

n+1‖ ·
(

n̂n+1 : µ̂
a +H∗

a,n+1 ·
∂n̂n+1

∂H∗
a,n+1

: µ̂a

)

∂e

∂∆γan+1

=
H∗

a,n+1

H̄a
· ‖Q′

n+1‖ ·
∂n̂n+1

∂∆γan+1

: µ̂a

∂e

∂pn+1
=

H∗
a,n+1

H̄a
· ‖Q′

n+1‖ ·
∂n̂n+1

∂pn+1
: µ̂a

∂e

∂‖Q′
n+1‖

=
H∗

a,n+1

H̄a
· n̂n+1 : µ̂

a
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B.7 Derivative of g
(
H∗a,n+1,∆γan+1, pn+1, ‖Q′n+1‖

)

g = str : n̂n+1 − 2 ·G ·∆γn+1 · ‖Q′
n+1‖ ·

1
︷ ︸︸ ︷

n̂n+1 : n̂n+1−pn+1 · αa
n : n̂n+1

−H∗
a,n+1 ·∆γan+1 · µ̂a : n̂n+1 − pn+1 ·M

′a

∂g

∂H∗
a,n+1

= str :
∂n̂n+1

∂H∗
a,n+1

− 2 ·G · ∂∆γn+1

∂H∗
a,n+1

· ‖Q′
n+1‖ − pn+1 · αa

n :
∂n̂n+1

∂H∗
a,n+1

−∆γan+1 · µ̂a : n̂n+1

−H∗
a,n+1 ·∆γan+1 · µ̂a :

∂n̂n+1

∂H∗
a,n+1

=

=0
︷ ︸︸ ︷

∂n̂n+1

∂H∗
a,n+1

:
(
str − pn+1 · αa

n −H∗
a,n+1 ·∆γan+1 · µ̂a

)

︸ ︷︷ ︸

nn+1

−2 ·G · ∂∆γn+1

∂H∗
a,n+1

· ‖Q′
n+1‖ −∆γan+1 · µ̂a : n̂n+1

= −2 ·G · ∂∆γn+1

∂H∗
a,n+1

· ‖Q′
n+1‖ −∆γan+1 · µ̂a : n̂n+1

∂g

∂∆γan+1

= −2 ·G · ∂∆γn+1

∂∆γan+1

· ‖Q′
n+1‖ −H∗

a,n+1 · µ̂a : n̂n+1

∂g

∂pn+1
= −2 ·G · ∂∆γn+1

∂pn+1
· ‖Q′

n+1‖ −αa
n : n̂n+1 −M

′a

∂g

∂‖Q′
n+1‖

= −2 ·G ·
(
∂∆γn+1

∂‖Q′
n+1‖

· ‖Q′
n+1‖+∆γn+1

)

B.8 Derivative of h
(
H∗a,n+1,∆γan+1, pn+1, ‖Q′n+1‖

)

h = pn+1 − p
′tr − 3 ·B · P” ·∆γn+1

∂h

∂H∗
a,n+1

= −3 ·B ·
(

∂P”

∂H∗
a,n+1

·∆γn+1 + P” · ∂∆γn+1

∂H∗
a,n+1

)

∂h

∂∆γan+1

= −3 ·B ·
(

∂P”

∂∆γan+1

·∆γn+1 + P” · ∂∆γn+1

∂∆γan+1

)

∂h

∂pn+1
= 1− 3 ·B ·

(
∂P”

∂pn+1
·∆γn+1 + P” · ∂∆γn+1

∂pn+1

)

∂h

∂‖Q′
n+1‖

= −3 ·B ·
(

∂P”

∂‖Q′
n+1‖

·∆γn+1 + P” · ∂∆γn+1

∂‖Q′
n+1‖

)
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B.9 Derivative of i
(
H∗a,n+1,∆γan+1, pn+1, ‖Q′n+1‖

)

i = ‖Q′
n+1‖ − 2 · ‖sn+1 − pn+1 · αa

n+1‖
∥
∥
∥
∥

∂f

∂σ

∥
∥
∥
∥

∂i

∂ξ
=

∂‖Q′
n+1‖
∂ξ

− 2 ·

∂

∂ξ
‖sn+1 − pn+1 ·αa

n+1‖ ·
∥
∥
∥
∥

∂f

∂σ

∥
∥
∥
∥
− ‖sn+1 − pn+1 ·αa

n+1‖ ·
∂

∂ξ

∥
∥
∥
∥

∂f

∂σ

∥
∥
∥
∥

∥
∥
∥
∥

∂f

∂σ

∥
∥
∥
∥
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2D Hydro-mechanical interface

element in the finite element code

LAGAMINE

Le désert est la seule chose qui ne puisse être
détruite que par construction.
(Desert is the only thing which can only be de-
stroyed by building.)

Boris Vian
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C.1 Constitutive laws

The gradients of uw in the direction nξ is obtained from

∇nξ
uw = ∇

Tuw · nξ

=

[
∂uw
∂x1

∂uw
∂x2
·
]

· 1

|JS |






∂x1
∂ξ
∂x2
∂ξ






=
1

|JS | ·
[
∂uw
∂x1

∂x1
∂ξ

+
∂uw
∂x2

∂x2
∂ξ

]

=
1

|JS | ·
∂uw
∂ξ
·
[
∂ξ

∂x1

∂x1
∂ξ

+
∂ξ

∂x2

∂x2
∂ξ

]

=
1

|JS | ·
∂uw
∂ξ
· J−1 · J

=
1

|JS | ·
∂φi
∂ξ
· uw,i (C.1)

where J and J−1 and the Jacobian and inverse Jacobian respectively ; uw,i is the nodal pore
water pressure. The directional gradient of x2 can be derived accordingly

∇nξ
x2 = ∇

Tx2 · nξ

=
1

|JS | ·
∂φi
∂ξ
· x2,i (C.2)

C.2 Derivation of the principle of virtual powers

For any porous medium, equilibrium of internal and external powers can be derived from

δẆE =

∫

ϕ(B)
Q̄ · δuw dV +

∫

ϕ(∂B)
q̄ · δuw dA (C.3)

Q̄ = Ṡ + div fw strong equilibrium equation (C.4)

=

∫

ϕ(B)

(

Ṡ + div fw

)

· δuw dV +

∫

ϕ(∂B)
(−n · fw) · δuw dA (C.5)

y

V

div F dV =
{

∂V

F dS (C.6)

=

∫

ϕ(B)
Ṡ · δuw + div fw · δuw − div (fw · δuw) dV (C.7)

div (f ·A) = f · divA+∇f ·A (C.8)

=

∫

ϕ(B)
Ṡ · δuw − fTw ·∇(δuw) dV (C.9)

=

∫

V
Ṡ · δuw −

f lw
|JS | ·

∂δuw
∂ξ

dV = δẆI (C.10)

C.3 Equivalent nodal forces

The continuum formulation of the equivalent nodal forces was given in section 6.3.4. The
numerical expressions for each component are derived hereafter. It is reminded to the reader
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that

• t is the thickness of the element ;

• R is the rotation matrix ;

• |JS | the the determinant of the Jacobian matrix ;

• WG are the Gauss weights associated to the integration points.

C.3.1 Structure side

The mechanical part of the equivalent nodal forces is derived from

FS
i,m =

∑

IP

[
tT pN

]
·R · φSi · |JS | · t ·WG i ∈ [1, 3]. (C.11)

The hydraulic part of the equivalent nodal forces is derived from

Fi,f =
∑

IP

f t,2w · φSi · |JS | · t ·WG i ∈ [1, 3]. (C.12)

C.3.2 Interior of the interface

Inside the foundation, only hydraulic equivalent nodal forces are taken into account

Fi,f =
∑

IP

(

f t,1w − f t,2w + f lw · gN − f sw
)

· φIi · |JS | · t ·WG i ∈ [1, 3]. (C.13)

C.3.3 Foundation side

The mechanical part of the equivalent nodal forces is derived from

FF
i,m = −

∑

IP

[
tT pN

]
·R · φFi · |JS | · t ·WG i ∈ [7, 9]. (C.14)

The hydraulic part of the equivalent nodal forces is derived from

Fi,f = −
∑

IP

f t,1w · φFi · |JS | · t ·WG i ∈ [7, 9]. (C.15)

It must be pointed out that although the shape function of the structure is considered, the
integration is carried out over the surface of the structure side, i.e. the determinant of the
Jacobian used is |JS |.

C.4 Tangent matrix

In the general case where two sides of an interface are perfectly in front of each other, 9
nodes and 21 degrees of freedom are involved in the stiffness matrix :

• 3 nodes for the structure, associated to 3 degrees of freedom : xS1 , x
S
2 , u

S
w ;
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• 3 nodes for the interior, associated to 1 degree of freedom : uIw ;

• 3 nodes for the foundation, associated to 3 degrees of freedom : xF1 , x
F
2 , u

F
w .

The vector of generalised displacements associated to that matrix is

uT =
[

xS,11 xS,12 uS,1w xS,21 xS,22 uS,2w xS,31 xS,32 uS,3w

uI,1w uI,2w uI,3w

xF,11 xF,12 uF,1w xF,21 xF,22 uF,2w xF,31 xF,32 uF,3w

]

, (C.16)

where x1 and x2 are the geometrical coordinates; uw the pore water pressure; the superscripts
S, I and F stand for structure, interior and foundation respectively; the subscripts 1, 2, 3 hold
for the first, second and third node of the side considered.

Each component of the matrix is computed through

[K]ij =
∂FOB,i

∂uj
, (C.17)

i.e. the variation of the nodal out of balance forces at node i FOB,i due to the variation of
generalised coordinates at node j, uj , with i, j ∈ [1, 9]. All the components can be summarised
in

K =







[K]SS9×9 [K]SI9×3 [K]SF9×9

[K]IS3×9 [K]II3×3 [K]IF3×9

[K]FS
9×9 [K]FI

9×3 [K]FF
9×9







21×21

(C.18)

and the general topology of the matrix is given in Figure C.1.

C.4.1 KSS

The stiffness component [K]SS9×9 of the local matrix is defined for i ∈ [1, 3] and j ∈ [1, 3],

[K]SS9×9 =









KSS
i=1,j=1 =





K1,1 K1,2 0
K2,1 K2,2 0

K3,3



 KSS
i=1,j=2 KSS

i=1,j=3

KSS
i=2,j=1 KSS

i=2,j=2 KSS
i=2,j=3

KSS
i=3,j=1 KSS

i=3,j=2 KSS
i=3,j=3









(C.19)

1. The mechanical part of KSS
ij , corresponds to the terms : K1,1,K1,2,K2,1,K2,2.

[K1:2,1:2]
SS
ij = −∂F

S
i

∂xS
j

= −
∑

IP

[

R · ∂t
∂xS

j

· |JS | · φSi +
∂

∂xS
j

(
R · |JS |

)
· t · φSi

]

· t ·WG

= −
∑

IP

[

−R ·Cloc ·RT · |JS | · φSj +R′ ·
[
tT
pN

]]

· φSi · t ·WG

=
∑

IP

[

Cglob · |JS | · φSj −
[
tT −pN
pN tT

]

·
∂φSj
∂ξ

]

· φSi · t ·WG (C.20)
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x y uw x y uw x y uw uw uw uw x y uw x y uw x y uw

Fx M M M M M M HM HM HM M M M M M M

Fy M M M M M M HM HM HM M M M M M M

fw H H H H H H

Fx M M M M M M HM HM HM M M M M M M

Fy M M M M M M HM HM HM M M M M M M

fw H H H H H H

Fx M M M M M M HM HM HM M M M M M M

Fy M M M M M M HM HM HM M M M M M M

fw H H H H H H

fw HM HM H HM HM H HM HM H H H H HM HM H HM HM H HM HM H

fw HM HM H HM HM H HM HM 		H H H H HM HM H HM HM H HM HM H

fw HM HM H HM HM H HM HM H H H H HM HM H HM HM H HM HM H

Fx M M M M M M HM HM HM M M M M M M

Fy M M M M M M HM HM HM M M M M M M

fw H H H H H H

Fx M M M M M M HM HM HM M M M M M M

Fy M M M M M M HM HM HM M M M M M M

fw H H H H H H

Fx M M M M M M HM HM HM M M M M M M

Fy M M M M M M HM HM HM M M M M M M

fw H H H H H H

Figure C.1: Topology of the stiffness matrix. M stands for mechanical term, H for hydraulical
and HM hydro-mechanical couplings. Fx, Fy and fw are equivalent nodal forces in x and y
direction and the flux, respectively. x, y and pw are the dof associated to each node.

where

ṫ′ = −Cloc·
[
ġN
ġT

]

= −Cloc·RT ·
[
ẋ1

S − ẋ1F
ẋ2

S − ẋ2F
]

= −Cloc·RT ·
[
φSj · ẋS1,j − φFj · ẋF1,j
φSj · ẋS2,j − φFj · ẋF2,j

]

(C.21)

and

∂t

∂xS
j

=
∂ṫ

∂xS
j

=
∂ṫ′

∂xS
j

+

✚
✚
✚
✚
✚∂uIw

∂xS
j

·
[
0
1

]

=
∂

∂xS
j

{

−Cloc ·RT ·
[
φSj · ẋS1,j − φFj · ẋF1,j
φSj · ẋS2,j − φFj · ẋF2,j

]}

= −Cloc·RT ·φSj
(C.22)

The derivative of R · |JS | yields to the order 3 tensor (C.23)

R′
∣
∣
[2×2×2]

=
∂

∂xS
j

·







∂φSi
∂ξ
· xS1,i −

∂φSi
∂ξ
· xS2,i

∂φSi
∂ξ
· xS2,i

∂φSi
∂ξ
· xS1,i






=
∂φj
∂ξ
·
[
δ1,k −δ2,k
δ2,k δ1,k

]

k=1,2 (C.23)

The local compliance tensor is rotated to global coordinates through the relation (C.24)

Cglob = R ·Cloc ·RT (C.24)

=

[
DX −DY

DY DX

]

·
[
CUU CUV = 0
CV U CV V

]

·
[
DX DY

−DY DX

]

= ...

=

[
CUUDXX − CUVDXY + CV VDY Y CUUDXY + CUVDXX − CV VDXY

CUUDXY − CV VDXY − CUVDY Y CUUDY Y + CV VDXX + CUVDXY

]
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In the LAGAMINE code, due to other sign convention and order of unknowns, the local
compliance tensor is written

CUU ⇒ CV V

CV V ⇒ CUU

CUV ⇒ CV U

which leads to another final rotated global compliance tensor

Cglob =

[
CV VDXX − CV UDXY + CUUDY Y CV VDXY + CV UDXX − CUUDXY

CV VDXY − CUUDXY − CV UDY Y CV VDY Y + CUUDXX + CV UDXY

]

(C.25)

2. The hydraulic part of of KSS
ij , corresponds to the term : K3,3.

[K3,3]
SS
ij = − ∂FS

i

∂uSw,j,(t+∆t)

= −
∑

IP

∂f tw,2,(t+θ∆t)

∂uSw,j,(t+∆t)

· φSi · |JS | · t ·WG

=
∑

IP

θ · T t
w · φSj · ρw · φSi · |JS | · t ·WG (C.26)

where

∂f tw,2,(t+θ∆t)

∂uSw,j,(t+∆t)

=
∂

∂uSw,j,(t+∆t)

(

θ · fw,1/2

∣
∣
t+∆t

+ (1− θ) · fw,2|t
)

= θ ·
∂f tw,2

∂uSw,j,(t+∆t)

= θ · ∂

∂uSw,j,(t+∆t)

[

T t
w ·
(

φIj · uIw,j − φSj · uSw,j,(t+∆t

)

· ρw
]

= −θ · T t
w · φSj · ρw (C.27)

C.4.2 KFF

The KFF matrix is calculated the same way as KSS and has the same topology as Eq.
(C.19) for i ∈ [7, 9] and j ∈ [7, 9]. However, the rotation matrix is a function of structure
coordinates only, i.e. a function of xS . In this case, Eq. (C.23) yields to

R′
∣
∣
[2×2×2]

=
∂

∂xF
j

·







∂φSi
∂ξ
· xS1,i −

∂φSi
∂ξ
· xS2,i

∂φSi
∂ξ
· xS2,i

∂φSi
∂ξ
· xS1,i






=

[
0 0
0 0

]

k=1,2 (C.28)

The mechanical components of the matrix change accordingly

[K1:2,1:2]
FF
ij =

∑

IP

Cglob · |JS | · φFj · φFi · t ·WG (C.29)
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since
∂t

∂xF
j

= Cloc ·RT · φFj (C.30)

The hydraulic term is computed easily from

[K3,3]
FF
ij =

∑

IP

θ · T t
w · φFj · ρw · φFi · |JS | · t ·WG (C.31)

C.4.3 KII

The stiffness component [K]II3×3 of the local matrix is defined for i ∈ [4, 6] and j ∈ [4, 6],
where each nodes has only a hydraulical dof (uIw,j)

[K]II3×3 =





KII
i=4,j=4 =

[
K1,1

]
KII

i=4,j=5 KII
i=4,j=6

KII
i=5,j=4 KII

i=5,j=5 KII
i=5,j=6

KII
i=4,j=6 KII

i=6,j=5 KII
i=6,j=6



 (C.32)

Each flow type contributes to the stiffness matrix of interior nodes. Therefore, each [K]IIij

term is the assembling of : transversal flows KII
ij

∣
∣
∣
t
, longitudinal flow KII

ij

∣
∣
∣
l
and storage flow

KII
ij

∣
∣
∣
s
. The first transversal flow component is computed the same way as Eq.(C.26), but two

transversal flows have to be taken into account

[K]IIij

∣
∣
∣
t

= −
∑

IP

θ ·
(
T t,1
w + T t,2

w

)
· φIj · ρw · φIi · |JS | · t ·WG (C.33)

The longitudinal flow component is obtained from

[K]IIij

∣
∣
∣
l

= − ∂

∂uIw,j,(t+δt)

∑

IP

[
f lw
|JS |

∣
∣
∣
∣
t+θ·∆t

· ∂φ
I
i

∂ξ

]

· gN · |JS | · t ·WG (C.34)

= −θ
∑

IP

[

∂f lw
∂uIw,j

· 1

|JS | ·
∂φIi
∂ξ

]

· gN · |JS | · t ·WG (C.35)

= −θ
∑

IP

[

−kw
µw
· ρw ·

∂∇uIw
∂uIw,j

· 1

|JS | ·
∂φIi
∂ξ

]

· gN · |JS | · t ·WG (C.36)

= θ
∑

IP

[

kw
µw
· ρw ·

1

|JS | ·
∂φIj
∂ξ
· 1

|JS | ·
∂φIi
∂ξ

]

· gN · |JS | · t ·WG (C.37)

And finally, the storage component depends on the pressure dependency of the fluid specific
mass.

KII,s
ij =

∂F I,s
i

∂pIw,j

(C.38)

=
∑

IP

ρw,0

χw
· 1

∆t
· gN · φj · φi · |JS | · t ·WG (C.39)
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C.4.4 KSI and KFI

Components KSI and KFI contain coupling hydro-mechanical terms due to the Terzaghi
postulate. They are defined for i ∈ [1, 3] and j ∈ [4, 6] in the former case and i ∈ [7, 9] and
j ∈ [4, 6] in the latter. The pressure applied on both sides of the bodies in contact is the sum
of the effective contact pressure and inside water pressure

pN = p′N + uIw (C.40)

[K]SI9×3 =









KSS
i=1,j=4 =





K1,1

K2,1

K3,1



 KSI
i=1,j=5 KSI

i=1,j=6

KSI
i=2,j=4 KSI

i=2,j=5 KSI
i=2,j=6

KSI
i=3,j=4 KSI

i=3,j=5 KSI
i=3,j=6









(C.41)

1. The mechanical part of KSI
ij and KFI

ij , corresponds to the terms : K1,1,K2,1.

[K1:2,1]
SI
ij = − ∂FS

i

∂pIw,j

(C.42)

= − ∂

∂pIw,j

∑

IP

[
tT ·DX1 − (p′ + pIw) ·DX2

tT ·DX2 + (p′ + pIw) ·DX1

]

· φSi · |JS | ·WG (C.43)

=
∑

IP

[
DX2

−DX1

]

· φSi · φIj · |JS | ·WG (C.44)

(C.45)

and easily

[K1:2,1]
FI
ij =

∑

IP

[
DX2

−DX1

]

· φFi · φIj · |JS | ·WG (C.46)

2. The hydraulic part of KSI
ij , corresponds to the term : K3,1. It’s computed the same

way as Eq.(C.26).

[K3,3]
SI
ij =

∑

IP

θ · T t
w · φIj · ρw · φSi · |JS | · t ·WG (C.47)

Terms of KFI
ij are computed accordingly.

C.4.5 KSF and KFS

The stiffness component [K]FS
9×9 of the local matrix is defined for i ∈ [7, 9] and j ∈ [1, 3],

where each nodes has 3 dofs (xSj , y
S
j , p

S
w,j)

[K]SS9×9 =









KFS
i=1,j=1 =





K1,1 K1,2 0
K2,1 K2,2 0

0



 KFS
i=1,j=2 KFS

i=1,j=3

KFS
i=2,j=1 KFS

i=2,j=2 KFS
i=2,j=3

KFS
i=3,j=1 KFS

i=3,j=2 KFS
i=3,j=3









(C.48)
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There are only mechanical components since there is no coupling between hydraulical dof
of both sides. They are identical to Eq.(C.20) and Eq.(C.29).

[K1:2,1:2]
FS
ij = −∂F

F
i

∂xS
j

= −
∑

IP

[

Cglob · |JS | · φSj −
[
tT −p
p tT

]

·
∂φSj
∂ξ

]

· φFi ·WG (C.49)

[K1:2,1:2]
SF
ij = −∂F

S
i

∂xF
j

= −
∑

IP

Cglob · |JS | · φFj · φSi ·WG (C.50)

C.4.6 KIS and KIF

The stiffness component [K]IS3×9 of the local matrix is defined for i ∈ [4, 6] and j ∈ [1, 3],
where each nodes has 3 dofs (xSj , y

S
j , u

S
w,j).

[K]IS9×9 =





KIS
i=4,j=1 =

[
K1,1 K1,2 K1,3

]
KIS

i=4,j=2 KIS
4=1,j=3

KIS
5=2,j=1 KIS

i=5,j=2 KIS
i=5,j=3

KIS
i=6,j=1 KIS

i=6,j=2 KIS
i=6,j=3



 (C.51)

1. The mechanical components K1,1,K1,2 are due to the mechanical coupling from the
geometric storage. In the structure it yields to

[K1:2,1:2]
IS
ij = −∂F

I,s
i

∂xS
j

= −
∑

IP

ρw ·
∂

∂xS
j

(
ġN · |JS |

)
· φIi · t ·WG

=
∑

IP

ρw ·
[

∂φSj
∂ξ
·
(
ẋS2 − ẋF2

)
− ∂xS2

∂ξ
·
φSj
∆t

,

−
∂φSj
∂ξ
·
(
ẋS1 − ẋF1

)
+
∂xS1
∂ξ
·
φSj
∆t
· φIi · t ·WG

]

(C.52)

and for the foundation

[K1:2,1:2]
IF
ij = −∂F

I,s
i

∂xF
j

=
∑

IP

ρw ·
∂

∂xF
j

(
ġN · |JS |

)
· φIi · t ·WG

=
∑

IP

ρw ·
[

∂xS2
∂ξ
·
φFj
∆t

,−∂x
S
1

∂ξ
·
φFj
∆t

]

· φIi · t ·WG (C.53)

Variation of global coordinates in Eq.(C.52) are obtained from the expression of local
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variables
[
ẋS1 − ẋF1
ẋS2 − ẋF2

]

= R ·
[
ġT
ġN

]

=

[
DX1 · ġT −DX2 · ġN
DX2 · ġT +DX1 · ġN

]

(C.54)

2. The hydraulical componentK1,3 is simply derived from the transversal flows, equally
to Eq.(C.26)

[K3,3]
IS
ij = −

∑

IP

θ · T t,2
w · φIj · ρw · φSi · |JS | · t ·WG (C.55)





Abstract

The main objective of this thesis is the studying of the cyclic behaviour of dense sand. Its
centre of gravity is the implementation of a convenient constitutive law in the finite element
code LAGAMINE.

The first step consists in summarising the salient features of the cyclic behaviour of sand
observed in laboratory tests. Undrained monotonic and cyclic experiments are addressed.
The phase transformation line is a key parameter in the description of its behaviour. The
plasticity effects in both loading and unloading, the progressive pore pressure accumulation
coupled with the degradation of the stiffness of the soil are of uttermost importance in the
cyclic behaviour.

The Prevost model is adopted for its conceptual simplicity and its physically related pa-
rameters. The basic equations of the model are described and its variants are illustrated.
Calibration of the required parameters is carried out by means of simplified routines imple-
mented in Matlab. A unique set of parameters is determined for each soil at a given relative
density. Monotonic experiments are well reproduced. The model also replicates satisfactorily
the trend of cyclic experiments.

An implicit scheme is embraced in order to implement the model in the finite element
code LAGAMINE. The implicit Prager translation rule is adopted for that purpose. It is ensured
the discrete formulation reproduces exactly the analytical model. Accuracy, efficiency and
robustness of the model are addressed throughout triaxial and multi-axial numerical examples.

A hydro-mechanical interface finite element is developed. It consists in a three-node 1D
isoparametric element. It is able to reproduce fluid flows across and along the interface. The
unsticking of both walls of the interface is coupled with a suction effect due to the filling of
the vacuum created. The behaviour of the element is illustrated by simple 1D examples of
transient consolidation of a soil column.

A final application consists in the modelling of a suction caisson, part of a tripod structure
for wind turbines. An axisymmetric representation of this foundation is carried out. It
is assumed embedded into dense Lund sand described by the Prevost model. Monotonic
and cyclic simulations are performed in both drained and partially drained conditions. The
salient features of the resistance of such foundations are highlighted. Their partially drained
behaviour strongly increases their transient resistance. A storm including an extreme event
is employed to simulate a cyclic loading. A pseudo-random short signal and its sinusoidal
equivalent representation finally lead to an identical vertical settlement. This is confirmed by
a long duration storm. Finally, a cyclic diagram summarising the final settlement attained
for combinations of average and cyclic vertical loads is elaborated.

Keywords : Numerical modelling - Cyclic behaviour - Sand - Offshore Geotechnics - Con-
stitutive modelling - Interfaces
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