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Abstract

The concept of tissues appeared more than 200 years ago, since textures and attendant differences were
described within the whole organism components. Instrumental developments in optics and biochemistry
subsequently paved the way to transition from classical to molecular histology in order to decipher the mo-
lecular contexts associated with physiological or pathological development or function of a tissue. In 1941,
Coons and colleagues performed the first systematic integrated examination of classical histology and bio-
chemistry when his team localized pneumonia antigens in infected tissue sections. Most recently, in the early
21st century, mass spectrometry (MS) has progressively become one of the most valuable tools to analyze
biomolecular compounds. Currently, sampling methods, biochemical procedures, and MS instrumentations
allow scientists to perform ‘‘in depth’’ analysis of the protein content of any type of tissue of interest. This
article reviews the salient issues in proteomics analysis of tissues. We first outline technical and analytical
considerations for sampling and biochemical processing of tissues and subsequently the instrumental possi-
bilities for proteomics analysis such as shotgun proteomics in an anatomical context. Specific attention concerns
formalin fixed and paraffin embedded (FFPE) tissues that are potential ‘‘gold mines’’ for histopathological
investigations. In all, the matrix assisted laser desorption/ionization (MALDI) MS imaging, which allows for
differential mapping of hundreds of compounds on a tissue section, is currently the most striking evidence of
linkage and transition between ‘‘classical’’ and ‘‘molecular’’ histology. Tissue proteomics represents a veritable
field of research and investment activity for modern biomarker discovery and development for the next decade.

Introduction

A historical context for histology and diagnostics

Recent discoveries in the fields of biology and
medicine took place thanks to developments of new

instruments and tools to overcome limited understanding of
human environment. Histology, one of the oldest biomedical
sciences, has greatly benefited from these advances to deci-
pher the molecular content of a given tissue.

In the middle of the 19th century, tissue fixation was im-
proved with the use of formalin to obtain optimal preserva-
tion of tissue morphological structures. Thereafter, analysis
of specific compounds of interest within tissue sections
emerged using immunohistochemistry (IHC) techniques
combined with classical microscopy. Furthermore, with
the development of antigen retrieval (AR) procedures to

‘‘unlock’’ the methylene bridges between proteins, it was
possible to use formalin fixed and paraffin embedded (FFPE)
tissues for IHC studies.

Progressively, tissue analyses evolved towards the de-
scription of the whole molecular content of a given sample.
Currently, mass spectrometry (MS) is the most versatile
analytical tool for protein identification and has proven its
great potential for biological and clinical applications.
‘‘Omics’’ fields, and especially proteomics, are of particular
interest since they allow the analysis of a biomolecular pic-
ture associated with a given physiological or pathological
state. Biochemical techniques were then adapted for an op-
timal extraction of several biocompounds classes from tis-
sues of different natures. Sampling methods were also
developed and improved for selection and exploration of
tissues contents, ranging from an entire specimen, sliced in
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sections, only selected areas, or cell groups of interest on a
specific slice. For example, laser capture microdissection
(LCM) is used to select and isolate tissue areas of interest for
further analysis. The developments of MS instrumentations
have then definitively transformed the scientific scene,
pushing back more and more detection and identification
limits. Since a few decades, new approaches of analyses
appeared, involving the use of tissue sections dropped on
glass slides as starting material. Two types of analyses
can then be applied on tissue sections: shotgun proteomics
and the very promising MS imaging (MSI) using Matrix
Assisted Laser Desorption/Ionization (MALDI) sources.
Also known as ‘‘molecular histology,’’ MSI is the most
striking hyphen between histology and molecular analysis.
In practice, this method allows visualization of the spatial
distribution of proteins, peptides, drugs, or others analytes
directly on tissue sections. This technique paved new ways
of research, especially in the field of histopathology, since
this approach appeared to be complementary to conven-
tional histology.

As a first overview, Figure 1 illustrates the different as-
pects of analysis of tissue samples.

This publication reviews the key issues in the field of
proteomics analysis of tissues. We first outline the technical
and analytical considerations for sampling and biochemical
processing of tissues and subsequently detail instrumental
possibilities for tissue proteomics analysis. FFPE tissues that
represent potential ‘‘gold mines’’ for histopathological in-
vestigations are carefully covered in this review.

Immunohistochemistry

The first hyphen between histology and biochemistry

The first link between classical histology and biochemistry
was made by Coons et al. in 1941, when his team localized
pneumonia antigens in infected tissue sections. This was
achieved with the use of specific antibodies against these
antigens, stained with a florescent protein (fluorescein) in-
stead of traditional chemical reagents (Coons and Kaplan,
1950).

The next improvement was reached by other teams with
the creation of different detection systems. At this time, the
method sensitivity was low, the captured images intensities
were poorly reproducible, and it was hardly usable on fresh

FIG. 1. Tissue processing workflows for molecular analyses. Tissues can either be pro-
cessed in solution or directly on tissue sections. In solution, processing involves protein
extraction from tissue pieces in order to perform 2D gel separation and identification of
proteins, shotgun proteomics, or MALDI analyses. Extracts can also be obtained from
tissues area selection and protein extraction after laser micro dissection or on-tissue pro-
cessing. Imaging techniques are dedicated to the morphological characterization or molec-
ular mapping of tissue sections. Histology can either be conducted by hematoxylin/eosin
staining or by molecular mapping using antibodies with IHC. Finally, mass spectrometry
imaging allows the cartography of numerous compounds in a single analysis. This approach
is a modern form of ‘‘molecular histology’’ as it grafts, with the use of mathematical
calculations, a molecular dimension to classical histology. (AR, antigen retrieval; FFPE,
formalin fixed and paraffin embedded; fr/fr, fresh frozen; IHC, immunohistochemistry;
LCM, laser capture microdissection; MALDI, matrix assisted laser desorption/ionization;
MSI, mass spectrometry imaging; PTM, post translational modification.)
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frozen (fr/fr) tissues while maintaining their initial mor-
phology. In order to overcome these limitations, Nakane and
colleagues grafted enzymes (peroxidases) to antibodies to
evaluate the presence of proteins on tissue sections. This
method was based on the chemical reaction of the peroxidase
enzyme grafted to the antibodies with a chromogen substrate
to produce a colored product detectable by light microscopes
(Nakane and Pierce, 1966). This improvement drastically
impacted practices in use in worldwide histological labora-
tories (Avrameas and Uriel, 1966).

Soon after, it was possible to multiplex the detection of
more than one protein in a tissue section (Nakane, 1968),
thereby opening new possibilities in the field of histological
biochemistry. Many chromogens were designed to react with
the widely used horseradish peroxidase. It was therefore
possible to visualize the presence of molecules using various
compounds such as 3-amino-9-ethyl carbazole (AEC), which
produces a red color, easily differentiable from classical
hematoxylin staining. But the most used substrate is still the
diaminobenzine molecule (DAB) which produces an elec-
trodense precipitate, therefore also usable with electronic
microscopy (Singer, 1959). In routine histopathological an-
alyses, its brown color after osmification perfectly contrasts
with many counterstains. Moreover, this color slowly fades,
making processed tissue sections easy to use for long-term
storage and available for further visualizations. The contrast
of the histochemically treated images has then been amplified
with the development of unlabeled antibodies in peroxidase-
antiperoxidase (PAP) techniques (Sternberger et al., 1970) or
the alkaline-anti-alkaline phosphatase method (Mason and
Sammons, 1978). The method was proven to be efficient on
the widely used FFPE tissues and became the reference
technique in pathological laboratories (Leong and Wright,
1987; Nadji, 1986; Swanson, 1997).

FFPE Tissues and Antigen Retrieval

Salient methods for large-scale applications

Discovered in 1859, formalin was first proposed by the
physician Ferdinand Blum for medical applications due to its
disinfectant properties. During his work, he realized that
tissues in contact with formalin became hardened, even more
than with commonly used hardening agents. On this basis,
contemporary histologists confirmed the unequaled proper-
ties of formalin as fixative agent, preserving tissue from
shrinkage or distortion, in contrast to the widely used alco-
holic agents. Moreover, the classical staining procedures
using hematoxylin and eosin dyes totally matched with this
fixation method and gave rise to excellent histological
preparations. Since then, the formalin fixation procedure has
become the golden technique for tissue fixation in histolog-
ical practices. Combined with paraffin embedment, FFPE
tissues were universally used in histo- and histopathological
laboratories for long-term storage. FFPE tissues storage is
possible at room temperature and thus easier than fr/fr tissues
that need storage at - 80�C. Other advantages of this con-
servation method are good architectural preservation of tissue
structures and cellular shapes stabilization.

Formalin fixation is not a well-standardized method among
laboratories; several criteria, such as fixation time, incubation
temperature, or solution pH greatly affect the final properties
of the tissue. Formalin reacts with proteins and peptides,

inducing the formation of a methylol on lysine, arginine, and
cysteine thiol residues which subsequently dehydrates and
reacts by forming crosslinks with amino acids such as argi-
nine, glutamine, tryptophan, histidine, asparagine, and tyro-
sine. This reaction finally results in the formation of
methylene bridges between proteins (Magdeldin and Ya-
mamoto, 2012). This reaction strongly alters the initial con-
formation of proteins and may mask some epitopes. This
could thereby interfere with antibody recognition. Conse-
quently, fixation time strongly affects further IHC efficiency.
Routinely, tissues are fixed during 24 to 48 hours in 10%
formalin solution at pH7 with phosphate salts and 10%
methanol (which act as solution stabilizer) (Nirmalan et al.,
2008).

In IHC, some methods were progressively developed in
order to overcome the masking antigen limitations induced
by the formalin fixation. Generally, the use of a specific an-
tibody for IHC detection needs a given AR method. AR is an
empirical method and its mechanism of action is still con-
troversial. The oldest AR method is the use of enzymatic
digestion with proteolytic enzymes such as proteinase K,
pronase, or many others such as trypsin, which is the most
popular one. Unfortunately, a very limited range of antigens
were retrievable with this method (Leong et al., 1988).
Tissue heating was then proposed and showed great anti-
genicity properties for a wider range of markers. Many
heating procedures are possible, such as immersion of the
tissue sections in water or using heated plates, but the most
efficient one was found to be the use of microwaves (Leong,
1996). Chemical studies in the 1940s previously described
that AR solutions at high temperatures could disrupt the
proteins crosslinks induced by formalin (Fraenkel-Conrat
and Olcott, 1946, 1948a, b). In conclusion, the detection of
many different antigens can be significantly improved either
by the use of a pretreatment with an AR reagent (e.g., acid
buffers or proteolytic methods) that breaks the protein
crosslinks formed and thereby uncovers hidden antigenic
sites, or by heating (higher than 80�C) and/or using pres-
sure, combined with immersions in buffers of different
possible composition and pH.

FFPE Tissues and Proteomics

Optimal tissue solubilization towards protein extraction

Proteome analysis of FFPE tissues presents some obstacles
inherent to their nature and to the poor cross-linked protein
solubility. In this section, we will focus on the use of FFPE
tissues for proteomics studies, on the different sample han-
dling improvements that have been made to allow differential
proteomic applications, and on the biochemical procedures
that permitted proper protein extractions with these specific
tissues.

In 1998, as a first hyphen between IHC and proteomic
fields, Ikeda et al. (1998) analyzed the effect of temperature
and the efficiency of different buffers on protein extraction
from FFPE tissue samples. Ikeda concluded that combina-
tion of both heat and lysis buffer like RIPA (radio immu-
noprecipitation assay) with a concentration of sodium
dodecyl sulfate (SDS) of 2% provided the best protein
concentration recovery. Since then, several researches were
performed to improve extraction buffers and protein ex-
traction efficiency.
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Numerous solutions were tested to perform protein ex-
traction from FFPE tissues. The initial buffer is generally
Tris/HCl at different pH mostly associated with a panel of
detergents and chaotropes. The composition of these solu-
tions have recently been reviewed by Giusti et al. (Giusti and
Lucacchini, 2013) and Maes et al. (2013). Amongst the used
extraction solutions, Tris 50 mM pH7 (Fowler et al., 2012)
and Tris 20 mM pH9, both used with 2% SDS in combination
with high pressure (Xu et al., 2008), enabled protein re-
coveries ranging from 17% to 95% compared to fr/fr tissues,
on a liver sample. Reducing agents such as b-mercap-
toethanol (Nirmalan et al., 2009) or dithiotreitol (DTT) can
also be added to these solutions as performed on skeletal
muscle or liver (Addis et al., 2009; Ostasiewicz et al., 2010),
as well as heart tissues (Azimzadeh et al., 2010) using oc-
tylglucoside as detergent. Another possible detergent is
guanidin-HCl ( Jiang et al., 2007). Chaotropic agents can also
be used for proteins retrieval from FFPE tissues (Guo et al.,
2007). RIPA buffers were used with different amounts of
NaH2PO4, NaHPO4, NaCl, Triton, fluoride, sodium cho-
late, sodium azide, and ethylenediamine tetraacetic acid
(EDTA) on colorectal carcinoma (Ikeda et al., 1998), lym-
phoma (Crockett et al., 2005), and prostate cancer specimens
(Hwang et al., 2007). Organic solvents can also be employed
at different concentrations as solubilizing agents such as 30%
acetonitrile, which was applied on pancreatic (Pan et al.,
2011) and colon cancer tissues (Kakimoto et al., 2012). 50%
trifluoroethanol (TFE) for lung tissue processing was also
tested (Tian et al., 2009). Commercial solutions exist for
FFPE tissue processing such as the acid-deteriorating deter-
gent RapiGest (Nirmalan et al., 2011), Liquid Tissue MS
protein Prep kit (Nakatani et al., 2012; Prieto et al., 2005),
Qproteome FFPE tissue kit (Becker et al., 2007), NDME-U
(Chu et al., 2005), and FFPE Protein Extraction Solution
(Agilent Technologies, Santa Clara, CA). Moreover, all these
treatments methods can be applied with a digestion step done
on Microcon (Millipore, Billerica, MA) or Vivacon (Viva-
products, Littleton, USA) units. This Filter Aided Sample
Preparation (FASP) procedure was elaborated by Mann’s
team and consists in protein unfolding from FFPE tissues
using diverse lysis solutions composed of detergents such as
4% SDS, chaotropes such as 8 M urea, and reductive agents
such as iodoacetamide. This filter system is particularly ef-
ficient to remove processing solutions and to rinse the sam-
ples; however it is important to ensure that the applied
treatments cannot damage the employed filter. Subsequently,
the protein digestion can be performed directly on the filter to
recover the tryptic peptides that will be subjected to analysis
after desalting (Wisniewski et al., 2011). This last procedure
appears to be the most efficient method for proteomics
studies on microdissected tissues and subsequent LC-MS/MS
analyses (further described in this present review). It recently
led, with the combination of sample fractionation methods, to
reach 10,000 identified proteins (Wisniewski et al., 2013).

Among these different studies, researchers aimed to eval-
uate the extraction procedures efficiencies on FFPE tissues in
comparison to fr/fr tissues. Indeed, the main concern about
the use of these FFPE tissues is to apply a procedure that
could give rise to the largest molecular information, com-
pared to the one available using fr/fr tissues. Generally, fr/fr
tissues give a higher number of proteins compared to FFPE
tissues (Giusti and Lucacchini, 2013), but some studies re-

ported a better proteins identifications recovery with FFPE
tissues (Nirmalan et al., 2011; Palmer-Toy et al., 2005; Shi
et al., 2006). These comparisons highlight the importance of
the chemical treatments for efficient FFPE tissue preparation.

Analytical Methods

Analysis of tissue proteomes has greatly evolved with
separation methods and mass spectrometry instrumentation.
The choice of the workflow strongly depends on whether a
bottom-up or a top-down analysis has to be performed
downstream. In-gel or off-gel proteomics principally differ-
entiates proteomic workflows. The almost simultaneous dis-
coveries of the MS ionization sources (Nobel Prize awarded)
MALDI (Hillenkamp and Karas, 1990; Tanaka et al., 1988)
and electrospray ionization (ESI) (Fenn et al., 1989) have
paved the way for analysis of intact proteins and peptides.
Separation methods such as two-dimension electrophoresis
(2DE) (Fey and Larsen, 2001) and nanoscale reverse phase
liquid chromatography (nanoRP-LC) (Deterding et al., 1991)
lead to efficient preparation of proteins for respectively top-
down and bottom-up strategies. A huge panel of developments
was then achieved mostly for LC-MS based proteomics in
order to improve ion fragmentation approaches and peptide
identification throughput relying on database interrogation.
Moreover, approaches were developed to analyze post trans-
lational modifications (PTM) such as phosphorylations (Fi-
carro et al., 2002; Oda et al., 2001; Zhou et al., 2001) or
glycosylations (Zhang et al., 2003), proposing as well different
quantification procedures. Regarding instrumentation, the
most cutting edge improvements are the gain of mass accuracy
for an optimal detection of the eluted peptides during LC-MS
runs (Mann and Kelleher, 2008; Michalski et al., 2011) and the
increase in scanning speed, for example with the use of Or-
bitrap analyzers (Hardman and Makarov, 2003; Makarov
et al., 2006; Makarov et al., 2009; Olsen et al., 2009). Ion
transfer efficiency was also drastically improved with the
conception of ion funnels that homogenize the ion transmis-
sion capacities through m/z ranges (Kelly et al., 2010; Kim
et al., 2000; Page et al., 2006; Shaffer et al., 1998) or by
performing electrospray ionization within low vacuum (Mar-
ginean et al., 2010; Page et al., 2008; Tang et al., 2011). Beside
collision induced dissociation (CID) that is proposed for many
applications (Li et al., 2009; Wells and McLuckey, 2005), new
fragmentation methods were investigated, such as higher-en-
ergy collisional dissociation (HCD) especially for phospho-
proteomic applications (Nagaraj et al., 2010), and electron
transfer dissociation (ETD) and electron capture dissociation
(ECD) that are suited for phospho- and glycoproteomics (An
et al., 2009; Boersema et al., 2009; Wiesner et al., 2008).
Methods for data-independent MS2 analysis based on peptide
fragmentation in given m/z windows without precursor selec-
tion neither information knowledge, also improves identifi-
cation throughput (Panchaud et al., 2009; Venable et al.,
2004), especially with the use of MS instruments with high
resolution and high mass accuracy specifications (Panchaud
et al., 2011). Gas fractionation methods such as ion mobility
(IM) can also be used as a supplementary separation dimension
which enable more efficient peptide identifications (Masselon
et al., 2000; Shvartsburg et al., 2013; Shvartsburg et al., 2011).

Data analysis methods were also investigated for protein
identification either on the basis of database search algorithm
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with software such as SEQUEST (Diament and Noble, 2011)
or MASCOT (Hirosawa et al., 1993; Kocher et al., 2011),
spectral library searches (Desiere et al., 2006; Jones et al.,
2006; Lam et al., 2007; Vizcaino et al., 2009; Yates et al.,
1998), de novo sequencing (Cox and Mann, 2009; Frank and
Pevzner, 2005; Tabb et al., 2008; Zhang et al., 2012), or with
hybrid strategies (Mann and Wilm, 1994; Tabb et al., 2003,
2007).

A quantitative aspect can be implemented to 2DE strate-
gies with 2D-DIGE (2 dimension-difference gel electropho-
resis) (Lilley and Friedman, 2004; May et al., 2012). LC-MS
based quantitative methods such as label free quantification
(Higgs et al., 2005; Neilson et al., 2011; Wang et al., 2006),
spectral counting quantification (Neilson et al., 2011), in-
tensity based quantification (Bondarenko et al., 2002;
Christin et al., 2011), and also labeling techniques were de-
veloped for off-gel analyses. Labeling methods such as iso-
baric tag for relative and absolute quantification (iTRAQ)
(Aggarwal et al., 2006; Chen et al., 2010; DeSouza et al.,
2005; Garbis et al., 2008; Muraoka et al., 2012; Wang et al.,
2012), and the recently developed isotope coded protein la-
beling coupled to immunoprecipitation (ICPL-IP) (Vogt
et al., 2013), both relying on the labeling of the primary
amino groups and lysine residues, were developed. Isotope
coded affinity tag (ICAT) (DeSouza et al., 2005), that labels
cysteine residues was also applied for tissue proteomics.

Finally, a selected reaction monitoring (SRM) (or multiple
reaction monitoring (MRM)) method was developed for
targeted quantification and validation of markers of interest
(Calvo et al., 2011; Kiyonami et al., 2011; Muraoka et al.,
2012; Narumi et al., 2012; Nishimura et al., 2010).

Sampling Methods

By definition, a tissue is a well-organized ensemble of
specialized cells, functionally grouped together to share
multiple molecular information in a physiological or patho-
logical context. In order to study the different types of tissues,
several methods are devoted to specific area sampling and
depend on the desired size, such as macrodissection (Azim-
zadeh et al., 2010; Nazarian et al., 2008) or the more accurate
needle microdissection (Craven et al.; Prieto et al., 2005).
Finally, the most precise technique to select a specific cell
group in a tissue section is LCM.

Laser capture microdissection (LCM)

The large diversity of tissue cell types must be taken into
account during sampling. Indeed, incorporation of different
cell types in the same sample could present advantages but
also inconveniences. LCM allows for separation and isola-
tion of cells from a complex tissue and may enable single cell
type analysis and/or comparative analyses. On the other hand,
a restrictive disadvantage of LCM is the time required for
sample selection and collection, particularly when many
different tissue areas are involved. Two LCM approaches
exist to extract cell groups from a tissue. The first one consists
of a plastic film adhesion to the tissue surface boundaries
induced by the laser energy, followed by embedding and
collection of this surface for further chemical handling and
analysis. This mode was proposed by Molecular Devices
(Bonner et al., 1997; Emmert-Buck et al., 1996; Nakamura
et al., 2007; Pietersen et al., 2009). The second mode of

microdissection relies on a laser ablation principle. The
tissue section is dropped on a plastic membrane covering a
glass slide. The preparation is then placed into a microscope
equipped with a laser. A highly focused beam will then be
guided by the user at the external limit of the area of interest.
This area composed by the plastic membrane, and the tissue
section will then be ejected from the glass slide and col-
lected into a tube cap for further processing. This mode of
microdissection is the most widely used due to its ease of
handling and the large panels of devices proposed by con-
structors. Indeed, Leica microsystem proposed the Leica
LMD system (Kolble, 2000), Molecular Machine and In-
dustries, the MMI laser microdissection system Microcut,
which was used in combination with IHC (Buckanovich
et al., 2006), Applied Biosystems developed the Arcturus
microdissection System, and Carl Zeiss patented P.A.L.M.
MicroBeam technology (Braakman et al., 2011; Espina
et al., 2006a; Espina et al., 2006b; Liu et al., 2012; Micke
et al., 2005). LCM represents a very adequate link between
classical histology and sampling methods for molecular
analyses as it is a simple customized microscope. Indeed,
optical lenses of different magnification can be used and the
method is compatible with classical IHC (Buckanovich
et al., 2006). Only the laser and the tube holder need to be
added to the instrumentation. The tube holder can either be
placed above or under the glass slide to collect the samples
whether the collection is based on catapulting effect or both
catapulting and gravity effects, respectively.

After microdissection, the tissue pieces can be processed
for analyses using different available MS devices and strat-
egies. The simplest one consists in the direct analysis of the
protein profiles by MALDI-TOF-MS (MALDI-time of flight-
MS). The microdissected tissues are dropped on a MALDI
target and directly covered by the MALDI matrix (Palmer-
Toy et al., 2000; Xu et al., 2002). This approach was already
used in order to classify breast cancer tumor types (Sanders
et al., 2008), identify intestinal neoplasia protein biomarkers
(Xu et al., 2009), and to determine differential profiles in
glomerulosclerosis (Xu et al., 2005).

LCM samples can also be studied using 2D gel electro-
phoresis. Many clinical applications have been investigated
by this method, including biomarker identification of breast
cancer (Thakur et al., 2011; Zanni and Chan, 2011; Zhang
et al., 2005), pancreatic ductal carcinoma (Shekouh et al.,
2003), nasopharyngeal carcinoma (Cheng et al., 2008), he-
patocellular carcinoma (Wong and Luk, 2012), and abdom-
inal aortic aneurysms (Boytard et al., 2013). In this last study,
Boytard and colleagues highlighted that CD68( + )MR(-)
macrophages could contribute to aneurysmal pathology, on
the basis of the analyses of 2DE separated proteins originated
from different types of macrophages. 2D-DIGE was also used
for the analysis of esophageal cancer (Hatakeyama et al.,
2006; Zhou et al., 2002), prostate cancer (Skvortsov et al.,
2011), lymph node metastasis of human lung squamous ad-
enocarcinoma (Yao et al., 2009), colorectal cancer (Shi et al.,
2011; Sugihara et al., 2013), and malignant pleural meso-
thelioma (Hosako et al., 2012).

Currently the most common proteomic approach for LCM
tissue analysis is LC-MS/MS. Label free LC-MS approaches
have been used to study several cancers like head and neck
squamous cell carcinomas (Baker et al., 2005), esophageal
cancer (Hatakeyama et al., 2006), dysplasic cervical cells
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(Gu et al., 2007), breast carcinoma tumors (Hill et al., 2011;
Johann et al., 2009), tamoxifen-resistant breast cancer cells
(Umar et al., 2009), ER + / - breast cancer cells (Rezaul et al.,
2010), Barretts esophagus (Stingl et al., 2011), and ovarian
endometrioid cancer (Alkhas et al., 2011). Different isotope
labeling methods have been used in order to compare proteins
expression. ICAT was first used to investigate proteomes of
hepatocellular carcinoma (Li et al., 2004; 2008). The O16/O18

isotopic labeling was then used for proteomic analysis of
ductal carcinoma of the breast (Zang et al., 2004).

Microdissected tissue pieces can also be investigated after
their status linked to markers of interest. This approach was
named immune laser capture microdissection (iLCM), where
IHC is performed (Fend et al., 2000; Tangrea et al., 2011)
prior to LCM. It was used for multiple clinical applications
such as proteomic studies of prolactin cells from pituitary
adenoma (Liu et al., 2010) or CD24 + / - cells from pancre-
atic adenocarcinoma, this marker being directly correlated to
cancerous tumorigenesis, progression, and metastasis of
pancreatic cancer (Zhu et al., 2013).

The size of the samples leads to the final number of
identified proteins. Generally, a high number of cells is
mandatory for efficient proteins extraction from micro-
dissected samples. Currently, the lowest amount of collected
cells for a relevant single analysis using fr/fr breast cancer
tissues was 3000–4000 (Braakman et al., 2012; Liu et al.,
2012; Umar et al., 2007). With a Q-Exactive (Thermo,
Waltham) mass spectrometer coupled to LC, Braakman was
able to identify up to 1800 proteins from 4000 cells. Pro-
cessing of FFPE microdissected tissues of limited sizes still
remains an issue which is being addressed by our team.

Direct tissue analysis

As mentioned in the previous section, LCM represents a
valuable technique that enables the study of the molecular
content of a specific group of cells and its comparison to
another one in the same tissue section. However, the com-
plexity of the tissue system relies on interactions between
different cell groups in a given physiological and pathological

FIG. 2. On tissue processing workflow, application to ovarian cancer. In Longuespée
et al. (2013), tissues from a single patient afflicted by serous ovarian cancer were selected.
Selected patient also presents serous Fallopian tube cancer with serous tubal intraepithelial
carcinoma (STIC), presuming the possible origin of ovarian cancer. A first MALDI
analysis combined with PCA analyses was performed to evaluate the differential molec-
ular features between the tissue types. In parallel, shotgun proteomics were performed to
evaluate the molecular actors involved in a possible interaction between serous ovarian
and tubal cancers. Among the detected proteins, some markers initially found to be ovarian
cancer markers were here only detected in Fallopian tube cancer. Periostin, which is
associated with metastatic processes, was found in tubal cancer, revealing that metastasis
could occur in a pathological context. This study highlighted the high relevance to proceed
to proteomic analyses in an anatomical context. This was also the first time that the
‘‘proteomic case study’’ concept was introduced.
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context. For example, in metastasis processes, nesting of de-
tached spheroid-shaped cells groups from the primary tumor is
strongly dependent to the hosting tissue cells content (Zhang
et al., 2011). A molecular communication between these cells
and the extracellular matrix is of first importance for the bio-
logical effect and consequently for the clinical defects. Com-
parative analyses of tissue areas containing groups of different
cell types may then be interesting for some issues, in order to
compare a whole molecular environment to another one in the
same anatomopathological context.

Among direct tissue analyses modes, two categories of
investigations can be done. MALDI profiling consists in the
study of molecular localization of compounds and can be
combined with parallel shotgun proteomic methods. Imaging
methods give less detailed molecular information, but is more
focused on the accurate mapping of the detected compounds
through tissue area.

In 2007, a concept of direct tissue proteomics (DTP) was
proposed for high-throughput examination of tissue mi-
croarray samples. However, contrary to the classical
workflow, tissue section chemical treatment involved a
first step of scrapping each FFPE tissue spot with a razor
blade from the glass slide. The tissues were then transferred
into a tube and processed with RIPA buffer and finally
submitted to boiling as an AR step (Hwang et al., 2007).
Afterward, several teams proved that it was possible to
perform the AR directly on tissue sections. These applica-
tions were mainly dedicated to MALDI imaging analyses
(Bonnel et al., 2011; Casadonte and Caprioli, 2011; Gus-
tafsson et al., 2010). However, more recently, Longuespée
used citric acid antigen retrieval (CAAR) before shotgun
proteomics associated to global profiling proteomics
(Longuespee et al., 2013). In this work, tryptic digestion
was directly performed on selected areas of ovarian and
fallopian tube serous cancer tissue sections. The aim of this
study was to bring some proteomic elements reinforcing the
theory stating that ovarian serous epithelial ovarian cancer
is caused by an intrusion of cells coming from the close

fallopian tube tissue (Kurman and Shih Ie, 2010). By
nanoLC-MS/MS experiments followed by bioinformatics
analysis using Blast2GO, String, and Cytoscape, it was
possible to assess the common proteins shared by serous
ovarian cancer tissue and its related fallopian tube tissue in
order to determine that a metastasis process occurs from
fallopian tube to the ovary in a serous ovarian cancer con-
text. A second aim of the study was to find some specific
markers of each specific pathology, namely serous fallo-
pian tube cancer and serous ovarian cancer. This allowed
the finding that some protein markers already described
as ovarian cancer marker were actually fallopian tube
cancer ones. Among these markers, periostin was found
among these tubal markers that reinforced the metastasis
theory in serous ovarian cancer environment. This whole
investigation proved the high relevance of ‘‘on-tissue pro-
teomics’’ approach for clinical questions. By this experi-
ment methodology, it was possible to address a clinical
issue with limited clinical cases as tissues sections coming
from the same patient, this eliminating any inter-subject
variability.

Figure 2 illustrates the adopted workflow and the results of
this study.

Recent improvements of this method have been proposed
concerning on-tissue trypsin deposition and tryptic peptides
extraction by the same team, using nano spotting and Liquid
Extraction Surface Analysis devices (Wisztorski et al., 2013).
A procedure was also recently proposed by Harris et al. for
both tryptic digestion and extraction of peptides from tissue
sections (Harris et al., 2013). This method was based on the
use of a polymerized hydrogel containing Triton X100 for
on tissue chemical treatment and trypsin for digestion. Un-
fortunately, the method has only been applied to fr/fr tissues.
On the other hand, this technique presents the great ad-
vantage to be compatible with MALDI Imaging analysis, as
it was shown using MSI combined with ion mobility spec-
troscopy for lipids from the same tissue section ( Jackson
et al., 2007).

FIG. 3. MALDI imaging workflow. For MALDI imaging experiments, tis-
sue sections are dropped on conductive glass slides. Sample preparations are
then adapted depending on the nature of the tissue sample (FFPE or fr/fr).
Then, matrix is uniformly deposited on the tissue section using dedicated
devices. A laser beam subsequently irradiates the preparation following a
given step length and a MALDI spectrum is acquired for each position. Using
adapted software, the different detected ions are then mapped through the
tissue section, in function of their differential intensities. The ‘‘molecular
maps’’ are called images. (FFPE, formalin fixed and paraffin embedded; fr/fr,
fresh frozen; MALDI, matrix assisted laser desorption ionization.)
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MALDI Mass Spectrometry Imaging

The ultimate ‘‘molecular histology’’ method for wide
applications in clinical proteomics and pharmacology

MS imaging is the most striking evidence of the reli-
ability between ‘omics’ and classical histology. Indeed,
MSI relies on classical histology and direct mapping
of hundreds of compounds of diverse natures on tissue
sections.

Among the MS sources for MSI, MALDI is currently the
most described. It was introduced in the 1980s and relies on
the use of solid samples as analytes (Hillenkamp and Karas,
1990). Soon after, in the early 1990s, authors benefited from
the fact that samples for MALDI need to be solid to study
mollusk neuropeptides processing directly on animals sec-
tions ( Jimenez et al., 1994). The method was then extended
to other models (Garden et al., 1996; Stahl et al., 1997; van
Strien et al., 1996). In 1997, Caprioli proposed an improve-
ment of the method consisting in its automation in order to
acquire spectra from areas of the samples. From these data,
molecular images can be reconstructed to map different
compounds in the sample areas of interest (Caprioli et al.,
1997). Figure 3 illustrates MALDI imaging workflow.

Since its introduction, a growing interest emerged in dif-
ferent teams to improve the method and its applications in
many fields. Improvements were made on analysis speed,
mass range (Franck et al., 2010; van Remoortere et al., 2010),
spatial and spectral resolutions (Rompp and Spengler, 2013),
targeted imaging (Longuespee et al., 2013; Stauber et al.,
2010), and data processing (Bonnel et al., 2011; Jones et al.,
2012). Also, substantial efforts are being made to bring some
clues to address ion suppression effects issues ( Jadoul et al.,
2014).

MALDI imaging has found a large panel of applications in
pharmacology and pathology fields (El Ayed et al., 2010;
Longuespee et al., 2012; 2014a; McDonnell et al., 2010;
Meding et al., 2012; Willems et al., 2010). This technology is
a valuable tool for biomarker hunting in pathology and is
complementary to the use of classical methods in histopa-
thology (Meding et al., 2012). Biological assays are also
possible for the functional validation of the discovered bio-
markers (Aichler et al., 2013).

Until recently, identification of m/z markers obtained with
MALDI imaging has remained elusive. Though identification
of large proteins can be established directly on tissues using
In Source Decay (ISD) procedures (Ait-Belkacem et al.,
2014; Ait-Belkacem et al., 2013; Bonnel et al., 2011; Calli-
garis et al., 2013). In parallel, methods have been used in
combination to MALDI imaging to solve this issue. In 2013,
Maier et al. published the public MaTisse database of MALDI-
MSI identifications from fr/fr tissues (Maier et al., 2013).
Based on top-down and bottom-up identification strategies,
they compiled the proteins that can potentially be found in
series of normal and fr/fr tissues. Meding et al. (2013) estab-
lished tryptic peptides reference data sets in order to associate
MS proteolytic peptides detection in tissues with their
identification for bottom-up MALDI-MSI approaches. More
recently, Longuespée used proteins extraction with hexa-
fluoroisopropanol (HFIP) on fresh fr/fr tissue sections with
parallel 2DE analysis to cross correlate the detected MS
signals on tissue (Longuespee et al., 2014b).

All these elements make MALDI-MSI very versatile and
of most value within ‘‘molecular histology’’ approaches at
this time.

Conclusions

Histology is an old science born after considering the high
level of organ complexity and the existence of molecular
communication networks among different cell types in order
to form a functional tissue. Through the years, advances
in chemistry and physics helped histologists to better un-
derstand the molecular actors of the tissue physiological
functions and the development of a given pathology. A real
molecular dimension was then progressively added to clas-
sical histology, especially with the use of MS methods.

Today, the available tools for tissue sampling and analysis are
extremely varied and allow researchers to address many ques-
tions using the most relevant approaches. Thereby, the complex
composition of tissues can be more precisely described.

Proteomics instrumentations, specific biochemical prepa-
rations, and sampling methods such as LCM altogether allow
for the deep exploration and comparison of different pro-
teomes between regions of interest in tissues with up to 104

detected proteins.
MALDI MS imaging that allows for differential mapping

of hundreds of compounds on a tissue section is currently the
most striking illustration of association between ‘‘classical’’
and ‘‘molecular’’ histology.
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