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Abstract

Introduction: Accurate, continuous, left ventricular stroke volume (SV) measurements can convey large amounts of
information about patient hemodynamic status and response to therapy. However, direct measurements are highly invasive
in clinical practice, and current procedures for estimating SV require specialized devices and significant approximation.

Method: This study investigates the accuracy of a three element Windkessel model combined with an aortic pressure
waveform to estimate SV. Aortic pressure is separated into two components capturing; 1) resistance and compliance, 2)
characteristic impedance. This separation provides model-element relationships enabling SV to be estimated while
requiring only one of the three element values to be known or estimated. Beat-to-beat SV estimation was performed using
population-representative optimal values for each model element. This method was validated using measured SV data from
porcine experiments (N = 3 female Pietrain pigs, 29–37 kg) in which both ventricular volume and aortic pressure waveforms
were measured simultaneously.

Results: The median difference between measured SV from left ventricle (LV) output and estimated SV was 0.6 ml with a
90% range (5th–95th percentile) 212.4 ml–14.3 ml. During periods when changes in SV were induced, cross correlations in
between estimated and measured SV were above R = 0.65 for all cases.

Conclusion: The method presented demonstrates that the magnitude and trends of SV can be accurately estimated from
pressure waveforms alone, without the need for identification of complex physiological metrics where strength of
correlations may vary significantly from patient to patient.
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Introduction

Inadequate ability to diagnose cardiac dysfunction is prevalent

in critical care [1,2] and is a significant cause of increased length of

hospital stay, cost, and mortality [3,4]. However, detection,

diagnosis and treatment of cardiac dysfunction are very difficult,

with clinicians confronted by large amounts of often contradictory

numerical data. Thus, it is important to synthesise raw clinical

data such as blood pressure and heart-rate into useful physiological

parameters such as stroke volume and contractility that can be

used to improve diagnosis and treatment [5].

This goal can be accomplished using computational models and

patient-specific parameter identification methods to unmask

hidden dynamics and interactions in measured clinical data

[6,7]. This approach can create a clearer physiological picture

from the available data and its time-course, making diagnosis

simpler and more accurate, thus enabling personalised care [8,9].

This approach also enables real-time, patient-specific monitoring

which could allow faster diagnosis and detection of dysfunction

[10].

Ventricular stroke volume (SV) measurements are essential for

evaluating cardiovascular system (CVS) function [11–13]. Cur-

rently, SV can be estimated using non-invasive procedures

including ultrasound, through moderately invasive methods

including indicator dilution [14], to highly invasive direct

measurement with admittance catheters. Only the latter can

directly and continuously measure SV. Other modalities, including

MRI and echocardiography, also do not necessarily show strong

correlation to ‘‘gold standard’’ thermodilution [15]. Most methods

require specialised equipment and/or personnel, and often only

provide intermittent values of SV or measures of average SV over

10–15 seconds (e.g. cardiac output via indicator dilution) [16]. It is

important to note that CO estimated by indicator dilution cannot
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capture transient effects or variability of SV on a beat-to-beat basis

as these effects are averaged over 10–30 beats while the indicator

transits the pulmonary circulation. Thus, SV is a much better

metric for monitoring highly dynamic states, such as in shock, or

when clinical interventions are made.

This paper presents a method for continuously estimating SV

from aortic pressure measurements. Aortic pressure measurements

are clinically available in the ICU and its continuous waveform

signals allow SV to be determined on a beat-to-beat basis.

Clinically, current discrete estimates of CO provide patient status

at a particular point in time. However, the changes and trends of

SV due to physiological changes and/or clinical interventions such

as inotrope [17] or fluid therapy [18], are more important in

optimizing clinical treatment. Thus, this method of identifying SV

continuously could provide early identification of deteriorating

patients, and could improve treatment and outcomes by providing

a direct SV response to treatment [19].

This method utilizes the three-element Windkessel model to

estimate stroke volume. The model used for this analysis is

analogous to a Westkessel model where characteristic impedance

(R) is added in series to a traditional Frank’s Windkessel model

(parallel R-C circuit) [20]. The input to this RCR model is aortic

blood pressure, and analysis of the pressure waveform with the

model allows stroke volume estimation to be made. The unique

aspect of this study is that the model only requires estimation of

one of the three-element values for the estimation of SV and the

other two parameters can be identified by the defined relationship

within the model.

Thus, model complexity is optimised so that only a single

parameter from the RCR model must be fixed for the estimation

of SV, and the other two parameters are identified using measured

data combined with the defined relationship within the model.

This study investigates the accuracy of continuous beat-to-beat SV

estimated using this method, and the sensitivity to the choice of

fixed parameter. The model is validated against porcine experi-

mental data where both ventricular volume and aortic pressure

waveforms were measured simultaneously.

Methodology

Aortic Pressure Model
This study combines arterial Windkessel behaviour [21] and

pressure contour analysis [22] to estimate left-ventricular stroke

volume. This approach provides better representation of the

arterial physiology and isolates aortic contour shapes to their

corresponding arterial mechanical properties. Figure 1 presents

electrical analogy of the model and schematic of the process used

in this study.

The aortic pressure model used in this study is based on that of

Wang et al [23]. This model proposes that aortic pressure Pao can

be separated into two components, reservoir pressure, Pres, and

excess pressure, Pex. Reservoir pressure accounts for the energy

stored/released by the elastic walls of the arterial system. Excess

pressure is defined as the difference between the measured aortic

pressure and the reservoir pressure that varies with time, t, and

excess pressure can also be determined from ohm’s law as:

Pao(t)~Pres(t)zPex(t) ð1Þ

Pex(t)~Qin(t)Rprox ð2Þ

Where Qin is flow entering aortic compartment from the left

ventricle and Rprox is the characteristic impedance relating inflow

and excess pressure. In addition to the pressure relationships

defined in Equations (1) and (2), the three element Windkessel

theory was also applied [24], relating reservoir pressure and flow:

dPres(t)

dt
~

Qin{Qout

C
ð3Þ

Pres(t){Pmsf

R
~Qout(t) ð4Þ

C, R, and Pmsf are defined as compliance, resistance and mean

systemic filling pressure, respectively, and Qout is flow leaving the

aortic compartment. In this case, aortic model parameters C, R,

and Rprox are assumed to be constant during single heartbeat.

By combining Equations (1)–(4), reservoir pressure can be

expressed in terms of Pao, Pmsf, Rprox, R, and C:

dPres(t)

dt
~

Pao(t){Pres(t)

RproxC
{

Pres(t){Pmsf

RC
ð5Þ

The analytical solution to Equation (5) for Pres is defined:

Pres(t)~e{bt:
ðt

0

ebt0 :
Pao(t0)

RproxC
z

Pmsf

RC

� �
dt0zPres(0)

0
@

1
A ð6Þ

Where b = 1/RproxC+1/RC. Equation (6) can be used to calculate

reservoir pressure, which is dependent only on three parameters

RC, RproxC, and Pmsf.

The diastolic regions of the aortic pressure decay curve were

used to identify exponential time decay constant RC and Pmsf. In

this pressure region, inflow to the aortic compartment is assumed

to be zero as a result of aortic valve closure and thus pressure

decay results from only volumetric change of the arterial

compartment [25]:

Pres(t)~Pao(t) (tdƒtƒtf ) ð7Þ

Where td and tf are the time of closure of aortic valve and total

time for one cycle of heart beat, respectively. With this

assumption, Equation (5) can be reduced such that Pres is a

function of only two parameters RC and Pmsf. Thus, the diastolic

reservoir pressure can be expressed:

Pres(t)~(Pao(td ){Pmsf )e
{

(t{td )

RC zPmsf (tdƒtƒtf ) ð8Þ

Parameter value RC and Pmsf were identified by minimizing the

discrepancy between measured diastolic pressure and estimated

diastolic pressure from Equation (8). In this work, the start of

diastole was defined by the time of the minimum rate of change of

Pao [26].

For identification of RproxC, the systolic pressure waveform was

used along with estimated values of RC and Pmsf from the previous

steps. The identification of RproxC involves additional assumptions

about the behaviour of the reservoir pressure curve. In particular,
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Figure 1. Aortic pressure model. A) Electrical analogy of the aortic model used in this study (systole). B) Flow chart showing stroke volume
estimation process.
doi:10.1371/journal.pone.0102476.g001
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that zero net flow in the compartment occurs in the region

between the point of maximum Pao and td. This assumption comes

from the knowledge that Pao increase is due to the increase in

inflow and the compliant effects of the aorta. Therefore, there

must exist a point where equilibrium of flow occurs when Pao is

decreasing to assist valve closure. Using this additional informa-

Figure 2. Reservoir pressure estimation process. A) flow chart showing iteration steps involved for identification of RproxC. B) graph showing
measured Pao (thick solid black line), Pao(ti) value used at each iteration (red triangle points), and reservoir approximation through each iteration (thin
blue dashed line) and final computed reservoir pressure using converged RproxC (thick blue dashed line).
doi:10.1371/journal.pone.0102476.g002
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tion, and Equations (5) and (6), the value of Pao is iterated in this

range to identify RproxC when the following condition is satisfied:

Pres(t)%
RCPao(t)zRproxCPmsf

RproxCzRC
ð9Þ

Where t is the time when inflow Qin is equal to the outflow Qout.

Once the parameters RC, RproxC, and Pmsf are estimated, Pao is

decoupled into reservoir and excess pressure using Equations (1)

and (6). The process showing each identification step for RproxC
and the converged reservoir pressure approximation using the

RproxC value is illustrated in Figure 2.

Figure 3 shows example of measured aortic pressure and

computed reservoir pressure using aortic pressure model. In

addition, flow pattern computed using Equation (2) and (4) is

shown.

Porcine Trials and Measurements
Ethics Statement. All experimental procedure, protocols

and the use of data in this study were reviewed and approved by

the Ethics Committee of the University of Liege Medical Faculty

(Approval number: 1230).

Experiments. This study used data from experiments per-

formed on pigs at the centre Hospitalier Universitaire de Liege,

Belgium. These experiments were primarily conducted to inves-

tigate respiratory failure, but extensive measurements of CVS

variables were also recorded [27].

Experiments were performed on three healthy, female pure

pietrain pigs weighing between 29–37 kg. During the experiments,

each subject underwent several step-wise positive end expiratory

pressure (PEEP) recruitment manoeuvres (RM). Increase in PEEP

reduces systemic venous return to the right heart and as a

consequence, left ventricular filling volume decreases causing

reduction in SV [28]. Details of the experimental procedure are

published elsewhere [27]. It should be noted that these experiment

were performed with open chest. However, the chest of pigs 1 and

2 were held closed with forceps. Thus, the SV and arterial

waveform were affected by direct pressure on the mediastinum

area from expanding lungs.

Left and right ventricular volumes and pressures were measured

using 7F admittance catheters (Transonic Scisense Inc., Ontario,

Canada) inserted directly into the ventricles through the cardiac

wall. Aortic pressure was measured with a 7F pressure catheter

(Transonic Scisense Inc., Ontario, Canada) inserted into the aortic

arch through the carotid artery. All data were sampled at 200 Hz

and were subsequently analysed using Matlab (version 2013a, The

Mathworks, Natick, Massachusetts, USA).

Figure 3. Example of computed reservoir pressure and aortic flow pattern. Top panel: example of aortic pressure separation showing
estimated diastolic curve (red dash-dot line), reservoir pressure Pres (blue dashed line), valve closure time td (dashed black line), and measured aortic
pressure Pao (solid black line). Bottom panel: Estimated aortic inflow Qin (solid black line), outflow Qout (dashed blue line), and zero net flow time t
(dotted black line).
doi:10.1371/journal.pone.0102476.g003
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Stroke Volume Estimation
The aortic pressure model cannot estimate SV unless one of the

three Windkessel parameters (R, C, or Rprox) is estimated. In this

analysis, experimentally measured left-ventricular SV values

enabled each optimal Windkessel parameter to be identified for

all pigs by minimising the error between the measured and

estimated SV. This approach can be thought of as a calibration of

the parameters for converting relative changes identified from the

aortic contour analysis into an absolute magnitude of SV. By fixing

one of these parameters at its optimal value, and estimating stroke

volume, the accuracy of SV estimation from the aortic pressure

waveform can be evaluated. Applying this process for each of the

Windkessel parameters enables evaluation of the SV estimation

and the practicability of this method in each of the cases.

Identification of optimal, or ‘fixed,’ Windkessel parameters were

conducted by grid-search within reported physiological ranges

[29]. Values of resistance, compliance, and characteristic imped-

ance, (Rfixed, Cfixed, Rprox, fixed), were tested with resolution of 0.001

for each parameter:

½R,C,Rprox�~

arg min ½R,C,Rprox�(
XTbeats

i~1

abs(SVmeasured,i{SVapprox,i))
ð10Þ

Where Tbeats is total number of heart beats analysed from the

experiment. Thus, the fixed values of these parameters represent

the optimal values over all beats for all pigs. Stroke volume

estimation was performed using identified fixed values of Rfixed,

Cfixed, and Rprox, fixed together with derived values of Pex, Pres, RC,

and Pmsf.

Figure 4. Example of measured aortic pressure and left ventricular volume waveform. Top Panel: example of measured aortic pressure
waveform used for the model, black vertical line representing time at start of each heartbeat. Bottom Panel: example of measured Left Ventricular
Volume Waveform used to determine SV for each heartbeat.
doi:10.1371/journal.pone.0102476.g004

Table 1. Investigated range of physiological parameters, measured Mean Arterial Pressure (MAP), and SV.

Parameter MAP (mmHg) SV (ml)

Physiological Range 84.3 [59.6–112.5] 25.3 [13.6–39.2]

Data are presented as the median [5–95th percentiles].
doi:10.1371/journal.pone.0102476.t001
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SVR~
1

Rfixed

ðtf

t0

(Pres(t){Pmsf )dt ð11Þ

SVC~
Cfixed

RCidentified

ðtf

t0

(Pres(t){Pmsf )dt ð12Þ

SVRprox~
1

Rprox,fixed

ðtf

t0

Pex(t)dt ð13Þ

Where SVR, SVC, and SVRprox, represent the estimated SV using

one of the pre-determined fixed values from Equation (10) for

resistance, compliance, and characteristic impedance, respectively.

Each of the SV values represents SV estimation with only the one

parameter held constant within the three element Windkessel (R,

C, or Rprox) for the duration of the experiment.

Data Analysis
Measured aortic pressure and left ventricular volume waveform

data were pre-processed by removing regions where obvious

measurements error occurred due to equipment or catheter

disturbance/failure. Using this pre-processed data, both aortic

pressure and left ventricular volume waveforms were first split into

individual heartbeat for the analysis. For each beat, SV were

calculated as difference between maximum and minimum volume.

Measured aortic pressure waveform was separated into reservoir

and excess pressure components using the aortic model, prior to

estimation of SV. Examples of measured aortic pressure and left

ventricular waveforms are shown in Figure 4 and summary of

analysed physiological range are presented in Table 1. In this

Figure 5. Bland-Altman plots comparing agreements between measured and estimated SV for all pigs using estimated population-
representative values in Table 2 (Black circle: pig1, Blue triangle: pig2, Green square: pig3). Top Panel: Agreements of SV estimation
using Rfixed value in Equation (11). Middle Panel: Agreements of SV estimation using Cfixed value in Equation (12). Bottom Panel: Agreements of SV
estimation using Rprox, fixed value in Equation (13).
doi:10.1371/journal.pone.0102476.g005

Table 2. Optimal parameter values in the three element Windkessel model for the estimation of SV.

Parameter Rfixed (mmHg.s/ml) Cfixed (ml/mmHg) Rprox, fixed (mmHg.s/ml)

Optimized value 1.6630 0.5330 0.0880

doi:10.1371/journal.pone.0102476.t002
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study, agreement and distribution of differences between measured

and estimated SV were shown with Bland-Altman plots and

histograms. To assess trend accuracy, zero-lag cross-correlation

coefficient values were calculated between measured and estimat-

ed SV in the recruitment manoeuver region where SV changes

occur.

Results

The identified population-representative optimal parameter

values, Rfixed, Cfixed, and Rprox, fixed for all pigs used in this study

are presented in Table 2. Bland-Altman plots for all heart beats for

each optimal parameter are presented in Figure 5, where there are

approximately 300 to 1000 estimated SV values per pig. These

plots compare directly measured values of SV to values estimated

using Equations (11)–(13) with values from Table 2. Table 3

summarise the results of the Bland-Altman plots showing the

accuracy of SV estimation using the model, and Table 4

summarise the calculated zero-lag cross-correlation coefficient

values analysing the SV trend accuracy. In addition, example of

the estimated SV compared to the measured SV in the

recruitment manoeuver region is presented in Figure 6.

Discussion

Optimal Parameter Values
The optimal values for R, C and Rprox shown in table 2 were

used to circumvent the structural model identifiability limitation of

the Windkessel model and allow SV to be estimated from aortic

pressure alone. By locating values that were representative of the

population, the efficacy of the approach in application could be

found. Patient specific parameters R, Rprox, and C are identifiable

if aortic blood velocity is obtained reducing the bias in the SV

estimation, but at the expense of the need for additional device

measuring such parameter.

Table 3 and Figure 5 demonstrate the ability to capture

magnitude of SV. Across all beats and pigs, the median difference

between measured and estimated SV was 0.6 ml, with a 90%-

range of 212.4 to 14.3 ml. The median differences and 90%-

ranges were similar for each fixed parameter. Thus, the proposed

model is capable of estimating suitable SV by applying any of the

three fixed parameters.

It should also be noted that cross correlation coefficients were

above 0.65 for all cases. This result suggests that SV trends due to

PEEP interaction were accurately captured, as shown in Table 4

and Figure 6. This outcome allows wider application. Specially, if

any of the three parameters can be derived or estimated from

additional, a priori, knowledge, a continuous SV estimation

without external calibration (e.g. thermodilution) becomes possi-

ble. In addition, the presented SV estimation method could also be

combined with other arterial mechanics models [30,31] to further

improve the estimation process.

Stroke Volume Estimation
Pulse contour methods have been extensively studied as a means

of estimating SV from continuous arterial blood pressure

measurements [32]. However, conversions of pressure measure-

ments to magnitude of flow are restricted to the assumptions made

in the model-based approach. In particular, there are no direct

relationships that can provide the scalars of volume from pressure

measurements alone. As a consequence, the precision of SV

estimations via model-based approaches are always limited to the

assumptions made, such as strength of parameter correlations or

stability of calibrated measurements [14,33].

Historically, these models have evolved and increased in

complexity to capture more accurate representations of realistic

physiological phenomena [34]. More realistic models can provide

better approximations of the SV and more detailed physiological

insight. However, identification of the model parameters for these

more complex models becomes much more difficult, if not

impossible, eliminating their use in a practical application based

patient-specific context, although this approach does increase their

applicability as models for understanding [35,36].

The aortic model presented in this study incorporates pressure

contour analysis based on one dimensional flow in an elastic tube

[37]. Despite the fact that the model is a zero-dimensional

cardiovascular analysis, it can be treated as one segment from a

whole network of arteries represented by multiple compartments,

having many zero dimensional models connected together [38].

While the assumptions of this model are simplistic, they are made

in consideration with what is available and practical clinically [39].

The model considers only the dominant influences that occur

within a small compartment of aortic system. Thus, the model

assumes arterial properties to behave in the same manner in

between the aortic valve and where the measurements are taken.

This assumption may produce error in the SV estimation,

however, the numbers of influential physiological parameters that

must be considered within this region are considerably fewer

compared to the cardiovascular models comprising or considering

the whole vascular systems. Therefore, the model is optimised for

the purpose of estimating stroke volume from the pressure

measurements.

This model-based approach also has an advantage that both

arterial and heart properties could be analysed and hence, analysis

of ventricular-arterial coupling is possible. Ventricular-arterial

coupling is clinically important measure as knowing changes and

trends of this parameter will provide patient response from

inotrope and vasoactive drugs [40].

Combining the arterial Windkessel model and pressure contour

analysis [41] increases the information that can be extracted from

the aortic pressure contour [42]. This combination reduced the

number assumptions required and allows non-fixed parameters to

be constrained within the identified parameters RC and RproxC,

helping to increase the ability of the model to match observed

physiological conditions and thus estimate SV. In addition, beat-

Table 3. Summary of Bland-Altman analysis from figure 4 for
different fixed parameters.

Parameter Bland-Altman results (ml)

Rfixed(DSV) 21.1[213.3, 17.8]

Cfixed(DSV) 21.2[212.8, 12.5]

Rprox, fixed(DSV) 0.3[211.2, 13.0]

Data are presented as the median [5–95th percentiles].
doi:10.1371/journal.pone.0102476.t003

Table 4. Summary of cross-correlation analysis for different
fixed parameters in the recruitment manoeuvers regions.

Parameter Zero lag cross-correlation coefficient

Rfixed 0.67

Cfixed 0.71

Rprox, fixed 0.70

doi:10.1371/journal.pone.0102476.t004
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to-beat pressure contour variation due to altered arterial

mechanics, R, Rprox, and C, were related to correct corresponding

pressure zones, enabling this model to more accurately capture SV

variability from aortic pressure measurements alone.

The clinical applicability of the presented method currently

relies on the availability of aortic pressure measurements. Arterial

catheters are currently used in ICU patients who would benefit

from continuous SV monitoring and aortic catheters are used in a

number of these patients. However, arterial catheterization sites

are determined by the perceived risk-to-benefit ratio and thus,

increasing the benefit of obtaining aortic pressure waveform could

reverse the trend turning potential risk into benefit [43,44].

Additionally, models for estimating aortic pressure from radial or

femoral artery pressure may be developed in the future which will

enhance the clinical applicability of this approach.

Limitations
The SV estimates were compared with directly measured left

ventricular volumes, providing a true validation of the model

accuracy to within errors using such measurements. Although left

ventricular volume was measured directly and with the best

available method, the sample size was small, with only 3 pigs being

considered in this study. In addition, these measurements can be

very sensitive to catheter location and condition in the left

ventricle. However, this study analysed over 1500 heart beats,

across a range of SV values induced by changes in PEEP. The

range of SV analysed covers the expected normal range for most

of the pigs [29]. Hence, there was sufficient data quality for the

model to uniquely determine accurate parameter values. Thus,

despite the small sample size, and other possible errors or

variability, this study demonstrates the feasibility of accurately

identifying SV using non-invasive, clinically available measure-

ments.

In this experiment, changes to SV were induced by varying

mechanical ventilation pressures, creating variation in the left

ventricular preload. The effect of an increase or decrease in the

thoracic cavity pressure alters the venous return to the ventricle

and, as a consequence, stroke volume changes. In this study, the

variations of systemic arterial mechanics are considered to be

reasonably constant and the accuracy of the presented method

may not be the same in cases where the subject’s hemodynamic

conditions were significantly changed due severely diseased

condition or extreme levels of care such as high ventilation

pressures.

A final limitation of this aortic model is that the separation of

aortic pressure waveform into reservoir and excess pressure

represents a separation of forward and backward travelling waves.

This assumption is based on the work of Wang et al [23], which

shows proportionality in the inflow Qin and excess pressure Pex.

This rationale may not hold for subjects with extraordinary or

highly dysfunctional physiological conditions.

Figure 6. Example of measured SV and estimated SV during recruitment manoeuvers period. Top Panel: Example of SV estimation using
different fixed parameters. Bottom Panel: simultaneously measured airway pressure to show the PEEP changes during recruitment manoeuvers.
doi:10.1371/journal.pone.0102476.g006
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Conclusion

Physiological models are simplified representations of reality

that can provide clinicians with information for decision making,

without the need for additional invasive direct measurement. The

models presented in this study show the potential for continuous,

accurate SV measurements using measurements typically available

in the intensive care unit. This method of obtaining SV from aortic

pressure waveform alone is more adequate for relating our

knowledge about circulatory physiology to blood pressure values.

The study showed SV variations across all beats and pigs, can be

captured with precision of median difference between measured

and estimated SV of 0.6 ml, with a 90%-range of 212.4 to

14.3 ml. Moreover, the agreement of SV trends showed cross

correlation coefficient of above 0.65 for all cases. Thus, the aortic

model is capable of estimating SV in both healthy and acute

respiratory distress syndrome (ARDS) states with suitable accura-

cy, and with good trend accuracy in response to changes in

treatment. Hence, this aortic model and approach shows the

ability for extending our current understanding of the CVS

mechanics, and to optimise real-time diagnosis and cardiovascular

therapy.
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