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Abstract. We explain the wavelet leaders method, a tool to study the
pointwise regularity of signals, which is closely related to some functional
spaces. We use the associated multifractal formalism to show that surface
air temperature signals are monofractal, i.e. these climate time series
are regularly irregular. Then we use this result to establish a climate
classification of weather stations in Europe which matches the Köppen-
Geiger climate classification. This result could give rise to new criteria
to determine the efficiency of current climatic models.
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1 Introduction

This work consists of a presentation of the wavelet leaders method (WLM) and
its application to surface air temperature signals in Europe. The aim is to study
the pointwise regularity of signals, which is defined as follows.

Definition 1. Let f : R → R be a locally bounded function and x0 a real number;
f belongs to the Hölder space Cα(x0) if there exist a polynomial Px0,α of degree
at most α and a positive constant C such that the inequality

|f(x)− Px0,α(x)| ≤ C|x− x0|
α

holds for all x in a neighbourhood of x0. The uniform space Cα(R) is the space of
functions satisfying the above inequality for all x0 ∈ R with a uniform constant
C.

A notion of regularity of f at x0 is then given by the supremum of the
exponents α such that f belongs to Cα(x0), which is called the Hölder exponent
of f at x0 :

hf (x0) = sup{α : f ∈ Cα(x0)} .

If there exist two distinct real numbers with different Hölder exponents, then f
is a multifractal function. On the other hand, if there exists H > 0 such that
hf (x) = H for all x ∈ R, then f is monofractal, which somehow means that
f is ”regularly irregular”. For example, many space-filling functions ([11]), the
well–known fractional Brownian motions ([20, 25]) and coded DNA sequences
([5]) display a monofractal behaviour.
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Computing hf (x0) is often difficult, if not impossible. One rather tries to get
global information about the pointwise regularity of f. A global characterization
is the spectrum of singularities of a function, defined as follows.

Definition 2. The spectrum of singularities of a signal f is the function

df : h 7→ dim ({x ∈ R : hf (x) = h}) ,

where dim(X) is the Hausdorff dimension of the set X ([9]). In other words,
df (h) is the Hausdorff dimension of the set of points having h as Hölder exponent
([10]).

Let us remark that a function is monofractal with Hölder exponent H if and
only if the support of its spectrum of singularities is reduced to {H}.
In section 2, we define the notion of wavelet leader and we present the theorem
that establishes the connection with pointwise regularity. A few multifractal
formalisms have been developed to determine the spectrum of singularities of a
signal (e.g. [10, 11, 22, 23]); among them is the wavelet leaders method introduced
by Jaffard in [10], which is described in section 3. This formalism has already
been successfully applied in several scientific fields, such as fully developed tur-
bulence ([17]), heart rate variability ([2]), texture classification ([26]), and is used
here in climatology. Eventually, in section 4, we apply this formalism to surface
air temperature signals of some European weather stations. We first show that
these signals are monofractal, then we establish a climate classification based on
their Hölder exponent that matches the worldwide used Köppen–Geiger climate
classification. We then proceed to a blind test to confirm the efficiency of this
method before discussing the results.

2 Wavelet leaders and pointwise regularity

Definition 3. We say that ψ is a wavelet with n ∈ N vanishing moments if
ψ ∈ L∞(R), the function x 7→ xkψ(x) belongs to L1(R) with

∫

R
xkψ(x)dx = 0

for all k ∈ N such that k < n and if ψ̂(0) = 0 (where ψ̂ denotes the Fourier
transform of ψ).

In addition, throughout this paper, we consider that the function ψ is compactly
supported (see [6]) and n times continuously differentiable with n > α, where α
comes from theorem 1 below.

Proposition 1. Under some general conditions ([6, 18]), it is possible to use a
wavelet ψ to build an orthonormal basis of L2(R) . More precisely, if f ∈ L2(R),
then we have

f(x) =
∑

j,k∈Z

cj,kψ(2
−jx− k) ,

where the wavelet coefficient cj,k is given by

cj,k = 2−j

∫

R

f(x)ψ(2−jx− k)dx .
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If we denote by λj,k the dyadic interval at the scale j and position k, i.e.
λj,k = [2jk, 2j(k + 1)), and by Λ the set of all dyadic intervals, then f can be
written as follows:f(x) =

∑

λ∈Λ cλψλ. In order to link the Hölder exponent of
f at x0 to the wavelet coefficients cλ, we have to define the notion of wavelet
leader.

Definition 4. The wavelet leader associated to a dyadic interval λ is defined as

dλ = sup
λ′⊂λ

|cλ′ | ,

i.e. the supremum of the modulus of the wavelet coefficients associated to the
dyadic intervals included in λ.

Let us remark that the wavelet leaders are bounded since the Cauchy–
Schwarz inequality implies |cλ| ≤ C ‖f‖L2(R) ‖ψ‖L2(R) for some positive constant
C. We also need the following definition.

Definition 5. The wavelet leader of x0 at the scale j is defined as

dj(x0) = sup
λ′⊂3λj,k(x0)

dλ′ ,

where 3λj,k = λj,k−1 ∪ λj,k ∪ λj,k+1 = [2j(k − 1), 2j(k + 2)) and λj,k(x0) is the
unique dyadic interval at the scale j containing x0.

The link between pointwise regularity and the wavelet leaders is established
in the following theorem.

Theorem 1. 1. If the bounded function f belongs to Cα(x0), then there exist
a positive constant C and an integer J such that

dj(x0) ≤ C2αj ∀j ≤ −J . (1)

2. Conversely, if there exist a positive constant C and an integer J such that
inequality (1) is satisfied, and if there exists ǫ > 0 such that f belongs to
Cǫ(R), then there exist a polynomial Px0,α of degree at most α and a positive
constant C ′ such that the inequality

|f(x)− Px0,α(x)| ≤ C ′|x− x0|
α log |x− x0| (2)

holds for all x in a neighbourhood of x0.

Proof. We define j0 as

j0 = min{j ∈ Z : supp(ψ) ⊂ B(0, 2j) = (−2j , 2j)} .

1. We set k0 = max{2, j0 + 1}, j a negative integer and λ′ = λj′,k′ ⊂ 3λj(x0),
where λj(x0) = λ(j, k) for some k ∈ Z . Let P be the polynomial such that
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f ∈ Cα(x0). Since the degree of P is strictly inferior to α, the hypothesis on the
number of vanishing moments of ψ gives

|cλ′ | =

∣
∣
∣
∣
2−j′

∫

R

(f(x)− P (x− x0))ψ(2
−j′x− k′)dx

∣
∣
∣
∣
.

Since supp(ψ) ⊂ B(0, 2j0) and B(2j
′

k′, 2j0+j′) ⊂ B(x0, 2
k0+j), we have

|cλ′ | ≤ 2−j′
∫

B(2j′k′,2j0+j′ )

|f(x)− P (x− x0)||ψ(2
−j′x− k′)|dx

≤ 2−j′
∫

B(x0,2k0+j)

|f(x)− P (x− x0)||ψ(2
−j′x− k′)|dx .

Since f ∈ Cα(x0), there exist C > 0 and K ∈ N such that, for all j ≤ −K,
the inequality |f(x)−P (x− x0)| ≤ C2jα holds for all x such that |x− x0| ≤ 2j .
In particular, if j ≤ −K − k0 = −J, we get

|cλ′ | ≤ C2(k0+j)α

∫

R

2−j′ |ψ(2−j′y + 2−j′x0 − k′)|dy ≤ C02
jα .

2. In this part of the proof, the notation C refers to positive constants and
thus may have different values at each occurrence of C. Also, let us note two
general remarks used below, which we will refer as Remark(1) and Remark(2):

1. Given R, x ∈ R and j, k ∈ N such that R > 2j and 2jk ∈ B(x,R), we have
λj,k ⊂ B(x, 2R).

2. Given a dyadic interval λ = λj,k and x ∈ R such that λ ⊂ B(x, 2j), then
there exists k′ ∈ Z such that

λ ⊂ B(x, 2j) ⊂ λj+1,k′ ∪ λj+1,k′+1 .

Also, if x0 ∈ B(x, 2j), then |cλ| ≤ dj+1(x0).

As shown in [16], it is enough to prove that there exist a positive constant C ′

and a positive integer J ′ such that, for every j ≤ −J ′, there exists a polynomial
Pj of degree strictly inferior to α such that

sup
|x−x0|≤2j

|f(x)− Pj(x− x0)| ≤ C ′2jα| log(2αj)| .

Moreover, as shown in [6, 18], every function f ∈ L2(R) can be decomposed as

f(x) =
∑1

j′=−∞ fj′(x), where fj′ =
∑

k cj′,kψj′,k =
∑

λ cλψλ if j′ ≤ 0, and
f1 =

∑

k ckϕ(. − k) , where ϕ is a compactly supported wavelet arbitrarily
smooth. We consider j ≤ −J ′ with J ′ = J + 2 + j0 , and we set m = ⌊α⌋ if
α /∈ N, m = α− 1 if α ∈ N, and we define the polynomial Pj as

Pj(x) =

1∑

j′=j

m∑

n=0

xn

n!
Dnfj′(x0) ,
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which has degree at most m < α. Then we get

|f(x)− Pj(x− x0)| ≤

j−1
∑

j′=−∞

|fj′(x)|

︸ ︷︷ ︸

(1)

+

1∑

j′=j

∣
∣
∣
∣
∣
fj′(x)−

m∑

n=0

(x− x0)
n

n!
Dnfj′(x0)

∣
∣
∣
∣
∣

︸ ︷︷ ︸

(2)

.

Let us examine relation (2), for x ∈ B(x0, 2
j). Taylor’s formula gives

∣
∣
∣
∣
∣
fj′(x)−

m∑

n=0

(x− x0)
n

n!
Dnfj′(x0)

∣
∣
∣
∣
∣
≤ C2j(m+1) sup

x∈B(x0,2j)

|Dm+1fj′(x)| .

Also, for j′ ≤ 0, we have

|Dm+1fj′(x)| ≤ 2−j′(m+1)
∑

k s.t.

2j
′

k∈B(x,2j0+j′ )

|cλ||(D
m+1ψ)(2−j′x− k)| .

Considering Remarks (1) and (2), every coefficient |cλ| is bounded by d2+j0+j′(x0),

and therefore |cλ| ≤ C2αj
′

(by hypothesis if j′ ≤ −J ′, by Cauchy-Schwarz in-
equality else). Moreover, |Dm+1ψ| is bounded (see definition 3), and the num-
ber of integers k such that 2j

′

k ∈ B(x, 2j0+j′) is at most 2j0+1, so if j′ ≤
0, |Dm+1fj′ | ≤ C2−j′(m+1)2αj

′

for some constant C. If we assume that the
wavelet ϕ is smooth enough, there exists a constant C such that

∣
∣Dm+1f1

∣
∣ ≤

C2−j(m+1−α). Therefore, (2) is bounded as follows:

(2) ≤ C2j(m+1)



C2−j(m+1−α) + C

0∑

j′=j

(2m+1−α)−j′





≤ C2j(m+1)
(

C2−j(m+1−α) + C2−j(m+1−α)
)

≤ C2jα ≤ C2jα| log(2jα)| .

Let us examine (1). Let J1 ∈ N be such that 2−ǫJ1 ≤ 2jα < 2−ǫ(J1−1). Then

(1) =

j−1
∑

j′=−∞

|fj′(x)| ≤

−J1∑

j′=−∞

|fj′(x)|

︸ ︷︷ ︸

(3)

+

j−1
∑

j′=−J1+1

|fj′(x)|

︸ ︷︷ ︸

(4)

.

Using the result of Jaffard ([10],[21]) stating that, if f ∈ Cǫ(R), then there exists
a constant C such that ||fj′ ||L∞(R) ≤ C2ǫj

′

, then (3) is bounded as follows:

(3) ≤ C

−J1∑

j′=−∞

2ǫj
′

= C
2−ǫJ1

1− 2−ǫ
≤ C2jα ≤ C2jα| log(2jα)| .

We now consider relation (4). Let j′ be such that −J1+1 ≤ j′ ≤ j− 1. We have

|fj′(x)| ≤
∑

k s.t.

2j
′

k∈B(x,2j0+j′ )

|cλ||ψλ(x)| ,
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and every λ in this sum is included in B(x, 21+j0+j′) (by Remark(1)). Therefore,
Remark(2) implies that every λ is taken into account when computing either
d2+j(x0) (if j′ + j0 + 1 ≤ j) or d3+j′(x0) (else), and both cases lead to |cλ| ≤
C2αj . Again, |ψλ| is bounded thus |fj′ | ≤ C2jα for some constant C. Hence,
the following inequalities arise:

(4) ≤ C2αj
j−1
∑

j′=−J1+1

1 = C2αj(J1 + j − 1) ≤ C2αj(J1 − 1) ≤ C2αj | log(2αj)| ,

where the last inequality comes from the definition of J1, which ends the proof.

Theorem 1 gives the following corollary.

Corollary 1. The Hölder exponent of f at x0 is given by

hf (x0) = lim inf
j→−∞

log dj(x0)

log 2j
.

3 Wavelet leaders–based multifractal formalism

Corollary 1 is rarely used in practice since it is hard or meaningless to compute
the Hölder exponent of f at every point. As mentioned, one rather uses other
mathematical tools to have a global characterization of the regularity of a signal.
We present here the wavelet leaders method introduced by Jaffard in [10], which
gives the spectrum of singularities of a function.

First, for every scale j, we define

S(q, j) = 2j
∑

λ∈Λj

dqλ ,

where the sum is taken over the dyadic intervals λ for which dλ 6= 0, Λj being
the set of dyadic intervals at scale j and q being a real parameter.

Then we set the function w as

w(q) = lim inf
j→−∞

log(S(q, j))

log 2j
, (3)

which can be numerically obtained using a log− log regression. The spectrum of
singularities associated to this method defined as

dwf (h) = inf
q
{qh− w(q)}+ 1 . (4)

Let us give the heuristic arguments underpinning this method. Equation (3)
gives the asymptotic behaviour of the sum

∑

λ∈Λj
dqλ (as j → −∞):

∑

λ∈Λj

dqλ ∼ 2(w(q)−1)j . (5)
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On the other hand, the number of dyadic intervals at the scale j containing a
point of Hölder exponent h should be about 2−d(h)j , and for these intervals,
theorem 1 gives dqλ ∼ 2hqj . Thus the global behaviour of the sum should be
about 2(hq−d(h))j where the exponent is as large as possible. Since j < 0, we
have ∑

λ∈Λj

dqλ ∼ 2infh{hq−d(h)}j . (6)

Comparing relations (5) and (6) gives

sup
h

{d(h)− hq} = 1− w(q) ,

and an inverse Legendre transform gives the expected relation (4), provided that
w and d are concave functions. In practice one can thus hope to have df = dwf .
For theoretical results about the relations between df and dwf , see [10].
Let us remark that if w is a straight line with slope H, then the support of
the spectrum of singularities is reduced to {H} and therefore the signal f is
monofractal with exponent H. In this case, we define a norm in the uniform
Hölder space CH(R) as

‖f‖CH = sup
j,k

{|cj,k|/2
jH} := N ,

where the coefficients (cj,k)j,k∈Z are the wavelet coefficients of f.

4 Surface air temperature analysis

4.1 Data description and results

We performed the wavelet leaders method described above to analyze the reg-
ularity of surface air temperature signals collected from the European Climate
Assessment and Dataset ([1]). These consist of daily mean temperatures between
the years 1951 and 2003 of weather stations spread across Europe. We edged the
area of interest to parallels 36◦N (includes Spain, Italy, Greece) and 55◦N (Ire-
land, Germany) and meridians 10◦W (Ireland, Portugal) and 40◦E (Ukraine) to
have a consistent geographic zone and limit the effects of latitude. We selected
weather stations for which the daily mean temperatures were calculated as av-
erage of maximum and minimum daily mean temperatures. Also, only weather
stations located below 1000 meters of altitude were kept in order to prevent al-
titude from interfering in the analysis. We found 115 weather stations satisfying
these criteria (see Fig. 1).

First, the signals are checked, in the sense that temperatures exceeding 50◦C
or going down −60◦C are considered as suspicious and are therefore removed
from the signal. Missing data do not affect the regularity of the signals since
most of them (97 out of 115) display less than 1% of missing data and for the
others, this percentage is at most 7% (with only 5 stations beyond 4%). Also,
in order to get more stable and accurate numerical results, we consider the
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Fig. 1. The 115 selected weather stations. Stations were classified according to the
Köppen–Geiger system (see text): green discs correspond to Oceanic stations (Cb-
type), blue triangles correspond to continental stations (D-type), orange diamonds
correspond to Mediterranean stations (Ca-type) and brown crosses correspond to sta-
tions whose climates were erroneously predicted.

temperature profiles instead of the original signals, i.e. the nth value of a signal
is replaced by the sum of its first n values.

A first result is the linear behaviour of the functions w associated to the
signals, as shown in Fig. 2, for which the mean coefficient of determination is
equal to R2 = 0.9975 ± 0.0028. This implies that the surface air temperatures
are monofractal and their regularity can then be obtained as the slope of these
functions. The Hölder exponents range from 1.093 to 1.43 and the norms from
8.23 to 30.45, as illustrated in Fig. 3.

0−2 2−1 1 3−1.5 −0.5 0.5 1.5 2.5

0

−4

−2

2

−3

−1

1

3

−3.5

−2.5

−1.5

−0.5

0.5

1.5

2.5

q

w(q)

Fig. 2. The function w associated to the surface air temperature of several weather sta-
tions. In green,the city of Aachen (50◦46′N, 6◦06′E, Cb-type), in blue the town of Shep-
etivka (50◦10′12′′N, 27◦03′E, Db-type) and in orange the city of Milano (45◦28′18′′N,
9◦11′21′′E, Ca-type). The remarkably linear behaviour of w means that tempera-
tures data are monofractal. The slope of w gives the Hölder exponent; here we obtain
H = 1.156 for Aachen, H = 1.218 for Shepetivka and H = 1.358 for Milano.
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Fig. 3. Distribution of the Hölder exponents and norms of the signals.

The monofractal nature of such signals is not so surprising since some pre-
vious studies show the existence of long range correlations in the noise of such
signals ([7, 15]). However, let us remark that the detrended fluctuation analysis
used in [15] can not be applied to the raw data as it is done here ([5, 7]): in our
work we keep information about the seasonal variation. Let us also note that
other methods such as the wavelet transform modulus maxima and the Sν-based
method ([13]) also lead to the same conclusions.

4.2 Relation with climate types

The next natural step is to investigate the possible connections between the
regularity of the signals and the climate type the stations are associated to.
The climate classification used as reference is the celebrated Köppen–Geiger
climate classification described in [14, 24], which is still largely used ([12, 19,
27]). It is based on maximum and minimum monthly mean temperatures and
on precipitation, but since we limit our study to temperature signals, we do
not take precipitation into account, which leads to a slight simplification of
the classification. As shown in Fig 4, the 115 weather stations are divided in
four different types of climate: Mediterranean (Ca), Oceanic (Cb), hot summer
continental (Da) and continental temperate (Db). Since Da–type climate is rare
in Europe (it is met only near the Black Sea), categories Da and Db are merged
to form the continental climate type (D). Also, stations close to 0.5◦C of another
type of climate are also associated to this second category. This is due to the
fact that for some of them (12.2%) the type of climate has changed during the
years. With these considerations, the analyzed data set is made up of 33% of
Cb–type stations, 30% of Ca–type, 21% of D–type, 9% of Cb and D–type and
7% of Cb and Ca–type.

In order to check if the regularity of the signals is related to the type of
climate the stations are associated to, every point of Fig 3 is colored according
to its type of climate, as illustrated in Fig. 5. One can clearly see that stations
with the same climate are located in the same area of the plane. This gives us
the possibility to divide it into rectangles such that each of them is associated
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Fig. 4. Distribution of the weather stations within the different climate types in Eu-
rope.

to a type of climate and such that the underlying rectangle-based classification
matches Köppen’s for most of the stations (see Fig. 5). If the set of vertices of
the rectangles is {(x, y) : x ∈ {0, H1, H2}, y ∈ {0, N1, N2}}, then optimal results
occur when the values of the parameters H1, H2, N1, and N2 (see Fig. 5) are
respectively H1 = 1.186, H2 = 1.275, N1 = 14.81 and N2 = 16.18, in which case
93.9% of the stations are correctly associated to their climate type (see Fig. 1 and
Fig. 5). Obviously norms do not have an important impact on the multifractal–
based classification, and without taking this parameter into account, 89.6% of
the stations are still correctly classified.

Fig. 5. The cut-out of the right upper quarter–plane defined by the Hölder exponent
(abscissa) and the norm (ordinate) induced by the Köppen–Geiger classification. The
left panel displays the points corresponding to the 115 reference stations, the right
one shows the 69 other stations used for the blind test (see text). One can see that in
both cases, points of the same color (Green: Cb, Orange: Ca, Blue: Db, Cyan: Da) are
concentrated in the same rectangles.

In order to confirm these results and to validate the method used in this work,
we performed a blind test, i.e. we selected 69 other weather stations spread across
Europe and analyzed their regularity using the wavelet leaders method. To do
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so, we allow shorter time series (we require at least 40 years of data between
1951 and 2003) and we admit signals for which daily mean temperatures are
computed in a different way. Leaving unchanged the values of H1, H2, N1, N2,
the multifractal–based classification matches Köppen’s for 88.4% of the stations,
and without the norm, 84.1% are still correctly classified (see Fig. 5).

4.3 Conclusions

The wavelet leaders method allows us to show that surface air temperature sig-
nals are monofractal and that their belonging to functional spaces reflects their
temperature-based Köppen-Geiger climate type. Oceanic stations display the
lowest Hölder exponents, while the Mediterranean ones have the largest and
continental climate type has intermediate exponents. This implies that, on a
daily basis, Oceanic climate is more irregular, less stable than the two others.
On the other hand, Mediterranean stations have more stable and maybe pre-
dictable climate. The natural explanation ([7, 8]) comes from the North Atlantic
Oscillation (NAO), which is a difference of pressure between the Azores and Ice-
land that induces winds and air streams mostly on the Western part of Europe.
It thus have a larger impact on Oceanic regions. Conversely, the South part
of Europe is more subject to anticyclonic conditions which induce much more
stability and regularity in temperature signals.

This work gives satisfying results for Europe, but future work could consist
of an extension of this method to other continents or global temperatures. Other
climate indices such as pressure or precipitation could also be analyzed. Finally,
this multifractal–based classification could help to check the validity of current
climatic models, by comparing the regularity of original signals to the regularity
of signals predicted by these models.
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