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We study experimentally how the bouncing dynamics of a hollow ball on a vibrating plate is modified
when it is partially filled with liquid or grains. Whereas empty and liquid-filled balls display a dominant
chaotic dynamics, a ball with grains exhibits a rich variety of stationary states, determined by the grain size
and filling volume. In the collisional regime, i.e., when the energy injected to the system is mainly
dissipated by interparticle collisions, an unexpected period-1 orbit appears independently of the vibration
conditions, over a wide range. This is a self-regulated state driven by the formation and collapse of a
granular gas within the ball during one cycle. In the frictional regime (dissipation dominated by friction),
the grains move collectively and generate different patterns and steady modes: oscillons, waves, period
doubling, etc. From a phase diagram and a geometrical analysis, we deduce that these modes are the result
of a coupling (synchronization) between the vibrating plate frequency and the trajectory followed by the
particles inside the cavity.
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A bouncing ball (BB) on a vibrated plate is a funda-
mental system used as a model in different physical and
engineering problems [1]; for instance, it has been used
to describe cosmic-ray particles in astrophysics [2],
the dynamic stability in human performance [3], and the
cantilever motion in atomic force microscopy [4]. The BB
dynamics displays a period doubling route to chaos also
found in biological, hydrodynamic, optical, and chemical
systems [5]. More complex objects such as dimers [6],
trimers [7], bouncing droplets [8], and quantum bouncers
[9] also show nonlinear behaviors: bifurcations, rotations,
etc. Dimers and trimers exhibit self-propulsion, providing
models to study collective motions, such as fish schools
[10], flocks [11], and bacteria colonies [12]. Clearly, the
study of bouncing objects has been relevant to the descrip-
tion of a large variety of nonlinear behaviors.
This Letter explores the bouncing dynamics of a hollow

sphere partially filled with grains. We aim to understand
how the classical BB dynamics (widely studied in the
literature [1,5,13,14]) is affected by the fast energy dis-
sipation typical of granular materials. We compared the
dynamics of an empty, a liquid-filled, and a grain-filled
sphere. The former two cases exhibit chaotic behaviors
while the sphere with grains bounces primarily in steady
states. Of particular interest was the observation of a
period-1 orbit independent of the vibration conditions in
a broad range. This state was observed at low filling ratios
Vf (< 12%) and using large beads (diameter d ¼ 2 mm).
When tiny particles were used (300 μm), different patterns
appeared depending on the vibration frequency f, for
instance, stable oscillons and surface waves similar to
those observed in vibrated granular beds [15–19]. The
above grain size dependence reveals, as in the case of

granular dampers [20–25], the relevance of the main
dissipation mechanism: interparticle collisions for large
particles and friction as the particle size decreases.
Experimental setup.—A transparent ping-pong ball

(coefficient of restitution ϵc ≈ 0.91� 0.02, mass mc ¼
1.9� 0.1 g, and inner or outer diameterDc ¼ 3.75=3.80�
0.02 cm) was partially filled with liquid or grains and
placed on a steel plate (mass ¼ 240 g) subjected to vertical
oscillations SðtÞ ¼ A sinðωtÞ; here, A is the vibration amp-
litude and ω ¼ 2πf. To ensure that the ball was bouncing,
we used a dimensionless acceleration Γ ¼ Aω2=g > 1. We
used a vibration system TV50101/LS-80 (moving element
mass ¼ 1.6 kg) and a LABVIEW program to automatically
set Γ and reduce it from Γmax ¼ 10 to Γmin ¼ 1 (at fixed f)
by constant steps ΔΓ ¼ 0.025 every 25 s. The time of
flight between two consecutive collisions Δt was measured
using an electrical circuit as sketched in Fig. 1: a thin
aluminum foil carefully glued at the external bottom of the
sphere was soldered to a copper wire of negligible mass

FIG. 1 (color online). A sphere partially filled with grains is
placed on a vibrating plate. The bouncing time is measured by
electrical contact and registered as a function of Γ. A high-speed
video is taken to visualize the particle dynamics inside the sphere.
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(0.08 mm diameter). The wire was connected to one
terminal of a power supply (dc, 5 V) and the plate to
the other one. A DAQ device NI-USB-6351 was used to
capture the peaks in the voltage signal generated when the
sphere touched the plate. Δt was determined from the time
interval between two consecutive peaks and registered as
a function of Γ. The resulting bifurcation diagram (BD)
allowed us to find the conditions at which steady modes
occurred. These modes were filmed at 1000 fps with a IDT-
N3 camera (see movie in the Supplemental Material [26]).
The videos also allowed us to ensure that the circuit did
not affect the BB dynamics in comparison with the one
described by an unwired sphere.
The above process was carried out at f ¼ 14 Hz ¼ 1=T

for the three configurations described in Figs. 2(a)–2(c).
The empty sphere exhibits a periodic orbit P2

1 in the interval
1 < Γ < 2, see Fig. 2(a). This notation means that the ball
motion has a period of 2 vibration cycles and describes one
kind of trajectory during the orbit [27]. Out of this region, a
chaotic dynamics prevails. On the other hand, the liquid-
filled sphere displays a P1

1 orbit at Γ ∼ 1 (Δt=T ¼ 1)
that turns into a P2

2 orbit in the range 1.2 ≤ Γ ≤ 1.6, see
Fig. 2(b). In these modes, a liquid jet synchronized with the
vibration rises inside the ball, see snapshots in Fig. 2(d).
This removes rebound energy and reduces the flight time of

the ball [28,29]. The synchronization is lost when Γ > 1.6,
and the irregular liquid splash generates a chaotic behavior.
Contrastingly, the ball partially filled with grains bounces
mainly in steady orbits Pn

1 , with n ¼ 1; 2; 3…, see Fig. 2(c).
Even a small mass of particles, m ¼ 1 g (Vf ¼ 2.6%)
almost stabilizes the ball in three fixed points (indicated by
P1
1, P

2
1, P

3
1). For 5.5 g < m < 10 g (Vf ∼ 15%–30%), the

sphere rebounds in a steady P1
1 orbit in a broad range of Γ

(notably, when m≃ 7.5 g). Under such conditions, the
impact excites the grains, and there is enough room to form
a confined granular gas; the gas collapses with the
following impact, and this process of “excitation and
collapse” is repeated continuously, see Fig. 2(e). For
Vf ≃ 50%, a bifurcation replaces the P1

1 orbit. Finally,
when Vf ¼ 100%, the ball “becomes solid” and describes a
fully chaotic dynamics.
Let us focus on the stableP1

1 mode described by the grain-
filled sphere. Figure 3 shows the BB dynamics for different
values of Γ (the case m ¼ 7.5 g is taken as an example).
Note that there is a shift in the impact phase (φ) that grows
linearly with Γ and also that the impact occurs during the
ascent phase (−π=2 < φ < π=2), see Figs. 3(a), 3(b). For
1 < Γ ≤ 3.8, the trajectories in Fig. 3(a) show that the sphere
describes a tiny rebound after which it sticks on the plate
(sticking zone), until the condition Γ sinϕ > 1 is satisfied

FIG. 2. BDs of a spherical container: (a) empty, (b) with 7.5 g of oil (300 cSt), and (c) with different masses m of 2� 0.2 mm glass
beads (Vf is the ratio of the volume occupied by the grains to the cavity volume). The BDs are reproducible if they are obtained
by increasing or reducing Γ; a slight hysteresis can appear, but the main features remain unaltered. [(d),(e)] Snapshots taken each 0.01 s
and space-time pictures illustrating periodic orbits of a sphere with 7.5 g of (d) liquid, and (e) grains. Note: In (d) we used oil to visualize
the jet formation. The dynamics was considerably more chaotic with less viscous fluids (in particular, with water).
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[14,30]; then, the sphere takes off again and describes a
longer second flight. These two bounces of Δt=T < 1 are
indicated by P1

2s in Fig. 2(c) (“s” alludes to sticking). Then,
the periodic motion could be explained considering the
sticking zone as a reset mechanism that erases the past
history of the system [30]; however,P1

1 (Δt=T ¼ 1) remains
even out of this zone (Γ > 3.8), where a differentmechanism
seems to govern [Fig. 3(c)]. (i) Before the collision, the
granular gas falls with an average velocity vg equal to the
sphere velocity vs. (ii) During the impact, the ball is
practically free of grains (which are still falling). Thus, it
suffers a partially elastic collision and leaves the plate with
vs ¼ v0. (iii) The sphere exchanges momentum with the
grains through multiple collisions during its parabolic
ascent. (iv) This exchange removes energy from the sphere,
which is dramatically decelerated. (v) Then, the energy
transferred mostly to the grains generates a granular gas,
and the process starts again.
Figures 3(d) and 3(e) show the flying height of the

sphere hs measured from the impact with the plate (hs ¼ 0)
and its velocity vs ¼ dhs=dt as a function of t=T. These
plots reveal that v0 increases as Γ does, but the main feature
is that, independently of Γ, the speed before the collision is
always the same (vc ∼ 350 mm=s). Interestingly, this is the
impact speed of a solid ball in a P1

1 orbit for f ¼ T−1 ¼
14 Hz (orange dashed parabola). Let us remind that a solid
ball describes this orbit if the platform compensates the
energy loss from the collision so that the ball lands and
departs at the same speed vi with a parabolic flight time T

[1,5]. Thus, vi ¼ gT=2 ¼ 350 mm=s. For a partially elastic
solid ball [13,14], vi ¼ v0 is satisfied only in a short range
of Γ. In our case, the system self-regulates: it does not
matter for v0; the grains dissipate the energy, and the phase
is shifted, such that vc ¼ gT=2 is satisfied over a wide
range. Since the injected energy must be dissipated by
interparticle collisions, the self-regulation mechanism
depends on the number of particles and filling fraction.
Therefore, if the grains are very few or if there is not enough
space to form the gas, the dissipation is less efficient and the
steady state disappears. This explains the chaotic dynamics
for small and large filling fractions in Fig. 2(c).
Another important factor in the BB dynamics must be the

grain size. We explored this parameter using glass beads
of different diameters in Figs. 4(a)–4(c) (m ¼ 7.5 g in all
cases). Note that the steady state previously observed for
d ¼ 2 mm disappears. With larger grains d ¼ 4 mm, this
happens because the number of particles (collisions) is
considerably reduced from ∼700 to 86 beads, and the
dissipation does not compensate for the injected energy.
In fact, a larger mass of 4 mm particles is needed to reach
the “dissipation capacity” observed with 2 mm beads, see
Fig. 4(j). For smaller particles (d ∼ 300 μm), collective
motions of grains [see snapshots in Figs. 4(d)–4(g)]
increase friction, which becomes the most efficient dis-
sipation mechanism. High-speed videos show that the tiny
grains remain at rest within the BB at Γ ∼ 1, small surface
perturbations appear as Γ increases, and they evolve to
oscillons or waves depending on f. Oscillons appeared at
f ¼ 14 Hz in the interval 2.8 < Γ < 3.2. These structures
consist of a cavity formed by the grains during one period
and a jet projected upwards due to the cavity collapse
during the second period, see Figs. 4(c) and 4(d). Note that
the ball describes P1

1 while the grains are in P2
1. If the

frequency is reduced to 10 Hz, the oscillons are replaced
by alternating waves in the same interval [Fig. 4(g)]. At
f ¼ 14 Hz, waves appear combined with jets as asym-
metric oscillons in 3.2 < Γ < 3.6 [Fig. 4(e)]. This combi-
nation induces a broadening with Γ of the P1

1 noise up to
switch to P2

1 at Γ ∼ 5.4 [Fig. 4(f)]. For Γ > 5.5, the
synchronized motion disappears. A phase diagram compil-
ing the above observations is shown in Fig. 4(h).
Similar patterns were observed with grains [31] and

liquid [32] inside spherical containers fixed to a sinusoidal
oscillation. Then, the geometry seems important for the
emergence of oscillons and waves depending on the fre-
quency.We propose that the resulting pattern is related to the
distance the grains can travel inside the sphere during one
cycle. According to Figs. 4(d) and 4(i), the central jet travels
a distance lo ¼ Dc − s, where s can be obtained from the
snapshots or from the volume of the spherical cap occupied
by the grains:Vg¼m=ϕρ¼ πs2ð3

2
Dc− sÞ=3, withϕ ∼ 0.64.

Form ¼ 7.5 g, one finds s≈1.0�0.1cm. Since the oscillon
rises under gravity, its flight time is t ¼ ffiffiffiffiffiffiffiffiffiffiffi

2lo=g
p

≈ 0.074 s,
which corresponds to fo ¼ T−1 ¼ 13.5 Hz. On the other

FIG. 3 (color online). Stationary bouncing dynamics of a grain-
filled sphere for Vf ¼ 20% (P1

1 orbits): (a) Sphere position z
normalized by A, as a function of ωt for Γ ¼ 2.6 (black),
3.8 (red), 4.9 (green), 7.0 (blue), and 8.0 (orange). The dashed
line corresponds to the sinusoidal motion of the plate. (b) Impact
phase φ as a function of Γ. (c) Snapshots showing the grains-
sphere interaction during a typical impact in the P1

1 state (see
text). (d) hs and (e) vs vs t=T, see text.
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hand, the wave travels over the container walls a larger
distance lw ∼ πDc=2. Thus, t ≈ 0.109 s, which corresponds
to a lower frequency fw ∼ 9 Hz. Therefore, our geometrical
analysis predicts the right frequencies in accordance with
the phase diagram. Regarding the P2

1 orbit at Γ ∼ 5.4,
it was deduced theoretically in Ref. [7], and it is independent
on the bouncing geometry. Is worth mentioning that
static charge and air drag over the small particles [29]
could influence their dynamics, as it was found in other
granular systems [33,34]. In addition, the ball stiffness
can also be relevant. These effects will be addressed in a
future work.
Summarizing: a grain-filled ball on a vibrating plate

displays a rich variety of periodic orbits and synchronized
patterns depending on the dissipation mechanism (fric-
tional or collisional). Aworthy highlight is a period-1 orbit
in the collisional regime produced by the formation and

collapse of a granular gas into the cavity during one cycle,
which is possible only for small filling volumes and large
number of particles. How the system self-regulates to
maintain this stationary state independently of the vibration
conditions is an open question to be tackled theoretically or
through simulations.
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