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Abstract

The effective use of composite materials in the technology industry requires the
development of accurate models. Typical such materials in electrotechnical appli-
cations are lamination stacks and soft magnetic composites, used in the so-called
magnetoquasistatic (low frequency) regime.

Current homogenization models (e.g. the classical homogenization method, mean
field homogenization, ...) fail to handle all the difficulties raised by the modeling of
these materials, particularly taking into account the complexity of their microstruc-
ture and their nonlinear/hysteretic behaviour. In this thesis we develop a multi-
scale computational method which allows to effectively solve multiscale magneto-
quasistatic problems.

The technique is inspired by the HMM (heterogeneous multiscale method), which
involves the resolution of two types of problems: a macroscale problem that captures
slow variations of the overall solution, and many mesoscale problems that allow to
determine the constitutive laws at the macroscale and to construct accurate local
fields. Macroscale and mesoscale weak, b-conform and h-conform formulations, are
derived starting from the two-scale convergence and the periodic unfolding methods.
We also use the asymptotic homogenization method for deriving the homogenized
linear material laws and, in the end, we derive scale transitions for bridging the
scales.

Numerical tests carried out in the two-dimensional case allow to validate the
models. In the case of b-conform formulations, it is shown that the macroscale solu-
tion approximates well the average of the reference solution and that the resolution
of the mesoscale problems allows to reconstruct accurate local fields and to com-
pute accurate Joule losses and this, for materials with (non)linear and hysteretic
behavior. Similar findings were obtained for the h-conform formulations.

In both cases, the deterioration of the accuracy for mesoscale problems located
near the boundary of the computational domain could be treated by defining suit-
able mesoscale problems near such boundaries. The extension of the model to
three-dimensional problems, to multiphysical problems and the inclusion of the
mesoscale domains with a stochastic distribution of phases are also some of the
possible prospects for improving this work.



Résumé

L’utilisation efficace des matériaux composites dans l’industrie nécessite le
développement de modèles précis pour en caractériser le comportement. Un ex-
emple de tels matériaux dans les applications électrotechniques inclut les em-
pilements de tôles et les composites magnétiques doux, utilisés dans le régime
magnétoquasistatique (basse fréquence).

Les modèles d’homogénéisation actuels (par exemple la méthode
d’homogénéisation classique, l’homogénéisation à champ moyen, ...) ne parviennent
pas à solutionner toutes les difficultés soulevées par la modélisation de ces matériaux
composites, en particulier la prise en compte de la complexité de la microstructure
et du comportement nonlinéaire/hystérétique de ces matériaux. Dans cette thèse,
nous développons une méthode d’homogénéisation computationnelle qui permet de
résoudre efficacement les problèmes multi-échelles de la magnétoquasistatique.

La technique, inspirée par la méthode HMM (heterogeneous multiscale method),
fait intervenir la résolution de deux types de problèmes : un problème macroscopique
qui capte les variations lentes de la solution globale, et de nombreux problèmes
mésoscopiques qui permettent de déterminer les lois de comportement à l’échelle
macroscopique et qui permettent de reconstruire les champs locaux précis. Les
formulations faibles macro et méso de type b-conformes et h-conformes ont été
dérivées à partir de la théorie de la convergence à deux échelles et de la méthode
d’éclatement périodique. Nous utilisons également l’homogénéisation asymptotique
pour dériver les lois de matériaux linéaires homogénéisées et dérivons à la même
occasion les transitions d’échelle qui permettent de coupler les deux échelles.

Les tests numériques effectués pour le cas bidimensionnel permettent de valider
les modèles développés. Dans le cas des formulations b-conformes, on constate que la
solution macroscopique approxime au mieux la moyenne de la solution de référence et
que la résolution de problèmes méso permet de reconstruire les champs locaux précis
et de calculer de manière précise les pertes par effet Joule et ce pour les matériaux
avec une loi constitutive (non)linéaire/hystérétique. Des résultats similaires ont été
obtenus pour les formulations h-conformes.

Pour les deux formulations, la détérioration de la précision pour les problèmes
méso situés près de la frontière du domaine computationnel pourrait être traitée
par la définition des problèmes méso appropriés près de ces frontières. L’extension
des modèles aux problèmes tri-dimensionnels, aux problèmes multiphysiques et la
prise en compte de domaines méso avec une distribution stochastique de phases sont
également quelques-unes des perspectives possibles pour améliorer ce travail.
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Chapter 1

Introduction

1.1 Motivation

The use of numerical methods for solving electromagnetic problems is nowadays
widespread. Indeed, analytical solutions to Maxwell’s equations (which govern the
electromagnetic fields) are not always guaranteed to exist due to nonlinearities of the
constitutive laws or the complexity of the involved geometries. One of the numerical
methods frequently used in low frequency and near-field high frequency problems is
the finite element (FE) method for its easiness to handle problems involving both
nonlinearities and complex geometries. To this end, a mesh of the structure is
generated and Maxwell’s equations are verified on average on elements of the mesh,
which is ensured by integrating these equations on each element of the mesh. If the
problem is well-posed, the finer the mesh, the more accurate the numerical solution.

Some problems involve multiscale materials. In the medium and high frequency
domains, this is the case for soft ferrites (Figure 1.2 (c) and (d)) used in radio fre-
quency transformers, e.g. in telecommunication technology and in power electron-
ics [35], polymer nanocomposites used for making electromagnetic wave absorbers
and shields [23, 104, 132, 179, 191, 192] and metamaterials used for making cloak-
ing devices and high resolution lenses [113, 156, 159, 182, 207]. Low frequency ap-
plications often involve laminations whose lamellar structure helps reducing eddy
current losses in electric devices such as transformers, coils, motors, etc. (Figure
1.1) and soft magnetic composites used in high speed machines and whose isotropic
properties allow for the manufacturing of three-dimensional paths electric machines
(Figure 1.2 (a) and (b)). For problems involving such materials, the application of
classical numerical methods such as the FE method becomes prohibitive in terms
of the computational time and memory storage whence the use of multiscale and
homogenization methods.

The first homogenization approach used to analytically characterize homogenized
properties of composites materials was based on mixing rules [122, 181]. Using this
method, it is possible to determine equivalent properties with little information on
the microstructure (e.g., only the percentage of the different constitutive phases).
More elaborate theoretical methods such as the asymptotic expansion method [20],

1
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stator

rotor coil

transformer

Figure 1.1: Laminated magnetic materials [177,178].

(a) (b)

(c) (d)

Figure 1.2: Soft magnetic composites ((a) and (b)) and soft ferrites ((c) and
(d)) [35, 123,193].

the G-convergence [139, 188, 190], the two-scale convergence [143, 196, 201] and the
periodic unfolding methods [45, 47] allow to construct the homogenized problem
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and determine the associated constitutive laws. The convergence of the fields and of
some functionals can also be shown using these methods. Equations resulting from
these methods can be used to develop multiscale methods. A non-exhaustive list of
these multiscale methods include the mean-field homogenization method [39,49,206],
the multiscale finite element methods - MsFEM [37,76,77,100,101], the variational
multiscale method - VMS [41, 102, 103, 109, 153] and the heterogeneous multiscale
methods - HMM [68,73,152]. In most of these methods, an elementary-cell problem
is solved and the solution is used for computing the homogenized constitutive laws
(electric and magnetic).

In this thesis we are interested in multiscale magnetoquasistatic problems. These
problems arise from Maxwell’s equations by neglecting displacements currents with
respect to eddy currents. The assumption is valid when the wavelength of the excit-
ing source term is much greater compared to the size of the structure. When solving
magnetoquasistatic problems, one is interested in electric and magnetic phenomena.
In our developments we will consider linear electric constitutive laws and linear,
nonlinear or hysteretic magnetic constitutive laws.

The resolution of multiscale magnetoquasistatic problems can become quite cum-
bersome: as mentioned above the use of classical numerical methods is very expen-
sive in terms of computational time and storage memory as a very fine mesh is
needed for capturing the small fluctuations of the solution. The main idea of ho-
mogenization and multiscale methods is to replace the multiscale heterogeneous
computational domain by a homogeneous domain with equivalent properties. Such
methods have been developed in electromagnetism mainly for materials with lin-
ear [27, 28, 95, 124] and nonlinear [18, 96] magnetic material laws and to the best of
our knowledge, none is able to accurately predict the electromagnetic behavior in
the presence of materials with hysteresis.

In this thesis we develop a multiscale method that can handle magnetoquasistatic
problems involving multiscale materials, which can exhibit linear, nonlinear and
hysteretic behavior. The method is inspired by the HMM method [1–4,6,7,43,67–69,
71–73,75] and based on the scale separation assumption ε� 1 where ε = l/L is the
ratio between the smallest scale l and the scale of the material or the characteristic
length of external loadings L.

The fine-scale problem is replaced by a macroscale problem defined on a coarse
mesh covering the entire domain and many mesoscale problems that are defined on
small, finely meshed areas around some points of interest of the macroscale mesh
(e.g. numerical quadrature points). The transfer of information between these
problems is done during the upscaling and the downscaling stages (see Figure 1.3).

During the downscaling, proper boundary conditions for the mesoscale problems
are imposed stemming from the consistency of the electromagnetic fields at both
scales. Source terms for the mesoscale problems are also derived from the macroscale
solution. In return, the missing macroscale constitutive laws at the macroscale are
computed using the mesoscale fields in the upscaling stage.

We use the two-scale convergence and the period unfolding methods to derive
the governing equations (at the macroscale and the mesoscale levels) as well as
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upscaling

downscaling

Figure 1.3: Scale transitions between macroscale (left) and mesoscale (right) fi-
nite element problems. Downscaling (macro to meso): obtaining proper boundary
conditions and the source terms for the mesoscale problem from the macroscale so-
lution at a numerical quadrature point in the macro finite element mesh. Upscaling
(meso to macro): effective quantities for the macroscale problem calculated from
the mesoscale solution [148].

for deriving nonlinear homogenized magnetic laws. We also use the asymptotic
homogenization method for upscaling the linear conductive law.

The approach allows not only to upscale accurate homogenized constitutive laws
but also provides a good framework for recovering accurate local fields and for
upscaling more accurate global quantities (eddy current losses, magnetic energy,
etc.).

1.2 Scope and goals of the work

This work contributes to the development and the testing of multiscale formulations
for low frequency electromagnetic problems involving composite materials with an
assumed periodic microstructure. To achieve this, a three-step approach has been
adopted:

1. The derivation of the differential forms of the governing equations at the
macroscale and the mesoscale. The defined mesoscale problem can then be
used for defining the elementary-cell problem.
The derivation is done using the asymptotic homogenization method for the
div − grad, linear problems and the two-scale convergence and the periodic
unfolding methods for the div − grad/curl − curl, nonlinear problems gov-
erned by maximal monotone operators. Note that the derived theory is not
guaranteed to hold for problems involving materials with hysteresis.

2. The design of multiscale formulations involving formulations for the
macroscale problem, the mesoscale problem and the coupling between these
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problems (scale transitions).
Starting from the partial differential equations obtained from the homoge-
nization theory, we derive weak forms for the macroscale and the mesoscale
problems both for h- and b-conform formulations. The exchange of informa-
tion between both problems through scale transitions is also detailed: source
fields for the mesoscale problems are downscaled from the macroscale solution.
Proper boundary conditions that respect the consistency of electromagnetic
fields are also defined for the mesoscale problem. Likewise, the missing con-
stitutive laws at the macroscale level are upscaled from mesoscale solutions.
Hysteresis is numerically accounted for in the time-stepping procedure.

3. Testing the formulations.
The h- and b-conform formulations are tested on a laminated core and soft
magnetic composites. The tests are done for materials governed by linear,
nonlinear and hysteretic constitutive laws.

1.3 Outline

The thesis is divided into four chapters:

In chapter 2 we introduce Maxwell’s equations and the constitutive laws. We
then derive the magnetoquasistatic problem.

In chapter 3 we derive the homogenized problem for the magnetoquasistatic
problem by applying homogenization theory. After a short review of the existing ho-
mogenization methods we choose the asymptotic homogenization for the div−grad,
linear problem. This theory is based on an expansion of the fields and differential
operators in terms of the macroscale and mesoscale coordinate systems. We also
choose the two-scale convergence and the periodic unfolding methods for the non-
linear problems. The limiting macroscale and mesoscale problems are derived using
the two-convergence theory.

Chapter 4 deals with the multiscale formulations for the magnetoquasistatic
problem. Starting from the equations obtained from the homogenization methods
we develop h- and b-conform formulations for the macroscale and the mesoscale
problems. Scale transitions are also investigated thoroughly. Finally, an example of
implementation for a b-conform formulation is given.

Chapter 5 concerns the application of the theory to two-dimensional problems.
Two types of materials (a laminated magnetic core and soft magnetic composites)
are used for validating the formulations.

We end up with conclusions and perspectives in chapter 6.

1.4 Original contributions

The main original contributions of this work are:

– A comparative study of homogenization and convergence methods for the
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derivation of the homogenized problem for the magnetoquasistatic problem
(chapter 3)

– Multiscale formulations and computations for a nonlinear div − grad type
problem for application in magnetostatics (see [148], section 4.4.5 and chapter
5).

– Multiscale b - conform formulations and computations for magnetodynamic
problems involving a nonlinear magnetic constitutive law. Derivation of the
macroscale weak formulations, of a cell problem used for upscaling the con-
stitutive law and of the scale transitions for bridging the scales. Definition of
a mesoscale problem with eddy currents that allows to recover accurate local
quantities (see [147, 149, 151, 152], section 4.3 and chapter 5). Applications of
the developed multiscale method to a problem involving hysteresis.

– Application of the multiscale formulations for the computation of global quan-
tities such as the eddy currents losses and the magnetic energy (see [150] and
chapter 5).

– Multiscale h-conform formulations and computations for magnetodynamic
problems involving a nonlinear magnetic mapping. Derivation of the
macroscale weak formulations, of a cell problem used for upscaling the con-
stitutive law and of the scale transitions for bridging the scales. Definition of
a mesoscale problem with eddy currents that allows to recover accurate local
quantities (see section 4.4 and chapter 5).

A significant part of the thesis was devoted to the implementation of the pro-
posed formulations. For this purpose we have developed a c++/python code named
hmm in Gmsh [91, 92]. All the building block classes of the code (definition of the
domain, constitutive laws, functions spaces, ...) have been built using only the mesh
generated by Gmsh as input. The code has been used for the resolution of the
macroscale problem and it uses GetDP [61,62] for solving mesoscale problems.

This work has led to the publication of the following journal papers:

1. I. Niyonzima, R. V. Sabariego, P. Dular and C. Geuzaine, Finite element com-
putational homogenization of nonlinear multiscale materials in magnetostatics,
IEEE Transactions on Magnetics 48 (2012), no. 2, pp. 587-590.

2. I. Niyonzima, R. V. Sabariego, P. Dular, F. Henrotte, and C. Geuzaine, Com-
putational homogenization for laminated ferromagnetic cores in magnetody-
namics, IEEE Transactions on Magnetics 49 (2013), no. 5, pp. 2049-2052.

3. I. Niyonzima, R. V. Sabariego, P. Dular, and C. Geuzaine, Nonlinear com-
putational homogenization method for the evaluation of eddy currents in soft
magnetic composites, IEEE Transactions on Magnetics 50 (2014), no. 2.

and the following conference proceeding papers:
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1. I. Niyonzima, R. V. Sabariego, P. Dular and C. Geuzaine, Finite Element
Computational Homogenization of Nonlinear Multiscale Materials in Magne-
tostatics, Proceedings of the 18th Conference on the Computation of Electro-
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Chapter 2

Electromagnetic models

2.1 Introduction

In this chapter, we derive weak formulations for the magnetoquasistatic problem,
amenable to finite element discretization. The chapter is organized as follows: in
section 2.2 we introduce the differential and integral forms of Maxwell’s equations.
From these equations we derive interface conditions that express the continuity
of electromagnetic fields across the interface between two media and appropriate
boundary conditions of the problem. In section 2.3 we define the constitutive laws.
In section 2.4 we define a general magnetoquasistatic problem and use it in section
2.5 for defining a proper functional setting for magnetodynamic and magnetostatic
problems.

2.2 Maxwell’s equations

In the range of validity of the classical electromagnetic theory, electromagnetic phe-
nomena are governed by the following Maxwell’s equations [98,186]:

curlh− ∂td = j, (2.1)

curl e+ ∂tb = 0, (2.2)

divd = ρ, (2.3)

div b = 0. (2.4)

Equations (2.1)-(2.4) are Ampère’s, Faraday’s, Gauss electric and magnetic equa-
tions, respectively. The four fields h, e, b and d that appear in these equations are
the magnetic field (A/m), the electric field (V/m), the magnetic flux density (T )
and the electric flux density (C/m2), respectively. The electric charge ρ (C/m3) and
the electric current density j(A/m2) are source terms of the problem. Equations
(2.1)–(2.4) are solved in a bounded subdomain Ω of the Euclidean space R3 using a
cartesian coordinate system x = (x, y, z).

Applying the div operator to (2.1) and using (2.3) we get the equation of con-

9
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Figure 2.1: Interface condition between two media Ω1 and Ω2.

servation of the charge:
∂tρ+ div j = 0, (2.5)

which governs the time evolution of the charge ρ as a function of the electric current
density j.

At the interface of two different materials, electromagnetic fields can become
discontinuous and therefore non-differentiable. Figure 2.1 depicts two such materials
Ω1 and Ω2 that share the same interface Γ. The fields in Ω1 and Ω2 are indexed 1
and 2, respectively and n denotes the normal to Γ directed from Ω2 towards Ω1. The
surface densities ρs and js can be concentrated at the interface Γ (e.g. in the case of
a perfect conductor). For any surface S ∈ R3 with boundary ∂S, the integration of
(2.1) and (2.2) together with the application of Stokes theorem leads to the following
equations: ∮

∂S

h · dl =

∫
S

(∂td+ j) · ds, (2.6)∮
∂S

e · dl = −
∫
S

∂tb · ds. (2.7)

Likewise, for any volume V ∈ R3 with boundary ∂V , the integration of (2.3) and
(2.4) together with the application of Gauss theorem leads to the following equations:∮

∂V

b · ds = 0, (2.8)∮
∂V

d · ds =

∫
V

ρ dV. (2.9)

For a particular choice of the volume V and the surface S (e.g. the volume and the
surface on Figure 2.1 with vanishing thickness t), the integral equations (2.6)-(2.9)
yield the interface conditions [116]:

n× (h1 − h2)|∂S = js, (2.10)

n× (e1 − e2)|∂S = 0, (2.11)
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n · (b1 − b2)|∂V = 0, (2.12)

n · (d1 − d2)|∂V = ρs, (2.13)

relating tangential components of h or e and normal components of b or d across
the interface Γ. They express the discontinuity of the tangential component of h
and the normal component of d and the continuity of the tangential component of
e and the normal component of b. The tangential component of h and the normal
component of d across the interface Σ become continuous when there are no sources
ρs and js.

Using equation (2.10), we can deduce boundary conditions for a (theoretically)
perfect magnetic material Ωpm (h = 0 in Ωpm). Likewise, we can use (2.13) in
order to get the boundary condition for a (theoretically) perfect electric material
Ωpe (e = 0 in Ωpe). At the interfaces with these materials, (2.10) and (2.11) become
n × h = 0 and n × e = 0, respectively. These conditions can also be used for
representing the vanishing behaviour of fields at infinity or for imposing symmetry
conditions (see section 2.5).

2.3 Constitutive laws

Maxwell’s system of equations (2.1)–(2.4) is undetermined and additional relation-
ships need to be defined in order to close the problem. These relationships are
the constitutive laws that relate two of the fields h, e, b,d and j to the others,
thus allowing to account for the influence of the materials on the distribution of
electromagnetic fields.

In the vacuum the constitutive laws read:

d = ε0e, (2.14)

b = µ0h, (2.15)

where the constant µ0 = 4π10−7 H/m is the vacuum permeability and ε0 = 1/(µ0c
2
0)

F/m is the vacuum permittivity. The constant c0 denotes the speed of light in the
vacuum.

In media that interact with the electromagnetic fields, the following general
mesoscale/macroscale constitutive laws can be written [57,88,105,107]:

j = J (e, b). (2.16)

d = D(e, b), (2.17)

h = H(e, b), (2.18)

In practice, relations (2.16)–(2.18) can be obtained either using a phenomenological
approach or directly derived from mesoscale models obtained using models of physics
at small scales (quantum mechanics, molecular dynamics, statistical physics, etc.) In
this thesis we consider multiscale materials for which (2.16)–(2.18) are valid for each
constituting phases and leave aside the mesoscale models. Relations (2.16)–(2.18)
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Table 2.1: Electric conductivity σ of some materials [87,142].

Materials σ (S/m) Materials σ (S/m)

Silver 6.17 107 Fresh water 10−3

Copper 5.8 107 Distilled water 10−5

Gold 4.1 107 Dry soil 10−11

Aluminum 3.54 107 Transformer 10−12

Brass 1.57 107 Glass 2 10−4

Bronze 107 Porcelain 2 10−13

Iron 106 Rubber 10−15

Sea water 4 Fused quartz 10−17

can be nonlinear and possibly depend on the history of the material (hysteresis). A
special case of these material laws are linear materials with memory effect (e.g. bi-
anisotropic materials) for which the constitutive laws can be written as a convolution
product. In this case, the use of Fourier analysis allows to conclude the frequency-
dependency of material laws. In most applications the following constitutive laws
hold:

j = J (e) = σe+ js. (2.19)

d = D(e) = ε0e+ P(e), (2.20)

b = H(h) = µ0(h+ M(h)), (2.21)

The electric polarization vector P(e) = d − ε0e and the magnetization M(h) =
µ−1

0 b − h are introduced to account for the deviation of the electric displacement
current and the magnetic induction of a given material with respect to the vacuum.
The source current density js is introduced to model current densities imposed by
generators and considered independent of the local electromagnetic field.

2.3.1 Ohm’s law

Ohm’s law (2.19) relates the electric current density j and the electric field e. It is
valid in conductors where j is proportional to e. The coefficient of proportionality
is the electric conductivity σ (S/m), which is positive in conducting regions and zero
in non-conducting regions. Table 2.1 contains the values of the electric conductivity
of some materials. Relation (2.19) is valid for non-moving materials. If moving
domains are present, the constitutive law becomes:

j = σ(e+ v × b) + js, (2.22)

where v is the velocity of the moving domain. Relation (2.22) can also be used for
modelling the Hall effect. Equation (2.19) remains valid in most of the materials
used in engineering applications. The electric conductivity can be a tensor [σ]. This
is the case for instance if we consider the macroscopic properties of a laminated
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Table 2.2: Relative permittivity εr of some materials [142].

Materials εr Materials εr
Air 1.0 Polyethylene 2.3
Bakelite 5.0 Plystryrene 2.6
Glass 4− 10 Porcelain 5.7
Mica 6.0 Rubber 2.3− 4.0
Oil 2.3 Soil 3− 4
Paper 2− 4 Teflon 2.1
Paraffin max 2.2 Water 8.0
Methanol 32.6 Sea water 7.2

structure. The electric conductivity [σ] then becomes:

[σ] =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 . (2.23)

For two-dimensional problems, we will assume anisotropic electric conductivity
where the components σ13, σ23, σ31 and σ32 are zero.

2.3.2 Dielectric constitutive laws

Equation (2.20) relates the electric flux density d to the electric field e. Compared
with (2.14), an additional term that accounts for the interaction of the field with
the electrons of the medium is accounted for by adding the electric polarization
P(e). This term establishes a relation between the electric polarization vector P
and the electric field e as if the charges were elastically bound to the atoms of the
medium with a restoring force P(e). Materials with P are called dielectrics. For
linear dielectric materials, the electric polarization vector is a linear function of the
electric field P(e) = ε0χee+ pe and therefore

d = ε0(1 + χe)e+ pe = ε0εre+ pe = εe+ pe. (2.24)

In this relation, pe is the permanent polarisation present in materials exhibiting
permanent polarization such as the electrets, χe is the electric susceptibility (which
is always positive), εr is the relative permittivity and ε is the electric permittivity.
For a reversible medium, the electric permittivity can be represented by a symmetric,
anisotropic tensor:

[ε] =

ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 . (2.25)

The symmetry can be derived using a thermodynamical approach.

Table 2.2 contains values of relative permittivity for some dielectric materials.
Dielectric materials gather the paraelectric materials and the ferroelectric materials,
which are characterized by nonlinear reversible and irreversible d–e curves, respec-
tively.
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Table 2.3: Relative permeability µr of some materials [107,142].

Ferromagnetic µr Diamagnetic µr Paramagnetic µr
Nickel 250 Bismuth 0.99983 Aluminum 1.000021
Cobalt 600 Gold 0.99996 Magnesium 1.000012
Iron 4, 000 Silver 0.99998 Palladium 1.00082
µ-metal 100, 000 Copper 0.99999 Titanium 1.00018

2.3.3 Magnetic constitutive laws

Equation (2.21) relates the magnetic flux density b and the magnetic field h. In
this equation, an additional term called the magnetization vector M(h) is added
as compared to the case of vacuum and it gives the reaction of the medium when
submitted to an external applied magnetic field.

For linear magnetic materials, the magnetization vector becomes M(h) = χmh
and therefore the magnetic constitutive law becomes:

b = µ0(1 + χm)h+ µ0hm = µ0µrh+ µ0hm = µh+ µ0hm, (2.26)

where χm is the magnetic susceptibility, µr is the relative permeability and hm is the
permanent magnetic field used for modelling permanent magnets [115]. Unlike the
dielectric case, the magnetic susceptibility can be positive and negative. Materials
with negative magnetic susceptibility are called diamagnetic and their magnetiza-
tion vector points in the opposite direction to that of h. Paramagnetic materials
have positive values of magnetic susceptibility. Both diamagnetic and paramagnetic
materials have small values of susceptibility (see Table 2.3). In many electromag-
netic applications (electric transfomers, electric machines, electromagnetic shielding,
etc.), materials with high values of the magnetic permeability are desired as they
allow to effectively concentrate the magnetic flux density. These are ferromag-
netic materials. Ferromagnetic materials exhibit nonlinear and possibly hysteretic
behaviour (see Figures 2.2 and 2.3) and possibly a hysteretic behaviour (see Figure
2.3). The hysteresis curve in Figure 2.3 shows the evolution of the magnetic flux
density b as a function of the magnetic field h. An equivalent curve relating the
magnetization vector M as a function of the magnetic field h can be easily deduced.
The portion of the curve in (b) exhibits the evolution of the bh curve for the first
magnetization curve. When the magnetic field is increased until a maximum value,
the saturation value of the magnetization is reached. When h decreases, the bh
curve does not follow the same path as the first magnetization curve. Therefore
when h is set back to zero there exists a non-zero magnetic flux density called re-
manent induction br and it is necessary to apply the coercive magnetic field hc in
order to cancel the magnetization. The magnetic work required for increasing b by
the amount db is derived from Poynting theorem [105,116] and given by:

dWm = h · db = µ0h · dh+ µ0h · dM, (2.27)

and comprises two contributions: the energy required for increasing the energy in
vacuum µ0h ·dh and the energy for magnetizing the material µ0h ·dM. The latter
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b

h

Figure 2.2: The bh curve for a nonlinear reversible magnetic material.

contribution is associated with hysteretic losses. Indeed, the density of the magnetic
energy required for increasing the magnetic field from 0 to h is given by:

Wm1 =

∫ h

0

dWm =

∫ b

0

h · db. (2.28)

The density of energy required to get the magnetic field from h to 0 is:

Wm2 =

∫ 0

h

dWm =

∫ br

b

h · db, (2.29)

and the sum of both integrals is the density of energy dissipated by hysteresis (see
Figure 2.4).

Wm1 +Wm2 =

∫ br

0

h · db. (2.30)

The total energy dissipated over one cycle Q is given by:

Q =

∫
Ω

∮
cycle

h · db = µ0

∫
Ω

∮
cycle

h · dM (2.31)

where Ω is the computational domain.

Ferromagnetic materials can be classified in two categories depending on the
value of their coercive magnetic field (Figure 2.5). Hard magnetic materials have
large coercive magnetic fields (typically hc > 103A/m). A great amount of energy
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b

h

Figure 2.3: The bh curve for a nonlinear irreversible magnetic material. (a) Major
hysteresis loop, (b) first magnetization curve, (c) anhysteretic curve and (d) minor
hysteresis loop.

b

h

b

h

b

h

brbr

(b) (c)(a)

Figure 2.4: (a) Energy required to change the magnetic field from 0 to h. (b)
Energy required to get back the magnetic field from h to 0. (c) Hysteresis losses.

is required to demagnetize them. Therefore they are used for making permanent
magnets. Soft magnetic materials have small coercive magnetic fields and are often
used in electromagnetic devices for reducing magnetic losses.
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Figure 2.5: The bh hysteretic curves of ferromagnetic materials (hard magnetic
material on the left and soft magnetic material on the right.)
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Figure 2.6: Bounded domain Ω and its subregions.

Often the constitutive law for soft magnetic materials is approximated by the
anhysteretic curve. Each point of this curve is obtained by applying a combination
of a DC field with and a AC field with a decreasing amplitude. The stationary
solution then converges to one point of the anhysteretic curve (see Figure 2.3).

2.4 Description of the problem

We want to solve (2.1)–(2.4) together with (2.16)–(2.18) in a bounded domain Ω.
This domain can be split into two non-overlapping regions: the conducting region
Ωc (with σ > 0) and the non-conducting region ΩC

c = Ω \ Ωc (with σ = 0). The
non-conducting region is assumed to contain inductors Ωs where the current density
js is imposed. This assumption is equivalent to consider a perfect stranded inductor
without skin or proximity effects. The modeling of each of these inductors is done
by computing a source magnetic field hs satisfying the following problems [65,105]:{

curlhs = js in Ωs

curlhs = 0 in Ω \ Ωs.
(2.32)

A gauge condition should be imposed to ensure the uniqueness of the field hs. One
possible choice is the Coulomb gauge divhs = 0. It is automatically ensured by
choosing the source term from the Biot-Savart law [65,105]:

hs(x) =
1

4π

∫
R3

js(y)× (x− y)

|x− y|3
dy. (2.33)
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The boundary of the domain Ω is denoted Γ. It is the union of two other regions
Γe and Γh such that

Γ = Γe ∪ Γh, Γe ∩ Γh = ∅. (2.34)

The region Γe is the part of the boundary where the tangential trace of e (resp.
the normal trace of b) is imposed and Γh is the part of the boundary where the
tangential trace of h (resp. the normal trace of d or j) is imposed. The boundary
Γg ∈ Γh is the part of the boundary of Ωc which is crossed by an electric current.

2.5 The magnetoquasistatic approximation

In this thesis we focus on the magnetoquasistatic problem:

curlh = j, (2.35)

curl e = −∂tb, (2.36)

div b = 0, (2.37)

b(x, t) = B(h(x, t),x), (2.38)

j(x, t) = J (e(x, t),x). (2.39)

This problem is derived from Maxwell’s equations by neglecting the displacement
currents ∂td with respect to the conduction currents j. The system of equations
must be completed by an initial condition on the magnetic flux density b(x, t =
0) = b0(x). We also assume that the source current density js is divergence-free.

For the analytical and theoretical study of problem (2.35)–(2.39) in chapter 3
we will assume that the nonlinear mapping B : R3×Ω→ R3 is maximal monotone.
Therefore it has an inverse B−1 := H : R3 × Ω → R3 and it can be derived
from a convex, lower semi-continuous functional ϕ [10, 30, 55, 83, 85, 173, 174] (the
derivation of the magnetic material law is done in Appendix A). Note that the
time-dependence in the mapping B occurs only through the magnetic field h(x, t)
(resp. the magnetic indution b(x, t) for the mapping H), which excludes magnetic
materials with memory effect and thus hysteresis.

The computational homogenization approach that we will propose in chapter 4
will allow us to include hysteretic effects numerically, through the use of classical
hysteresis models (e.g. Preisach, Jiles-Atherton). In all cases we will still assume
that the mapping J : R3 × Ω → R3 is maximal monotone and has an inverse
E : R3×Ω→ R3. In practice, this assumption holds as the materials we consider in
this thesis are electrically linear with the constitutive laws j = σe and e = σ−1j.

In the next sections, we develop the weak formulations of the magnetoquasistatic
problem (2.35)–(2.39). More details on these formulations can be found in [59, 90,
176].

2.5.1 Maxwell’s house

In order to write (2.35)–(2.39) in weak form, let us introduce the domains of the
differential operators grad, curl and div with appropriate boundary conditions on
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curlh

divh
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e (Ω)
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curle
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Figure 2.7: Tonti diagram for Maxwell’s equations [24,25].

Γh and Γe, respectively, as follows:

H1
h(Ω) = {u ∈ L2(Ω) : gradu ∈ L2(Ω), u|Γh

= uh}, (2.40)

Hh(curl; Ω) = {u ∈ L2(Ω) : curlu ∈ L2(Ω),n× u|Γh
= uh}, (2.41)

Hh(div; Ω) = {u ∈ L2(Ω) : divu ∈ L2(Ω),n · u|Γh
= uh}, (2.42)

H1
e (Ω) = {u ∈ L2(Ω) : gradu ∈ L2(Ω), u|Γe = ue}, (2.43)

He(curl; Ω) = {u ∈ L2(Ω) : curlu ∈ L2(Ω),n× u|Γe = ue}, (2.44)

He(div; Ω) = {u ∈ L2(Ω) : divu ∈ L2(Ω),n · u|Γe = ue}. (2.45)

The spaces H1
h

0(Ω), H0
h(curl; Ω), H0

h(div; Ω), H1
e

0(Ω), H0
e(curl; Ω) and

H0
e(div; Ω) denote the same spaces as the corresponding spaces in (2.40)–(2.45)

with traces equal to zero.

These function spaces can be represented on the Tonti diagram of Figure 2.7,
where they form two sequences denoted by the vertical arrows. Constitutive laws will
link these sequences (horizontal arrows), as will be explained in the next sections.
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Figure 2.8: Tonti diagram for the magnetic flux density conforming magnetody-
namic formulation.

2.5.2 Magnetic flux density conforming formulations: dy-
namic case

We want to solve (2.35)–(2.39) using the so-called magnetic flux density conforming
formulation [64, 169–171]. Thus, we want to satisfy the right branch of the Tonti
diagram (2.8) together with the constitutive laws (2.38)-(2.39) in a strong sense.
The electric field e and magnetic flux density b can be derived from (2.37) and
(2.36):

b = curla and e = −∂ta− grad v, (2.46)

where a is the magnetic vector potential and v is the electric scalar potential. We
therefore derive the following weak form of Ampère’s equation (2.35) [26, 29]: find
a ∈He(curl,Ω) such that

(h, curla′)Ω + 〈n× h,a′〉Γh
= (j,a′)Ω, (2.47)

where a
′

is a field of test functions independent of time. Using h = H(b) and
(2.19) and introducing (2.46) in (2.47); one gets the weak form [26, 29]: find a ∈
He(curl,Ω) and v ∈ H1

e (Ω) such that

(H(curla), curla′)Ω + (σ ∂ta,a
′)Ωc + (σ grad v,a′)Ωc

+ 〈n× h,a′〉Γh
= (js,a

′)Ωs , (2.48)

for all a′ ∈H0
e(curl; Ω). The vector potential a is uniquely defined in the conducting

region Ωc and a gauge condition must be defined in the non-conducting region ΩC
c .

The boundary term in (2.48) contains the tangential component of the magnetic field
which is subject to natural boundary condition on Γh. It can take several forms [59,
176]: homogenenous Neumann boundary condition, fields associated with the global
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quantities, trace defining an integral operator used to define an exterior problem,
etc. In this thesis we only consider the case of homogeneous Neumann condition. In
practice, such Neumann condition can be used for imposing the symmetry condition
on a plane crossed by a zero electric current or for imposing homogeneous boundary
conditions on a perfect magnetic material, i.e., a material with µ ∼ ∞ (section 2.2).

The electric scalar potential v is only defined in the conducting regions Ωc. Using
the test functions a′ = grad v′ in (2.48) we get the following equation:

(σ ∂ta,grad v′)Ωc + (σ grad v,grad v′)Ωc

= 〈n× h,grad v′〉Γh
= 〈n · j, v′〉Γg ∀v′ ∈ H1

e
0(Ω), (2.49)

which is also the weak form of div j = 0. The boundary Γg in (2.49) has been
defined in section 2.4 as the part of Γh which is crossed by an electric current.

The two-dimensional case with all currents perpendicular to the two-dimensional
section is obtained by assuming the source current density js = js(x, y)1z where 1z

is the unit vector aligned along the z axis. If the electric conductivity tensor σ is
such that σ13 = 0 = σ23, then z-components of the magnetic field h and of the
magnetic flux density b vanish and it is possible to derive the magnetic flux density
b from a scalar potential az(x,y) with a = az1z. In this case the curl operator can
be expressed in terms of the grad operator as curl := 1z × grad and the magnetic
flux density reads b = curla = 1z × grad az. The weak form of (2.48) and (2.49)
becomes: find az ∈ H1

e (Ω) and ur that is constant in each connected conducting
region such that

(H(1z × grad az),1z × grad a
′

z)Ω + (σ ∂taz, a
′

z)Ωc

+ (σ ur, a
′

z)Ωc + 〈n× h, a′z1z〉Γh
= (js, a

′

z)Ωs , (2.50)

and
(σ ∂taz, u

′

r)Ωc + (σ ur, u
′

r)Ωc = 0 (2.51)

for all a
′
z ∈ H10

e (Ω) and u
′
r that is constant for each connected conducting region.

The field ur represents a voltage per unit length.

2.5.3 Magnetic flux density conforming formulations: static
case

The magnetostatic case can be derived as a particular case of the magnetodynamic
problem where eddy currents are neglected. The following three-dimensional weak
form is derived from (2.48): find a ∈He(curl,Ω) such that

(H(curla), curla′)Ω + 〈n× h,a′〉Γh
= (js,a

′)Ωs , (2.52)

for all a′ ∈H0
e(curl,Ω).

Likewise, the following two-dimensional weak form is derived from (2.50): find
az ∈ H1

e (Ω) such that

(H(1z × grad az),1z × grad a
′

z)Ω + 〈n× h, a′z1z〉Γh
= (js, a

′

z)Ωs , (2.53)

for all a
′
z ∈ H10

e (Ω).



2.5. THE MAGNETOQUASISTATIC APPROXIMATION 23

e

b

j

h

∂t

−∂t

grade

curle

dive

gradh

curlh

divh

b = B(h)

e = σ−1j

φ

Figure 2.9: Tonti diagram for the magnetic field conforming magnetodynamic
formulation.

2.5.4 Magnetic field conforming formulations: dynamic case

In this section we derive magnetic field conforming formulations for (2.35)-(2.39).
We want to satisfy the left branch of Tonti diagram (see Figure 2.9) together with the
constitutive laws (2.38)-(2.39) in a strong sense. We therefore derive the following
weak form for Faraday’s equation [32,33,63]: find h ∈Hh(curl,Ω) such that

(∂tb,h
′
)Ω + (e, curlh

′
)Ω + 〈n× e,h′〉Γe = 0 ∀h′ ∈H0

h(curl,Ω). (2.54)

Using Ampère’s equation, the magnetic constitutive law (2.21) b = B(h) and
Ohm’s law in the conducting region e = σ−1j = σ−1curlh, equation (2.54) becomes
[32,33,63]:

(∂tB(h),h
′
)Ω + (σ−1curlh, curlh

′
)Ωc + (e, curlh

′
)ΩC

c
+

〈n× e,h′〉Γe = 0 ∀h′ ∈H0
h(curl,Ω). (2.55)

The magnetic field h in ΩC
c can be decomposed into two components h = hs+hr

where hs is the source term that can be computed using (2.32) and hr is the reaction
field. In the non-conducting domain the total field h is governed by:{

curlh = js in Ωs

curlh = 0 in ΩC
c \ Ωs.

(2.56)

Combining (2.32) and (2.57) we can deduce the governing equation for the reaction
field hr:

curlhr = 0 in ΩC
c . (2.57)

This means that the reaction term hr can be derived from a magnetic scalar potential
φ in ΩC

c . In addition in ΩC
c , the test functions h

′
must be chosen in the subspace of
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H0
h(curl,ΩC

c ) such that curlh
′

r = 0 in ΩC
c . Using Ohm’s law in Ωc : e = σ−1j the

weak form (2.55) becomes:

(∂tB(h),h
′
)Ω + (σ−1curlh, curlh

′
)Ωc + (σ−1js, curlh

′
)Ωs+

〈n× e,h′〉Γe = 0 ∀h′ ∈H0
h(curl,Ω). (2.58)

Note that the electric field e is not defined in the non-conducting region ΩC
c using

this equation.

The boundary term contains the tangential component of the electric field which
is subject to natural boundary conditions on Γe. In this thesis we consider the case
of homogeneous Neumann conditions. In practice, this case can be used for imposing
the symmetry condition on a plane crossed by a null flux density (n×e|Γe = 0 =⇒
n ·div b|Γe = 0). It can also be used to impose homogeneous boundary condition on
a perfect conducting material, i.e., a material for which σ ∼ ∞ (section 2.2).

2.5.5 Magnetic field conforming formulations: static case

The magnetostatic problem is derived from the magnetoquasistatic problem by ne-
glecting the time derivatives and the eddy currents. Electric and magnetic problems
can then be decoupled and problem (2.35)-(2.39) becomes:

curlh = js, (2.59)

div b = 0, (2.60)

b(x) = B(h(x),x). (2.61)

We want to satisfy Ampère’s equation and the constitutive law in a strong sense.
Using results of section (2.5.4) we get h = hs +hr where the reaction magnetic field
satisfies hr = 0 in ΩC

c . It can be derived from a scalar potential φ as:

hr = −gradφ. (2.62)

In the case the domain ΩC
c is not simply connected, the derivation is valid after

defining cuts that make it simply connected [59, 176]. The weak form of Gauss
equation then reads: find φ ∈ H1

h(Ω) such that

(B(hs − gradφ),gradφ′)Ω + 〈n · b, φ′〉Γh
= 0, (2.63)

for all test functions φ′ ∈ H10
h (Ω).



Chapter 3

Homogenization theory

3.1 Introduction

In this chapter, we apply the classical homogenization theory to derive homogenized
problems for Maxwell’s equations. The theory is introduced progressively to solve
more and more complex problems (i.e. problems involving complex geometries and
nonlinear constitutive laws). We present results of simple effective medium theory
(Maxwell–Garnett and Bruggeman models) and then develop the asymptotic homog-
enization method for the div−grad and curl− curl problems. We also summarize
results for the two-scale convergence and the periodic unfolding methods.

Results from the asymptotic homogenization method will be used in chapter 4
for computing the homogenized material law for linear materials and those from the
two-scale convergence and the periodic unfolding methods will be used for the ho-
mogenization of Maxwell’s equations as well as the computation of the homogenized
material law for nonlinear materials.

The chapter is organized as follows: section 3.2 provides the state of art of homog-
enization methods and convergence theories. Particular attention is paid to three
methods: the effective medium theory in section 3.3, the asymptotic homogeniza-
tion method in section 3.4 and the two-scale convergence and the periodic unfolding
methods in section 3.5.

3.2 Generalities

Homogenization theory is a mathematical formalism used for solving problems with
structures on multiple scales. These problems may arise when modeling physical
phenomena in mechanics, chemistry, electromagnetism, fluid dynamics, etc. The
modeling process leads to defining an equation of the form:

Aεuε = f, (3.1)

where Aε : V → V ′ is an operator (linear or not) acting on the unknown fields uε

that vary on a very small spatial scale “ε”, from the function space V into its dual

25
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Figure 3.1: The homogenization theory may involve different scales with different
physical models (image inspired by [42,111]).

V ′ .
Problem (3.1) may involve differential equations (ordinary or partial) and the

operator Aε may possibly contain information about the initial and/or boundary
conditions necessary for ensuring the well-posedness of the problem. The multiscale
aspect is referred to by means of the superscript “ε”. Scales involved can range
from the nanoscale to the macroscale (Figure 3.1). Numerically solving the mul-
tiscale problem (3.1) at the finest scale is usually extremely expensive in terms of
computational time and memory storage. Homogenization theory aims at replacing
this original problem by the following homogenized macroscopic problem:

AMuM = f, (3.2)

where the dependency with ε has been eliminated and that can be “cheaply” solved.
In (3.2), the operator AM is the homogenized operator of Aε and uM captures
the slow component of uε. Adapted convergence theories have been developed for
proving the convergence of fields across scales, including fields that result from the
application of differential operators (e.g. grad, curl and div) and integral function-
als (e.g. global quantities).

In this thesis we focus on problems governed by partial differential equations
which involve the mesoscale and the macroscale. We are especially interested by the
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magnetoquasistatic multiscale problem:

curlhε = jε, (3.3)

curl eε = −∂tbε, (3.4)

div bε = 0, (3.5)

bε(x, t) = B(hε(x, t),x,
x

ε
), (3.6)

jε(x, t) = J (eε(x, t),x,
x

ε
), (3.7)

that results from the magnetoquasistatic problem of section 2.5, where
x

ε
is intro-

duced to denote possibly rapid fluctuations in the constitutive laws. Examples of
application of this problem involve the computation of fields in multiscale materials
such as laminated structures, soft magnetic composites and soft ferrites (see Figure
1.2).

In the next paragraphs we briefly describe the Γ-convergence, the G-convergence
and the H-convergence methods. In the rest of the chapter we give more details
about the effective medium theory (section 3.3), the asymptotic expansion method
(section 3.4), the two-scale convergence and the periodic unfolding method (section
3.5).

Γ-convergence concerns the convergence of sequences of minimization problems.
The sequence is indexed by “ε” due to the change of the geometry or of the ma-
terial law. Γ-convergence can only be derived for problems that can be written
as minimization problems of some energy functional Φε(v). Under coercivity and
compactness assumptions on the functional and some additional assumptions on the
structure of the space V of the solution uε, it can be shown that:

arg min
v∈V

Φε(v) = uε →
ε→0

uM = arg min
v∈V

ΦM(v), (3.8)

where the notation arg min
v∈V

Φε(v) is used to denote the set of all uε in V for which the

functional Φε(v) attains its smallest value and where ΦM(v) is the homogenized en-
ergy functional that may eventually include the homogenized material law obtained
by solving a cell problem. Γ-convergence is well defined for convex functionals. In
this case, the average minimal energy obtained solving the cell problem on peri-
odicity cells kY (with k = 1, 2, ...) is the same [121]. For non-convex functionals,
Muller [136] has shown that there exists a number k (a priori unknown) of periodic-
ity cells kY that minimizes the energy functional. In this case the homogenization
depends on the size of the cell even for periodic structures.

G-convergence and H-convergence have been introduced by Spagnolo [183] and
Murat [139], respectively. The letters G stands for Green (as in Green kernel) and
H stands for homogenization. G-convergence concerns the convergence of operators
for symmetric problems for which there exist Green kernels and H-convergence
extends G-convergence to non-symmetric problems. Back to problem (3.1), we have
a sequence of operators Aε that, when applied to the sequence uε ∈ V gives f ∈ V ′ .



28 CHAPTER 3. HOMOGENIZATION THEORY

If the space V has an appropriate structure the sequence uε converges to uM . G-
convergence and H-convergence theories allow to determine conditions under which
the operator Aε converges to the operator AM such that AMuM = f for all f in V ′ .

References [58, 185] contain a brief history of homogenization and convergence
methods. More details can also be found in [51, 56] for the Γ-convergence and in
[139,140,154,157,183,184,188–190] for the G-convergence and the H-convergence. In
the next sections, we present the effective medium theory, the asymptotic expansion
method, the two-scale convergence and the periodic unfolding method as results
from these methods will be used in the remainder of the thesis. We use the following
criteria for comparing these methods:

1. the possibility to deal with problem (3.3)–(3.7) involving curl operators;

2. the possibility to derive a homogenized problem that can be easily solved;

3. the possibility to handle nonlinearities. For magnetic materials, three consti-
tutive laws are used to illustrate the complexity of deriving a homogenized
problem: a linear material law, a nonlinear reversible material law and a non-
linear irrevesible law;

4. the possibility to deal with materials with complex microstructures. Figure
1.2 shows some of the structures of magnetic materials that can be involved
in various electromagnetic applications. The applications for these materials
range from low to medium frequencies;

5. the possibility to recover local fields in critical points of interest. An example
of such critical points occur in transfomers where one may want to verify if
the value is smaller than some breakdown value of the electric field;

6. the possibility to compute global quantities such as the eddy current or the
magnetic losses.

Another desirable property is the possibility to account for the realistic random
distribution of heterogeneities in multiscale materials. For our theoretical develop-
ments we consider the case of periodic media i.e. those media made of a repetitive
periodic cell. This assumption is realistic for periodic structures (e.g.: laminated
structures) and for points located away from the domain boundary. In the compu-
tational homogenization developed in chapter 4, we extend its use to non-periodic
media (soft magnetic composites, soft ferrites, etc.) by choosing an equivalent pe-
riodic periodicity cell Y . Note however that for the non-periodic media with a de-
terministic or a probabilistic distribution of heterogeneities, stochastic approaches
have been developed for the asymptotic expansion method [20], the Γ-convergence
method [52], the G-convergence and the H-convergence [157] and the two-scale con-
vergence [44,106,144].
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Figure 3.2: Diagram explaining the derivation of the effective medium using the
Maxwell-Garnett theory.

3.3 Effective medium theory

The theory of effective medium can be used for computing the homogenized proper-
ties of a composite with only a limited quantity of information on the microstructure.
A medium with a microstructure comprises a matrix with magnetic permeability µh

and (complex-shaped) inclusions with magnetic permeability µp. These inclusions
are replaced by simple shapes (e.g.: spheres, ellipsoids, cylinders, ...) for which the
problem of inclusion in a matrix has an exact solution. The considered geometries
of inclusions can allow to account for the anisotropy of the material laws. For in-
stance, the anisotropy of the distribution of phases leads to anisotropy of material
laws. Several variants of the theory can be found in the litterature. These theories
include the Maxwell–Garnett model [122], the Clausius-Mossotti model [48,134], the
Rayleigh model [168], the Bruggeman model [131], the coherent potential approxi-
mation model [112], etc. Herein we give details about the Maxwell-Garnett and the
Bruggeman models.

3.3.1 Maxwell-Garnet model

The Maxwell-Garnett model is well suited for the case of materials with a small
volume ratio of inclusion f . The principle of the method is described on the figure
3.2. Two phases are considered: the matrix and the inclusions with respective per-
meabilities µh and µp. The effective magnetic permeability relates the homogenized
magnetic flux density bM to the homogenized magnetic field hM by the formula:

bM = µeffhM . (3.9)

The macroscale fields hM and bM are given by:

hM = fhp + (1− f)hh, bM = fµphp + (1− f)µhhh, (3.10)

where hp,hh are values of the magnetic field in the inclusion and in the matrix,
respectively and f is the volume ratio. The solution of the problem for spherical
inclusion relates the fields hh and hp as [181]:

hp =
3µh

µp + 2µp

hh, (3.11)
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Figure 3.3: Diagram explaining the derivation of the effective medium using
Bruggeman’s approach.

and therefore the following effective magnetic permeability is derived:

µeff = µh + 3µh
µp − µh

µp − 2µh − f(µp − µh)
. (3.12)

3.3.2 Bruggeman model

In the Bruggeman model, the two phases can play the same role and therefore
they can be used either as the inclusion or the matrix. The model is therefore
valid even at high values of volume ratio. The model then consists in replacing
the external medium to each inclusion by an equivalent effective medium computed
in an auto-coherent way (Figure 3.3). The idea of Bruggeman is to assume the
existence of this effective medium such that the magnetic induction resulting from
the magnetization of the 2 spheres cancels i.e. µ1M1 + µ2M2 = 0. This allows to
derive the formula [181]:

(1− f)
µ1 − µeff

µ1 + 2µeff

+ f
µ2 − µeff

µ2 + 2µeff

. (3.13)

3.3.3 Advantages and limitations of the effective medium
theory

The main advantage of the effective medium theory presented in this section is its
ability to easily to derive the effective properties. However, the approach is only
adapted for linear problems with a small contrast of material properties between
different phases. [49]

As presented above, the method does not account for the distribution of het-
erogeneities in the microstructure. This means that two microstructures with the
same volume ratio of inclusion but with different distribution of phases will yield
the same effective quantities.

Mean field homogenization [50, 117–119] uses semi-analytical results from the
effective medium [21,99,133] at the mesoscale level for computing homogenized con-
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stitutive laws used for numerically solving the macroscale problem. This technique
initially used for linear problems has evolved over the last decade and extended to
nonlinear problems. To our best knowledge, it has not yet been used in electro-
magnetism for problems with high nonlinearity/hysteresis. Using this method, it is
possible to get more accurate effective quantities by providing additional information
of the distribution of phases [50]. Extension to high frequency problems with consid-
eration of eddy currents at the level of inclusions has been proposed [163,165,166].
The accuracy of the mesoscale solution obtained using this method may sometimes
be bad. [164] [165]

3.4 Asymptotic expansion method

The asymptotic homogenization method is a constructive method that can be used
for homogenizing linear problems. The idea of the method is to split the physical
coordinate system x into a coarse-scale and a fine-scale coordinate system (x,y)

where y =
x

ε
is used for capturing the rapid fluctuations of the solution and then

expand the operator Aε and the unknown field uε in terms of the powers of a small
parameter ε. We treat x and y as independent variables.

In order to construct the homogenized problem of (3.1) the following expansion
for the solution is assumed:

uε(x) = u0(x,y) + εu1(x,y) + ε2u2(x,y) + ... =
∞∑
i=0

εiui(x,y), (3.14)

with ui(x,y) that are periodic in the variable y (they are said to be Y -periodic with
the basic cell denoted by Y ). We also use the differentiation rule:

∂

∂x
ui(x,y) :=

∂

∂x
ui(x,y) + ε−1 ∂

∂y
ui(x,y), (3.15)

for all the derivatives appearing in Aε. The grad, curl and div operators are
transformed accordingly:

grad → gradx + ε−1grady, (3.16)

curl → curlx + ε−1curly, (3.17)

div → divx + ε−1divy. (3.18)

Applying (3.15) to (3.14), it is then possible to gather terms with the same powers
of ε and derive the homogenized macroscale equation and a cell problem that can
be used to calculate the homogenized operator A0.
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3.4.1 Elliptic equations

In order to illustrate the asymptotic homogenization method, we consider the fol-
lowing div-grad and curl-curl problems with homogeneous boundary conditions:{

−div (aεgraduε) + aε0u
ε = f in Ω

uε = 0 on Γ.
(3.19)

{
curl (aεcurluε) + aε1u

ε = f in Ω

n× uε = 0 on Γ.
(3.20)

The extension to problems with non-homogeneous boundary conditions is straight-
forward [20].

The quantities aε, aε0 and aε1 are assumed to be Y-periodic, depend only on the
coordinate y (i.e. of the form Kε = K(x

ε
)) and bounded on the periodicity cell Y .

It is also assumed that there exist c, c0 and α0 ∈ R+ such that

c|ξ|2 ≤ ξTa(y)ξ , c0|ξ|2 ≤ ξTa1(y)ξ and α0 ≤ a0(y), (3.21)

for all ξ in R3. The case of non-uniformly oscillating coefficients K(x, x
ε

) and the
case of reiterated homogenization Kε = K(x, x

ε
, x
ε2 , ...,

x
εn

) can be treated using a
similar approach [20, 154]. Source terms f and f are also assumed to be regular
enough (e.g. f ∈ H−1(Ω) and f ∈ L2(Ω)) and the boundary Γ is smooth enough
(e.g. Lipschitz continuous). Conditions (3.21) allow to define a coercive, bounded
bilinear form that guarantees the existence and the uniqueness of the solution by
the Lax-Milgram theorem [40,85].

3.4.1.1 The div-grad problem

Applying (3.16)–(3.18) to the div− grad operator in (3.19), we get the operator:

A = ε−2A0 + ε−1A1 +A2, (3.22)

where:

A0 = −divy

(
a(y)grady

)
, (3.23)

A1 = −divy

(
a(y)gradx

)
− divx

(
a(y)grady

)
, (3.24)

A2 = −divx

(
a(y)gradx

)
+ a0(y). (3.25)

Applying this operator to the expression (3.14), we get the following system of
equations after identifying terms with the same power of ε:

O(ε−2) : A0u0(x,y) = 0, (3.26)

O(ε−1) : A0u1(x,y) +A1u0(x,y) = 0, (3.27)

O(ε0) : A0u2(x,y) +A1u1(x,y) +A2u0(x,y) = f, (3.28)
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O(εi) : A0ui+2(x,y) +A1ui+1(x,y) +A2ui(x,y) = 0 ; i = 1, 2, ... (3.29)

For having a unique, Y-periodic solution (up to an additive constant) in any
equation of the form A0ui(x,y) = g, the following condition must be fulfilled:∫

Y

g dy =

∫
Y

A0ui(x,y) dy =

∫
∂Y

n ·
(
a(y)grady ui(x,y)

)
dy = 0 (3.30)

for all x ∈ Ω. This condition results from the Gauss theorem and the ε-periodicity of
ui(x,y) and a(y). Now, let us examine equations corresponding to different powers
of ε.

Order O(ε−2): applying (3.30) to (3.26), we deduce that u0(x,y) must be inde-
pendent from the y coordinate i.e.:

u0(x,y) = u0(x). (3.31)

Order O(ε−1): plugging (3.31) into (3.27) we get:

A0u1dy = −divy a(y)gradx u0(x). (3.32)

Notice that the right hand side of (3.32) can be separated in terms depending only
on x and y. Thanks to the linearity of the operator A0 the method of separation of
variables can be used to solve (3.32). The resolution consists in solving the following
cell problem [20]: find χi ∈H1(Y) such that

A0χ
i(y) = −divy a(y)ei. (3.33)

Problem (3.33) is the so-called cell problem and the field χi(y) is used to compute
the homogenized quantity ah. It is obtained by applying a unit source term in the
direction ei with e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1). The first order term
u1(x,y) is deduced:

u1(x,y) = χ(y) · gradx u0(x) + ũ1(x), (3.34)

with χ(y) = (χ1(y), χ2(y), χ3(y)).

Order O(ε0): To get macroscale equations, we apply (3.30) to (3.28):∫
Y

A0u2(x,y)dy =

∫
Y

(
f −A1u1(x,y)−A2u0(x,y)

)
dy = 0. (3.35)

Replacing u1(x,y) by (3.34) in (3.35) we get the following macroscale equation:

− divx

(
ahgradx u0(x)

)
+ ah0u0(x) = f, (3.36)

where ah and ah0 are the so-called homogenized quantities given by [20]:

ah =
1

|Y |

∫
Y

a(y)(¯̄1− grady χ(y))dy, (3.37)
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ah0 =
1

|Y |

∫
Y

a0(y)dy, (3.38)

where ¯̄1 is the identity matrix. In (3.37)–(3.38), |Y | denotes the size of the periodic
cell Y . Equations in O(εi), i = 1, 2, ... can be solved to get the higher order corrector
terms. More details on these developments can be found in [20].

3.4.1.2 The curl-curl problem

Applying (3.16)–(3.18) to the curl-curl problem (3.20) leads to expressions similar
to (3.23)–(3.25) but with different operators:

A0 = −curly

(
a(y)curly

)
, (3.39)

A1 = −curly

(
a(y)curlx

)
− curlx

(
a(y)curly

)
, (3.40)

A2 = −curlx

(
a(y)curlx

)
+ a1(y), (3.41)

It is again possible to examine the equations corresponding to different powers of
ε. From the curl − curl equation equivalent to (3.26) and (3.27), it can be shown
that:

curly u0(x,y) = 0, divy u0(x,y) = 0, (3.42)

meaning that u0(x,y) is independent from y. Equation (3.27) in the curl-curl
context becomes:

A0u1(x,y) = −curly a(y)curlx u0(x)). (3.43)

Two options that lead to dual definitions of the homogenized quantities are then
available [20]:

1. The first one consists in defining a div-grad cell problem: find χi ∈ H1(Y)
such that

divy

(
a−1(y)(grady χi(y)− ei)

)
= 0, (3.44)

and then solve the macroscale equation:

curlx

(
((a−1)

h
)
−1

curlx u0(x)
)

+ ah1u0(x) = f , (3.45)

where the homogenized tensors (a−1)
h

and ah1 are obtained by replacing a(y)
by a−1(y) and a0(y) by a1(y) in (3.37)–(3.38).

2. The second consists in defining a curl-curl cell problem: find χi ∈H(div 0,Y)
such that

curly

(
a(y)(curly χi(y)− ei)

)
= 0, (3.46)

and then solve the macroscale equation:

curlx

(
ahcurlx u0(x)

)
+ ah1u0(x) = f , (3.47)
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where the homogenized ah and ah1 are given by:

ah =
1

|Y |

∫
Y

a(y)(¯̄1− curly χ(y))dy, (3.48)

ah1 =
1

|Y |

(∫
Y

a1(y)dy
)
, (3.49)

with
χ(y) = (χ1(y),χ2(y),χ3(y)). (3.50)

Further details on these developments can be found in [20]. In this thesis, we con-
sider a linear electric constitutive law j = σe and therefore the results of mesoscale
problems (3.37) and (3.48) can be used to calculate the electrical homogenized con-
ductivity and resistivity.

3.4.2 Parabolic equations

The analysis for the parabolic case is quite similar to the analysis for elliptic equa-
tions developed in section 3.4.1. In this case, we assume the div-grad problem:

∂tu
ε − div (aεgraduε) = f in ΩT , (3.51)

and the curl-curl equation:

∂tu
ε + curl (aεcurluε) = f in ΩT , (3.52)

where ΩT = Ω×]0, T [.

In order to have a well-posed problem, equations (3.51) and (3.52) must be com-
pleted with appropriate initial conditions in Ω for t = 0 and appropriate boundary
conditions on ΓT .

For the sake of simplicity, let us consider the case of coefficients aε that are
independent of time. In addition, assume that conditions (3.21) are respected. In
this case, the div-grad homogenized equation becomes:

∂tu0 − divx

(
ahgradx u0

)
= f, (3.53)

with ah given by (3.37). The curl-curl homogenized equation reads:

∂tu0 + curlx

(
ahcurlx u0

)
= f , (3.54)

with ah given by (3.48).

The case of (multiscale) time-dependent coefficients and reiterated homoge-
nization aε(t,x) = a(t, t

εk
, t
ε2k , ...x,

x
ε
, x
ε2 ...) leads to the same equations as (3.53)

and (3.54) [20,204]. However depending on the values of k, the cell problem may be
time-dependent.
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3.4.3 Advantages and limitations of the asymptotic expan-
sion method

The asymptotic homogenization method developed in this section can be used to
construct the homogenized problem: equations (3.36) , (3.45) and (3.47) have been
derived for the elliptic case while equations (3.53) and (3.54) have been derived for
the parabolic case. The method has been derived for materials with linear consti-
tutive laws and with periodic microstructures. Local fields can also be recovered by
solving the cell problem for the first (and higher) order term.

The div − grad problem (3.19) can be used for modeling the elastic behaviour
of a linear material, for studying the heat conduction in a linear material, etc.
The Helmholtz equation in acoustics also falls into this category with pressure as
the quantity of interest. In electromagnetism, problem (3.19) can be used for lin-
ear electrostatic, electrokinetic or magnetostatic problems formulated using scalar
potentials. In this case, the unknown field uε represents scalar potentials (either
electric or magnetic) and the tensor aε represents the electric permittivity ε, elec-
tric conductivity σ or magnetic permeability µ. The curl − curl problem (3.20)
can be used for modeling the behaviour of electromagnetic fields in the presence of
linear electrostatic, electrokinetic, magnetostatic and magnetodynamic (frequency-
domain) problems in the case vector potential formulations are used. The unknown
vector field uε represent vector potentials or the physical fields (electric or magnetic)
and the tensor aε represents the electric permittivity, the electric conductivity or
the magnetic permeability or their inverse.

The asymptotic expansion method has some limitations:

1. using the method, it is not possible to get convergence results for the field
uε, for fields involving differential operators and for functional integrals and
one must resort to convergence theories (Γ-convergence, G-convergence, H-
convergence or two-scale convergence) in order to get these results;

2. for linear problems, the method always yields good results for the div− grad
problem as the solution obtained belongs to the space H1(Ω) (or one of its
closed subspace). This space has an interesting property, the so-called com-
pactness of the injection H1(Ω) in L2(Ω) [40, 54, 85] that guarantees the pos-
sibility to extract a strong convergent sequence in L2(Ω) from any bounded
sequence in H1(Ω) resulting in the zero order term of (3.14) being indepen-
dent from the fine-scale variable y. This result cannot be generalized for
problems involving curl operators; strong convergence of bounded sequences
of H(curl; Ω) (resp. H(div; Ω)) in L2(Ω) cannot be guaranteed [201] meaning
that the zero order term of (3.14) may depend on the fine-scale variable y for
fields belonging to H(curl; Ω) (resp. H(div; Ω));

3. the method is not adapted for nonlinear problems and convergence theories
become indispensable in this case. The homogenization of the nonlinear div−
grad problem has been investigated using the classical theory of convergence
[20, 204]. The approach was based on the compactness results that can be
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obtained for the div−grad but cannot be generalized for nonlinear curl−curl
problems.

For illustrating the limitations of the asymptotic expansion method for linear
problems in electromagnetism, we define the following direct linear magnetostatic
problem:

curlhε = js, (3.55)

div (µεhε) = 0, (3.56)

and the dual magnetostatic problem:

curl (νεbε) = js, (3.57)

div bε = 0, (3.58)

where νε = 1/µε and hε and bε are the magnetic field and the magnetic induction,
respectively. The asymptotic homogenization method fails in this case. Indeed, from
problem (3.55)–(3.56) one gets the following O(ε−1) equations:

curly h0(x,y) = 0, (3.59)

divy

(
µ(y)h0(x,y)

)
= 0, (3.60)

The following expression for h0(x,y) can be deduced from (3.59):

h0(x,y) = −grady ϕ0(x,y) + hK(x). (3.61)

Notice that hK is independent from the variable y. Substituting (3.61) into (3.60)
leads to:

divy

(
µ(y)(grady ϕ0(x,y))

)
= divy µ(y)hK(x). (3.62)

The method of separation of variables can be used for solving (3.62). The solution:

h0(x,y) =
(

¯̄1− grady χ(y)
)
hK(x), (3.63)

is obtained, where χ is defined from (3.33). This means that h0 depends on the
variable y and that it is not possible to define the cell problem as (3.33). This could
also be deduced from results of the div−grad problem obtained solving (3.55)–(3.56)
using the following scalar potential formulation: find φε ∈ V such that

divµεgradφε(x) = F(js), (3.64)

where F(js) is the new source term and H1
0 (Ω) ⊂ V ⊂ H1(Ω). The scalar potential

φε defined in (3.64) is different from the potential ϕ0 defined in (3.61). While the first
order term of the expansion φ0 is independent from y (see equation (3.31)), the same
cannot be said for the magnetic field h0(x,y) = −gradx φ0(x)− grady φ1(x,y).

Convergence theory can be used to explain mathematically these two results.
Indeed, using the weak compactness theorem (see Theorem 1 in the Appendix B



38 CHAPTER 3. HOMOGENIZATION THEORY

and the references [40, 85]), it is possible to extract a converging subsequence from
φε ∈ H1

0 (Ω) that weakly converges inH1
0 (Ω). The weak convergence inH1

0 (Ω) implies
strong convergence in L2(Ω) as a result of the Rellich-Kondrachov theorem [40,85].
The strong convergence in L2(Ω) is expressed as:

lim
ε→0

∣∣∣∣∣∣φε − φ0

∣∣∣∣∣∣
L2(Ω)

= lim
ε→0

(∫
Ω

|φε(x)− φ0(x,y)|2dx
) 1

2
= 0 (3.65)

for all y ∈ Y . This is only possible if the limit φ0 does not depend on the variable
y ∈ Y as the integral is carried out independent of the variable y. Strong conver-
gence cannot be generalized for sequences in any Banach space V solution to the
problem (3.1). For instance, the weak convergence of the sequences hε ∈H(curl; Ω)
in (3.55)–(3.56) (resp. bε ∈ H(div; Ω) in (3.57)–(3.58)) does not entail strong con-
vergence in L2(Ω) as H(curl; Ω) (resp. H(div; Ω)) is not compactly embedded in
L2(Ω). Thus, the limits (first order terms) h0 and b0 may depend on the fine-scale
variable y and therefore it is not always possible to get a slowly varying homoge-
nized problem for the curl− curl problem using the asymptotic expansion method
as developed in section 3.4. Similar conclusions can be made for the dual problem
(3.57)–(3.58). We obtain the following O(ε−1) equations:

curly

(
ν(y)b0(x,y)

)
= 0, (3.66)

divy b0(x,y) = 0, (3.67)

and the solution:

b0(x,y) = curly a0(x,y) + bK(x) =
(

¯̄1− curly χ(y)
)
bK(x), (3.68)

with χ defined as in (3.50) and bK is a function independent from the variable
y. Here again, b0 depends on the variable y and it is not possible to define a cell
problem as in equation (3.33).

In order to circumvert the limitations of the asymptotic expansion method we use
the two-scale convergence theory and the periodic unfolding method. More details
on this theories are given in the next section.

3.5 Two-scale convergence and the periodic un-

folding method

In this section, we use the two-scale convergence and the periodic unfolding methods
to overcome the limitations of the asymptotic expansion method. These methods
are based on the convergence of the field uε and the derived fields involving the
differential operators grad, curl and div.

The two-scale convergence was introduced by Nguetseng [143] and further de-
veloped by Allaire [11]. It allows to capture the fine-scale oscillations of the limit
of uε that can be lost when passing to the classical weak limit u0 in (3.14). The
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idea of two-scale convergence is to use test functions ψ(·, ·
ε
) that are periodic in the

second argument and that allow to sample rapid fluctuations that can occur at the
fine-scale y.

The concept of two-scale convergence (Appendix C.1) may seem completely discon-
nected from the classical concept of convergence (Appendix B) as it involves two
quantities, uε ∈ Lp(Ω) and u0 ∈ Lp(Ω×Y) that belong to different function spaces.
However, the periodic unfolding method introduced by Cioranescu [45] allows to
link these two notions. Indeed, the use of the periodic unfolding method makes
it possible to express the two-scale convergence of a sequence uε ∈ Lp(Ω) as the
one-scale convergence in Lp(R3×Y) of the sequence T εuε obtained by applying the
periodic unfolding operator T ε to the original sequence uε (see Appendix C for the
definition of Y and of the periodic unfolding operator T ε).

See [11, 120, 141, 143] for more details about the two-scale convergence and [31,
45, 46, 130, 197] for details about the periodic unfolding method. References [155]
contains applications for Maxwell’s equations and Appendix C also contains a brief
introduction of these two concepts.

Using the two-scale version of the weak compactness theorem, from any sequence
of uε ∈ L2(Ω) it is possible to extract a subsequence that two-scale weakly converges
to u0 ∈ L2(Ω× Y ).The following properties link results of the classical convergence
and the two-scale convergence [11,141,197,205]:

1. Whenever the limit u0 is independent of y, strong one-scale convergence is
equivalent to the strong two-scale convergence:

uε → u0 in L2(Ω) ⇔ uε →
2
u0 in L2(R3 × Y). (3.69)

This result is always true for the fields of H1(Ω) thanks to the compact injec-
tion of H1(Ω) in L2(Ω).

2. Strong two-scale convergence implies weak two-scale convergence.

3. A sequence uε that weakly two-scale converges to u0 also converges (in the
classical sense) to the mean value uM = û0:

uε ⇀
2
u0 in L2(R3 × Y) =⇒

uε ⇀ uM = û0 =

∫
Y

u0(.,y)dy in L2(R3). (3.70)

4. The two-scale limit u0 has the following two-scale orthogonal decomposition:

u0 = uM + uc with

∫
Y

uc(·,y)dy = 0, (3.71)

with uc the correction term that accounts for rapid fluctuations of the two-scale
limit u0. Expression (3.71) expresses a decomposition of u0. This decomposition is
orthogonal in L2(R3 × Y)orL2(R3 × Y) [195].
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Results (3.69)-(3.71) lead to the following conclusion between the classical and
the two-scale convergence: strong classical convergence =⇒ strong two-scale
convergence =⇒ weak two-scale convergence =⇒ weak classical conver-
gence.

As an illustration example, we consider bounded fields φε ∈ H1(Ω),hε ∈
H(curl; Ω) and bε ∈ H(div; Ω). From the definition of these function spaces, the
sequence φε is bounded in L2(Ω) and the sequences hε and bε are bounded in L2(Ω).
The function spaces L2(Ω) and L2(Ω) are appropriate for the two-scale convergence
and convergence results derived in Appendix C.3 can be used. Therefore there exist
φ0 ∈ H1(Ω), h0 ∈ L2(R3;H(curl 0;Y)) and b0 ∈ L2(R3;H(div 0;Y))) [11,143,198]
such that

φε → φ0, (3.72)

hε ⇀
2
h0 = hM − gradφc, (3.73)

bε ⇀
2
b0 = bM + curlac, (3.74)

in L2(R3 × Y)). In addition, the following classical convergence results:

hε ⇀ hM = ĥ0, (3.75)

bε ⇀ bM = b̂0. (3.76)

are obtained.

The convergence hε ⇀
2
h0 in L2(R3×Y)) is the two-scale convergence as defined

in Appendix C and the convergence hε ⇀ hM in L2(R3) is the weak convergence as
defined in Appendix B.

Results (3.72)–(3.76) are obtained using the properties of the two-scale
convergence (3.69)–(3.71) with the correction terms expressed as hc(x,y) =
−grady φc(x,y) and bc(x,y) = curly ac(x,y) [157,201,208].

We are also interested in the convergence of the derived field that involves
the differential operator div, curl and grad. If {φε} is a bounded sequence
in the H1(Ω) (resp. {hε} is a bounded sequence in H(curl; Ω) and {bε} is
a bounded sequence in H(div; Ω)), then {gradφε} is a bounded sequence of
L2(Ω), (resp.{curlhε} is a bounded sequence of L2(Ω) and {div bε} is a bounded
sequence of L2(Ω). Using results in Appendix C.3, it can be shown that for
any φM ∈ H1(R3), hM ∈ H(curl;Rn), bM ∈ H(div;Rn), , φ1 ∈ L2(R3;H1

∗ (Y)),
h1 ∈ L2(Rn;H(curl;Y)) and b1 ∈ L2(Rn;H(div;Y)), there exist sequences {φε}
of H1(Rn), {hε} of H(curl;Rn) and {bε} of H(div;Rn) [11,143,198,202] such that

gradφε ⇀
2

gradx φM + grady φ1, (3.77)

curlhε ⇀
2

curlx hM + curly h1, (3.78)

div bε ⇀
2

divx bM + divy b1, (3.79)

where the fields φ1, h1 and b1 correspond to the first order terms of the expansion
(3.14). An additional condition (gauge condition) must be imposed for these first
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order terms to be uniquely defined and one possibility is to choose divy h1(x,y) = 0
and curly b1(x,y) = 0 [31, 198]. The first order terms should not be confused with
the correction terms (e.g. h1 6= hc = −grady φc and b1 6= bc = curly ac).

The results developed above still hold for p 6= 2. In section 3.6 we deal with
spaces with p =∞. In that case, the two-scale star convergence and a new notation
are used. For instance, if the time-domain field hε ∈ L∞(0, T ;H(curl; Ω)) then
there exists h0 ∈ L2(R3

T ;H(curl 0;Y)) such that

hε ∗⇀
2
h0 = hM − gradφc, (3.80)

and
hε ∗⇀ hM = ĥ0. (3.81)

In (3.80)-(3.81) we use the weak star convergence as the field belong to the space L∞.
Note however that the sequence converges in L2. More details about the convergence
of differential operators can be found in Appendix C.3.

3.6 Homogenization of the magnetoquasistatic

Maxwell problem

In this section, we focus on the homogenization of magnetoquasistatic problem de-
scribed in section 3.1. Our first goal is to derive the convergence of the fields and
of their derivatives. Then we derive the homogenized model for the quasistatic
problem and convergence results for the quadratic quantities. We focus on the qua-
sistatic problems formulated using electromagnetic fields: formulations in terms of
electromagnetic potentials on non-trivial domains would require to use the theory
of cohomology and definition of gauges for guaranteeing the uniqueness of the solu-
tion []. Results used in this section are based on the work of Augusto Visintin about
the homogenization of nonlinear magnetodynamic problems governed by maximal
monotone operators [196, 201]. Additional results can be found in [199] for the
two-scale convergence of integral functionals, in [11, 141, 198] for the two-scale con-
vergence of differential operators and in [137, 138, 189, 190, 200] for the div − curl
lemma.

3.6.1 Homogenization of electromagnetic fields

We look for the weak solution of problems (3.3)–(3.7). All the derivatives should
be understood in the sense of distribution. If the mappings B and J are maximal
monotone, Y-periodic, coercive and bounded [196, 201], then the electromagnetic
fields are bounded and they belong to appropriate function spaces for the two-scale
convergence (see expressions (A.27)–(A.30) of section A.4 in Appendix A and in the
references [196,201]). Then it makes sense to talk about the so-called weak star two-
scale convergence of the fields hε, bε, eε and the two-scale convergence of the field
jε. There exist h0, e0 ∈ L2(R3

T ;H(curl 0;Y)) and b0, j0 ∈ L2(R3
T ;H(div 0;Y)))
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such that

eε
∗
⇀
2
e0 = eM − grad vc in V , (3.82)

hε ∗⇀
2
h0 = hM − gradφc in L∞(0, T ;L2(R3 × Y)), (3.83)

bε
∗
⇀
2
b0 = bM + curlac in L∞(0, T ;L2(R3 × Y)), (3.84)

jε ⇀
2
j0 = jM + curl tc in L2(R3

T × Y), (3.85)

with V = L2(ΩT × Y) ∩ L∞(0, T ;L2((R3 \ Ω)× Y))) and

eε
∗
⇀ eM in W , (3.86)

hε ∗⇀ hM in L∞(0, T ;L2(R3)), (3.87)

bε
∗
⇀ bM in L∞(0, T ;L2(R3)), (3.88)

jε ⇀ jM in L2(R3
T ), (3.89)

with W = L2(ΩT ) ∩ L∞(0, T ;L2((R3 \ Ω))).

Results in (3.82)–(3.85) have been obtained using properties of the two-scale con-
vergence (3.70)-(3.71). The derived fields also belong to the suitable function spaces
and Using results in Appendix C.3, it can be shown that for any φM ∈ H1(R3), hM ∈
H(curl;Rn), bM ∈H(div;Rn), φ1 ∈ L2(R3;H1

∗ (Y)), h1 ∈ L2(Rn;H(curl;Y)) and
b1 ∈ L2(Rn;H(div;Y)), there exist sequences {φε} of H1(Rn), {hε} of H(curl;Rn)
and {bε} of H(div;Rn) such that

curlhε ⇀
2

curlx hM + curly h1, (3.90)

curl eε ⇀
2

curlx eM + curly e1, (3.91)

div bε ⇀
2

divx bM + divy b1. (3.92)

Replacing (3.82)–(3.85) and (3.90)–(3.92) in (3.3)–(3.7) we get the following
two-scale problem: find h0, e0 ∈ L2(R3

T ;H(curl; 0;Y)) and b0, j0,h1 and e1 ∈
L2(R3

T ;H(div; 0;Y)) such that

curlx hM + curly h1 = j0, (3.93)

curlx eM + curly e1 = −∂tb0, (3.94)

b0(x,y, t) = B
(
h0(x,y, t),x,y

)
, (3.95)

j0(x,y, t) = J
(
e0(x,y, t),x,y

)
, (3.96)

where hM = ĥ0 and eM = ê0. Using test functions independent from the variable
y, it has been shown [196, 201] that this problem can be averaged to the following
one-scale problem without loss of information: find hM , eM , bM and jM ∈ L2(R3

T )
such that

curlx hM = jM , (3.97)
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curlx eM = −∂tbM , (3.98)

bM(x, t) = BM

(
hM(x, t),x

)
, (3.99)

jM(x, t) = JM

(
eM(x, t),x

)
, (3.100)

All the derivatives should be understood in the distribution sense. The macroscale
fields hM , eM , bM and jM are given by hM = ĥ0, eM = ê0, bM = b̂0 and bM = b̂0.
The mappings BM and JM are also maximal monotone, coercive and bounded and
they are obtained by solving the following mesoscale problems [201]:

1. For the mapping BM : find φc ∈ H1
∗ (Y) such that

divy b0 = 0, (3.101)

b0(x,y, t) = B
(
hM(x, t)− gradφc(x,y, t),x,y

)
, (3.102)

and then derive

BM

(
hM(x, t),x

)
=

∫
Y
B
(
hM(x, t)− gradφc(x,y, t),x,y

)
dy. (3.103)

2. For the mapping JM : find vc ∈ H1
∗ (Y) such that

divy j0 = 0, (3.104)

j0(x,y, t) = J
(
eM(x, t)− grad vc(x,y, t),x,y

)
, (3.105)

and then derive

JM

(
eM(x, t),x

)
=

∫
Y
J
(
eM(x, t)− grad vc(x,y, t),x,y

)
dy. (3.106)

The variables x and t are considered as parameters in the mesoscale problems
(3.101)–(3.102) and (3.104)–(3.105). If the mapping J is linear, problem (3.104)–
(3.105) is equivalent to the cell problem obtained in section 3.4.1.1 using the asymp-
totic method [203].

Problems (3.101)–(3.102) and (3.104)–(3.105) represent the magnetostatic and elec-
trokinetic problems solved using scalar potential formulations, respectively. It is
possible to use the dual approach and define the following mesoscale dual problems:

1. For the mapping B−1
M = HM : find ac ∈H∗(curl;Y) such that

curly h0 = 0, (3.107)

h0(x,y, t) = H
(
bM(x, t) + curlac(x,y, t),x,y

)
, (3.108)

and then derive

HM

(
bM(x, t),x

)
=

∫
Y
H
(
bM(x, t) + curlac(x,y, t),x,y

)
dy. (3.109)
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2. For the mapping J −1
M = EM : find tc ∈H∗(curl;Y) such that

curly e0 = 0, (3.110)

e0(x,y, t) = E
(
jM(x, t) + curl tc(x,y, t),x,y

)
, (3.111)

and then derive

EM

(
jM(x, t),x

)
=

∫
Y
E
(
jM(x, t) + curl tc(x,y, t),x,y

)
dy. (3.112)

Problems (3.107)–(3.108) and (3.110)–(3.111) represent the magnetostatic and elec-
trokinetic problems solved using vector potential formulations, respectively. If the
mapping J is linear, problem (3.110)–(3.111) is equivalent to the cell problem ob-
tained in section 3.4.1.2 using the asymptotic expansion approach.

3.6.2 Homogenization of some quadratic quantities

In addition to the two-scale convergence of electromagnetic fields we want to know
which quadratic quantities converge. Indeed, for any domain Ω (bounded or not),
it is known [105,116] that the divergence of the Poynting vector S = e×h is equal
to the rate of electromagnetic energy plus the energy dissipated by Joule effect:

P = −
∫

Ω

divS dx = −
∫

Ω

div (e× h) dx = −
∫

Γ

n · (e× h) dx =∫
Ω

(h · ∂tb) dx+

∫
Ω

(e · ∂td) dx+

∫
Ω

(j · e) dx. (3.113)

The last three terms of (3.113) represent the rate of change of the magnetic energy,
the rate change of the electric energy and the eddy current losses, respectively.

The convergence of such quadratic quantities is not straightforward. Indeed even
if uε and wε are weakly converging sequences of L2(Ω):

uε ⇀ u in L2(Ω), (3.114)

wε ⇀ w in L2(Ω), (3.115)

their product wε ·uε is not guaranteed to converge. In order to have the convergence
of the product, a stronger compactness assumption must be made (e.g. uε or wε

strongly converge in L2(Ω)) [40,54,85]. This assumption is too strong in most cases
and it cannot be easily guaranteed for Maxwell’s equations. The div− curl lemma
allows to obtain the convergence of the sequence of type wε ·uε using less restrictive
assumptions (regularity conditions on derivatives of uε and wε).

Using the two-scale div − curl lemma (see Appendix C.4) for time-dependent
problems we get the following convergence results for the magnetic energy:∫

R3
T

(
bε(x, t) · hε(x, t)

)
θ(x, t) dx dt→

∫
R3
T

(
bM(x, t) · hM(x, t)

)
θ(x, t) dx dt
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=

∫
R3
T×Y

(
b0(x,y, t) · h0(x,y, t)

)
θ(x, t) dx dy dt . (3.116)

This result is valid for all test functions θ ∈ Cc(R3
T ). These functions are independent

from the variable y and therefore the convergence is not valid pointwise but on
average. Equation (3.116) expresses the consistency of magnetic energy between the
macroscale and the mesoscale. Note that the eddy current losses are not guaranteed
to converge.

3.6.3 Advantages and limitations of the method of two-scale
convergence for the magnetoquasistatic problem

Compared to the asymptotic expansion method, the two-scale convergence method
provides the possibility to deal with problems involving curl operators. Indeed, the
first order term of the expansion of the fields in this case may depend on the rapidly
fluctuating variable y which makes it impossible to build a homogenized problem
using the asymptotic expansion method. Materials with nonlinear reversible laws
and periodic microstructures can be handled. Note however that for nonlinear prob-
lems the mesoscale problems (3.101)–(3.102) and (3.107)–(3.108) should be solved
for different values of the macroscale source fields in order to derive the homogenized
mappings BM or HM . The method also offers the possibility to recover the local
fields by solving the mesoscale problem (3.93)–(3.96) and a way of computing the
magnetic energy of the system.

Problems (3.101)–(3.102) and (3.107)–(3.108) are not adapted for materials with
hysteresis as the constitutive laws of these materials may depend on the history.
For instance, the b − h curve may depend on the profile of the exciting source
and this is not accounted for in the mesoscale problem. Note finally that these
mesoscale problems do not allow to account for the influence of eddy currents on
the nonlinear/hysteretic behaviour. In order to overcome these shortcomings we
develop a computational homogenization method in the next chapter.
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Chapter 4

Computational multiscale
methods

4.1 Introduction

In section 3.6 we have derived the homogenized problem for the magnetoquasistatic
problem. This problem involves the resolution of mesoscale problems used for com-
puting the homogenized constitutive laws: equations (3.37) and (3.48) for the ho-
mogenization of the linear electric laws (e.g. Ohm’s law) and (3.101)–(3.102) and
(3.107)–(3.108) for the homogenization of the nonlinear magnetic laws, respectively.

The resolution of these problems on complex microstructures may require the use
of numerical methods. In this thesis, we focus on FE based methods. Indeed, FEM
is well adapted for solving problems involving complex geometries. When using
the FE method the first step consists in converting the original partial differential
equation into an equivalent weak formulation which is then discretized using finite
dimensional polynomial functional spaces on simple-shaped elements obtained after
meshing the domain. This leads to the following discrete problem:

f(u) = 0, (4.1)

where u is the vector of discrete unknowns also known as degrees of freedom (dof).
For a linear problem, (4.1) can be written as Au = b and u is obtained by solving the
linear algebraic system. For nonlinear problems, the discrete form (4.1) can be solved
using techniques such as the fixed point method, the Newton–Raphson method, the
secant method, etc. In this thesis we use the Newton–Raphson method. Although
a quadratic convergence can be obtained using this method, this convergence is not
always guaranteed especially for problems with hysteresis. The method can also be
computationally inefficient since the derivative has to be calculated at each time
step.

The resolution of one mesoscale problem suffices for deriving the homogenized
constitutive law for the linear electric laws. For the nonlinear constitutive laws, two
approaches can be used.

47
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The first consists in pre-computing the nonlinear magnetic law BM or HM prior
to any FE computations and then use the computed law in the FE resolution using
equations (3.103) and (3.109). This approach is adapted for nonlinear problems
e.g. involving maximal monotone operators but it is not adapted for problems with
magnetic hysteresis.

The second approach, which is developed in this chapter, is inspired by the
heterogeneous multiscale method – HMM and the definition of a different mesoscale
problem that accounts for eddy currents at the mesoscale level. This problem is
defined from the two-scale equations of the magnetoquasistatic problem (3.93)–
(3.96).

The chapter is organized as follows: in section 4.2 we review multiscale meth-
ods and focus on the HMM method. In section 4.3, we develop the computational
homogenization method for the magnetodynamic problems using the a−v formula-
tion. We then derive the magnetic flux density conforming multiscale formulations
for the magnetostatic problem. The methodology is further applied to the h − φ
formulation in section 4.4 for both the dynamic and the static cases.

4.2 Multiscale methods

Classical multiscale methods such as the multigrid methods [38], the domain decom-
position method [167], the wavelet-based methods [53] and the adapted refinement
method [9] allow to reduce the computational cost as compared to classical numer-
ical methods such as the FE method. However in these methods, the fine-scale
problem is still solved on the entire domain.

Modern multiscale methods most often use special features of the problem
(e.g. scale separation, periodicity, ergodicity, etc.) to derive a multiscale prob-
lem that is computationally cheaper to solve. Several modern multiscale meth-
ods have been developed over the last few years. They include among others the
equation-free computations methods [110, 172, 180], the upscaling methods [66],
the mortar multiscale methods [14, 160, 161], the variational multiscale methods–
VMS [41, 102, 103, 109, 153], the generalized finite element method–GFEM [16, 17],
the fast Fourier transform–FFT-based homogenization [127, 128, 135], the multi-
scale finite element methods–MsFEM [76, 100, 101], the heterogeneous multiscale
methods–HMM [68,73], etc. They can be classified in two categories [76]:

1. the fine-to-coarse methods for which the macroscale equations are not formu-
lated explicitly and representative fine-scale information is carried out through-
out the simulations;

2. the coarse-to-fine methods that assume a form of macroscale equations and
the macroscale parameters are computed based on the calculations in the rep-
resentative cells.

In the following paragraphs we give details for two of these methods: the MsFEM
for the fine-to-coarse approach and the HMM for the coarse-to-fine approach. How-
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ever a comparison of all multiscale methods can help distinguish advantages and
disadvantages of different approaches.

4.2.1 Multiscale finite element method (MsFEM)

This method has been introduced by Hou and Wu [100] inspired by the generalized
finite element method by Babuska [16, 17]. The MsFEM method has later been
extended by other authors such as Efendiev, Ginting, etc. [76–82]. The basic prin-
ciple of the method is the use at the macroscale level of multiscale basis functions
that contain information about the heterogeneities of the microstructure. These
basis functions are computed solving fine-scale problems on the elements of the
macroscale mesh and are then used for computing the discrete system of algebraic
equations and/or for the post processing at the macroscale level.

To illustrate this, we use the approach in [100,101] and consider the div− grad
elliptic equation (3.19) where we neglect the term aε0u

ε(x). In chapter 3, we have
shown that the solution uε(x) has the expansion (3.14) and therefore it can be
approximated by:

uε(x) ' uapp(x,y) = u0(x) + εu1(x,y) = u0(x) + εχ(y) · gradu0(x). (4.2)

The macroscale component u0(x) satisfies the same boundary conditions as uε(x)
on Γ, therefore uapp = εu1 is periodic. It is then possible to define a boundary
corrector θ1(x,y) such that [76]

z(x,y) = uapp(x,y)− εθ1(x,y) = u0(x) + ε(u1(x,y)− θ1(x,y)) (4.3)

converges strongly to zero even near the boundary. This first order boundary cor-
rector θ1 is governed by the following partial differential equation:

−div (a(y)grad θ1(x,y)) = 0 in Ω, (4.4)

θ1(x,y) = u1(x,y) on Γ. (4.5)

For this div− grad equation, the idea of MsFEM [100, 101] is to use an expansion
similar to (4.3) for the test functions, i.e.:

φiε = φi
0 + ε(φi

1 − θi) + ... (4.6)

where the basis functions φi
0, φ

i
1 and θi1 can be computed on every macroscale element

K of the macroscale mesh. The functions φi
0 and φi

1 are governed by the following
equations:

div (agradφi
0) = 0 in K, (4.7)

φi
0 = µi on ∂K, (4.8)

φi
1 = −χ · gradx φ

i
0 in K, (4.9)

where χ is obtained solving the cell problem (3.33). The solution can be used to
compute the correction term θi1, which is governed by:

div (agrad θi1) = 0 in K, (4.10)
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θi0 = φi
1 on ∂K. (4.11)

The superscript “i” in (4.7)–(4.11) denotes the node number of a given macro-
element and µi = φi

0|∂K is the boundary condition. Details on the computation of
this boundary condition can be found in [100]. From (4.7)–(4.11), it can be seen
that the functions φi

0 form an appropriate basis for approximating the unknown
u0(x). In addition, the first order term u1(x,y) can also be approximated using the
multiscale test functions φi

1. Finally, the functions θi1 can be used for getting the
boundary corrector.

From the implementation point of view, the method exhibits some technical dif-
ficulties. Indeed, the method is not readily usable in the existing codes as new func-
tional spaces need to be defined for the basis functions φi

0, φ
i
1 and θi1 at the macroscale

level. For the linear case analyzed above, the complexity of the problem may also
depend on the macroscale mesh. Indeed, if all the elements of the macroscale mesh
are identical then the solution of one single problem on a macroscale element suf-
fices to construct the multiscale basis functions. Otherwise, these functions must be
computed for each macroscale element.

The MsFEM method has already been used in [36, 37] for solving a multiscale
linear electromagnetic problem. To the best of our knowledge, this approach has
never been applied to nonlinear/hysteretic magnetoquasistatic problems.

4.2.2 Heterogeneous multiscale methods (HMM)

Hereafter, we develop a coarse-to-fine method inspired by the HMM method, first
introduced by Weinan E and Enqguist [67–73,75]. Among other major contributors
to the method are Abdulle Assyr, Vanden-Eijnden, etc. [1–4,6,7,74,194,194]. Note
that the FE2 method [89, 114] popular in the computational mechanics community
predates the introduction of the HMM method and is based on the same overall
philosophy, albeit in a more restrictive setting.

Other methods that use the HMM approach are the non-local quasi-continuum
method – QCM [187], the macro atomistic ab-initio dynamics – MAAD [8], the
gap-tooth scheme [110], etc. The models used at different scales in these methods
can range from quantum mechanics, molecular dynamics, all the way up to the
continuum physics. A quite complete but non-exhaustive list of these methods can
be found in [12,15].

The principle of the method is schematically shown in Figure (4.1). A fine-scale
model p governs the evolution of the unknown u under the constraints c. Solving
this model on the entire domain (e.g. Ω×]0, T [) is computationally prohibitive. The
problem is thus replaced by the macroscale model P (U,C) = 0 where U and C are
the new unknowns and constraints, respectively. This macroscale model has to be
chosen properly for ensuring accurate solutions.

The missing information of the macroscale model (e.g. the constitutive laws)
is computed by solving the fine-scale model p(u, c) = 0 on smaller domains called
representative volume elements – RVE. The scale separation assumption must hold.
Other assumptions such as periodicity or ergodicity also allow to reduce the compu-
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p(u, c) = 0

u

P (U,C) = 0

U

constraints

data estimation

compression

reconstruction

Figure 4.1: Schematic of the HMM framework (image inspired by [5]).

tational cost. The mesoscale problems need to be constrained so as to be consistent
with the macroscale information at the local level.

As an application example, we consider the div − grad problem (3.19) treated
in the previous section. Using results of chapter 3, we can derive the following
governing partial differential equation for the macroscale problem:

divx

(
ah gradx u0(x)

)
= f, (4.12)

where the homogenized quantity ah is given by (3.37). The solution u0(x) belongs to
the space H1(Ω) and therefore it can be discretized using classical conformal finite
element. This approach can be readily used in existing codes and it is not necessary
to define new function spaces as the MsFEM method. In the case of a material
with a linear law and periodic microstructure, only one mesoscale problem must be
solved in order to get the homogenized quantity ah independent of the macroscale
mesh.

In the case of the magnetoquasistatic problem (3.3)–(3.7), the macroscale prob-
lem has been derived in (3.97)–(3.100). The missing magnetic constitutive law (3.99)
can be computed solving the mesoscale problem (3.93)–(3.96).

If the magnetic law is a maximal monotone mapping, the homogenized magnetic
law hM = HM(bM) or bM = BM(hM) can be pre-computed by solving problems
(3.107)–(3.108) and (3.101)–(3.102), respectively. Let us consider the case hM =
HM(bM). The points of the material law HM can then be computed for different
values of the macroscale magnetic flux density bM by solving the following static
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mesoscale problem (3.107)–(3.108): find ac ∈H∗(curl;Y) such that

curly h0 = 0, (4.13)

h0(x,y) = H
(
bM(x) + curlac(x,y),x,y

)
, (4.14)

and then derive:

HM

(
bM(x),x

)
=

1

|Y|

∫
Y
H
(
bM(x) + curlac(x,y),x,y

)
dy. (4.15)

As a result of the definition of the function space for ac(x,y), periodic boundary
conditions and a zero-average value must be imposed for the tangential component
of ac(x,y). The macroscale source bM can be obtained by discretizing the contin-
uous variable bM ∈ R3 on a subdomain of R3 valid for the application at hand.

For instance, one can consider values of bM from the matrix of vectors BM where

elements of BM are given by:(
BM

)
i j k

= (−bM + i∆bM ,−bM + k∆bM ,−bM + j∆bM). (4.16)

The indices i, j, k = 0, 1, ..., N with N the number of samples in each direction and
the discretization step ∆bM = 2 bM/N . It is then possible to solve (4.13) in order
to derive the discrete mapping HM . Interpolation can then be used for getting the
value of the hM = HM(bM) in any point of the application range. This approach
was used in [34] for computing the homogenized nonlinear magnetic law.

In this thesis we use a different approach and compute the nonlinear magnetic law
using the HMM approach. This allows us to upscale on-the-fly a homogenized ma-
terial law from mesoscale problems that account for eddy currents at the mesoscale
level. These mesoscale problems also allow to recover exact electromagnetic fields
at the mesoscale level. The approach also becomes quasi-unavoidable when dealing
with problems with hysteresis and for which the pre-computation of the homoge-
nized magnetic laws described above is not adapted as it does not account for the
history of the material.

In sections 4.3 and 4.4 we use equations (3.93)-(3.96) to define mesoscale prob-
lems and equations (3.97)-(3.100) to define macroscale problems

We consider electromagnetic fields indexed by m as the restriction - on the
mesoscale domain Ωm - of their equivalent indexed 0 in equations (3.93)-(3.100)
(e.g. the field b0(x,y, t)) is replaced by bm(x,y, t)). We also consider the spatial
coordinate x and the time instance t as parameters in mesoscale problems.

We denote V(Y) the space V(Ωm) defined with periodic boundary conditions
(e.g. H1(Y) is the space of all functions u ∈ H1(Ωm) such that u is periodic and
H(curl;Y) is the space of all functions v ∈ H(curl; Ωm) such that v has periodic
tangential component).
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4.3 Magnetic flux density conforming multiscale

formulations: dynamic case

4.3.1 The macroscale problem

The macroscale magnetoquasistatic problem has been derived using the two-scale
convergence theory:

curl xhM = jM , (4.17)

curl xeM = −∂tbM , (4.18)

div xbM = 0, (4.19)

hM(x, t) = HM(bM(x, t),x), (4.20)

jM(x, t) = JM(eM(x, t),x). (4.21)

The unknown homogenized fields hM , bM , eM and jM exhibit slow fluctuations;
they can therefore be solved on a coarse mesh. The macroscale fields satisfy the
same boundary conditions as the multiscale fields in (3.3)–(3.7). Appropriate initial
conditions must also be provided for (4.17)–(4.21) to be well-posed. Note however
that the constitutive laws (4.20)–(4.21) are missing at the macroscale level.

In the case of a linear electric law, equation (4.21) becomes jM(x, t) =
JM(eM(x, t),x) = σM(x)eM(x, t) and only one computation suffices for extracting
the homogenized conductivity σM (see details in section 3.4.1 and [20]).

In the case of maximal monotone mappings H (resp B) (see Appendix A.4),
the nonlinear magnetic law HM(bM) can be pre-computed solving the mesoscale
problem (4.13). In section 4.3.2 we derive another mesoscale problem which ac-
counts for the effects of the eddy currents at the mesoscale level. Combined with
the HMM approach, this mesoscale problem allows to compute on-the-fly the con-
stitutive homogenized magnetic law accounting for the eddy currents. It can also
be used for getting accurate local mesoscale fields and for upscaling more accurate
global quantities such as the eddy currents losses.

Using results of section 2.5.2 we get the following three-dimensional macroscale
weak formulation of (4.17)-(4.21): find aM ∈ He(curl,Ω) and vM ∈ H1

e (Ωc) such
that(

HM(curlx aM), curlx a
′

M

)
Ω

+
(
σM∂taM ,a

′

M

)
Ωc

+
(
σMgradx vM ,a

′

M

)
Ωc

+
〈
n× hM ,a

′

M

〉
Γh

=
(
js,a

′

M

)
Ωs

, (4.22)

(
σM∂taM ,gradxv

′

M

)
Ωc

+
(
σMgradxvM ,gradxv

′

M

)
Ωc

= 〈n · jM , v
′

M〉Γg , (4.23)

hold for all test functions a
′
M ∈ H0

e(curl,Ω) and v
′
M ∈ H10

e (Ωc). The vector jM
represents the eddy currents crossing the boundary Γg of Ωc and js represents the
source current density which is imposed in the inductors Ωs. The macroscale domain
Ω (resp. Ωc) can be divided into the multiscale domain Ωh (resp. Ωh

c ) where the
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homogenization is done and a non-multiscale domain Ωnh (resp. Ωnh
c ) where clasiccal

weak formulations can be used..

For the two-dimensional case, the weak formulation reduces to: find azM ∈ H1
e (Ω)

and uM piecewise constant on Ωc such that(
HM(1z × gradx azM),1z × gradx a

′

zM

)
Ω

+
(
σM∂tazM , a

′

zM

)
Ωc

+
(
σMuM , a

′

zM

)
Ωc

+ 〈n× hM , a
′

zM1z〉Γh
=
(
js, a

′

zM

)
Ωs

(4.24)

(
σM∂tazM , u

′

M

)
Ωc

−
(
σMuM , u

′

M

)
Ωc

= 0, (4.25)

hold for all test functions a
′
zM ∈ H10

e (Ω) and u
′
M constant piecewise on Ωc.

The homogenized magnetic law HM missing in equations (4.22) and (4.24) is
computed using the mesoscale problem defined in the following section.

4.3.2 The mesoscale problem

In order to define a mesoscale problem which includes eddy currents and which -
unlike problem (4.13)-(4.15) - can be used for recovering accurate local electromag-
netic fields, we start with the following modified two-scale version of the problem
(3.93)–(3.96):

curlhε
m = jm, (4.26)

curl xeM + curl ye1 = −∂tbm, (4.27)

div xbM + divy b1 = 0, (4.28)

hm(x,y, t) = H(bm(x,y, t),x,y), (4.29)

jm(x,y, t) = J (em(x,y, t),x,y), (4.30)

in which we keep Ampère’s equation (4.26). In this equation, hε
m is the restriction

of the multiscale magnetic field hε to the representative volume element Ωm, here-
after called “mesoscale domain”. We can thus use both nonlinear reversible and
irreversible (hysteretic) material laws.

Problems (4.26)–(4.30) contain macroscale fields considered constant at the
mesoscale level. We want to derive a mesoscale problem that can be written in
terms of mesoscale coordinates y.

The two-scale convergence theory allows us to express the curl of the electric
field at the mesoscale in terms of the curl of the electric field at the macroscale and
the curl of the mesoscale correction term such that

curly em = curlx eM + curly e1. (4.31)

Using the Faraday law at the macroscale together with the vector identity
curly (∂tbM × y) = (n− 1)∂tbM (n = 2, 3 for 2D and 3D problems, respectively)
we can write:
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curly em = curly

(
e1 + eM + κ(curly eM × y)

)
= curly

(
e1 + eM − κ(∂tbM × y)

)
(4.32)

with κ = (n− 1)−1, since curly eM ≡ 0. Similar developments have been proposed
in [124] and [84] for the electric and the magnetic fields in linear cases. Inserting
the orthogonal decomposition bm = bM + curly ac derived from (3.84) in (4.27) we
get the following equation:

curl xeM + curl ye1 = −∂t(bM + curly ac). (4.33)

We can use (4.18) to express the first order term of the electric field e1 in terms of
the correction term ac as:

e1 = −∂tac − grady vc. (4.34)

At the mesoscale level, the first order term e1 can be chosen in H(curl;Y) for every
t ∈]0, T [ (see (3.91) and C.3 in Appendix C.3 ). This means that the tangential
component of e1 on Y is periodic. In section 4.3.3 we will show that ac is tangentially
periodic and and we will choose vc which is periodic on the mesoscale domain Ωm.
Using these developments, we can derive the following mesoscale three-dimensional
weak formulation: find ac ∈H(curl;Y) and vc ∈ H1(Y) such that(

H(curlyac + bM), curlya
′

c

)
Ωm

+
(
σ∂tac,a

′

c

)
Ωmc

+(
σgradyvc,a

′

c

)
Ωmc

=
(
σ(eM − κ∂tbM × y),a

′

c

)
Ωmc

(4.35)

(
σ∂tac,gradyv

′

c

)
Ωmc

+
(
σgradyvc,gradyv

′

c

)
Ωmc

=(
σ(eM − κ∂tbM × y),gradyv

′

c

)
Ωmc

+
〈
n · jM , v

′

c

〉
Γgm

(4.36)

hold for all test functions a
′
c ∈H(curl;Y) and v

′
c ∈ H1(Y) and for every t ∈]0, T [.

Domains Ωmc and Γgm are the conducting part of the mesoscale domain and the
boundary of Ωmc, respectively. The electric current density jM = σMeM is obtained
from the macroscale solution.

For the two-dimensional case, the mesoscale weak formulation becomes: find
azc ∈ H1(Y) and uc piecewise constant on Ωmc such that(

H(1z × grady azc + bM),1z × grady a
′

zc

)
Ωm

+
(
σ∂tazc, a

′

zc

)
Ωmc

+(
σuc, a

′

zc

)
Ωmc

=
(
σ(eM − κ∂tbM × y),1za

′

zc

)
Ωmc

(4.37)

(
σ∂tazc, u

′

c

)
Ωmc

+
(
σuc, u

′

c

)
Ωmc

=
(
σ(eM−κ∂tbM×y),1zu

′

c

)
Ωmc

=
(
σeM ,1zu

′

c

)
Ωmc

(4.38)

hold for all test functions a
′
zc ∈ H1(Y) and u

′
c piecewise constant on Ωmc and for all

t ∈]0, T [.
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upscaling

downscaling

Figure 4.2: Scale transitions between macroscale (left) and mesoscale (right) prob-
lems. Downscaling (macro to meso): obtaining proper boundary conditions and the
source terms for the mesoscale problem from the macroscale solution. Upscaling
(meso to macro): effective quantities for the macroscale problem calculated from
the mesoscale solution [148].

4.3.3 Scale transitions

The macroscale and the mesoscale problems in sections 4.3.1 and 4.3.2 are not yet
well-defined: the macroscale magnetic law HM(bM) is not defined at the macroscale
level and the mesoscale problem needs source terms bM , eM and jM and proper
boundary conditions to be well-posed. These two problems need to exchange in-
formation through scale transitions to fill in the missing information at both levels.
This information is exchanged through the downscaling and the upscaling stages
(see Figure 4.2).

During the downscaling, the macroscale fields are imposed as source terms for
the mesoscale problem. Boundary conditions for the mesoscale problem are also
determined so as to respect the two-scale convergence of the physical fields: the
convergence of the magnetic flux density b leads to the following condition on the
tangential component of the correction term of the magnetic vector potential ac:

1

|Ωm|

∫
Ωm

bm(x,y, t) dy = bM(x, t) =⇒∫
Ωm

curlac(x,y, t) dy =

∮
Γm

n× ac(x,y, t) dy = 0. (4.39)

This condition is fulfilled if ac belongs to the space H(curl;Y), i.e. if ac is periodic
on the cell. This implies that grady vc = e1−∂tac also belongs to H(curl;Y). This
is automatically ensured by the curl theorem:∫

Γm

n× grady vcdy =

∫
Ωm

curly grady vcdy. (4.40)

We also choose vc to be periodic.
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The convergence of the electric current density also leads to the following relation:

1

|Ωm|

∫
Ωmc

jm(x,y, t) dy = jM(x, t) =⇒ 1

|Ωm|

∫
Ωmc

jc(x,y, t) dy

= −
∫

Ωmc

σ
(
∂tac(x,y, t) + grad vc(x,y, t)

)
dy = 0. (4.41)

Equation (4.41) holds for every t ∈]0, T [.

The upscaling consists in computing the missing constitutive laws σM , HM(bM)
together with ∂HM/∂bM at the macroscale using the mesoscale fields. Due to the
linearity of the electric law, the asymptotic expansion theory (see section 3.4.1.1)
can be applied. Therefore, we compute once and for all the homogenized electric
conductivity by solving a cell problem. A similar approach was also adopted in [34].
The electric conductivity is then upscaled by means of:

(σM)ij =
1

|Ωm|

∫
Ωm

(
σij(y)− σik(y)

∂χj(y)

∂yk

)
dy, (4.42)

where the periodic functions χj are solutions of the cell problem:

find χj(y) ∈ H1(Y) such that∫
Ωm

(gradyψ
′
)Tσ
(
gradyχj − ej

)
dy = 0 (4.43)

holds for all ψ
′
(y) ∈ H1(Y). The vector ej is the unit vector in the jth spatial

direction.

The upscaling of the nonlinear magnetic law is performed by simple average as
a consequence of the two-scale convergence of h :

1

|Ωm|

∫
Y
hmdy = hM . (4.44)

We use a finite difference difference approach [129] in order to obtain the tangent
matrix ∂HM/∂bM for the Newton-Raphson scheme. First we solve the problem
(4.35)–(4.36) for the three-dimensional problems (resp. (4.48)–(4.38) for the two-
dimensional problems) in order to find the solution to the macroscale field bM . Then
we solve three problems similar to (4.35)–(4.36) (resp. (4.48)–(4.38) for the two-
dimensional problems where we have added a time- and space-independent magnetic
induction perturbation term δbi in the direction i to the macroscale source terms.
The total magnetic induction bm for these problems becomes:

bm = bM + curly ac + δbi = curly ac + κ(bM × y) + κ(δbi × y), (4.45)

which can be derived from the total magnetic vector potential:

am = ac − grady vc + κ(bM × y) + κ(δbi × y). (4.46)

These developments allow to change the three dimensional equation (4.35) into
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(
H(curlyac + bM + δbi), curlya

′

c

)
Ωm

+
(
σ∂tac,a

′

c

)
Ωmc

+(
σgradyvc,a

′

c

)
Ωmc

=
(
σ(eM − κ∂tbM × y),a

′

c

)
Ωmc

. (4.47)

Notice that the time derivative of the constant term in equation (4.46) disappears.
We also change the two dimensional equation (4.48) into(

H(1z × grady azc + bM + δbi),1z × grady a
′

zc

)
Ωm

+
(
σ∂tazc, a

′

zc

)
Ωmc

+(
σuc, a

′

zc

)
Ωmc

=
(
σ(eM − κ∂tbM × y),1za

′

zc

)
Ωmc

. (4.48)

Equations (4.36) and (4.38) remain unchanged. This leads to the solution hM +
δbi
hM where δbi

hM is the perturbation of the magnetic field in direction i. We can
therefore deduce the tangent matrix as:(∂HM

∂bM

)
ij
≈

(δbi
hM)j

δbi
. (4.49)

4.3.4 Finite element implementation

The macroscale and the mesoscale problems are solved in a staggered way with the
FE method. Both problems are nonlinear and solved with the Newton–Raphson
scheme. In this subsection we give implementation details of the computational
multiscale method for a mesoscale problem with a hysteretic magnetic constitutive
law. The numerical schemes of the macroscale and the mesoscale problems remain
almost the same. We will point out the differences if they exist.

The first step for the numerical solution is to spatially discretize the fields. We
use mixed elements and get the following expressions:

a(x, t) =
∑
i∈Ne

ai(t)S
i
e(x), (4.50)

v(x) =
∑
k∈Nn

vkS
k
n(x) (4.51)

b(x, t) =
∑
i∈Ne

ai(t)curlSi
e(x), (4.52)

∂ta(x, t) =
∑
i∈Ne

dai(t)

dt
Si

e(x), (4.53)

grad v(x) =
∑
k∈Nn

vkgradSk
n(x). (4.54)

The fields a and v are used to represent both the macroscale fields aM and vM
and the mesoscale fields am and vm. The basis functions Si

e(x) and Sk
n(x) are

chosen as the standard edge and nodal Whitney forms, spanning discrete subspaces
of H(curl; Ω) and H1(Ω), respectively [90]. The degree of freedom ai(t) and vk
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are the unknowns of the FE problem and Ne and Nn the total numbers of the
unknowns of the fields aM and vM , respectively. With formulae (4.50)–(4.54) we
get the following discretized equations:

C
dA

dt
+DV + f(A) = g, (4.55)

where A and V are vectors of the unknowns ai(t) and vk, respectively.

Equation (4.55) has two contributions:

C
′ dA

dt
+D

′

V + f(A) = g, (4.56)

C
′′ dA

dt
+D

′′

V = h. (4.57)

These equations are valid for the macroscale and mesoscale problems. For the
macroscale problem, equation (4.56) can be derived from (4.22) or (4.35) and equa-
tion (4.57) can be derived from (4.23) or (4.36). The elements of matrices in (4.56)–
(4.57) are given by the expressions:

c
′

i j =
∑

Ωe∈Ωc

∑
i,j∈Ne

(
σM(x)Si

e(x),Sj
e(x)

)
Ωe

, (4.58)

c
′′

i j =
∑

Ωe∈Ωc

∑
i∈Ne,j∈Nn

(
σM(x)Si

e(x),gradSj
n(x)

)
Ωe

, (4.59)

d
′

i j =
∑

Ωe∈Ωc

∑
i∈Nn,j∈Ne

(
σM(x)gradSi

n(x),Sj
e(x)

)
Ωe

, (4.60)

d
′′

i j =
∑

Ωe∈Ωc

∑
i,j∈Nn

(
σM(x)gradSi

n(x),gradSj
n(x)

)
Ωe

, (4.61)

fj =
∑
Ωe∈Ω

∑
j∈Ne

(
HM

(∑
i∈Ne

ai(t)curlSi
e(x),x

)
, curlSj

e(x)
)

Ωe

, (4.62)

gj =
∑

Ωe∈Ωs

∑
j∈Ne

(
js(x), curlSj

e(x)
)

Ωe

, (4.63)

where the summation is carried out on elements Ωe of domains Ω or Ωc and hj = 0.
In (4.58)–(4.63), the integrals over domains Ω,Ωs and Ωc are split into elementary in-
tegrals (the first sum

∑
Ωe∈Ωi

) in which only neighbouring basis functions contribute
(the second sum).

For the mesoscale problem, the elements of matrices in (4.56)–(4.57) are given
by:

c
′

i j =
∑

Ωe∈Ωmc

∑
i,j∈Ne

(
σ(y)Si

e(y),Sj
e(y)

)
Ωe

, (4.64)

c
′′

i j =
∑

Ωe∈Ωmc

∑
i∈Ne,j∈Nn

(
σ(y)Si

e(y),gradSj
n(y)

)
Ωe

, (4.65)



60 CHAPTER 4. COMPUTATIONAL MULTISCALE METHODS

d
′

i j =
∑

Ωe∈Ωmc

∑
i∈Nn,j∈Ne

(
σ(y)gradSi

n(y),Sj
e(y)

)
Ωe

, (4.66)

d
′′

i j =
∑

Ωe∈Ωmc

∑
i,j∈Nn

(
σ(y)gradSi

n(y),gradSj
n(y)

)
Ωe

, (4.67)

fj =
∑
Ωe∈Ω

∑
j∈Ne

(
H
(
bM +

∑
i∈Ne

ai(t)curlSi
e(y),y

)
, curlSj

e(y)
)

Ωe

, (4.68)

gj =
∑

Ωe∈Ωmc

∑
j∈Ne

(
σ(eM − κ∂tbM × y),Sj

e(x)
)

Ωe

, (4.69)

hj =
∑

Ωe∈Γmg

∑
j∈Nn

(
n · jM , Sj

n(x)
)

Ωe

. (4.70)

In (4.64)–(4.70), the integrals over domains Ωm,Ωmc are split into elemental inte-
grals.

We use the Euler-implicit time-discretization scheme for the time derivative in
(4.55). This leads to the following nonlinear full-discrete equation:

C
A

n+1 −An

∆t
+DV + f(A

n+1
) = g. (4.71)

which relates the vector unknowns A
n+1

at time tn+1 = tn + ∆t with previous
values A

n
computed at tn. Problem (4.71) is nonlinear and needs to be solved using

nonlinear techniques.

We use the Newton–Raphson method for solving both the mesoscale and the
macroscale problems. To this end, we define the residual:

r(A
n+1

,V ) = C
A

n+1 −An

∆t
+DV + f(A

n+1
)− g. (4.72)

which is goes to zero with a prescribed tolerance. The residual for the nonlinear
iteration m + 1 can be expressed in terms of the residual at the previous timestep
m plus a linear tangent contribution:

r(A
n+1

m+1,V m+1) = r(A
n+1

m ,V m) +
∂r

∂A
n+1

∣∣∣
A

n+1
m ,V m

(A
n+1

m+1 −A
n+1

m )

+
∂r

∂V

∣∣∣
A

n+1
m ,V m

(V m+1 − V m) ' 0. (4.73)

which leads to the final system:

K(A
n+1

m+1 −A
n+1

m ) +D(V m+1 − V m) = −r(A
n+1

m ,V m). (4.74)

The elements of the tangent matrix in (4.74) is given by:

kij =
1

∆t
cij +

∂fj

∂an+1
i

=
1

∆t
cij +

∑
e

(∂H
∂b

curlSi
e(x), curlSj

e(x)
)

Ωe

. (4.75)
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and therefore one needs to know ∂H/∂b in order to compute K.

For the macroscale problem, ∂HM/∂bM is computed using finite differences as
explained in section 4.3.3. For the mesoscale problem with hysteresis, we use a
b-driven vectorized Jiles-Atherton model [19, 94, 108, 162]. In [94], authors have
obtained the tangent matrix ∂H/∂bm by inverting the formula:

∂B/∂hm = µ0(1 + ∂M/∂hm), (4.76)

where 1 is the unit matrix. In (4.76), the total magnetization M = Mirr + Mr

has two contributions: the irreversible part Mirr associated with energy dissipated
through the pinning sites during a domain wall displacement. It is governed by the
following differential equation:

dMirr

dhe

=
Man −Mirr

kδ
, (4.77)

where the anhysteretic magnetization:

Man = Msat coth
( |he|
a
− a

|he|

) he

|he|
, (4.78)

represents the ideal curve obtained in the absence of hysteretic losses (see section
(2.3)). The magnetic field he = h+ αM is the effective magnetic field experienced
by the domains. The reversible part Mr = M − cMirr is due to the reversible
bonding of the Bloch walls. The Jiles-Atherton model is thus characterized by 5
parameters: α, k, c, a and Msat.

The pseudocode of the overall multiscale algorithm is presented in Figure 4.3.

4.3.5 The static case

The static problem can be seen as a simplified version of the dynamic problem
obtained by neglecting the time derivatives and the eddy currents.

The macroscale weak formulation is derived from the a−v formulation described
in section 4.3.1. The three-dimensional macroscale weak formulation reads: find
aM ∈He(curl,Ω) such that(

HM(curlx aM), curlx a
′

M

)
Ω

+
〈
n× hM ,a

′

M

〉
Γh

=
(
js,a

′

M

)
Ωs

(4.79)

holds for all test functions a
′
M ∈H0

e(Ω).

The two-dimensional macroscale problem reads: find azM ∈ H1
e (Ω) such that(

HM(1z × gradx azM),1z × gradx a
′

zM

)
Ω

+ 〈n× hM , a
′

zM1z〉Γh
=
(
js, a

′

zM

)
Ωs

(4.80)

holds for all test functions a
′
zM ∈ H10

e (Ω).
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Macro Meso

• Read input (macro mesh, material laws, etc.). Generate meso meshes

• Prescribe BCs.

• Initialize aM (t = 0)

• Begin time loop while tn < tf do:

(a) Begin nonlinear loop
while (m < mmax) and (res > tol) do:

◦ For each quadrature point: -
eM , bM , jM

downscaling

Cell problem analysis

1. Prescribe the BCs

2. Impose the macro sources

3. Initialize am(t = tn)

4. Solve the cell problem

5. Compute hM and ∂HM/∂bM
◦ Assemble matrix and RHS: �

hM , ∂HM/∂bM

upscaling

◦ Solve

◦ Check convergence

1. If not, m← m+ 1.

2. Else, save. Leave the nonlinear loop and go to (b).

End nonlinear loop.

(b) tn ← tn + ∆t.

• End time loop.

Figure 4.3: Pseudocode of the multiscale algorithm for the nonlinear multiscale
magnetic flux density conforming formulations.

The three-dimensional mesoscale problem can be derived from (4.35): find ac ∈
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H(curl;Y) such that (
H(curlyac + bM), curlya

′

c

)
Ωm

= 0, (4.81)

holds for all test functions a
′
c ∈ H(curl;Y) and the two-dimensional mesoscale

formulation reads: find azc ∈ H1(Y) such that(
H(1z × grady azc + bM),1z × grady a

′

zc

)
Ωm

= 0 (4.82)

holds for all test functions a
′
zc ∈ H1(Y).

4.4 Magnetic field conforming multiscale formu-

lations: dynamic case

4.4.1 The macroscale problem

This problem is derived from the macroscale equations:

curl xhM = jM , (4.83)

curl xeM = −∂tbM , (4.84)

div xbM = 0, (4.85)

bM(x, t) = BM(hM(x, t),x), (4.86)

eM(x, t) = EM(jM(x, t),x). (4.87)

In this case, Ampère’s equation (4.83) together with the constitutive laws (4.86)–
(4.87) are strongly satisfied. Therefore Faraday’s equation must be satisfied in the
weak sense. Using results of section 2.5.4, we get the following three-dimensional
macroscale weak equation: find hM ∈Hh(curl; Ω) such that(

∂tBM(hM),h
′

M

)
Ω

+
(
σ−1
M curlx hM , curlx h

′

M

)
Ωc

+(
σ−1
M js, curlx h

′

M

)
Ωs

+
〈
n× eM ,h

′

M

〉
Γe

= 0, (4.88)

holds for all h
′

M ∈ H0
h(curl; Ω). In the case of magnetic laws without memory

BM(hM(x, t),x), the time derivative of the magnetic induction can be expressed as:

∂tBM =
∂BM

∂hM

∂thM . (4.89)

Equation (4.88) becomes:(∂BM

∂hM

∂thM ,h
′

M

)
Ω

+
(
σ−1
M curlx hM , curlx h

′

M

)
Ωc

+
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(
σ−1
M js, curlx h

′

M

)
Ωs

+
〈
n× eM ,h

′

M

〉
Γe

= 0. (4.90)

In the non-conducting region ΩC
c only the first term of (4.88) exists. The mag-

netic field can therefore be derived from a magnetic scalar potential φM governed
by the following partial differential equation:

divBM(hs − gradx φM) = 0. (4.91)

The weak form in ΩC
c then reads: find φM ∈ H1(ΩC

c ) such that(
BM(hs − gradx φM),gradx φ

′

M

)
ΩC

c

+
〈
n · bM , φ

′

M

〉
Γh

= 0. (4.92)

4.4.2 The mesoscale problem

In the case of b-conform formulations, the spatial differential operator was applied
to the term with the magnetic constitutive law (see equation (4.26)). This is not
the case for h-conform formulations; the term bm for which we want to compute
the homogenized constitutive law is involved with time derivative (equation (4.95)).
Therefore we are going to define two types of problems for h-conform formulations.

The first one used for computing the homogenized magnetic constitutive laws
is derived from equations of the two-scale convergence theory (equations (3.101)–
(3.102)). The three-dimensional weak formulation of this problem reads: find φc ∈
H1(Y) such that (

B(hM − grady φc),grady φ
′

c

)
Ωm

= 0, (4.93)

hold for all test functions φ
′
c ∈ H1(YC

c ) and for every t ∈]0, T [

The second will be used for defining a mesoscale problem that includes eddy
currents. In order to define this problem, we use the same approach as the one
used in section 4.3.2. We start with the modified two-scale version of the problem
(3.93)–(3.96) :

curlx hM + curly h1 = jm, (4.94)

curl eεm = −∂tbm, (4.95)

div xbM + divy b1 = 0, (4.96)

bm(x,y, t) = B(hm(x,y, t),x,y), (4.97)

em(x,y, t) = E(jm(x,y, t),x,y), (4.98)

in which we keep Faraday’s equation (4.95) intact. The electric field eεm is the
restriction of the multiscale electric field eε to the domain Ωm. Using the two-scale
convergence theory we can express the curl of the magnetic field at the mesoscale
in terms of the curl of the magnetic field at the macroscale and the curl of the
mesoscale correction term such that

curly hm = curlx hM + curly h1. (4.99)
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Using Ampère’s law at the macroscale together with the vector identity
curly (jM × y) = (n− 1)jM (n = 2, 3 for 2D and 3D problems, respectively) we
can write:

curly hm = curly

(
h1 + hM + κ(curlx hM × y)

)
= curly

(
h1 + hM − κ(jM × y)

)
(4.100)

with κ = (n−1)−1, since curly hM ≡ 0. This provides a natural development of hm

in terms of a local, rapidly fluctuating component and a large scale component.

Inserting the orthogonal decomposition jm = jM + curly tc derived from (3.85)
in (4.94) we get the following equation:

curl xhM + curl yh1 = jM + curly tc. (4.101)

We can use (4.100) to express the first order term of the electric field h1 in terms
of the correction term tc as:

h1 = tc − grady ωc, (4.102)

possibly leading to the h formulation [33,63,64] or the t− ω formulation [125,126].
In the remainder of this section, we adopt the h formulation.

The electric current density is not defined in the non-conducting regions. For
such regions, Ampère’s equation reads;

curly (h1 + hM + κ(curlx hM × y)) = 0, (4.103)

so that:
h1 + hM + κ(curlx hM × y) = −grady φc. (4.104)

Instead of using the total scalar potential φc, we rather define a reduced potential
φc such that

− grady φc = hM − grady φc. (4.105)

The mesoscale magnetic field hm can therefore be developed as:{
hm = hM + κ(jM × y) + h1 in Ωmc,
hm = hM − grady φc in ΩC

mc,
(4.106)

where the fields hM and jM are source terms from the macroscale problem.

Using these developments together with the expression (4.89) of the time deriva-
tive we get the following equations for the conducting and the non-conducting re-
gions:

curly

(
σ−1(y)

(
curly h1 + jM

))
+

∂B
∂hm

(
∂th1 + ∂thM + κ(∂tjM × y)

)
= 0 in Ωmc, (4.107)
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divy B(hM − gradφc) = 0 in ΩC
mc, (4.108)

with hm = h1 +hM +κ(jM×y). The mesoscale three-dimensional weak formulation
then reads: find h1 ∈H(curl;Yc) and φc ∈ H1(YC

c ) such that(
σ−1
m (curly h1 + jM), curly h

′

1

)
Ωmc

+( ∂B
∂hm

(
∂th1 + ∂thM + κ(∂tjM × y)

)
,h
′

1

)
Ωmc

= 0, (4.109)

(
B(hM − grady φc),grady φ

′

c

)
ΩC

mc

= 0, (4.110)

hold for all test functions h
′

1 ∈H(curl;Yc) and φ
′
c ∈ H1(YC

c ) and for every t ∈]0, T [.
The domain Ωmc is the conducting part of the mesoscale domain Ωm.

For the two-dimensional case, the mesoscale weak formulation becomes: find
h1z ∈ H1(Yc) and φc ∈ H1(YC

c ) such that(
σ−1
m (1z × grady h1z + jM),1z × grady h

′

1z

)
Ωmc

+( ∂B
∂hm

(
1z × grady (∂th1z) + ∂thM + κ(∂tjM × y)

)
,1zh

′

1z

)
Ωmc

= 0, (4.111)

(
B(hM − grady φc),grady φ

′

c

)
ΩC

mc

= 0, (4.112)

hold for all test functions h
′
1z ∈ H1(Yc) and φ

′
c ∈ H1(YC

c ) and for every t ∈]0, T [.
The mesoscale magnetic field hm is given by hm = 1z×grady h1z +hM +κ(jM×y).

4.4.3 The scale transitions

The macroscale and the mesoscale problems need to exchange information through
the scale transitions like in the case of the a− v formulation.

During the downscaling, the macroscale fields hM and jM are imposed as source
terms for the mesoscale problem. Boundary conditions for the mesoscale problem
are determined so as to respect the two-scale convergence of the fields. The conver-
gence of the correction term of the electric current density jc leads to the following
condition for the tangential component of h1:

1

|Ωmc|

∫
Ωmc

jmdy = jM =⇒
∫

Ωmc

curly h1dy =

∮
Γmc

n× h1 dy = 0. (4.113)

This condition is fulfilled if h1 belongs to the space H(curl;Y), i.e. if h1 is periodic
on the cell. This condition is fulfilled thanks to the two-scale convergence result in
Appendix C.3.

The upscaling consists in computing the missing constitutive laws σ−1
M , bM to-

gether with ∂BM/∂hM at the macroscale using the mesoscale fields. Due to the
linearity of the electric law, the asymptotic expansion theory can be applied (see
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section 3.4.1.1). Therefore, we compute once for all the homogenized electric resis-
tivity by solving a cell problem. The electric resistivity is then upscaled by means
of:

σ−1
M =

1

|Ωm|

∫
Ωm

(
(σm)−1(1− curly θ(y))

)
dy, (4.114)

where the periodic functions θ = (θ1,θ2,θ3)T are solutions of the cell problem: find
θi ∈H(curl;Y) such that∫

Ωm

(curly θ
′
)T (σm)−1

(
curly θi − ei

)
dy = 0 (4.115)

holds for all θ
′ ∈H(curl;Y). Another approach consists in computing the homoge-

nized electric conductivity σM using the approach described in the section 4.3.3 and
then invert it.

The upscaling of the nonlinear magnetic law is performed by simple averaging
as a consequence of the two-scale convergence of the magnetic flux density b :

1

|Ωmc|

∫
Ωmc

B(h1 + hM + κ(jM × y))dy+

1

|ΩC
mc|

∫
ΩC
mc

B(hM − grady φc)dy = BM . (4.116)

The tangent matrix ∂BM/∂hM for the Newton–Raphson scheme is obtained using
the finite differences method like the one used in section 4.3.3. Three mesoscale
problems similar to (4.93) with constant (time and space independent) magnetic field
perturbation terms δhi are solved. The term δhi is added to the macroscale source
in the direction “i” and the total (perturbed) mesoscale magnetic field becomes:
hm = hM + grady φc + δhi. The three-dimensional perturbed problem then reads:
find φc ∈ H1(Y) such that(

B(hM − grady φc + δhi),grady φ
′

c

)
ΩC

mc

= 0, (4.117)

hold for all test functions φ
′
c ∈ H1(Y) and for every t ∈]0, T [ and the two-dimensional

mesoscale weak formulation becomes: φc ∈ H1(Y) such that(
B(hM − grady φc + δhi),grady φ

′

c

)
ΩC

mc

= 0, (4.118)

hold for all test functions φ
′
c ∈ H1(Y) and for almost every t ∈]0, T [.

4.4.4 Finite element implementation

An approach similar to the one used in section 4.3.4 is hereby described for the
h-conform formulations. The macroscale and the mesoscale problems are solved in
a staggered way using the FE method. Both problems are nonlinear and solved
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using the Newton–Raphson scheme. The numerical schemes of the macroscale and
the mesoscale problems remain almost the same. We will point out the differences
if they exist.

The first step for the numerical solution is to spatially discretize the fields. We
use mixed elements and get the following expressions:

h(x, t) =
∑
i∈Ne

hi(t)S
i
e(x), (4.119)

φ(x) =
∑
k∈Nn

φkS
k
n(x) (4.120)

j(x, t) =
∑
i∈Ne

hi(t)curlSi
e(x), (4.121)

∂th(x, t) =
∑
i∈Ne

dhi(t)

dt
Si

e(x), (4.122)

gradφ(x) =
∑
k∈Nn

φkgradSk
n(x). (4.123)

The fields h and φ are used to represent both the macroscale fields hM and φM

and the mesoscale fields hm and φm. The basis functions Si
e(x) and Sk

n(x) are
chosen as the standard edge and nodal Whitney forms, spanning discrete subspaces
of H(curl; Ω) and H1(Ω), respectively [90]. The degree of freedom hi(t) and φk

are the unknowns of the FE problem and Ne and Nn the total numbers of the
unknowns of the fields h and φ, respectively. With formulae (4.119)–(4.123) we get
the following discretized equations:

M (H)
dH

dt
+RH + g(φ) = j, (4.124)

where H and φ are vectors of the unknowns hi(t) and φk, respectively. These
equations are valid for the macroscale and the mesoscale problems.

For the macroscale problem, the matrices in (4.124) are given by:

mi j =
∑

Ωe∈Ωc

∑
i,j∈Ne

(∂BM

∂hM

(∑
i∈Ne

hM i(t)curlx S
i
e(x),x

)
Si

e(x),Sj
e(x)

)
Ωe

, (4.125)

ri j =
∑

Ωe∈Ωc

∑
i,j∈Ne

(
σ−1
M (x)curlx S

i
e(x), curlx S

j
e(x)

)
Ωe

, (4.126)

gj =
∑
Ωe∈Ω

∑
j∈Nn

(
BM

(
hs −

∑
i∈Nn

φM igradx S
i
n(x),x

)
,gradx S

j
n(x)

)
Ωe

, (4.127)

jj =
∑

Ωe∈Ωs

∑
j∈Ne

(
σ−1
M (x)js(x), curlx S

j
e(x)

)
Ωe

, (4.128)

where hM i and φM i are the degrees of freedom of the macroscale fields.

For the mesoscale problem, the matrices in (4.124) are given by:
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mi j =
∑

Ωe∈Ωc

∑
i,j∈Ne

( ∂B
∂hm

(hM + κ(jM × y) +
∑
i∈Ne

hc i(t)curly S
i
e(y),y)

Si
e(y),Sj

e(y)
)

Ωe

, (4.129)

ri j =
∑

Ωe∈Ωc

∑
i,j∈Ne

(
σ−1(y)curly S

i
e(y), curly S

j
e(y)

)
Ωe

, (4.130)

gj =
∑
Ωe∈Ω

∑
j∈Nn

(
B
(
hM −

∑
i∈Nn

φc igrady S
i
n(y),y

)
,grady S

j
n(y)

)
Ωe

, (4.131)

jj =
∑

Ωe∈Ωs

∑
j∈Ne

(
σ−1(y)js(y), curly S

j
e(y)

)
Ωe

, (4.132)

where hc i and φc i are the degrees of freedom of the mesoscale, correction fields.

We use the Euler-implicit time-discretization scheme for the time derivative in
(4.55). This leads to the following nonlinear full-discrete equation:

M(H
n+1

)
H

n+1 −Hn

∆t
+RH

n+1
+ g(φ) = j, (4.133)

which relates the vector unknowns H
n+1

at time tn+1 = tn + ∆t with previous
values H

n
computed at tn. Problem (4.133) is nonlinear and needs to be solved

using nonlinear techniques.

We use the Newton – Raphson method for solving both the mesoscale and the
macroscale problems. To this end, we define the residual:

r(H
n+1

,φ) = M(H
n+1

)
H

n+1 −Hn

∆t
+RH

n+1
+ g(φ)− j, (4.134)

which must go to zero with a prescribed tolerance. The residual for the nonlinear
iteration m + 1 can be expressed in terms of the residual at the previous timestep
m plus a linear tangent contribution:

r(H
n+1

m+1,φm+1) = r(H
n+1

m ,φm) +
∂r

∂H
n+1

∣∣∣
H

n+1
m ,φm

(H
n+1

m+1 −H
n+1

m )

+
∂r

∂φ

∣∣∣
H

n+1
m ,φm

(φm+1 − φm) ' 0, (4.135)

which leads to the final system:

K(H
n+1

m+1 −H
n+1

m ) +L(φm+1 − φm) = −r(H
n+1

m ,φm). (4.136)

The elements of the tangent matrix in (4.136) are given by:

kij =
1

∆t
mij + rij, (4.137)
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lij =
∂gj
∂φmi

=
∑

Ωe∈ΩC
c

∑
i,j∈Nn

(
B(htot)gradSi

n(y),gradSj
n(y)

)
Ωe

, (4.138)

and therefore one needs to know ∂B/∂h in order to compute K.

The pseudocode of the overall multiscale algorithm for the h-conform formula-
tions is presented in Figure 4.4.
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Macro Meso

• Read input (macro mesh, material laws, etc.). Generate meso meshes

• Prescribe BCs.

• Initialize hM (t = 0)

• Begin time loop while tn < tf do:

(a) Begin nonlinear loop
while (m < mmax) and (res > tol) do:

◦ For each quadrature point: -
hM , jM

downscaling

Cell problem analysis

1. Prescribe the BCs

1. Initialize hm(t = tn)

2. Impose the macro sources

3. Solve the cell problem

4. Compute bM and ∂BM/∂hM
◦ Assemble matrix and RHS: �

hM , ∂BM/∂hM

upscaling

◦ Solve

◦ Check convergence

1. If not, m← m+ 1.

2. Else, save. Leave the nonlinear loop and go to (b).

End nonlinear loop.

(b) tn ← tn + ∆t.

• End time loop.

Figure 4.4: Pseudocode of the multiscale algorithm for the nonlinear multiscale
magnetic flux field conforming formulations.
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4.4.5 The static case

The formulations for the static case are defined from the following magnetostatic
multiscale problem:

curlhε = js, (4.139)

div bε = 0, (4.140)

bε(x) = B
(
hε(x),x,

x

ε

)
, (4.141)

obtained from equations (2.59)–(2.59) (see section 2.5.5). In this case, the magnetic
field reads hε = hs − gradφε and the weak form (4.140) reads: find φε ∈ H1

h(Ω)
such that (

B(hs − gradφε(x)),gradφ′
ε
(x)
)

Ω
+ 〈n · b, φ′ε〉Γh

= 0, (4.142)

holds for all φ
′ε ∈ H1 0

h (Ω). The source term hs can be computed using the approach
described in section 2.4. This problem can be solved using the HMM approach.

The macroscale problem is governed by the following weak equation: find φM ∈
H1

h(Ω) such that(
BM(hs − gradφM),gradφ

′

M

)
ΩM

+ 〈n ·BM(hs − gradφM), φ
′

M〉Γh
= 0, (4.143)

holds for all φ
′
M ∈ H1 0

h (Ω).

The mesoscale problem is governed by the weak form: find φc ∈ H1(Y) such that(
B(hM − gradφc),gradφ

′

c

)
Ωm

= 0, (4.144)

holds for all φ
′
c ∈ H1(Y). The macroscale field hM in (4.144) is given by hM =

hs − gradφM .

We can use the same approach like the one used for the dynamic problem in
section 4.3. To this end we express the mesoscale magnetic scalar potential φm in
terms of the macroscale magnetic scalar potential φM with slow variations and the
correction term φc that accounts for the rapid variations

φm(x,y) = φlin
M (x) + φc(x,y) = φM(x) + y · gradx φM(x) + φc(x,y). (4.145)

Applying the gradient operator to both sides of (4.145) and integrating over the
mesoscale computational domain gives:∫

Ωm

grady φm(x,y) dy =

∫
Ωm

gradx φM(x) dy +

∫
Γm

nφc(x,y) dy, (4.146)

where and Γm is the boundary of the microdomain Ωm. Assuming that the average of
the mesoscale magnetic field is equal to the mesoscale magnetic field (and therefore
that the surface integral in (4.146) vanishes), we can write:

1

|Ωm|

∫
Ωm

grady φm(x,y) dy =
1

|Ωm|

∫
Ωm

gradx φM(x)dy (4.147)
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which implies that the magnetic field is consistent between the macroscale and the
mesoscale. Furthermore, it infers periodic boundary conditions for the correction
term φc(x,y). Note that the surface integral in (4.146) vanishes.

The upscaling of the nonlinear magnetic law is performed by simple average as
a consequence of the two-scale convergence of the magnetic flux density b :

1

|Ωm|

∫
Ωm

bmdy = bM . (4.148)

This overall homogenization process can then be shown to be equivalent to a varia-
tional formulation with equal magnetic energies at the mesoscale and the macroscale
levels:

1

|Ωm|

∫
Ωm

hm(x,y) ·B(hm(x,y),x,y) dy =

hM(x) ·BM(hM(x),x). (4.149)

The tangent matrix ∂BM/∂hM for the Newton–Raphson scheme is obtained using
the finite difference method described in section 4.3.3.
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Chapter 5

Numerical tests

5.1 Introduction

In this chapter, we carry out numerical tests to validate the homogenization theory
and the multiscale methods developed in chapter 3 and chapter 4. For simplicity,
we restrict ourselves to two-dimensional problems that can be solved using standard
conforming finite elements, and chose validation problems accordingly. We consider
b-conform and h-conform formulations which allows for in-plane and out-of-plane
configurations of eddy currents. Two types of applications are also considered: soft
magnetic composites (SMC) and lamination stacks. The choice of these examples
was motivated by the many applications in electrotechnics (electric transformers,
electric motors, electric generators, etc.) due to their interesting electromagnetic
properties resulting from their multiscale nature.

To start with, we consider in section 5.2 two SMC geometries for validating the
b- and h-conform multiscale formulations. We focus on the convergence of the
fields with respect to the meshes, the consistency between the fine-scale, the local
mesoscale and the macroscale fields and the convergence of the global quantities
(eddy currents losses, magnetic energy). We also test the limitations of the multi-
scale models by checking the influence of the different terms in the formulations, in
particular the influence of eddy currents in the mesoscale problems. As a second
validation example, we present in section 5.3 results obtained by applying the theory
to a lamination stack.

5.2 Soft magnetic composites

The actual geometry of SMC is an aggregation of three-dimensional metallic grains
surrounded by a dielectric binder (Figure 5.1 (a)). In this section we assume an
idealized SMC toroidal structure with grains stretched in one direction and that
rather looks like wires (Figure 5.1 (b)). The obtained geometry is similar to the
geometry made of wound wires with each wire modeled by a cylinder (Figure 5.1
(c)).

75
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... ...

...
...

(a) (b)

(c) (d)

ec

ei

conductor

dielectric

Figure 5.1: SMC two-dimensional geometry used for the multiscale formulations.
(a): The real three-dimensional coarse-grained geometry. (b): Stretched SMC struc-
tures. (c): A single stretched SMC structure. (d): Basic two-dimensional elementary
cell used for solving the cell problem (ec = 45µm and ei = 2.5µm).

With such an assumption, all the vertical cuts passing through the axis of the
toroid are similar and therefore the problem can be reduced to a two-dimensional
problem where the basic elementary cell looks like the one depicted in Figure 5.1 (d).
This cell is made of two parts: a metallic part labeled conductor which is conducting
and magnetic and a dielectric part labeled dielectric which is non-magnetic. We
consider it non-conducting for the b-conform formulations and slightly conducting
for the h-conform formulations. The latter case enables to consider problems with
global eddy currents at the macroscale.

5.2.1 Description of the problem for the b-conform formu-
lations

The primal unknown field is the magnetic flux density b which can be derived from
a vector potential a as: b = curla. We want the unknown a to have only the
z-component, i.e., a = (0, 0, az) so that nodal elements can be used. This means
that b will be constrained in the xy-plane. We want also the magnetic field h to
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Inductor SMC

Air

L ea
ei

egap

. j

j

Figure 5.2: Soft magnetic composite two-dimensional geometry used for the a− v
multiscale formulations. Two opposite source current are imposed in the top and
bottom inductors. The lengths are given by L = 1000µm, ea = 150

√
2/2µm,

ei = 100µm and egap = 100µm. Only 100 grains out of 400 are drawn on the image.

have only xy components (which is true for isotropic and orthotropic materials but
not always true for arbitrary anisotropic materials).

Using Ampère’s equation curlh = js+σe, the source current js must be imposed
perpendicular to the xy-plane js = (0, 0, js) with js = js0 f(t) where js0 is the
constant amplitude and f(t) = sin(2πft).

Depending on the operating frequencies (the maximum frequency that has been
tested is f = 50 kHz and corresponds to λ = 6000 m), the resulting wavelengths are
huge in comparison to the size of the structure (around 500µm) and therefore the
assumption of a magnetoquasistatic problem can be made.

We consider the elementary cell in Figure 5.1-(d). The dielectric is a perfect insu-
lator governed by a linear magnetic law with µr = 1. The conductor has an isotropic
electric conductivity σ = 5 106 S/m and is governed by the following magnetic laws:

1. a nonlinear exponential law H(b) =
(
α+ β exp(γ||b||2)

)
b with α = 388, β =

0.3774 and γ = 2.97 [57].

2. a Jiles - Atherton hysteresis model with parameters Ms = 1, 145, 500 A/m,
a = 59 A/m, k = 99 A/m, c = 0.55 and α = 1.3 10−4 (see section 4.3.4 [19,94].)



78 CHAPTER 5. NUMERICAL TESTS

Inductor

SMC

Air

Γv

Γinf

Γh

Inductor

SMC

Air

Γv

Γinf

Γh

Figure 5.3: Geometry used for the a − v computations. Only a quarter of the
geometry is used thanks to the symmetries. Top: Reference geometry. Only 25
grains out of 100 are drawn on the image. Bottom: Homogenized geometry.
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Figure 5.4: Typical mesh used for mesoscale computations.

Thanks to the symmetries of the geometry, of physical properties and boundary
conditions, only a quarter of the geometry is used (top image of Figure 5.3 for the
reference case and bottom image of Figure 5.3 for the computational case.)

The following boundary conditions are also imposed on the boundary in order
for the problem to be well-posed:

n · b|Γinf = 0 −→ n× a|Γinf = 0, (5.1)

n · b|Γh
= 0, (5.2)

n · j|Γv = 0 −→ n× h|Γv = 0. (5.3)

Equations (5.1) and (5.2) express the impermeability of the boundary Γh to the
magnetic flux density and the vanishing of the magnetic flux density b at infinity
Γinf . The condition n × a|Γinf = 0 in (5.1) is one possible way of imposing a
zero flux density across Γinf and, in the two-dimensional setting, this amounts to
imposing az|Γinf

= 0. Equation (5.3) expresses the zero net electric current crossing
the boundary Γv.
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5.2.2 Results for the b-conform formulations

In this section, we compare computational results for the b-conform multiscale for-
mulations to the reference results.The latter are obtained by solving a finite element
problem on the entire, finely meshed multiscale domain (Figure 5.5 - top). A total

Figure 5.5: Top: geometry used for the validation of the b-conform multiscale
formulations taking advantage of symmetry. Flux lines are depicted as well. Bottom:
typical mesh used for the macroscale problem.

of 110282 triangular elements are used for the fine-scale problem.

Computational results are carried out on a macroscale, coarse mesh (a typical
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Table 5.1: SMC problem - b-conform formulations. Comparison of the reference
magnetic flux density and the computational (macroscale and mesoscale) magnetic
flux density (‖b‖, in T ) in different points of the macroscale domain { t = 6×10−6s}
.

Position (µm) Reference Meso Macro errmeso (%) errMacro (%)
(25, 25, 0) 0.0157652 0.0158937 0.0347775 0.82 120.60
(25, 475, 0) 0.0186482 0.0181317 0.0403767 2.77 116.52
(175, 175, 0) 0.0158077 0.0158738 0.0346577 0.42 119.25
(475, 25, 0) 0.0156693 0.0158615 0.0345838 1.23 120.70
(475, 475, 0) 0.0184396 0.0158563 0.0417285 14.01 126.30

mesh is depicted in Figure 5.5 - bottom) using triangular elements and mesoscale
problems are solved around each numerical quadrature point of the macroscale mesh
using a mesh that looks like the one in Figure 5.4.

Figure 5.6 depicts the different contributing terms involved in the resolution of
the mesoscale problem. The projection term which varies linearly on the mesoscale
domain is computed from the macroscale fields as aproj(x,y, t) = aM(x, t) + κ(y ×
bM(x, t)). This term is then used as a source for the computation of the correction
term ac(x,y, t) at the mesoscale level which allows to derive the total magnetic
vector potential atot(x,y, t) = ac(x,y, t) + aM(x, t) + κ(y × bM(x, t)).

The comparison of spatial cuts of the magnetic induction b, of the eddy currents
j and of the magnetic field h shows an excellent agreement between the reference
solution and the local solution computed on the mesoscale cells centered around
points of the computational domain and this for the nonlinear case (Figure 5.7) and
the hysteresis case (Figures 5.8–5.9). Small discrepancies are however observed near
the boundary of the domain (see Tables 5.1 and 5.2).

Table 5.1 displays the values ||b|| obtained from the reference solution (Refer-
ence), the macroscale solution (Macro) and the mesoscale solution (Meso) and the
relative pointwise errors errmeso and errmacro defined by:

errmeso(x, t) =
|bref(x, t)− bmeso(x, t)|

|bref(x, t)|
, (5.4)

and

errMacro(x, t) =
|bref(x, t)− bmacro(x, t)|

|bref(x, t)|
, (5.5)

for t = 6 × 10−6s. From this table, it can be concluded that the mesoscale error
which is small in the bulk (an error of about 1 %) becomes greater the closer to
the boundary of the computational domain (up to 14 %). Indeed, the periodicity
assumption is no longer respected in this case and therefore a cell located near the
boundary is not immersed in a periodic environment.

The macroscale error is huge and almost independent of the location of the
considered point.
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Table 5.2: SMC problem - b-conform formulations. Relative L2(0, T ) errors be-
tween the reference magnetic flux density and the mesoscale magnetic flux density
(errL2 meso) and between the reference magnetic flux density and the macroscale mag-
netic flux density (errL2 Macro) for different points of the computational domain.

Position (µm) errL2 meso (%) errL2 Macro (%)
(25, 25, 0) 3.27 11.49
(25, 475, 0) 4.93 15.13
(175, 175, 0) 3.01 11.88
(475, 25, 0) 3.04 12.27
(475, 475, 0) 15.46 22.91

Table 5.2 provides relative L2(0, T ) errors between the reference magnetic in-
duction bref(x, t), the mesoscale magnetic induction bmeso(x, t) and the macroscale
magnetic induction bMacro(x, t). For a point x of the computational domain, these
L2 errors are given by the formula:

errL2 meso(x, t) =
||bref(x, t)− bmeso(x, t)||L2(0,T )

||bref(x, t)||L2(0,T )

, (5.6)

and

errL2 Macro(x, t) =
||bref(x, t)− bMacro(x, t)||L2(0,T )

||bref(x, t)||L2(0,T )

. (5.7)

(5.8)

Results of Table 5.2 lead to the same conclusions as the ones of Table 5.1, i.e., the
errors increase as the point gets close to the boundary of the computational domain.

In Figure 5.10 we compare the hb reference (Reference) and computational
(Computational) curves obtained from the local field computed in cells located in
the bulk (top) and near the boundary (bottom). A good agreement is shown for
points located in the bulk and minor differences can be observed for points located
near the boundary as it has been noted from Tables 5.1 and 5.2.
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−2.3125e− 06 −1e− 06 3.125e− 07

az proj

−1.61045e− 07 −3.01187e− 08 1.00808e− 07

az c

−2.34262e− 06 −1.03012e− 06 2.82381e− 07

az tot

Figure 5.6: Terms contributing to the total mesoscale magnetic vector potential for
a cell problem centered in (325, 25, 0.0)µm. Top: the z-component of the projection
term aproj(x,y, t) = aM(x, t) + κ(y × bM(x, t)). Middle: the z-component of the
correction term ac(x,y, t). Bottom: the z-component of the total mesoscale vector
potential atot(x,y, t) {nonlinear case with js0 = 35 107 A/m2, f = 25 kHz}.
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Figure 5.7: SMC problem, b-conform formulations, nonlinear case. Spatial cuts
of the z-component of the eddy currents j (top) and of the x-component of the
magnetic induction b (bottom) along the line {x = 475, z = 0}µm. (f = 50 kHz
and t = 6× 10−7s).
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Figure 5.8: SMC problem, b-conform formulations, hysteretic case. Spatial cuts
of the z-component of the eddy currents j (top) and of the x-component of the
magnetic induction b (bottom) along the line {x = 25, z = 0}µm. (f = 10 kHz,
t = 5 10−7s for the curve of eddy currents and t = 25 10−7s for the curve of the
magnetic induction).
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Figure 5.9: SMC problem, b-conform formulations, hysteretic case. Spatial cuts
of the x-component of the magnetic field h along the line {x = 25, z = 0}µm.
(f = 10 kHz and t = 5 10−5s).
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Figure 5.10: SMC problem, b-conform formulations, hysteretci case. Reference
(Reference) and computational (Computational) hb hysteresis curves for points lo-
cated at (175, 175, 0 )µm (top) and (475, 475, 0)µm (bottom) {f = 2500 Hz.}
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Figure 5.11: SMC problem, b-conform formulations, hysteretitc case. Instanta-
neous Joule losses and absolute error between the reference (Ref) and the com-
putational (Comp) solutions. Two frequencies are considered: f = 50 Hz and
f = 2500 Hz.
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Figure 5.12: SMC problem, b-conform formulations, hysteretitc case. Evolution of
magnetic power and of the absolute error on magnetic power as a function of time.
Two frequencies are considered: f = 50 Hz and f = 2500 Hz.
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Figures 5.11 and 5.12 depict evolution of global quantities (Joule losses and the
magnetic power) for excitations at two different frequencies: 50 Hz and 2500 Hz
(which correspond to the case with higher skin effect). A good agreement between
Joules losses is observed for both frequencies: a maximum error of 1.41 % and 6.69 %
are observed for f = 50 Hz and f = 2500 Hz, respectively. A good agreement for
magnetic energy is also shown in Figure 5.12.

Table 5.3 contains the relative L∞(0, T ) error of the Joule losses as a function of
frequency. This L∞(0, T ) error is given by:

errL∞(0,T ) =
||Σref(t)− Σcomp(t)||L∞(0,T )

||Σref(t)||L∞(0,T )

, (5.9)

where Σref (t) is the curve of reference eddy current losses and Σcomp(t) is the curve
of computational eddy current losses (the mesoscale eddy current losses Σmeso(t)
and the macroscale eddy current losses Σmacro(t)). As can be seen from Table 5.3,

Table 5.3: Soft magnetic composite problem - b-conform formulations. Relative
L∞(0, T ) norm error on the total Joule losses as a function of the frequency.

Frequency (Hz) errL∞(0,T ) (%)
50 1.41
100 1.46
250 1.61
500 2.12
1000 3.42
2500 6.69
5000 15.1
10000 20.4

the relative L∞(0, T ) error increases as a function of the frequency suggesting that
greater errors are made in the case of enhanced skin effect.

The influence of different terms has also been tested. The top image of Figure
5.13 shows the evolution of the component (∂HM/∂bM)11 as a function of time. for
both the case where the tangent matrix ∂HM/∂bM and hM are upscaled and used
in the macrocale model and the case where only ∂HM/∂bM is upscaled and then
the homogenized magnetic field is computed as (hM = ∂HM/∂bM)bM . A perfect
agreement is shown in both cases. The bottom image of 5.13 depicts the evolution
of (∂HM/∂bM)11 as a function of time for the case the mesoscale problems include
eddy currents (see problem (4.26)-(4.30)) and for the case the mesoscale problems
are solved using equations from the homogenization theory (see problem (3.107)-
(3.109)). From this figure, it can be concluded that the eddy currents have no great
influence on the computation of the homogenized tangent matrix. However these
currents are essential for recovering accurate local fields (see Figures (5.7)-(5.12)).

The influence of the mesoscale mesh is also investigated in Figure 5.15. In this
case, the mesoscale mesh seems to have no great influence on the computation of
eddy current losses even if a high skin is considered at the mesoscale level.
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Figure 5.13: SMC problem, b-conform formulations, hysteretic case. Evolution
of the component (∂HM/∂bM)11 of the tangent matrix with respect to time. Top:
computations done considering the upscaling (or not) of the homogenized magnetic
field hM . Bottom: computations done considering (or not) the eddy currents at the
mesoscale level.

Figure 5.16 shows the convergence of the residual resulting from the resolution by
the Newton–Raphson method as a function of the number of nonlinear iteration. It
can be seen that the macroscale problem converges quadratically while the mesoscale
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h

Figure 5.14: SMC problem - b-conform formulations, nonlinear case. Influence of
the mesoscale mesh. Magnetic field flux lines for a cell centered at (25, 25, 0)µm.
Top-right: Mesh 200 with 1424 elements, top-left: Mesh 100 with 612 elements.
bottom-right: Mesh 40 with 216 elements and bottom-left: Mesh 25 with 168 ele-
ments. {f = 50 KHz}.

problems converge at an average rate of 1.33.
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Figure 5.15: SMC problem - b-conform formulations, nonlinear case. Influence of
the mesoscale mesh on the evolution of the eddy currents losses for a cell centered
at (25, 25, 0)µm. {f = 50 KHz}.
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Figure 5.16: SMC problem, b-conform formulations, hysteretic case. Convergence
of the error as a function of nonlinear iterations. Top: mesoscale problem. Bottom:
macroscale problem
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5.2.3 Description of the problem for the h-conform formu-
lations

To define a two-dimensional problem for h-conform formulations which can be solved
using nodal elements, the primal unknown must have only the z-component, i.e.,
h = (0, 0, hz). The magnetic induction also has only the z-component b = (0, 0, bz)
if the materials considered are isotropic or more generally, orthotropic (which is the
case of the materials that we study in this chapter). The two-dimensional geometry
is depicted in Figure 5.17. Using Ampère’s equation curlh = js + σe, it can be

Inductor SMC

Air

L
ea

ei

js(t)

Figure 5.17: SMC two-dimensional geometry used for the h multiscale formula-
tions. A source magnetic field js(t) is imposed in the xy-plane. The different di-
mensions are defined respectively by L = 1000µm, ea = 150

√
2/2µm, ei = 100µm

and egap = 100µm. Only 10 × 10 SMC grains are shown instead of a 20 × 20
coarse-grained geometry used for computations.

straightforwardly concluded that eddy currents σe and the source current density
js must be constrained in the xy plane.

The wavelength corresponding to the highest frequency f = 25 MHz is λ = 12 m
which is huge in comparison to the size of the structure (500µm) and therefore the
magnetoquasistatic assumption can be made.

Applying the integral form of the Ampère’s equation:∫
S

curlh · ds =

∮
C

h · dl =

∫
S

j · ds = 0, (5.10)
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on any surface located in the region outside of the inductor allows to conclude the
constance of the magnetic field h is the non-conducting region outside the inductor
and therefore equal to zero which is the value of the magnetic field at infinity h|Γinf

=
0. Similarly, applying the integral form of the Ampère’s equation on any closed curve
surrounding the inductor, a (time-dependent) magnetic source field hs(t) can be
computed in the entire non-conducting region labeled air and therefore the problem
defined in Figure 5.17 can be replaced by another one where the source field hs(t) is
imposed on the boundary of the conducting region of the SMC Γ (see Figure 5.18).

Γ

Figure 5.18: Simplified reference geometry used for the h formulations. A source
magnetic fields hs is derived from js and imposed on the boundary Γ.

We consider the elementary cell in Figure 5.1-(d) defined on page 79. The con-
ductor has an isotropic conductivity σc = 5 106 S/m and is governed by the following
magnetic laws:

1. a (non-magnetic) linear law with µr = 1,

2. the Frohlich-Kennelly nonlinear law B(h) =
( 1

α + β |h|
+ γ

)
h with α =

1/(µ0 µrw) where µrw ' 1000 is the relative permeability for weak fields,
β ' 1.8 is the saturation value of the magnetic induction and γ = µ0 [57].

The dielectric is governed by a linear magnetic law with µr = 1 and is slightly con-
ductor with Ratio = σc

c/σc. We have considered two values of electric conductivity
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with Ratio = 10−5 and Ratio = 10−3, respectively. The linear electric conductivity

Figure 5.19: Top: the homogenized conductivity σM as a function of the ratio of
conductivities in Ωc and ΩC

c . Two approaches are used: the div − grad approach
and the curl− curl approach. Bottom: the relative error between the homogenized
conductivities obtained using the div− grad and the curl− curl approaches.

can be homogenized by solving either the div − grad problem (3.33),(3.37) or the
curl− curl problem (3.46),(3.48) which provides σ−1

M and then by inversing this.

Figure 5.19–top depicts the values of the homogenized conductivity σM as a
function of Ratio. The homogenized conductivities obtained using both approaches
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are very close. The relative error depicted in Figure 5.19–bottom is defined as:

Relative error(Ratio) =
|σMcc(Ratio)− σMdg(Ratio)|

|σMcc(Ratio)|
, (5.11)

where σMcc(Ratio) is the homogenized conductivity computed using the curl−curl
problem and σMdg(Ratio) is the homogenized conductivity computed using the div−
grad problem for a given value of Ratio. The relative error reaches a maximum value
of 0.012 % for small value of Ratio.

5.2.4 Results for the h-conform formulations

To present results for the h-conform formulations we proceed in the same way as for
the b-conform formulations. Figure 5.20 - top shows the reference magnetic field href

computed on the entire, finely meshed multiscale structure with 1 526 564 triangular
elements. The macroscale results are computed on a coarse mesh similar to the one
in Figure 5.20 - bottom. We always use a mesh similar to the one in Figure 5.4 for
the mesoscale computations.

The choices of σc
c, of the magnetic permeability for the conducting region µc

and of the frequency f allow to determine whether (or not) there are eddy cur-
rents at the mesoscale level and/or at the macroscale level depending on the values
of the mesoscale skin depth δm = 1/

√
πfσcµc and of the macroscale skin depth

δM = 1/
√
πfσMµM . The parameters σM and µM in the expression of δM are the ho-

mogenized conductivity and the homogenized permeability, respectively. We have
used two values of electric conductivities: σC

c = 105σc for problems without sig-
nificant macroscale eddy currents and σC

c = 103σc for problems with significant
macroscale eddy currents. Studies involve frequencies up to 100 MHz for the linear
case and 1 MHz for the nonlinear case.

The contribution of different terms involved in the resolution of the mesoscale
problem are depicted in Figure 5.21.
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Figure 5.20: Top: geometry used for the validation of the h-conform formulations.
The z-component of the magnetic field is depicted as well. Bottom: mesh used for
the macroscale problem.
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89049.9 108132 127215

hz proj

-39794.5 -5611.44 28571.6
hz c

67296.2 110754 154212
hz tot

Figure 5.21: Contributing terms to the mesoscale magnetic field for a cell problem
centered at (325, 25, 0)µm. Top: the correction term hc(x,y, t). Middle: the pro-
jection term hproj(x,y, t) = hM(x, t)+κ(y×jM(x, t)). Bottom: the total mesoscale
magnetic field htot(x,y, t) = hc(x,y, t) + hM(x, t) + κ(y × hM(x, t)) { linear case
with js0 = 106 A/m2, f = 25 MHz and t = 2 10−9}.
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The projection term which varies linearly on the cell is computed from the
macroscale fields as hproj(x,y, t) = hM(x, t) + κ(y × jM(x, t)). This term is
then used as a source term for the computation of the correction term hc(x,y, t)
which allows to derive the total mesoscale magnetic field htot(x,y, t) = hc(x,y, t)+
hM(x, t) + κ(y × hM(x, t)).

For problems with macroscale eddy currents (δM ≈ LM where LM is the
macroscale characteristic length), the imposition of periodic boundary conditions
(see section 4.4.3) leads to good results. The comparison of the magnetic induction
b, of the magnetic field h and of the eddy currents j, shows an excellent agreement
between the reference solution and the local solution computed on the mesoscale
cells centered around points of the computational domain (Figures 5.22-top, 5.23-
top and 5.24-top. Small discrepancies are however observed near the boundary of
the domain (see Table 5.4).

Table 5.4 displays the values ||b|| obtained from the reference solution (Refer-
ence), the macroscale solution (Macro) and the mesoscale solution (Meso) and the
relative pointwise errors errmeso and errmacro defined by:

errmeso(x, t) =
|bref(x, t)− bmeso(x, t)|

|bref(x, t)|
, (5.12)

and

errMacro(x, t) =
|bref(x, t)− bmacro(x, t)|

|bref(x, t)|
, (5.13)

for t = 4× 10−9s.

For problems without macroscale eddy currents (δM � LM), periodic boundary
conditions defined in section 4.4.3 lead to erroneous results for the magnetic field
and the magnetic flux density. The definition of a new mesoscale problem with zero
boundary conditions at boundaries with small values of the electric conductivity
(and therefore that are not crossed by important macroscale eddy currents) pro-
vides an excellent agreement between the reference solution and the local solution
computed on the mesoscale cells centered around points of the computational do-
main and this for linear and nonlinear problems (Figures 5.22-bottom, 5.23-bottom
and 5.24-bottom for the linear case and Figures 5.26 and 5.27 for the nonlinear
case). Compared to the previous case with macroscale eddy currents, the accuracy
of mesoscale solutions improves even near the boundary of the domain (see Table
5.5 and 5.6). It remains to be fully understood why periodic boundary conditions
defined in section 4.4.3 should be changed in order to improve the accuracy.

Table 5.5 displays the values ||h|| obtained from the reference solution (Refer-
ence), the macroscale solution (Macro) and the mesoscale solution (Meso) and the
relative pointwise errors errmeso and errmacro defined by:

errmeso(x, t) =
|href(x, t)− hmeso(x, t)|

|href(x, t)|
, (5.14)

and

errMacro(x, t) =
|href(x, t)− hmacro(x, t)|

|href(x, t)|
, (5.15)
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for t = 4 × 10−9s. Tables 5.6 provides relative L2(0, T ) errors between the refer-
ence magnetic field href(x, t) and the mesoscale magnetic field hmeso(x, t) and the
macroscale magnetic field hMacro(x, t). For a point x of the computational domain,
this L2 errors are given by the formula:

errL2 meso(x, t) =
||href(x, t)− hmeso(x, t)||L2(0,T )

||href(x, t)||L2(0,T )

, (5.16)

and

errL2 Macro(x, t) =
||href(x, t)− hMacro(x, t)||L2(0,T )

||href(x, t)||L2(0,T )

. (5.17)

From results of Table 5.4, it can be seen that the errors on magnetic flux density
increase as the point gets close to the boundary of the computational domain.

Table 5.4: SMC problem with global eddy current (σC
c = 10−3 σc) - h-conform

formulations, linear case. Comparison of the reference magnetic flux density and
the computational (macroscale and mesoscale) magnetic flux density (‖b‖, in T) in
different points of the macroscale domain { t = 4 10−9s} .

Position (µm) Reference Meso Macro errmeso errMacro

(25, 25, 0) 0.158763 0.160889 0.208962 1.33 31.60
(25, 475, 0) 0.525468 0.594662 0.695526 13.16 32.36
(175, 175, 0) 0.223458 0.234625 0.252301 4.99 12.90
(475, 25, 0) 0.525478 0.594665 0.695526 13.16 32.36
(475, 475, 0) 0.569264 0.644839 0.718787 13.27 26.26

The comparison of Joule losses computed from mesoscale densities (Meso) are
in good agreement with the reference results (Ref). The developed method allows
to effectively represent fields and losses in the transient and in the steady state
regimes. Joule losses computed directly from the macroscale fields (Macro) exhibit
large deviations with respect to reference results. In all cases, the error increases
with frequency (see Figure 5.7). The same conclusions hold for the computation of
magnetic power.

Table 5.3 contains the relative L∞(0, T ) error of the Joule losses as a function of
frequency. This L∞(0, T ) error is defined by the expression (5.9).

The influence of the macroscale mesh is depicted in Figure 5.29 and Figure 5.30.
As can be seen in Figure 5.29, the macroscale mesh must be able to capture the
variations of the macroscale solution in order to have accurate eddy current losses.
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Figure 5.22: SMC problem, h-conform formulations, linear case. Spatial cuts of
the z-component of the magnetic flux density h along the line { x = 475, z = 0}
,µm. Top: case with {σC

c = 10−3×σc, f = 25 MHz and t = 4 10−9 s}. Bottom: case
with {σC

c = 10−5 × σc, f = 100 MHz and t = 10−9 s}
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Table 5.5: SMC problem without global eddy current (σC
c = 10−5 σc) - h-conform

formulations, linear case. Comparison of the reference magnetic field and the com-
putational (macroscale and mesoscale) magnetic field (‖h‖, in A/m) in different
points of the macroscale domain { t = 4 10−9s} .

Position (µm) Reference Meso Macro errmeso (%) errMacro (%)
(25, 25, 0) 454809 454285 582023 0.1152 27.97
(25, 475, 0) 460048 459575 587144 0.1028 27.63
(175, 175, 0) 456082 455373 583052 0.1555 27.84
(475, 25, 0) 459979 459577 587144 0.0874 27.65
(475, 475, 0) 460474 460080 587678 0.0856 27.62

Table 5.6: SMC problem h-conform formulations linear case. Relative L2(0, T )
error between the reference and the computational (macroscale-mesoscale) magnetic
field.

Position (µm) Relative error Meso (%) Relative error Macro (%)
(25, 25, 0) 0.0536 14.122
(25, 475, 0) 0.0477 14.119
(175, 175, 0) 0.0667 14.097
(475, 25, 0) 0.0398 14.126
(475, 475, 0) 0.0413 14.132

Table 5.7: SMC problem without global eddy current (σC
c = 10−5 σc), h-conform

formulations, linear case. Relative L∞(0, T ) error on the total Joule losses as a
function of the frequency.

Frequency (MHz) errL∞(0,T ) (%)
1 2.60

2.5 1.82
5 2.35
10 2.47
25 2.54
50 3.24
100 3.71
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Figure 5.23: SMC problem, h-conform formulations, linear case. Spatial cuts of
the z-component of the magnetic field h along the line { x = 475, z = 0}
,µm. Top: case with {σC

c = 10−3×σc, f = 25 MHz and t = 4 10−9 s}. Bottom: case
with {σC

c = 10−5 × σc, f = 100 MHz and t = 10−9 s}
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Figure 5.24: SMC problem, h-conform formulations, linear case. Spatial cuts of
the x-component of the electric current density j along the line { x = 475, z = 0}
,µm. Top: case with {σC

c = 10−3×σc, f = 25 MHz and t = 4 10−9 s}. Bottom: case
with {σC

c = 10−5 × σc, f = 100 MHz and t = 10−10 s}
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Figure 5.25: SMC problem, h-conform formulations, linear case with {σC
c =

10−5 σc, f = 100 MHz}. Top: instantaneous Joule losses. Bottom: magnetic power.
The curve labeled Ref is obtained from the reference solution, the curve labeled Meso
is obtained by upscaling eddy current losses densities from the mesoscale problems
and the curve labeled Macro is obtained from the macroscale solution.
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Figure 5.26: SMC problem, h-conform formulations, nonlinear case. Spatial cuts
of the z-component of the magnetic field h (top) and of the z-component of magnetic
flux density b (bottom) along the line { x = 475, z = 0}µm. {f = 1 MHz, σC

c =
10−3 σc and t = 10−7 s}.
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Figure 5.27: SMC problem, h-conform formulations, nonlinear case. Spatial cuts
of the x-component of the electric current density j along the line { x = 475, z =
0}µm. {f = 1 MHz, σC

c = 10−3 σc and t = 10−7 s}.
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Figure 5.28: SMC problem, h-conform formulations, nonlinear case with {σC
c =

10−5 σc, f = 1 MHz}. Top: instantaneous Joule losses. Bottom: magnetic power.
The curve labeled Ref is obtained from the reference solution, the curve labeled Meso
is obtained by upscaling eddy current losses densities from the mesoscale problems
and the curve labeled Macro is obtained from the macroscale solution.
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Figure 5.29: SMC problem, h-conform formulations, linear case. Influence of
the macroscale mesh on the time evolution of the instantaneous Joule losses (top)
and the time evolution of the magnetic power (bottom). The curve labeled Macro3

is obtained using the top - left mesh in Figure 5.30, the curve labeled Macro4 is
obtained using the top - right mesh in Figure 5.30 and the curve labeled Macro11 is
obtained using the bottom - left mesh in Figure 5.30. { f = 250 Hz }.
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hz macro

61.03 65.5863.30

hz macro

58.51 66.6862.59

hz macro

61.21 65.5963.40

hz macro

59.88 65.5862.73

Figure 5.30: SMC problem, h-conform formulations, linear case. Influence of the
macroscale mesh. Top - left: 20 elements. Top - right: 45 elements. Bottom - left:
500 elements. Bottom - right: reference mesh with 737268 elements.
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5.3 Lamination stack

We consider a stack of thin ferromagnetic sheets, as for example can be found in a
toroidal transformer surrounded by a wound coil (Figure 5.31 (a)). In this section
we will consider such a toroidal laminated structure with two different inductors,
amenable to nodal finite element discretization of b-conform and h-conform multi-
scale formulations.

ec

ei

(d)(c)

(a) (b)

Figure 5.31: Lamination stack two-dimensional geometry used for the multiscale
formulations. (a) : A real three-dimensional geometry of the a toroidal transformer
[22]. (b) : A piece of lamination stack. (c) : A three-dimensional lamination
+ insulatio layer. (d) : A square two-dimensional elementary cell used for the
homogenization computations (ec = 500µm and ei = 50µm).

The actual three-dimensional geometry of the lamination stack is depicted in
Figure 5.31 (b) and each lamination can be represented by Figure 5.31 (c). Similarly
to the SMC case, all cuts that pass through the axis of the toroid are similar and
therefore the cell in Figure 5.31 (d) can be used as a reference cell for the multiscale
computations. This cell is made of two parts: a metallic part labeled lamination
which is conducting and magnetic and a dielectric part labeled dielectric which is
non-magnetic. We consider it non-conducting for the b-conform formulations and
slightly conducting for the h-conform formulations. The latter case allows to have
a test case with global eddy currents at the macroscale.
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5.3.1 Description of the problem for the b-conform formu-
lations

The definition of the problem for the b-conform multiscale problem is done like the
b-conform multiscale problem for SMCs one carried out in section 5.2.1. The goal is
to have the unknown field a = (0, 0, az) with only the z-component so that we can
use the two-dimensional formulations developed in section 4.3.

Γinf

Γsym

laminations

air

inductor

insulator

Γinf

Γsym

homogenized stack

inductor

air

Figure 5.32: Top: reference geometry used for the a− v computations. Only half
of the geometry is used thanks to the symmetries. Bottom: geometry used for the
computational homogenization method.

To achieve this, we impose a source current density js = (0, 0, jsz) only the
z-component (see Figure 5.32) is imposed in the inductor with js = js0 sin(2πft)
where js0 is the constant amplitude.

We consider a model of a laminated core (16.45 mm × 16.45 mm) consisting of
30 laminations (thickness dl = 0.5 mm) and 29 insulation layers (thickness d0 =
0.05 mm). The filling factor is λ = dl/(dl + d0) = 0.91. Taking advantage of the
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symmetry, only half of the model has been studied (See Fig. 5.32). Note that as
we consider perfectly isolated laminations, there are no currents flowing from one
lamination to the other. Indeed, (σM)22 = 0 (where the index 2 stands for the
direction normal to the laminations) so that no eddy currents are to be accounted
for at the macroscale (jM = 0 and eM = 0).

The dielectric which is a perfect insulator is governed by a linear magnetic law
with µr = 1 and the conductor has an isotropic electric conductivity of σ = 5× 106

S/m and is governed by the following magnetic laws:

1. a nonlinear exponential law H(b) =
(
α+ β exp(γ||b||2)

)
b with α = 388, β =

0.3774 and γ = 2.97 [57].

2. a Jiles - Atherton hysteresis model with parameters Ms = 1, 145, 500A/m,
a = 59A/m, k = 99A/m, c = 0.55 and α = 1.3×10−4 (see section 4.3.4 [19,94]).

We also impose the following boundary conditions on the boundary of the do-
main:

n× a|Γinf = 0 −→ n · b|Γinf = 0, (5.18)

n · b|Γsym = 0. (5.19)

Equations (5.18) and(5.19) express the impermeability of the boundary to the mag-
netic flux (for Γsym) and the vanishing of the magnetic flux density b at infinity
Γinf .

5.3.2 Results for the b-conform formulations

The reference solution is obtained by a brute force approach, i.e. solving a finite
element problem on an extremely fine mesh of the whole stack consisting of 30
layers of 81 quadrangles for each lamination and 4 layers of 81 quadrangles for each
insulation layer (i.e. 41,148 elements for the conductors and the insulation layers).
The mesoscale problems are solved on square domains comprising one lamination
and one insulation layer (Figure 5.33 - right).

Each lamination is discretized with 30 layers of 10 quadrangles and each insula-
tion layer with 8 layers of 10 quadrangles. The coarse mesh of the lamination stack
contains 225 and 300 quadrangular elements, respectively for the nonlinear and the
hysteresis problems with one integration point per element. The computational
problem is solved over one period with 20 time steps per period for the nonlinear
problem and two periods with 120 time steps per period for the hysteresis problem.

For the nonlinear case, results obtained using the computational homogenization
approach are compared to those obtained using a brute force approach. Flux lines
obtained with the FE reference model are depicted in Figure 5.33 - left. These
lines show the presence of an area in the laminations where the fields weaken before
changing direction. Values of the local fields obtained on a cut at x = 0.275 mm
show a good agreement between the reference and the local mesoscale solutions (see
Figure 5.34); small discrepancies are noticeable in regions with small eddy currents.
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There are also discrepancies in the extreme layers as they do not have the same
environment as the rest of laminations. We have observed the same behavior for j
(see Figure 5.35): the macroscale (homogenized) solution is in good agreement with
the reference solution.

For the hysteresis case, the analysis is similar to the nonlinear case. The refer-
ence and the computational h− b hysteretic curves at point x1 = 1.65 mm (Figure
5.39. Top), as well as the values of the local fields obtained on a cut at x = 3.7 mm
(Figure 5.39 Middle and Bottom) are in excellent agreement.

Figure 5.33: Left: geometry used for the validation of the model taking advantage
of symmetry. Flux lines are depicted as well. Right: typical mesh used for mesoscale
problems on a portion of laminations.
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Figure 5.34: Lamination stack problem, b-conform formulations, nonlinear case.
Top: comparison of spatial cuts of the x-component of the magnetic induction b
between the FE reference model (continuous line) and 4 mesoscale solutions defined
in the intervals [1.65, 2.195] mm, [4.95, 5.5] mm, [6.6, 7.15] mm, [7.7, 8.225] mm along
the y-axis. Bottom: Zoom around the mesoscale fields.
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Figure 5.35: Lamination stack problem, b-conform formulations, nonlinear case.
Top: Comparison of spatial cuts of the x-component of the magnetic induction b
between the FE reference model (continuous line) and 4 mesoscale solutions defined
in the intervals [1.65, 2.195] mm, [4.95, 5.5] mm, [6.6, 7.15] mm, [7.7, 8.225] mm along
the y-axis. Bottom: Zoom around the mesoscale fields.
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Figure 5.36: Lamination problem, b-conform formulations, nonlinear case. Evo-
lution of eddy currents losses and magnetic power as a function of time. Two
frequencies are considered { f = 500 Hz}.
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Figure 5.37: Lamination stack problem, b-conform formulations, hysteresis case.
Reference and computational hb hysteretic curves for a point centered around
(1.65, 3.7, 0) mm.
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Figure 5.38: Lamination stack problem, b-conform formulations, hysteresis case.
Top: comparison of spatial cuts of the x-component of the magnetic induction b
between the FE reference model (continuous line) and 4 mesoscale solutions defined
in the intervals [1.65, 2.195] mm, [4.95, 5.5] mm, [6.6, 7.15] mm, [7.7, 8.225] mm along
the line x = 3.7 mm. Bottom: zoom of the magnetic induction around the four
mesoscale problems.
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Figure 5.39: Lamination stack problem, b-conform formulations, hysteresis case.
Top: comparison of spatial cuts of the x-component of the eddy currents j between
the FE reference model (continuous line) and 4 mesoscale solutions defined in the
intervals [1.65, 2.195] mm, [4.95, 5.5] mm, [6.6, 7.15] mm, [7.7, 8.225] mm along the
line x = 3.7 mm. Bottom: Zoom of the eddy currents around the two mesoscale
problems.
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5.3.3 Description of the problem for the h-conform (mag-
netostatic) formulations

The problem used for testing h-conform formulations in terms of the scalar potential
(see section 4.4.5) is described in this section. The extension to the dynamic case
which would allow to compute eddy current losses in laminations has not been
implemented. However, it can be considered using formulations of section 4.4.

As an application example, we consider a laminated core (200 mm × 200 mm)
consisting of 101 laminations (thickness dl = 1.78 mm) and 100 insulation layers
(thickness d0 = 0.198 mm, µr = 1), so that ε ≈ 0.01. The filling factor is λ =
dl/(dl + d0) = 0.9. The material of the laminations is taken as:

– linear with µr = 10;

– nonlinear with constitutive law:

B
(
hε(x)

)
= 1000µ0

hε(x)(
1 + ||hε(x)||2

)0.485 . (5.20)

We impose the following value of the magnetic potential 0A and 1A on the bound-
aries Γ0 and Γ1, respectively . This is equivalent to imposing a magnetic flux which
comes in the laminated core through the boundary Γ1 and goes out through the
boundary Γ0. The additional condition n·b = 0 is implicitly imposed on Γ\{Γ0∪Γ1}.

5.3.4 Results for the h-conform formulations

The reference FE solution is obtained on an extremely fine mesh of the whole stack
consisting of 15 layers of 10 quadrangles for each lamination and 5 layers of 10 quad-
rangles for each insulation layer (i.e. 20150 elements in total). The microproblems
are solved in a square domain with either two or three laminations and insulation
layers, i.e. cells with dimensions 3.96×3.96 mm2 or 5.94×5.94 mm2. Each lamina-
tion is discretized with 13 layers of 5 quadrangles and each insulation layer with 5
layers of 5 quadrangles.

In the linear case, we compare our HMM-based computational homogenization
approach with both a classical homogenization technique [95, 96] and a fine refer-
ence finite element model. The coarse mesh used for both the macroscale level of
the computational homogenization and the classical homogenization comprises 392
triangular elements. We consider 3 Gauss points per element, which leads to 1176
microproblems for each multiscale iteration.

For the classical homogenization, we consider a homogenized domain with
an anisotropic constitutive law b = µh and the permeability symmetric tensor
µ = (µ||, µ||, µ⊥, 0, 0, 0) with diagonal elements that account for the parallel and
perpendicular fluxes, i.e., µ|| and µ⊥ can be written as [95]:

µ|| = λµl + (1− λ)µ0 ,
1

µ⊥
=

λ

µl

+
1− λ
µ0

, (5.21)
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Γ
Γ0

Γ1

Figure 5.40: Lamination stack two-dimensional geometry used for the magneto-
static problem.

where µl is the permeability of the laminations.

Flux lines obtained with the FE reference model and the computational mul-
tiscale approach are depicted in Figure 5.41 (top-left and middle). The difference
between the computational approach and the reference FE model is shown as well
in 5.41 (top-right): it is in interval [1.3%–1.6%], with an average value equal to
0.299%. The magnetic flux density is also represented in 5.41 - (bottom). It is
worth mentioning that the error in the vicinity of the surfaces with imposed φ is
higher. A finer macroscale mesh would help enhancing this solution.

In Figure 5.42, we show the magnetic scalar potential along a cut at x = 87.5 mm.
In this linear case, the classical homogenization gives an average result that follows
the behaviour of the reference solution slightly better. However, the computational
homogenization solution captures the variations of the solution of the mesoscale
problem.

For the nonlinear case, the coarse mesh used for the macroscale level of the com-
putational homogenization counts 160 triangular elements. We consider 3 Gauss
points per element, what amounts to 480 microproblems for each multiscale nonlin-
ear iteration.

In Figure 5.43, one can see the flux lines of the reference and multiscale solution
together with the associated error map (top). A detail of the geometry and the
coarse mesh is depicted as well. The relative error is in interval [-0.942,0.945]% with
an average value of 0.0011%, which is better than in the linear case even though the
mesh is coarser. This can be explained when realizing the very small variation of
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the flux lines with regard to a 1-D problem, i.e. flux lines are nearly horizontal: see
Figure 5.44 - (bottom).

The magnetic scalar potential along a cut at x = 1.666 mm is represented in
Figure 5.44 - (top). The computational homogenization solution fits perfectly well
the average of the reference FE model. Besides, an excellent agreement is observed
between the mesoscale solution and the reference.

Figure 5.41: Lamination stack problem, h-conform formulations, linear case. Top:
flux lines for the FE reference model (left) and the computational multiscale method
(middle); error map (right). Normalized scale. Representation of the fine scale
geometry (11 laminations instead of 101) and coarse mesh. Bottom: zoom of the
magnetic flux density near the top with imposed φ for the FE reference (left) and
the computational multiscale models (right) [148].
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Figure 5.42: Lamination stack problem, h-conform formulations, linear case. Top:
magnetic scalar potential at x = 87.5 mm in the 3.96×3.96 mm2 cell (2 laminations
and 2 insulation layers). Bottom: zoom between 5.5 mm and 10 mm [148].
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Figure 5.43: Lamination stack problem, h-conform formulations, nonlinear case.
Top: flux lines for the FE reference model (left) and the computational multiscale
method (middle); error map (right). Normalized scale. Representation of the fine
scale geometry (11 laminations instead of 101) and coarse mesh. Bottom: zoom of
the magnetic flux density near the top with imposed φ for the FE reference (left)
and the computational multiscale models (right) [148].
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Figure 5.44: Lamination stack problem, h-conform formulations, nonlinear case.
Top: magnetic scalar potential at x = 16.66 mm in the 5.95× 5.95 mm2 mesoscale
domain (3 laminations and 3 insulation layers). Bottom: zoom between 1.8 mm and
7.8 mm [148].
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Chapter 6

General conclusions

In this thesis we have developed a computational multiscale method to solve non-
linear, possibly hysteretic magnetoquasistatic problems on multiscale domains (e.g.
composite materials, lamination stacks, etc.). The resulting method is inspired by
the HMM approach [1–4, 6, 7, 43, 67–69, 71–73, 75]. The fine-scale, computationally
expensive problem is replaced by a (computationally cheaper) macroscale problem
defined on a coarse mesh and many mesoscale problems defined on cells around
numerical quadrature points of the macroscale domain and used for recovering the
missing information (e.g. the homogenized constitutive laws, the homogenized global
quantities such as the eddy currents losses, etc.) at the macroscale level.

In order to construct the computational multiscale model, we combine theoret-
ical results from two-scale convergence theory [11, 120, 141, 143, 196, 201], periodic
unfolding [31, 45–47, 130, 197] and asymptotic homogenization [20]. The two-scale
convergence and periodic unfolding methods are used for deriving the partial differ-
ential equations governing fields at both the macroscale and the mesoscale levels,
valid in the nonlinear regime and in the presence of curl differential operators.
Asymptotic homogenization is used for defining a mesoscale problem in the case of
linear constitutive laws (e.g. the linear electric conductivity law).

Although this theoretical foundation is only valid in the case of linear and nonlin-
ear problems governed by a maximal monotone operator, in practice, the resulting
numerical multiscale scheme has been successfully applied to general magnetoqua-
sistatic problems also exhibiting memory effects (hysteresis). The numerical tests
were performed for magnetostatic and magnetodynamic problems, using both b-
conform and h-conform formulations. For b-conform formulations, an excellent
agreement has been obtained between the reference solutions (computed using a
brute force approach) and the computational (mesoscale) solutions. Small differ-
ences are observed near the boundary of the computational domain as the cell prob-
lems defined near the boundary are not immersed in a periodic environment. The
eddy current losses are also accurately evaluated. The error on these losses increases
as a function of the frequency. For h-conform formulations, a good agreement was
also observed but bigger errors are observed as compared to the b-conform formu-
lations. This may result from the type of the imposed source (which is localized in
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the h-conform formulations).

Overall the proposed computational multiscale method fulfills the original goals
of the thesis: it allows to solve complex multiscale magnetoquasistatic problems,
including the challenging computation of local fields at the mesoscale and the ac-
curate evaluation of electromagnetic losses. Compared to mean-field homogeniza-
tion [49, 50], the proposed technique naturally handles strongly nonlinear or hys-
teretic materials and complex periodic mesoscale geometries, in addition to the
computation of local electromagnetic fields. These last two advantages also dis-
tinguish the newly developed method from ad-hoc homogenization for lamination
stacks [95–97], and the last one distinguishes it from approaches where nonlinear
constitutive laws are pre-computed representative volume elements [34]. The main
disadvantage of our method is its higher computational cost. However, since all
the mesoscale problems are independent, it is perfectly suited for modern massively
parallel computers, and we thus believe that it has a lot of potential, even compared
to brute force approaches, which do not scale well.

Perspectives

This work opens up various perspectives for both short term improvements and for
longer term developments. Possible short term improvements include:

– the improvement of results for cells located near the boundary of the com-
putational domain. This requires the modification of the definition of com-
putational mesoscale problems for these cells allowing to account for their
non-periodic environment. An alternative solution would be to couple the
computational homogenization method with subproblem methods [60] for cor-
recting mesoscale solutions near the boundary;

– the three-dimensional implementation of the multiscale model;

– the hybridization of the developed model with computationally cheaper ho-
mogenization techniques, which could be used in non-critical regions (without
significant hysteretic losses or fields values);

– the development and the inclusion of the variational model for hysteresis [86]
in the mesoscale problem;

– the consideration of non-periodic representative volume elements. This could
be done by weakly imposing periodic boundary condition for the mesoscale
problem as in [146].

Longer term perspectives include:

– the consideration of representative volume elements with a mesoscale stochas-
tic distribution of phases. This is important in order to accurately model the
behaviour of random composites materials. The use of stochastic homoge-
nization [20,44,52,106,144,145,157] or the application of a statistical method
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to the periodic homogenization [13, 49, 50] would allow to account for this
randomness of phase distribution.

– the application of the computational homogenization for multiphysical prob-
lems. The coupling may involve problems defined between the macroscale
and the mesoscale levels with different physical couplings (electromechanical,
electro-thermal, ...) or electromagnetic models involving different scales and
physics (e.g. the study of hysteresis by upscaling relevant information from
Weiss domains and Bloch walls).

– the extension to high frequency, nonlinear electromagnetic problems.
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Appendix A

Convex analysis

Details about most of the mathematical concepts recalled in this appendix can be
found in [30,40,83,85,93,173].

A.1 Convexity, lower semi-continuity

We denote by V any vector space and V ′ its dual. Let also A be any given set. The
set A is said to be convex if:

tu+ (1− t)v ∈ A ∀u, v ∈ A and t ∈ [0, 1]. (A.1)

Vector spaces fulfill this condition (thanks to the linearity property) and are therefore
convex sets.

Herein, we introduce the notions of convex and lower semi-continuous functionals.
Indeed, these notions can be used to formulate some partial differential equations as
a minimization problem of some functionals (the so-called Euler-Lagrange equations
of a minimization problem).

We define the functional ϕ : V → R∪{+∞}. The epigraph of ϕ (see Figure A.1)
is the set:

epi ϕ =
{

(x, λ) ∈ V × R : ϕ(x) ≤ λ
}
. (A.2)

A functional ϕ : V → R ∪ {+∞} is said to be convex if:

ϕ(tu+ (1− t)v) ≤ tϕ(u) + (1− t)ϕ(v) ∀u, v ∈ V and t ∈ [0, 1]. (A.3)

It can then be shown [40] that ϕ is convex if and only if epi ϕ is convex in V × R
(see Figure A.1).

Let the functional ϕ : Z → R ∪ {+∞} be defined from the topological space Z.
The functional ϕ is lower semi-continuous if and only if epi ϕ is closed in V × R.
For lower semi-continuous functions ϕ:

un ⇀ u in V ⇒ ϕ(u) ≤ lim inf
n

ϕ(un). (A.4)
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epi ϕ

x1 x2

ϕ

Figure A.1: Epigraph of a function.

A.2 Fenchel transformation, subdifferentiability

For any proper functional ϕ (proper meaning that domain of the functional ϕ is
non-empty), we define the convex conjuguate of ϕ as:

ϕ∗ : V ′ → R ∪ {+∞} (A.5)

f 7→ ϕ∗(f) = Sup
u∈V

{〈
f, u
〉
V×V ′

− ϕ(u)
}

= − inf
u∈V

{
ϕ(u)−

〈
f, u
〉
V×V ′

}
(A.6)

The notation
〈
·, ·
〉
V×V ′

denotes the duality pairing between V ′ and V . Later, we

replace this notation by the short notation
〈
·, ·
〉

if there is no ambiguity of notation.

From the definition of ϕ∗, it can easily be shown that the following inequality:

Φ(u, f) = ϕ(u) + ϕ∗(f)−
〈
f, u
〉
≥ 0 (A.7)

always holds for all (u, f) ∈ V × V ′ .
For the proper functional ϕ : V → R ∪ {+∞}, we also define the subdifferential

mapping :

∂ϕ : V → 2V
′

(A.8)

u 7→ ∂ϕ(u) =
{
v ∈ V ′ : ϕ(w) ≥ ϕ(u) +

〈
v, w − u

〉
∀w ∈ dom(ϕ)

}
(A.9)

where 2V
′

is the power set of V ′ (i.e.: the set of all subsets of V ′)
The value of the subdifferential for a differentiable functional (in the Fréchet

or the Gateau sense) at a given point is unique and equal to the gradient of the
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x1 x2

f(x1) + gT1 (x− x1)

f(x2) + gT2 (x− x2)

f(x2) + gT3 (x− x2)

f(x)

Figure A.2: The subdifferential of a function f . The function is differentiable
in x1 and has only one gradient. In x2, the function is not differentiable and the
subdifferential is multivalued in that point.

functional at the same point. In general, the gradient of the functional may not exist
in the classical sense but the subgradient may exist and possibly be multivalued ((e.g.
the mapping f in Figure A.2 is non-differentiable in x2 but it is subdifferentiable
and all the values of the subgradient comprised between g3 and g2 belong to the
subdifferential mapping of f at x2).

A.3 Monotonicity

We also define the notion of a maximal monotone mapping. Indeed, when combined
with adequate coercivity and boundedness conditions this notion can be used for
proving the existence and uniqueness of solutions of nonlinear partial differential
equations [40,83,85].

We denote by A, a (possibly multivalued) mapping:

A : V → 2V
′

with dom(A) ∈ V . (A.10)

A is said to be a monotone mapping if:〈
f − g, u− v

〉
≥ 0 ∀u, v ∈ V : f ∈ Au, g ∈ Av. (A.11)

The notation f ∈ Au is used to emphasize that f is one of many values that the
operatorA can take in u. The operatorA is said to be a maximal monotone mapping
if in addition there is no other monotone mapping whose graph includes that of A.

This means that the application of mapping A spans the greatest subspace of 2V
′
.

The property of monotonicity is necessary for having the uniqueness of the so-
lution while the property of maximality allows to get the existence of the solutions
for partial differential equations governed by (nonlinear) maximal monotone oper-
ators [10, 40, 85, 203]. There also exists a connection between maximal monotone
mapping and convex lower semi-continuous functional. Indeed, It has been shown
that any maximal monotone mapping can be derived as a subdifferential of a convex
lower semi-continuous functional [174].
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A.4 Example

Assuming the following nonlinear mapping:

B : R3 → R3 (A.12)

h 7→ b = B(h), (A.13)

used for representing the nonlinear magnetic material law. We can construct the
functional

ϕ(h) =

∫ h
0

B(h0)dh0, (A.14)

such that ∂ϕ(h) = B(h).

Assuming that ϕ is strictly convex (i.e. ∂B/∂h is definite positive), smooth
and bounded below (so that ϕ is lower semi-continuous [85]), then B is single-
valued. Using the Fenchel transformation (which is a generalization of Legendre
transformation), we can define the convex conjuguate:

ϕ∗(b) = Sup
h ∈ R3

{〈
b,h

〉
− ϕ(h)

}
= − inf

h ∈ R3

{
ϕ(h)−

〈
b,h

〉}
. (A.15)

Assuming that ϕ is differentiable, the infimum in (A.15) is attained for the value
hinf such that

b− ∂hϕ(hinf ) = 0, (A.16)

thus yielding b−B(hinf ) = 0.

If the mapping B is inversible (i.e. B−1 := H exists), then hinf = H(b) and
therefore the convex conjugate functional (A.15) becomes:

ϕ∗(b) =
〈
b,H(b)

〉
−
∫ H(b)

0

B(h0)dh0. (A.17)

To compute this integral, we define the change of variable h0 = H(b0). The differ-
ential are related by dh0 = (∂H/∂b0)db0 and (A.17) becomes:

ϕ∗(b) =
〈
b,H(b)

〉
−
∫ b

0

b0∂H
∂b0 db0 =

∫ b

0

( d

db0 (b0H(b0))− b0∂H
∂b0

)
db0 =∫ b

0

(
H(b0)

∂b0

∂b0

)
db0 =

∫ b

0

H(b0)db0. (A.18)

From the definition of ϕ∗(b) the following inequality:∫ h
0

B(h0)dh0 +

∫ b
0

H(b0)db0 −
〈
b,h

〉
≥ 0, (A.19)

always holds. Therefore, there exists a representative functional Φ defined as:

Φ(h, b) =

∫
Ω

(∫ h
0

B(h0)dh0 +

∫ b
0

H(b0)db0 −
〈
b,h

〉)
dx (A.20)
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for which the minimization yields the relations b = B(h) and h = H(b) for all
x ∈ Ω. In addition, the functional Φ(h, b) is equal to zero if and only if b(x) =
B(h(x),x) ∈ ∂ϕ(h(x),x) and h(x) = H(b(x),x) ∈ ∂ϕ∗(b(x),x).

The last term of (A.20) can be written as:∫
Ω

(b · h)dx. (A.21)

With a different choice of function spaces for the fields b and h, it can be shown
that the minimization of the functional (A.20) leads to the magnetostatic equations.
Indeed, the minimization problem:

Φ(h, b) = inf
h
′ ∈H(curl; Ω), b

′ ∈H(div; Ω)
Φ(h

′
, b
′
), (A.22)

corresponds to the Euler–Lagrange equations of the magnetostatic problem:

curlh = 0, (A.23)

div b = 0, (A.24)

b(x) ∈ ∂ϕ(h(x),x), (A.25)

h(x) ∈ ∂ϕ∗(b(x),x). (A.26)

All the derivatives involved in (A.26) should be understood in the distribution sense

The existence of the solution of the magnetoquasistatic problem (3.3)–(3.7) in
R3 has already been studied by Visintin [196,201]. Under some assumptions on the
mappings B and J (e.g. maximal monotone mappings) and the regularity of the
data of the problem (e.g. the initial conditions), it has been shown [196, 201] that
(3.3)–(3.7) has a unique and bounded solution hε, bε, eε and jε such that:

hε ∈ L∞(0, T ;L2(R3)) ∩ L2(0, T ;H(curl; Ωc)) ∩H−1(0, T ;H(curl;R3)), (A.27)

bε ∈ L∞(0, T ;L2(R3)) ∩H1(0, T ; (H(curl;R3))
′
), (A.28)

eε ∈ L∞(0, T ;L2(R3 \ Ωc)) ∩L2(Ωc×]0, T [) ∩H−1(0, T ;H(curl;R3)), (A.29)

jε ∈ L2(Ωc×]0, T [), (A.30)

where (H(curl;R3))
′
) is the dual of the space H(curl;R3). In section (3.6), we

have used these results and derived convergence results for electromagnetic fields.
From (A.27)–(A.30) the two-scale weak star convergence is derived for the fields
hε, bε and eε as they belong to the space L∞ and the weak convergence is derived
for the field jε.
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Appendix B

Classical convergence

Details about most of the mathematical concepts recalled in this appendix can be
found in [30,40,54,85,93,158,175].

B.1 Convergence in Banach spaces

We denote by V , a real Banach space and V ′ its dual. A sequence {un} ∈ V is said
to strongly converge to u ∈ V (what we denote by un → u) if:

lim
n→∞
||un − u||V = 0, (B.1)

where || · ||V denotes the norm defined on V . The strong convergence defined on V
enables to define the strong topology on V , the opens of which are defined by the
norm on V .

A sequence {un} ∈ V is said to weakly converge to u ∈ V (what we denote by
un ⇀ u) if:

lim
n→∞

〈
f, un

〉
=

〈
f, u
〉
,∀f ∈ V ′ . (B.2)

In the case V is a Hilbert space, the norm is induced by the inner product (u, v)
between any two element u and v. The weak convergence can then be expressed as

lim
n→∞

ϕf (un) = ϕf (u), (B.3)

with ϕf (u) =

∫
Ω

(fu) dx.

The notion of dual space allows also to define a weak topology on V . This weak
topology is the coarsest topology that can be defined on V and for which all the
linear functionals f ∈ V ′ are continuous. We take the space L2(Ω) as an example.
The inner product is given by

∫
Ω
u v dx. The weak convergence un ⇀ u can then be

expressed as:

lim
n→∞

∫
Ω

un v dx =

∫
Ω

u v dx⇒ lim
n→∞

∫
Ω

(un − u) v dx = 0 ,∀v ∈ V . (B.4)
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Using duality, it is also possible to define the weak-∗ topology on V ′ . A sequence
{fn} ∈ V

′
is said to converge weakly-∗ to f in V ′ (what we denote by fn

∗
⇀ f) if:

lim
n→∞

〈
fn, u

〉
=

〈
f, u
〉
,∀u ∈ V . (B.5)

It can be shown that [40,93]:

un ⇀ u in V ⇒ ||u||V ≤ lim inf ||un||V (B.6)

It can also be shown that [40]:

un → u ⇒ un ⇀ u, (B.7)

but the converse is not true.

B.2 Convergence in Lp(Ω) spaces

In this thesis, we are interested in Banach spaces V = Lp(Ω). The norm of these
spaces is given by:

∣∣∣∣∣∣u∣∣∣∣∣∣
Lp(Ω)

=


(∫

Ω

|u|p dx
)1

p if 1 ≤ p <∞

ess supΩ|u| if p =∞
(B.8)

where ess supΩ|u| is defined as the smallest upper bound of |u| on Ω.

Recall that the Banach spaces Lp(Ω) are reflexive for p 6= 1 and p 6= ∞ and
separable when p 6=∞ [40,83,85] . For p 6= 1 and p 6=∞ the dual space of Lp(Ω) is
Lq(Ω) with the conjugate exponent q given by 1/p + 1/q = 1. In addition, L∞(Ω)
is the dual of L1(Ω) but the contrary is not true (L1(Ω) is contained in the dual of
L∞(Ω)).

The following compactness theorems generally hold for bounded sequences in
appropriat Banach spaces (e.g. reflexive or separable Banach spaces).

Theorem 1 (Weak compactness theorem [40, 85, 93]). Let V be a reflexive Banach
space. From any bounded sequence {un} ∈ V, one can extract a subsequence denoted
{unj} that weakly converges to u ∈ V.

This theorem holds for Lp spaces (p 6= 1 and p 6= ∞). A similar result can be
formulated for the separable space L1(Ω). The following theorem can be used for
the space L∞:

Theorem 2. Let V be a separable Banach space and V ′, its dual. From any bounded
sequence {fn} ∈ V

′
, one can extract a subsequence denoted {fnj} that converges

weakly-∗ to f ∈ V ′.

Choosing V = L1(Ω) and V ′ = L∞(Ω), Theorem 2 then holds.
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B.3 Examples

The following two examples illustrate the application of these two theorems.

The first example concerns problem (3.19). The weak form of this problem reads:

(aεgraduε,grad v) =
〈
f, v
〉

,∀v ∈ H1
0 (Ω). (B.9)

If a is bounded and satisfies (3.21), the bilinear form a(uε, v) = (aεgraduε,grad v)
is coercive and for v = uε we get:

c1||graduε||2L2(Ω) = c2||uε||2H1
0 (Ω) ≤ a(uε, uε) =

〈
f, uε

〉
≤ ||f ||H−1(Ω)||uε||H1

0 (Ω)

(B.10)
where the first equality results from Poincaré inequality. From (B.10), we get:

||uε||H1
0 (Ω) ≤

1

c
||f ||H−1(Ω). (B.11)

meaning that the sequence {uε} is bounded in H1
0 (Ω) which is a reflexive Banach

space (indeed, H1
0 (Ω) is a closed subspace of L2(Ω) which is reflexive [40] ). There-

fore, uε weakly converges to some u0 ∈ H1
0 (Ω).

The second example concerns conditions (3.21) from which we get the uniform
boundedness condition aε ∈ L∞(Ω). The space L∞(Ω) is neither reflexive nor
separable. However it is the dual of L1(Ω) which is a separable Banach space [40].
We can therefore deduce from Theorem 2 that:

aε
∗
⇀ a in L∞(Ω). (B.12)
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Appendix C

Two-scale convergence and
the periodic unfolding
method

Most of the mathematical concepts defined in Appendix C can be found in [11, 31,
45,46,120,130,141,143,197].

C.1 Two-scale convergence of sequence

A sequence {uε} of L2(Ω) is said to weakly two-scale converge to a limit u0 ∈
L2(Ω× Y ) (which we denote by uε ⇀

2
u0) if the equality:

lim
ε−→0

∫
Ω

uε(x)ψ(x,
x

ε
)dx −→

∫
Ω

∫
Y

u0(x,y)ψ(x,y)dxdy (C.1)

holds for any smooth function ψ ∈ B(Ω × Y ) that is periodic w.r.t the second
argument. The definition can be extended to a sequence of vector functions {uε} of
L2(Ω).

The function space B(Ω×Y ) of test functions must be a Banach dense subspace
of L2(Ω× Y ) [11,120,141] meaning that the adherence B(Ω× Y ) formed by all the
elements of these spaces and all their limits is L2(Ω × Y ) itself. This means that
sequence of B(Ω×Y ) strongly converge in L2(Ω×Y ) up to extraction and that the
integral (C.1) has a sense as it involves a product of two sequences, one of which is
strongly convergent.

The two-scale convergence results stated in Definition C.1 is similar to the weak
compactness Theorem 1 for the classical weak convergence, the only difference is
that in the case of the weak two-scale convergence, the sequence {uε} of L2(Ω) and
the limit u0 ∈ L2(Ω× Y ) do not belong to the same spaces.
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C.2 Scale transformation and the periodic unfold-

ing method.

A few variants of periodic unfolding method have been defined [46,130,197]. In this
thesis, we use ideas from [130] to illustrate the method. To start with, we define the
set Y by identifying opposite sides of Y = [−1

2
, 1

2
[n. This is equivalent to equipping

Y with a topological and differential structure of a torus Y = Rn/Zn = Tn. It
is then possible to identify any Y -periodic function defined on Rn with a function
defined on Y . Thus, Lp(Y ) can be identified with Lp(Y). However, the identification
is not possible for spaces involving derivatives. This is the case for instance for
H1(Y ) 6= H1(Y) := H1

#(Y ) and Ck(Y ) 6= Ck(Y) := Ck
#(Y ).

Periodic unfolding approach For any ε > 0, the point x ∈ Rn has the following
unique periodic unfolding [45] ( also named two-scale decomposition in [197]):

x = ε
[
N
(x
ε

)
+R

(x
ε

)]
(C.2)

where

N (x) := (n̂(x1), ...n̂(xn)) ∈ Zn with n̂(xi) := max{n ∈ Z : n < xi} (C.3a)

R(x) := (r̂(x1), ...r̂(xn)) ∈ [0, 1)n with r̂(xi) := xi − n̂(xi) (C.3b)

The quantities εN
(x
ε

)
and R

(x
ε

)
represent the coarse-scale and the fine-scale

variables.

We define the composition mapping Sε:

Sε : Rn × Y → Rn, (C.4)

(x,y) 7→ εN
(x
ε

)
+ εy, (C.5)

which uniformly converges to x in Rn as ε → 0. It is then possible to define the
periodic unfolding operator T ε:

T ε : Lp(Ω)→ Lp(Rn × Y), (C.6)

uε 7→ (T εuε) = uεex ◦ Sε, (C.7)

with

uεex ◦ Sε(x,y) =

 uε(εN
(x
ε

)
+ εy) if εN

(x
ε

)
+ εy ∈ Ω,

0 if εN
(x
ε

)
+ εy 6∈ Ω.

(C.8)

The periodic unfolding operator is a linear isometry [46,185,197]. The following
equalities: ∫

Rn

∫
Y

(T εuε)(x,y)dydx =

∫
Ω

uεdx (C.9)
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εN
(x
ε

)
x

εR
(x
ε

)

Figure C.1: Decomposition of the point x into the large scale variable εN
(x
ε

)
and local scale variable R

(x
ε

)
.

and
||T εuε||L2(Rn×Y) = ||uε||L2(Ω) (C.10)

are valid for all uε ∈ L1(Ω). If the sequence {uε} is bounded in L2(Ω), the sequence
{(T εuε)ε} is also bounded in L2(Rn × Y) and applying Theorem 1, it is possible
to extract a converging subsequence still denoted (T εuε)ε that weakly converges to
some u0 ∈ L2(Rn×Y) that is a priori different from u0 of (C.1). The major insight
of the periodic unfolding method is the proof that the restriction of u0 on Ω is equal
to u0.

The periodic unfolding method [31, 45, 46, 130, 197] allows to express the two-
scale convergence of a sequence {uε} of Lp(Ω) as the classical convergence (one-
scale convergence) in Lp(Rn×Y) of the sequence obtained by applying the periodic
unfolding operator T ε to sequence original sequence {uε}. Assuming that 1 ≤ p ≤ ∞
we get the following results for the strong/weak and weak-* two-scale convergence:

uε →
2
u0 in Lp(Ω× Y) ⇔ T εuε → u0 in Lp(Rn × Y), (C.11)

uε ⇀
2
u0 in Lp(Ω× Y) ⇔ T εuε ⇀ u0 in Lp(Rn × Y), (C.12)

uε
∗
⇀
2
u0 in L∞(Ω× Y) ⇔ T εuε

∗
⇀ u0 in L∞(Rn × Y). (C.13)
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C.3 Convergence of electromagnetic fields and

operators of Maxwell’s equations.

In this section, we state results of the two-scale convergence for sequences of elec-
tromagnetic fields that can appear when solving Maxwell’s equations. The results
concern time-independent fields but they can easily be extended to time-dependent
fields.

Two-scale convergence in Lp(Rn) [11, 143]

From any bounded sequence {uε} of Lp(Ω), one can extract a subsequence still
denoted uε that two-scale converges to a limit u0 ∈ Lp(Rn×Y). The result remains
valid for vector valued functions uε ∈ Lp(Ω).

Two-scale convergence of the grad of a vector field [11,198]

Let {φε} be a bounded sequence in H1(Rn) such that φε → φ0 in H1(Rn). Then
there exists φ̄1 ∈ L2(Rn;H1

∗ (Y)) such that

gradφε ⇀
2

gradx φ0 + grady φ̄1 in L2(Rn × Y). (C.14)

Conversely, for any φM ∈ H1(Rn) and φ1 ∈ L2(Rn;H1
∗ (Y)), there exists a se-

quence {φε} of H1(Rn) such that

φε ⇀ φM in L2(Rn), (C.15)

gradφε ⇀
2

gradx φM + grady φ1 in L2(Rn × Y). (C.16)

Results of this proposition can be used for div− grad formulations (e.g.: using
the scalar potential formulation for the electrokinetic problem).

Two-scale convergence of the curl of a vector field [198]

Let {hε} be a bounded sequence in H(curl;Rn) such that hε ⇀
2
h0 in L2(Rn ×

Y). Then h0 ∈ L2(Rn;H(curl; 0,Y)), ĥ0 ∈ H(curl;R3) and there exists h̄1 ∈
L2(Rn;H1

∗(Y)) such that

curlhε ⇀
2

curlx ĥ0 + curly h̄1 in L2(R3 × Y). (C.17)

Conversely, for any hM ∈ H(curl;Rn) and h1 ∈ L2(Rn;H(curl;Y)), there
exists a sequence {hε} of H(curl;Rn) such that

hε ⇀ hM in L2(Rn), (C.18)

curlhε ⇀
2

curlx hM + curly h1 in L2(Rn × Y). (C.19)

A gauge condition must be imposed for h1 to be uniquely defined. Coulomb
gauge have been proposed in [31,198].
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Two-scale convergence of the div of a vector field [198]

Let {bε} be a bounded sequence in H(div;Rn) such that bε ⇀
2
b0 in L2(Rn ×

Y). Then b0 ∈ L2(Rn;H(div; 0,Y)), b̂0 ∈ H(div;R3) and there exists b̄1 ∈
L2(Rn;H1

∗(Y)) such that

div bε ⇀
2

divx b̂0 + divy b̄1 in L2(R3 × Y). (C.20)

Conversely, for any bM ∈ H(div;Rn) and b1 ∈ L2(Rn;H(div;Y)), there exists
a sequence {bε} of H(div;Rn) such that

bε ⇀ bM in L2(Rn), (C.21)

div bε ⇀
2

divx bM + divy b1 in L2(Rn × Y). (C.22)

A gauge condition must be imposed for b1 to be uniquely defined. The gauge
curly b1 = 0 has been used in [198].

C.4 The div− curl lemma

Hereafter we recall the two-scale version of the div− curl lemma [199–201].

The two-scale div − curl lemma for time-independent prob-
lems

Assume that {uε} is a bounded sequence inH(curl;R3) and that {wε} is a bounded
sequence in H(div;R3). Assume in addition that:

uε ⇀
2
u0 in L2(R3 × Y) (C.23a)

wε ⇀
2
w0 in L2(R3 × Y) (C.23b)

Then the sequence {wε · uε} converges to ŵ0 · û0 in the sense:∫
Ω

(
wε(x) · uε(x)

)
θ(x)dx→

∫
Ω

(
ŵ0(x) · û0(x)

)
θ(x)dx

=

∫∫
Ω×Y

(
w0(x,y) · u0(x,y)

)
θ(x)dxdy,∀θ ∈ D(R3). (C.24)

The two-scale lemma developed above can be used for proving the convergence of
magnetic energy for magnetostatic problems (e.g.: governed by a maximal monotone
mapping):

curlhε = js, (C.25a)

div bε = 0, (C.25b)
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bε(x) ∈ ∂ϕ(hε(x),x). (C.25c)

In this case, with uε = hε ∈ H(curl;R3) and wε = bε ∈ H(div;R3), we have the
following two-scale results:

hε ⇀
2
h0, (C.26a)

bε ⇀
2
b0, (C.26b)

and

hε ⇀ ĥ0, (C.27a)

bε ⇀ b̂0, (C.27b)

and therefore the convergence of magnetic energy:∫
Ω

(
bε(x) · hε(x)

)
θ(x)dx→

∫
Ω

(
b̂0(x) · ĥ0(x)

)
θ(x)dx

=

∫∫
Ω×Y

(
b0(x,y) · h0(x,y)

)
θ(x)dxdy ∀ θ ∈ D(R3) (C.28)

The two-scale div−curl lemma for time-dependent problems

The following assumptions must be made for the div − curl lemma to hold for
time-dependent fields. If {uε} is a sequence of L2(0, T ;H(curl;R3)) and {wε} is
a sequence of L2(0, T ;H(div;R3)). If in addition ∃ r > 0, s ∈ R such that either
{uε} or {wε} is bounded in H1(0, T ;Hs(R3)) and that:

uε ⇀
2
u0 in L2(R3

T × Y) (C.29a)

wε ⇀
2
w0 in L2(R3

T × Y) (C.29b)

Then the sequence {wε · uε} converges to ŵ0 · û0 in the following sense:∫∫
R3
T

(
wε(x, t) · uε(x, t)

)
θ(x, t)dxdt→

∫∫
R3
T

(
ŵ0(x, t) · û0(x, t)

)
θ(x, t)dxdt

=

∫∫∫
R3
T×Y

(
w0(x,y, t) · u0(x,y, t)

)
θ(x, t)dxdydt, ∀θ ∈ D(R3

T ). (C.30)

The two-scale lemma for time-dependent problems can be used for the magneto-
dynamic problem (3.3)–(3.7). In that case, only hε and eε fulfill the role played by
the field uε and only bε fulfills the role played by the field wε (see [196,201]). There-
fore, the only results of converging products of sequences for the magnetodynamic
problem are:∫∫

R3
T

(
bε(x, t) · hε(x, t)

)
θ(x, t)dxdt→

∫
R3
T

(
b̂0(x, t) · ĥ0(x, t)

)
θ(x, t)dxdt
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=

∫∫
R3
T×Y

(
b0(x,y, t) · h0(x,y, t)

)
θ(x, t)dxdydt ,∀ θ ∈ D(R3

T ) (C.31)

and∫∫
R3
T

(
bε(x, t) · eε(x, t)

)
θ(x, t)dxdt→

∫
R3
T

(
b̂0(x, t) · ê0(x, t)

)
θ(x, t)dxdt

=

∫∫
R3
T×Y

(
b0(x,y, t) · e0(x,y, t)

)
θ(x, t)dxdydt ,∀ θ ∈ D(R3

T ) (C.32)

Equation (3.116) expresses the consistency of magnetic energy between the
macroscale and the mesoscale.
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les sciences et les techniques, vol. 3, Transformations, Sobolev, Opérateurs,
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tant des matériaux magnétiques non-linéaires et hystérétiques, Ph.D. thesis,
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trici disseminati in esso, 1846.

[135] H. Moulinec and P Suquet, A numerical method for computing the overall re-
sponse of nonlinear composites with complex microstructures, Comput. meth-
ods Appl. Mech. Engrg 157 (1998), 69–94.

[136] S. Muller, Homogenization of nonconvex integral functionals and cellular elas-
tic materials, Arch. Rational Mech. Anal. 99 (1987), no. 3, 189–212.
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Béchet, E. 130
Bednarz, L. 1
Belkadi, M 3
Benabou, A. 61, 77, 114
Bensoussan, A. 1, 28, 32, 33, 34, 35,
36, 53, 129, 130

Benveniste, Y. 30
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