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Abstract. Assessment of the overall seismic performances of multi-storey unreinforced ma-
sonry structures requires an appropriate characterization of the behaviour of their structural 
components, in particular when these are subjected to a dynamic ground motion input. In or-
der to develop a better understanding on this issue and in a further perspective of investigat-
ing the consequences of the presence of 1 cm thick rubber elements used for improving the 
sound-proofing performances of the building, shaking table tests have been carried out in the 
framework of the European project SERIES. Four single walls were tested. These were built 
with high resistance thin-bed layered clay masonry with empty vertical joints. Two of them 
had an aspect ratio close to 1, while the other two were close to 0.4. One wall of each aspect 
ratio included rubber devices at its bottom and top to enable comparisons and conclusions 
about the influence of rubber on the wall behaviour. The test results were then partially com-
pared to results obtained with a theoretical rocking model considering the wall as a rigid 
body. The results summarized in the present contribution evidence a significant rocking be-
haviour for the highest input acceleration levels. Characterization of this behaviour is how-
ever strongly dependent on the aspect ratio of the wall and on the presence or not of rubber 
devices in terms of natural frequencies, damping, dynamic amplifications and progressive 
damage with increasing acceleration levels. It is also showed that the theoretical rocking 
predictions are in good agreement with the experimental results for high acceleration levels, 
while the behaviour is closer to the one of a cantilever for the lower levels. It is finally evi-
denced that, in presence of acoustic rubber devices, amplitudes of the rocking motion are in-
creased but with a more limited damaging of the wall because of the capacity of the rubber to 
absorb the impact energy. Results of this study on single walls are expected to be further ex-
tended to global masonry structures, account taken for the influence of actual boundary con-
ditions of the wall. 
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1 INTRODUCTION 

1.1 General context  

Unreinforced load-bearing masonry structures are traditionally used for single family 
houses. Nevertheless, recent improvements of their mechanical properties and better control 
of their global behaviour have led to the extension of their range of application to multi-storey 
buildings up to 5-6 levels, which are particularly used for apartments [1]. This kind of build-
ings generally requires a good acoustic insulation level to fulfil the standards in terms of indi-
vidual comfort. A convenient and validated solution consists in placing a rubber layer at the 
bottom and/or top of each wall to prevent acoustic bridges (see Figure 1). 

 
Figure 1 – Acoustic solution (Wienerberger) 

The influence of this technical solution on the seismic behaviour of multi-storey unrein-
forced masonry structures optimized for acoustic performances is however questionable, even 
in the case of moderate seismic action. Indeed, the rubber layers are likely to modify the stiff-
ness and resistance of the structural elements as well as the boundary conditions of the walls. 
In this perspective, shaking table tests have been carried out at the Earthquake and Large 
Structures Laboratory (EQUALS) of the University of Bristol, in the framework of the Euro-
pean project SERIES. The research program aims at a better understanding of the seismic be-
haviour and of the consequences of the use of rubber layers on the dynamic behaviour of the 
walls and hence of the global structure. This paper presents a summary of the test specimens, 
procedures and results, followed by a comparison of the actual experimental behaviour with 
respect to theoretical rocking models assuming a rigid-body behaviour of the wall. The as-
sumptions on the criterion defining the initiation of the rocking motion and on the restitution 
coefficient are also discussed.  

1.2 Description of the specimens 

            
Figure 2 – View of a specimen 

Studied specimens are single walls constituted by thin-bed layered clay masonry with 
empty vertical joints (see Figure 2). Two of them have an aspect ratio close to 1, while it is 
close to 0.4 for the other two. Exact dimensions of the walls are the following : 

- Length x Height x Width = 2.1m x 1.8m x 0.138m (long wall) 
- Length x Height x Width = 0.72m x 1.8m x 0.138m (short wall) 

The block dimensions are mmxmmxmmwidthxheightxlength 0.1380.1880.300=  
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Mechanical characteristics of the units and masonry are the following ones:  
• Normalised compressive strength of units (EN 772-1 Annex A) 

²/0.13 mmNfb =  

• Measured characteristic masonry compressive strength (EN 1052-1) 

²/6.5 mmNfk =  

• Characteristic  compressive strength (NBN-EN 1996-1-1) 

²/9.3 mmNfk =  

A 5-tons mass is placed at the wall top to emulate the structural floor load, with due con-
sideration to the shaking table capacities and to the common range of compression level in 
masonry structures. The instrumentation layout of the tested specimens and safety arrange-
ments are extensively described in [2, 3]. 

2 DESCRIPTION AND SUMMARY OF THE TEST RESULTS 

The experimental procedure includes two different types of tests. The first type is per-
formed in order to characterize the specimen dynamic properties (natural frequency, damping) 
on the base of a “white noise” excitation. The second type consists in seismic test stricto 
sensu, using an artificially generated seismic input signal consistent with Eurocode 8 spec-
trum, with an acceleration level increased step-by-step. The PGAs measured during the seis-
mic tests are given in Table 1. Details of the testing procedures and extensive analysis of the 
results are available in [2, 3]. The main information and results are summarized in the present 
paper and the main conclusions are recalled. 

No Test 
Long wall 

without rubber 

Long wall 

with rubber 

Short wall 

without rubber 

Short wall 

with rubber 

1 0.0393 0.0426 0.0413 0.0417 
2 0.0777 0.0901 0.0654 0.0604 
3 0.0777 0.0877 0.0635 0.0607 
4 0.1583 0.1871 0.0867 0.0803 
5 0.2387 0.2784 0.1356 0.1235 
6 0.3230 0.3556 0.331 0.1278 
7 0.4496 0.4567 0.1784 0.1709 
8 0.5716 0.5692 0.1869 / 
9 0.6878 0.6392 0.2336 / 

Table 1 – Measured PGA [g] 

In practice, for each specimen, the testing sequence starts with a “white noise” test. Then, 
the procedure consists in an alternation of seismic and “white noise” tests in the perspective of 
studying the effects of the earthquake action on the specimen in terms of degradation of the 
dynamic properties (natural frequency and damping). 

2.1 White noise test results 

White noise tests are mainly useful to characterize the specimens in terms of natural fre-
quencies, modal shape and damping ratio. The evolutions of the natural frequencies and the 
damping ratio are represented respectively in Figure 3 and Figure 4. Note that seismic tests 
have been duplicated at selected acceleration levels to study the effects of repeated earth-
quakes. 
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Figure 3 – Natural frequencies 

Walls without rubber layers are characterized by higher values in terms of natural fre-
quencies. The difference is about 30% to 40% for undamaged situations. When going through 
the testing sequence, a decrease of the natural frequency is observed for each wall. This ob-
servation can be explained by the deterioration of the specimens. Walls without rubber pre-
sent however a more important frequency drop translating a higher degree of damage for a 
same ground acceleration level. 
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Figure 4 – Damping ratio 

An increase of the acceleration level results also in an increase of the damping ratio. Al-
though this increase occurs for each specimen, it is more important for the first mode of walls 
without rubber devices, especially for the longer one. Some measurements are however ques-
tionable since their values are as high as 100%. This could be explained by a poor accuracy of 
the procedure used to determine the damping ratio. 

The influence of rubber layers can also be clearly highlighted. One can firstly think that 
the presence of acoustic insulation devices is unfavourable for the structure because it results 
in lower natural frequencies and hence in a higher flexibility and in larger displacements. 
Nevertheless, it appears that these devices have positive effects. Indeed, even if the seismic 
shakes affect the wall properties, rubber devices mitigate the frequency drop and limit the 
damping increase. As proposed in [3], a possible and convenient explanation is due to an es-
sentially different behaviour. With the rubber layers, the assumption of rigid support is no 
more valid and the wall has to be considered as resting on an elastic foundation. Therefore, 
the instantaneous energy dissipation occurring when the wall passes through the vertical posi-
tion is lower and the damages due to a less strong impact are thus less important. 

2.2 Seismic test results 

A major output of the seismic tests is the possible measurement of the compressive length, 
this so-called compressive length being actually the contact length at the interface between the 
wall and its foundation. This parameter is indeed the main one used in the design of walls and 
the assessment of their overturning resistance according to classical static equivalent design 
methodologies such as suggested by the Eurocode 6 [4]. 
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2.2.1. Design method of Eurocode 6 

The verification methodology proposed by the Eurocode 6 is a static equivalent one based 
on the static equilibrium of an element submitted to a combination of normal force and bend-
ing moment due to a horizontal shear. For a same loading scheme, the value of the compres-
sive length can however be different, depending on the assumption of the shape of the normal 
stress distribution at the wall-foundation interface. It is indeed possible to consider for in-
stance a constant (2,a) or a linear (2,b) stress distribution. These two assumptions respectively 
lead to the following formulas to estimate the compressive length Lc: 
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2.2.2. Experimental results and comparisons 

The methodology used to derive the compressive length from the direct test measure-
ments is developed in [2] and is based on the assumption that the base section of the wall re-
mains plane. Illustrative values are given in Table 2 and compared with values calculated 
according to the Eurocode procedure for selected acceleration levels. Figure 5 shows the 
complete evolution of the experimental compressive length according to the acceleration level. 

Specimen Acceleration 
level [g] 

Compressive length 
[%]         [mm] 

Assessment (linear) 
[%]          [mm] 

Assessment (constant) 
  [%]               [mm] 

Long wall 
without 
rubber 

0.04 
0.15 
0.66 

83.20 
47.15 
0.03 

1747.2 
990.15 

0.5 

100.00 
57.23 

0 

2100 
1201.9 

0 

82.86 
35.71 

0 

1740 
750 
0 

Long wall 
with 

rubber 

0.04 
0.19 
0.64 

100.00 
67.20 
0.05 

2100.0 
1411.2 

1.1 

/ 
/ 
/ 

/ 
/ 
/ 

/ 
/ 
/ 

/ 
/ 
/ 

Short wall 
without 
rubber 

0.01 
0.02 
0.15 

77.01 
58.70 
14.37 

554.5 
422.6 
103.5 

100.00 
100.00 

0 

720 
720 
0 

87.50 
75.00 

0 

630 
540 
0 

Short wall 
with  

rubber 

0.04 
0.06 
0.17 

100.00 
100.00 
32.13 

720.0 
720.0 
231.3 

/ 
/ 
/ 

/ 
/ 
/ 

/ 
/ 
/ 

/ 
/ 
/ 

Table 2 – Illustrative values of compressive length  
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Figure 5 – Compression length 

Comparison between measurements and theoretical predictions yields the following 
comments. For low acceleration level, the measured values are intermediate between the theo-
retical values obtained assuming the two different shapes of stress distribution. For higher ac-
celeration level, the design method underestimates the compressive length. Note that, contrary 
to what is assumed in an equivalent static procedure, a zero value for the compressive length 
doesn’t necessary mean a collapse of the wall, but can be associated to a rocking motion. The 
influence of rubber devices on the compressive length is favourable. This length is indeed lar-
ger for a same acceleration level in presence of acoustic insulation devices. 

2.3 Classification of the test results 

A sorting of the tests is proposed based on a comparison of the rotations measured at the 
bottom and top of the wall. Three different situations are identified. 

The first situation appears for the seismic tests with a low level of acceleration, where a 
significant difference between rotations at the wall bottom and top is observed, as illustrated 
in Figure 6 for the first seismic test on the short wall without rubber devices. In this case, it is 
shown in [5] that the specimens can accurately be modelled as a cantilever beam (provided 
shear deformability is correctly accounted for). Among the present set of experimental results, 
this assumption is shown to be valid for the first three seismic tests. Comparisons between 
measurements and modelling results are carried out in [5]. This range and the associated mod-
elling assumption are mainly useful for assessing damage limit states at low acceleration level. 
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Figure 6 – Bottom and top rotations for a low level of acceleration 

The second case corresponds to situations where quasi-equal rotations are measured at the 
top and at the bottom. This is observed when the acceleration level is rather high (tests S07, 
S08, S09). Figure 7 illustrates the situation for the seismic test S08 on the short wall without 
rubber devices. In this case, the specimen can be considered as a rigid body rocking on its 
support. Section 3 of this paper will focus specifically on the modelling of this situation. This 
range is of prime interest for the evaluation of the ultimate limit state. 
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Figure 7 – Bottom and top rotations for a high level of acceleration 

The third situation is a hybrid one and corresponds to tests with an intermediate accelera-
tion level (S04, S05 and S06). A proper modelling would thus require combining a simple 
cantilever with a rocking model. It is felt however of a more limited practical interest. 

3 DEVELOPMENT OF A THEORETICAL ROCKING MODEL AND 
COMPARISONS WITH TESTS RESULTS 

3.1 Description of the reference theoretical model 

3.1.1 Basic equations 

The theoretical model used to carry out the comparisons with the experimental results is 
derived from the historical reference model developed by Housner [6]. This model has been 
initially developed to study the oscillations of a rigid body standing on a rigid support and is 
based on the resolution of the equation of motion deduced from the theorem of angular mo-
mentum : 

OO MH =&                  (1) 

where  OH  is the angular momentum relative to O 

 OM is the resultant of moments of external forces relative to O. 

In the reference version of the model, the gravity load is the specific weight of the body 
and is applied at its centre of gravity, as well as the inertial forces. The actual configuration of 
the tested specimens requires adjustments of this reference model in order to take into account 
the fact that : 

- The specific weight of the wall can be reasonably neglected since it is less than 
10% of the additional mass lying on the top of the wall; 

- The main gravity load and the inertial forces are consequently acting at the top of 
wall. 

The model considers thus a rigid body on a rigid support, with H and B being respectively 
the height and the length of the body. The rigid body is characterized by the angle 

)2/tan( HB=α . This angle characterizes the maximum rotation of the block beyond which 
the body turns over in static conditions under the effect of the gravity only. The two lower 
corners of the body are denoted O and O’. As it is assumed that the block and the support are 
both rigid, the oscillations are alternatively around O and O’. The angle between the body and 
the vertical is called θ and is the main kinematic unknown of the problem. θ is positive in 
clockwise rotation. A last assumption is to consider the coefficient of friction large enough for 
the risk of sliding to be neglected. 
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In Figure 8, the distance between a corner and the application point of the gravity load is 
denoted R (2). 

)²2/(² BHR +=                         (2) 

In Equation (1), the angular momentum relative to O is the result of the multiplication of 
the moment of inertia OI  calculated in O by the time-derivative θ& . As the contribution of the 

specific weight of the wall is neglected, it follows : 

θ&&& .OO IH =                  (3) 

with      ∫ =++=
A

O mRmRdAyxI ²²²)²(ρ          (4) 

In presence of a seismic action, the resultant of moments of external forces relative to O, 
i.e. OM , is due to the gravity load and to the inertial force, yielding : 

).cos().sin( θθαθθα −+−−= signRumsignmgRM gO &&              (5) 

where  m [kg] is the dead load 
 g  [m/s²] is the gravity 

 gu&& [m/s²] is the seismic acceleration  

3.1.2 Numerical resolution 

The resolution of the equation of motion is carried out using a standard Newmark integra-
tion scheme, under the assumption of constant acceleration (β=1/4, δ=1/2). The following 
equations (6), (7) and (8) are thus implemented to determine the time evolution of the angle θ. 
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3.1.3 Initiation of the rocking motion 

The rocking motion of the wall is initiated as soon as the moment due to the inertial force 
is higher than the restoring force moment of the gravity load. The equilibrium is expressed 
with respect to the corner O or O’ according to the assumption of a rigid body placed on a 
rigid support. Therefore, a rocking criterion RC can be written as follows : 

1

2

>=
B

mg

Hum
RC g&&          (9) 

As long as the condition (9) is not verified, no rocking motion is initiated and the angle θ 
remains equal to zero. 

3.1.4 Coefficient of restitution 

When the body oscillation switches from a rotation around one of its corners to a rotation 
around the other one, it has to pass through its original resting vertical position. This transi-
tion is actually associated with an impact since the body hits the support. This impact obvi-
ously dissipates energy. The approach proposed by Housner to account for the dissipation is 
to consider the conservation of angular momentum with various assumptions (see [7]). Ac-
cording to this, a reduction factor e is defined and has to be applied to the velocity of the wall 
before the impact to obtain the velocity right after this impact. The reduction factor is given 
by : 

α²sin
²

21
OI

mR
e −=             (10) 

where α  is the angle drawn in Figure 8. In this way, the incoming velocity is reduced each 
time the angle θ changes its sign. 

3.2 Predictions with the reference theoretical model 

The theoretical model described above is first crudely applied to perform a direct simula-
tion of the seismic tests S07, S08 and S09 for the walls without rubber layers. The input data 
for the theoretical prediction is the shaking table acceleration signal as measured during the 
test. 

Figures 9, 10 and 11 shows the evolution of the Rocking Initiation Criterion calculated ac-
cording to Equation (9) with the theoretical predictive model. Left-hand side and right-hand 
side graphs correspond respectively to the short and long walls. It is observed in Figure 9 and 
Figure 10 that the Rocking Criterion is never overcoming a unit value for tests S07 and S08, 
translating the fact that the theoretical model is predicting a non-occurrence of rocking motion. 
On the other hand, Figure 11 shows a criterion exceeding the unit, and thus predicting the ini-
tiation of a rocking motion, at about 4 seconds for the short wall (left) and at about 10 seconds 
for the long wall (right). 

Together with the time-evolution of the rocking criterion, all three figures also present the 
time-evolution of the measured rotation of the wall illustrating the actual rocking behaviour 
observed during the tests, with a significant motion occurring for tests S07 and S08 although 
not predicted. It can thus already be concluded that a further modification of the rocking crite-
rion is required. The impossibility of the theoretical model to predict the initiation of motion 
is at this stage identified as a consequence of the strong assumption of a perfectly rigid body 
lying on a perfectly rigid foundation and will be discussed in section 3.3.1. 
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Figure 9 – Rocking criterion for short (left) and long (right) walls without rubber devices  

during seismic test S07  
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Figure 10 – Rocking criterion for short (left) and long (right) walls without rubber devices  

during seismic test S08 
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Figure 11 – Rocking criterion for short (left) and long (right) walls without rubber devices  

during seismic test S09 

As a further comparison, Figure 12 compares the rotation calculated by the theoretical 
model with those observed from tests S09, for which the rocking criterion is predicted a mo-
tion. This figure evidences the two main issues faced by the theoretical model. 

The first one is related with the definition of the rocking criterion. Indeed, the initiation of 
the motion in Figure 12 (right) occurs at about 10 seconds, whereas the measurements are 
catching a rotation of the wall from 2 seconds. This observation is in line with the conclusions 
of tests S07 and S08 about a too conservative rocking criterion. 

The second issue deals with the coefficient of restitution. In Figure 12 (left), it is obvious 
that the model is not able to reach the level of rotation measured during the test (t ≈ 5s), while 
it predicts a non-observed amplification of the oscillations at the end of the signal (t > 10s). 
These observations can be felt as due to a respectively too low or too high estimate of the co-
efficient of restitution. 
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Figure 12 – Comparison between model and experimental results (S09) 

3.3 Improvements of the reference model 

In conclusion of the previous section, it comes out that the crude use of a basic rocking 
model is not suitable for walls. The two main parameters that could be adjusted to tune the 
model for the specific situation considered in the present study are respectively the condition 
initializing the rocking motion and the estimate of the restitution coefficient. Possible adjust-
ments are proposed in the following sections. 

3.3.1 Initiation of the rocking motion 

As the contact between the masonry wall and its foundation cannot be considered as per-
fectly rigid, the assumption of a rigid body rotation around its edge considered as a single di-
mensionless point is certainly not valid. 

It is generally assumed that masonry structural elements have no tensile strength. Thus, the 
equilibrium is performed according to a static equivalent method such as for instance the ap-
proach previously described in 2.2.1. This equilibrium implicitly considers that the base sec-
tion of the wall remains plane, from which a strain then a stress distribution can be derived. 
The proposed modification of the rocking initiation criterion consists in considering that, 
when the motion starts, the rotation doesn’t occur around the edge of the wall but around the 
point of zero stress, and thus zero strain, calculated according to § 2.2.1. It yields: 
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where Lc is the compressive length calculated with the assumption of a linear distribution of 
stresses. 

With this updated definition of the rocking criterion, the model is predicting the initiation 
of a rocking behaviour for all tests considered in the study (i.e. S07 to S09 for both aspect ra-
tios of the walls). Figure 13 illustrates this for test S07 of the short wall. In this figure, the cri-
terion calculated by Equation (9) remains below the motion initiation threshold, whereas the 
modified one calculated by Equation (11) is now sufficient to initiate the motion. 
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Figure 13 – Rocking criterion for short wall during seismic test S07 

In order to keep a fully consistent formulation, the modification of the rocking criterion in 
terms of position of reference fix point also influences the constitutive equations of the model. 
Indeed, once the motion starts, the rotation point should now be assumed to be calculated in 
the same way as when estimating the rocking initiation criterion. This is also consistent with 
the test measurements summarized in Table 2 and showing that the compressive length gener-
ally does not reduce to a single point, even in the case of a slender wall under large accelera-
tion level. 

In practice, it implies that the rotation point is likely to vary at each time step (see Figure 
14). As a consequence, the angle α is no more a constant, as well as the distance R or the co-
efficient of restitution e, these last two parameters being indeed function of the angle α. The 
values at time-step n are then : 
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This only modification is however not sufficient alone to get accurate results, although the 
general trend of the calculated motion is already better in the initial stage of the simulation 
when compared to experimental results. This is illustrated in Figure 15, where the model with 
modified reference point is run for the S09 short wall. 
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Figure 14 – Updated sketch of the model configuration 
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Figure 15 – Comparison between model and experimental results 

3.3.2 Restitution coefficient 

The formulation of the restitution coefficient used in the basic reference model is the one 
proposed by [7] deduced from the theory developed by Housner. An alternative formulation is 
however proposed by [8], also on the base of the Housner theory, that can in the present case 
be further simplified according to the specific expression of IO : 
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This shows that different options are actually possible regarding the coefficient of sin²α in 
the expression of en. In the case of a real masonry wall, the restitution coefficient is very 
likely to be influenced by the level of degradation of the material, while this level of degrada-
tion at a given impact is also likely to depend on the amplitude of the motion during the pre-
vious oscillation. The largest is the amplitude, the stronger is the impact, the higher is the 
dissipation and hence the lower is the restitution coefficient. This dependency is assumed to 
be represented by the ratio of the maximum rotation calculated during the oscillation preced-
ing the considered impact nmax,θ  normalized by the very maximum rotation calculated since 

the beginning of the motion absmax,θ , yielding: 
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A second modification is introduced to take into account a lower level of dissipation ob-
served as soon as the seismic input is stopped. Indeed, in case the same coefficient is used 
during the whole simulation, an unexpected amplification of the response is predicted right 
after the occurrence of the earthquake (see Figure 15). Therefore it is suggested to use two 
different expressions of the restitution coefficient for the forced vibration and for the free vi-
bration motions. Eq. (16) is considered for the forced vibrations, while an empirically modi-
fied value is used for the free vibration, as suggested in Eqs. (17). 
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A final dependency on the wall aspect ratio is introduced on the base of the test observa-
tions in order to improve the fitting of the results for the long wall. Indeed, in this latter case, 
the rocking is clearly not the one of a pure rigid body, as evidenced by the higher values of 
the compressive length given in Table 2. It is thus assumed that, all other conditions being 



C. Mordant, M. Dietz and H. Degée 

identical, i.e. for similar values of the parameters in Eq. (17), the energy dissipated by the 
long wall should be lower than by the shorter one. A reduction factor is then introduced to 
account for this effect. An empirical approach by progressive fitting of the numerical results 
with respect to the experimental data leads to a dependency proportional to the square of the 
proportion of the aspect ratios, yielding Eq. (18), where A0 is a constant to be calibrated: 
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3.4 Predictions of the modified theoretical model 

Theoretical predictions are first compared with experimental results for the shorter wall in 
Figure 16, Figure 17 and Figure 18 (left). For this specimen, the model predictions and test 
measurements match reasonably well, in particular in terms of frequency content and predic-
tion of the strong motions. The time-evolution is however slightly different with a relative dif-
ference of the maximum rotation equal to about 30 % in the worst case. Another discordance 
appears at the end of the test, once the acceleration signal comes down to zero (for t > 11s for 
S07 and S09, t > 14s for S08). This could be explained by the influence of the shaking table 
itself which modifies artificially the damping through its breaking system. Indeed, the meas-
urements show a renewed increase of the rotation, while the theoretical results remain close to 
zero. Except for these observations, the most important phase of strong motion appears to be 
well approached by the model. This phase corresponds to the motion between the fourth and 
the tenth seconds for S07 and S09 tests and between the eighth and fourteenth for S08 test. In 
this latter, the correspondence is less good, but the measurements are actually disturbed by the 
specimen hitting the safety arrangements. Figure 17 (left) shows a asymmetric rocking behav-
iour with higher values of positive rotations, which is in accordance with the model predic-
tions. 

Comparisons for the longer wall are plotted in Figure 16, Figure 17 and Figure 18 (right). 
for seismic test S07, S08 and S09 respectively. The fitting of the theoretical curve with the 
experimental one is pretty accurate in terms of predicting the occurrences of peak rotations, 
although the orders of magnitude of these peaks are generally overestimated by the theoretical 
model. 
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Figure 16 – Results for S07 (short wall : left – long wall right) 
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Figure 17 – Results for S08 (short wall : left – long wall right) 
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Figure 18 – Results for S09 (short wall : left – long wall right) 

Results of the experimental tests and predictions of the model can also be compared in 
terms of the uplifting of the wall. Let’s denote by “lifted length”, the part of the wall which is 
no longer in contact with the support. Its time-evolution is drawn in Figure 19 and Figure 20 
for the tests S07 and S09 respectively on short wall (left) and long wall (right). The results 
provided by the theoretical model assume that the wall is either straight in vertical position 
(lifted length equal to zero) or completely uplifted. Test and predictive values are in good 
agreement in the case of the short wall, especially for the seismic test S09. This latter observa-
tion was expected since the test conditions were the closest to the model assumptions in terms 
of measured contact length. In the case of the long wall, the correspondence of the results is 
not so clear and several differences are observed. Mainly, the model is not able to simulate 
every single uplifting of the wall. The reason may be the choice of the point of rotation, al-
though further investigation is clearly required in this perspective. 
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Figure 19 – Comparison of the “lifted length” for the short wall (left) and long wall (right)  

during seismic tests S07 
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Figure 20 – Comparison of the “lifted length” for the short wall (left) and long wall (right)  

during seismic tests S09 

4 CONCLUSIONS 

The present paper describes the results of experimental tests on simple unreinforced ma-
sonry walls, with glued horizontal joints and empty vertical joints, stressed by a seismic ac-
tion. In the first part, the paper presents the general test observations, including the 
consequences of the use of rubber elements on the global behaviour. The following observa-
tions are made: 

• The natural frequencies of the element are decreased by about 30% to 40% in presence of 
rubber layers. 

• A frequency drop and an increase of the damping ratio are observed as the acceleration 
level goes up. The presence of rubber reduces the drop and the increase of the damping 
ratio. 

• The motion of the specimen can be easily characterized by its compressive length. This 
latter can be assessed thanks to static equivalent methods when the acceleration level re-
mains low, but is underestimated for higher acceleration levels.  

• The use of rubber layers leads to higher compressive length for a same acceleration level 
compared to similar walls without rubber but results in higher horizontal displacements. 

In the second part of the paper, the different test results are classified in three categories. A 
first group is gathering the tests at a low acceleration level for which the specimen can be 
modelled as a cantilever beam. A second one corresponds to tests submitted to high accelera-
tion, characterized by a significant rocking behaviour. The last group is a hybrid one, where 
the specimen behaviour is a mix of a cantilever-like and of a rocking behaviour. 
The paper focuses then on the high acceleration levels and presents a modelling of the speci-
mens without rubber layers with the objective of predicting their rocking behaviour. The fol-
lowing conclusions are made: 

• Two main parameters influence the general behaviour, namely the rocking initiation cri-
terion and the restitution coefficient. 

• The rocking criterion defines the minimum acceleration required to initiate the rocking 
behaviour, depending on the geometry of the specimen. As the specimen cannot be con-
sidered as perfect rigid body, the criterion is a function of the actual compressive length 
assessed with the assumption of a linear distribution of stresses along the compressive 
length. 

• Modifications of the restitution coefficient have been empirically derived depending on 
several factors, such as the number of impacts, the amplitude of the rocking motion, the 
geometry of the specimen and excitation. 

Further perspectives cover the investigation of the modelling and behaviour of walls with 
rubber and the globalization of the theoretical model to study entire buildings composed by 
walls likely to exhibit a rocking behaviour. 
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