Additional file 2

Double counting between internal and external information

Assume $\hat{\mathbf{u}}_{\mathrm{E}_{0}}$ and $\mathbf{D}_{\mathrm{E}_{0}}^{-1}=\mathbf{G}_{\mathrm{E}_{0}}^{-1}+\boldsymbol{\Lambda}_{\mathrm{E}_{0}}$ (equation 2.1), the vector of known internal EBV and the inverse of the associated prediction error (co)variance matrix obtained from the genetic evaluation E_{0} based on the source E_{0} including only internal information where $\mathbf{G}_{\mathrm{E}_{0}}^{-1}$ is the inverse of the additive (co)variance matrix for all internal and external animals in the genetic evaluation E_{0} and $\boldsymbol{\Lambda}_{\mathrm{E}_{0}}$ is a block diagonal variance matrix. The vector $\hat{\mathbf{u}}_{\mathrm{E}_{1}}$ and the matrix $\mathbf{D}_{\mathrm{E}_{1}}^{-1}=\mathbf{G}_{\mathrm{E}_{1}}^{-1}+\boldsymbol{\Lambda}_{\mathrm{E}_{1}}$ (equation 2.2) are the vector of known external EBV and the inverse of the associated prediction error (co)variance matrix obtained from a genetic evaluation based on the source E_{1} including external and internal information where $\mathbf{G}_{\mathrm{E}_{1}}^{-1}$ is the inverse of the additive (co)variance matrix for all internal and external animals in the genetic evaluation E_{1}. The vector $\hat{\mathbf{u}}_{\mathrm{E}_{2}}$ and the matrix $\mathbf{D}_{\mathrm{E}_{2}}^{-1}$ are the vector of unknown external EBV and the inverse of the associated unknown prediction error (co)variance matrix obtained from a genetic evaluation E_{2} based on the source E_{2} including only external information. It is also assumed that double counting among animals due to relationships is taken into account.

Therefore, from $\boldsymbol{\Lambda}_{\mathrm{E}_{0}}$ and $\boldsymbol{\Lambda}_{\mathrm{E}_{1}}$, the diagonal matrix of RE expressing the amount of contributions only due to records, $\mathbf{R E}_{\mathrm{E}_{0}}$ and $\mathbf{R E}_{\mathrm{E}_{1}}$, can be estimated for the two sources of information E_{0} and E_{1}, respectively. Because these $R E$ are free of contributions due to relationships and due to correlated traits, the matrix of RE associated with the source of information $\mathrm{E}_{2}, \mathbf{R E}_{\mathrm{E}_{2}}$, can be estimated as follows:

$$
\mathbf{R E} \mathbf{E}_{\mathrm{E}_{2}}=\mathbf{R} \mathbf{E}_{\mathrm{E}_{1}}-\mathbf{R} \mathbf{E}_{\mathrm{E}_{0}}
$$

It can be also written that $\boldsymbol{\Lambda}_{\mathrm{E}_{2}}=\boldsymbol{\Lambda}_{\mathrm{E}_{1}}-\boldsymbol{\Lambda}_{\mathrm{E}_{0}}$ (equation 2.4). The unknown $\mathbf{D}_{\mathrm{E}_{2}}^{-1}$ can be
approximated as $\mathbf{D}_{\mathrm{E}_{2}}^{-1}=\mathbf{G}_{\mathrm{E}_{2}}^{-1}+\boldsymbol{\Lambda}_{\mathrm{E}_{2}}$ (equation 2.5) where $\mathbf{G}_{\mathrm{E}_{2}}^{-1}$ is the inverse of an unknown additive (co)variance matrix for the external source E_{2}. From the equations 2.1, 2.2 and 2.5, the equation 2.4 is equivalent to the equation $\mathbf{D}_{\mathrm{E}_{2}}^{-1}-\mathbf{G}_{\mathrm{E}_{2}}^{-1}=\left(\mathbf{D}_{\mathrm{E}_{1}}^{-1}-\mathbf{G}_{\mathrm{E}_{1}}^{-1}\right)-\left(\mathbf{D}_{\mathrm{E}_{0}}^{-1}-\mathbf{G}_{\mathrm{E}_{0}}^{-1}\right)$ (equation 2.5).

Following the equations (1) and assuming the lack of phenotypes in $\mathbf{y}_{\mathrm{E}_{0}}$, it can be written:

$$
\begin{equation*}
\left\lfloor\mathbf{G}_{\mathrm{E}_{1}}^{-1}+\mathbf{D}_{\mathrm{E}_{0}}^{-1}-\mathbf{G}_{\mathrm{E}_{0}}^{-1}+\mathbf{D}_{\mathrm{E}_{2}}^{-1}-\mathbf{G}_{\mathrm{E}_{2}}^{-1}\right\rfloor \hat{\mathbf{u}}_{\mathrm{E}_{1}}=\mathbf{D}_{\mathrm{E}_{0}}^{-1} \hat{\mathbf{u}}_{\mathrm{E}_{0}}+\mathbf{D}_{\mathrm{E}_{2}}^{-1} \hat{\mathbf{u}}_{\mathrm{E}_{2}} \tag{2.6}
\end{equation*}
$$

Because of the equation 2.5, the equation 2.6 can be written as follows:

$$
\mathbf{D}_{\mathrm{E}_{1}}^{-1} \hat{\mathbf{u}}_{\mathrm{E}_{1}}=\mathbf{D}_{\mathrm{E}_{0}}^{-1} \hat{\mathbf{u}}_{\mathrm{E}_{0}}+\mathbf{D}_{\mathrm{E}_{2}}^{-1} \hat{\mathbf{u}}_{\mathrm{E}_{2}} .
$$

Thereby, $\hat{\mathbf{u}}_{\mathrm{E}_{2}}$ can be estimated using $\mathbf{D}_{\mathrm{E}_{2}}^{-1} \hat{\mathbf{u}}_{\mathrm{E}_{2}}=\mathbf{D}_{\mathrm{E}_{1}}^{-1} \hat{\mathbf{u}}_{\mathrm{E}_{1}}-\mathbf{D}_{\mathrm{E}_{0}}^{-1} \hat{\mathbf{u}}_{\mathrm{E}_{0}}$ (equation 2.7).

Because the source E_{2} is free of internal information E_{0}, it can be integrated into the internal evaluation through the system of equations (1) as follows:

$$
\left[\begin{array}{cc}
\mathbf{X}_{\mathrm{E}_{0}}^{\prime} \mathbf{R}_{\mathrm{E}_{0}}^{-1} \mathbf{X}_{\mathrm{E}_{0}} & \mathbf{X}_{\mathrm{E}_{0}}^{\prime} \mathbf{R}_{\mathrm{E}_{0}}^{-1} \mathbf{Z}_{\mathrm{E}_{0}} \\
\mathbf{Z}_{\mathrm{E}_{0}}^{\prime} \mathbf{R}_{\mathrm{E}_{0}}^{-1} \mathbf{X}_{\mathrm{E}_{0}} & \mathbf{Z}_{\mathrm{E}_{0}} \mathbf{R}_{\mathrm{E}_{0}}^{-1} \mathbf{Z}_{\mathrm{E}_{0}}+\mathbf{G}_{\mathrm{E}_{0}}^{-1}+\mathbf{D}_{\mathrm{E}_{2}}-\mathbf{G}_{\mathrm{E}_{2}}
\end{array}\right]\left[\begin{array}{c}
\hat{\boldsymbol{\beta}}_{\mathrm{E}_{0}} \\
\hat{\mathbf{u}}_{\mathrm{E}_{0}}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{X}_{\mathrm{E}_{0}}^{\prime} \mathbf{R}_{\mathrm{E}_{0}}^{-1} \mathbf{y}_{\mathrm{E}_{0}} \\
\mathbf{Z}_{\mathrm{E}_{0}} \mathbf{R}_{\mathrm{E}_{0}}^{-1} \mathbf{y}_{\mathrm{E}_{0}}+\mathbf{D}_{\mathrm{E}_{2}}^{-1} \hat{\mathbf{u}}_{\mathrm{E}_{2}}
\end{array}\right] \quad \text { (equation 2.8). }
$$

Due to the equations 2.5 and 2.7, $\mathbf{D}_{\mathrm{E}_{2}}^{-1}$ and $\hat{\mathbf{u}}_{\mathrm{E}_{2}}$ must not be estimated explicitly and the system of equations 2.8 can be written as follows:

$$
\begin{aligned}
& {\left[\begin{array}{lc}
\mathbf{X}_{\mathrm{E}_{0}}^{\prime} \mathbf{R}_{\mathrm{E}_{0}}^{-1} \mathbf{X}_{\mathrm{E}_{0}} & \mathbf{X}_{\mathrm{E}_{0}}^{\prime} \mathbf{R}_{\mathrm{E}_{0}}^{-1} \mathbf{Z}_{\mathrm{E}_{0}} \\
\mathbf{Z}_{\mathrm{E}_{0}}^{\prime} \mathbf{R}_{\mathrm{E}_{0}}^{-1} \mathbf{X}_{\mathrm{E}_{0}} & \mathbf{Z}_{\mathrm{E}_{0}} \mathbf{R}_{\mathrm{E}_{0}}^{-1} \mathbf{Z}_{\mathrm{E}_{0}}+\mathbf{G}_{\mathrm{E}_{0}}^{-1}+\left(\mathbf{D}_{\mathrm{E}_{1}}^{-1}-\mathbf{G}_{\mathrm{E}_{1}}^{-1}\right)-\left(\mathbf{D}_{\mathrm{E}_{0}}^{-1}-\mathbf{G}_{\mathrm{E}_{0}}^{-1}\right)
\end{array}\right]\left[\begin{array}{l}
\hat{\boldsymbol{\beta}}_{\mathrm{E}_{0}} \\
\hat{\mathbf{u}}_{\mathrm{E}_{0}}
\end{array}\right]} \\
& =\left[\begin{array}{c}
\mathbf{X}_{\mathrm{E}_{0}}^{\prime} \mathbf{R}_{\mathrm{E}_{0}}^{-1} \mathbf{y}_{\mathrm{E}_{0}} \\
\mathbf{Z}_{\mathrm{E}_{0}}^{\prime} \mathbf{R}_{\mathrm{E}_{0}}^{-1} \mathbf{y}_{\mathrm{E}_{0}}+\mathbf{D}_{\mathrm{E}_{1}}^{-1} \hat{\mathbf{u}}_{\mathrm{E}_{1}}-\mathbf{D}_{\mathrm{E}_{0}}^{-1} \hat{\mathbf{u}}_{\mathrm{E}_{0}}
\end{array}\right]
\end{aligned}
$$

This development can be extended to integrate several sources of external information.

