Additional file 2

Double counting between internal and external information

Assume $\hat{\mathbf{u}}_{E_0}$ and $\mathbf{D}_{E_0}^{-1} = \mathbf{G}_{E_0}^{-1} + \mathbf{\Lambda}_{E_0}$ (equation 2.1), the vector of known internal EBV and the inverse of the associated prediction error (co)variance matrix obtained from the genetic evaluation E_0 based on the source E_0 including only internal information where $\mathbf{G}_{E_0}^{-1}$ is the inverse of the additive (co)variance matrix for all internal and external animals in the genetic evaluation E_0 and $\mathbf{\Lambda}_{E_0}$ is a block diagonal variance matrix. The vector $\hat{\mathbf{u}}_{E_1}$ and the matrix $\mathbf{D}_{E_1}^{-1} = \mathbf{G}_{E_1}^{-1} + \mathbf{\Lambda}_{E_1}$ (equation 2.2) are the vector of known external EBV and the inverse of the associated prediction error (co)variance matrix obtained from a genetic evaluation based on the source E_1 including external and internal information where $\mathbf{G}_{E_1}^{-1}$ is the inverse of the additive (co)variance matrix for all internal and external animals in the genetic evaluation E_1 . The vector $\hat{\mathbf{u}}_{E_2}$ and the matrix $\mathbf{D}_{E_2}^{-1}$ are the vector of unknown external EBV and the inverse of the associated unknown prediction error (co)variance matrix obtained from a genetic evaluation E_1 . The vector $\hat{\mathbf{u}}_{E_2}$ and the matrix $\mathbf{D}_{E_2}^{-1}$ are the vector of unknown external EBV and the inverse of the associated unknown prediction error (co)variance matrix obtained from a genetic evaluation E_2 based on the source E_2 including only external information. It is also assumed that double counting among animals due to relationships is taken into account.

Therefore, from Λ_{E_0} and Λ_{E_1} , the diagonal matrix of RE expressing the amount of contributions only due to records, \mathbf{RE}_{E_0} and \mathbf{RE}_{E_1} , can be estimated for the two sources of information E_0 and E_1 , respectively. Because these RE are free of contributions due to relationships and due to correlated traits, the matrix of RE associated with the source of information E_2 , \mathbf{RE}_{E_2} , can be estimated as follows:

$$\mathbf{R}\mathbf{E}_{\mathbf{E}_2} = \mathbf{R}\mathbf{E}_{\mathbf{E}_1} - \mathbf{R}\mathbf{E}_{\mathbf{E}_0}$$
(equation 2.3).

It can be also written that $\Lambda_{E_2} = \Lambda_{E_1} - \Lambda_{E_0}$ (equation 2.4). The unknown $\mathbf{D}_{E_2}^{-1}$ can be

approximated as $\mathbf{D}_{E_2}^{-1} = \mathbf{G}_{E_2}^{-1} + \mathbf{\Lambda}_{E_2}$ (equation 2.5) where $\mathbf{G}_{E_2}^{-1}$ is the inverse of an unknown additive (co)variance matrix for the external source E₂. From the equations 2.1, 2.2 and 2.5, the equation 2.4 is equivalent to the equation $\mathbf{D}_{E_2}^{-1} - \mathbf{G}_{E_2}^{-1} = (\mathbf{D}_{E_1}^{-1} - \mathbf{G}_{E_1}^{-1}) - (\mathbf{D}_{E_0}^{-1} - \mathbf{G}_{E_0}^{-1})$ (equation 2.5).

Following the equations (1) and assuming the lack of phenotypes in $\mathbf{y}_{\mathbf{E}_0}$, it can be written:

$$\left[\mathbf{G}_{E_{1}}^{-1} + \mathbf{D}_{E_{0}}^{-1} - \mathbf{G}_{E_{0}}^{-1} + \mathbf{D}_{E_{2}}^{-1} - \mathbf{G}_{E_{2}}^{-1}\right]\hat{\mathbf{u}}_{E_{1}} = \mathbf{D}_{E_{0}}^{-1}\hat{\mathbf{u}}_{E_{0}} + \mathbf{D}_{E_{2}}^{-1}\hat{\mathbf{u}}_{E_{2}} \quad (2.6).$$

Because of the equation 2.5, the equation 2.6 can be written as follows:

$$\mathbf{D}_{E_1}^{-1} \hat{\mathbf{u}}_{E_1} = \mathbf{D}_{E_0}^{-1} \hat{\mathbf{u}}_{E_0} + \mathbf{D}_{E_2}^{-1} \hat{\mathbf{u}}_{E_2} .$$

Thereby, $\hat{\mathbf{u}}_{E_2}$ can be estimated using $\mathbf{D}_{E_2}^{-1}\hat{\mathbf{u}}_{E_2} = \mathbf{D}_{E_1}^{-1}\hat{\mathbf{u}}_{E_1} - \mathbf{D}_{E_0}^{-1}\hat{\mathbf{u}}_{E_0}$ (equation 2.7).

Because the source E_2 is free of internal information E_0 , it can be integrated into the internal evaluation through the system of equations (1) as follows:

$$\begin{bmatrix} \mathbf{X}'_{E_0} \mathbf{R}_{E_0}^{-1} \mathbf{X}_{E_0} & \mathbf{X}'_{E_0} \mathbf{R}_{E_0}^{-1} \mathbf{Z}_{E_0} \\ \mathbf{Z}'_{E_0} \mathbf{R}_{E_0}^{-1} \mathbf{X}_{E_0} & \mathbf{Z}'_{E_0} \mathbf{R}_{E_0}^{-1} \mathbf{Z}_{E_0} + \mathbf{G}_{E_0}^{-1} + \mathbf{D}_{E_2}^{-1} - \mathbf{G}_{E_2}^{-1} \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{\beta}}_{E_0} \\ \hat{\boldsymbol{u}}_{E_0} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'_{E_0} \mathbf{R}_{E_0}^{-1} \mathbf{y}_{E_0} \\ \mathbf{Z}'_{E_0} \mathbf{R}_{E_0}^{-1} \mathbf{y}_{E_0} + \mathbf{D}_{E_2}^{-1} \hat{\boldsymbol{u}}_{E_2} \end{bmatrix}$$
(equation 2.8).

Due to the equations 2.5 and 2.7, $\mathbf{D}_{E_2}^{-1}$ and $\hat{\mathbf{u}}_{E_2}$ must not be estimated explicitly and the system of equations 2.8 can be written as follows:

$$\begin{bmatrix} \mathbf{X}'_{E_0} \ \mathbf{R}_{E_0}^{-1} \mathbf{X}_{E_0} & \mathbf{X}'_{E_0} \ \mathbf{R}_{E_0}^{-1} \mathbf{Z}_{E_0} \\ \mathbf{Z}'_{E_0} \ \mathbf{R}_{E_0}^{-1} \mathbf{X}_{E_0} & \mathbf{Z}'_{E_0} \ \mathbf{R}_{E_0}^{-1} \mathbf{Z}_{E_0} + \mathbf{G}_{E_0}^{-1} + \left(\mathbf{D}_{E_1}^{-1} - \mathbf{G}_{E_1}^{-1} \right) - \left(\mathbf{D}_{E_0}^{-1} - \mathbf{G}_{E_0}^{-1} \right) \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{\beta}}_{E_0} \\ \hat{\boldsymbol{u}}_{E_0} \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{X}'_{E_0} \ \mathbf{R}_{E_0}^{-1} \mathbf{y}_{E_0} \\ \mathbf{Z}'_{E_0} \ \mathbf{R}_{E_0}^{-1} \mathbf{y}_{E_0} + \mathbf{D}_{E_1}^{-1} \hat{\boldsymbol{u}}_{E_1} - \mathbf{D}_{E_0}^{-1} \hat{\boldsymbol{u}}_{E_0} \end{bmatrix}$$

This development can be extended to integrate several sources of external information.