Additional file 1

Integration of two sources of external information into a genetic evaluation

The following Bayesian derivation is similar to the Bayesian derivation of Legarra et al. [13] that integrates one source of external information into an internal genetic evaluation in the context of multi-breed genetic evaluations for beef cattle.

Assume a set of animals partitioned in four groups. The first group (i.e. internal animals $A_{1,2}^{0}$) has only records in the internal data set $\left(\mathbf{y}_{\mathrm{E}_{0}}\right)$. The second group (i.e. external animals A_{1}) has records in the external data set, $\mathbf{y}_{\mathrm{E}_{1}}$, and may have records in $\mathbf{y}_{\mathrm{E}_{0}}$. The third group (i.e. external animals A_{2}) has records in the external data set, $\mathbf{y}_{\mathrm{E}_{2}}$, and may have records in $\mathbf{y}_{\mathrm{E}_{0}}$. The fourth group (i.e. external animals $\mathrm{A}_{1,2}$) have records in both $\mathbf{y}_{\mathrm{E}_{1}}$ and $\mathbf{y}_{\mathrm{E}_{2}}$, and may have also records in $\mathbf{y}_{\mathrm{E}_{0}}$. For the following genetic evaluations, variance components are assumed to be identical.

Concerning the notation of matrices in the following development (e.g., $\left.\mathbf{X}_{\mathrm{E}_{\mathrm{i}}\left(\mathrm{A}_{\mathrm{I}}\right)}\right)$, the subscript E_{i} refers to the $\mathrm{i}^{\text {th }}$ source of data and the subscript within brackets $\left(\mathrm{A}_{1}\right)$ refers to the $1^{\text {th }}$ group of animals, respectively.

Assume a hypothetical joint genetic evaluation (denoted by the subscript J) of all animals ($\mathrm{A}_{1,2}^{0}$, $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{1,2}$) including both datasets $\mathbf{y}_{\mathrm{E}_{1}}$ and $\mathbf{y}_{\mathrm{E}_{2}}$. Because it was assumed that $\mathbf{y}_{\mathrm{E}_{1}}$ and $\mathbf{y}_{\mathrm{E}_{2}}$ were pre-corrected for fixed effects, the model partitioned among the four groups of animals can be written as
$\left[\begin{array}{c}\mathbf{y}_{\mathrm{E}_{1}\left(\mathrm{~A}_{1}\right)} \\ \left.\mathbf{y}_{\mathrm{E}_{1}\left(\mathrm{~A}_{1,2}\right)}\right) \\ \left.\mathbf{y}_{\mathrm{E}_{2}\left(\mathrm{~A}_{2}\right)}\right) \\ \left.\mathbf{y}_{\mathrm{E}_{2}\left(\mathrm{~A}_{1,2}\right)}\right)\end{array}\right]=\left[\begin{array}{cccc}\mathbf{0} & \mathbf{Z}_{\mathrm{E}_{1}\left(\mathrm{~A}_{1}\right)} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{Z}_{\mathrm{E}_{1}\left(\mathrm{~A}_{1,2}\right)} \\ \mathbf{0} & \mathbf{0} & \mathbf{Z}_{\mathrm{E}_{2}\left(\mathrm{~A}_{2}\right)} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{Z}_{\mathrm{E}_{2}\left(\mathrm{~A}_{1,2}\right)}\end{array}\right]\left[\begin{array}{c}\mathbf{u}_{\mathrm{J}\left(\mathrm{A}_{1,2}^{0}\right)} \\ \left.\mathbf{u}_{\mathrm{J}\left(\mathrm{A}_{1}\right)}\right) \\ \mathbf{u}_{\mathrm{J}\left(\mathrm{A}_{2}\right)} \\ \mathbf{u}_{\mathrm{J}\left(\mathrm{A}_{1,2}\right)}\end{array}\right]+\left[\begin{array}{c}\mathbf{e}_{\mathrm{J}_{1}\left(\mathrm{~A}_{1}\right)} \\ \mathbf{e}_{\mathrm{J}_{1}\left(\mathrm{~A}_{1,2}\right)} \\ \mathbf{e}_{\mathrm{J}_{2}\left(\mathrm{~A}_{2}\right)} \\ \mathbf{e}_{\mathrm{J}_{2}\left(\mathrm{~A}_{1,2}\right)}\end{array}\right]$
where $\mathbf{u}_{\mathrm{J}}=\left[\begin{array}{llll}\mathbf{u}_{\mathrm{J}\left(A_{1,2}^{0}\right)}^{\prime} & \mathbf{u}_{\mathrm{J}\left(\mathrm{A}_{1}\right)}^{\prime} & \left.\mathbf{u}_{\mathrm{J}\left(A_{2}\right)}^{\prime}\right) & \mathbf{u}_{\mathrm{J}\left(A_{1,2}\right)}^{\prime}\end{array}\right]$ is the vector of genetic random effects for animals $\mathrm{A}_{1,2}^{0}, \mathrm{~A}_{1}, \mathrm{~A}_{2}$ and $\mathrm{A}_{1,2}$ for the evaluation $\mathrm{J}, \mathbf{Z}_{\mathrm{E}_{1}\left(\mathrm{~A}_{1}\right)}$ and $\mathbf{Z}_{\mathrm{E}_{1}\left(\mathrm{~A}_{1,2}\right)}$ are incidence matrices relating records of $\mathbf{y}_{\mathrm{E}_{1}\left(\mathrm{~A}_{1}\right)}$ and $\mathbf{y}_{\mathrm{E}_{1}\left(\mathrm{~A}_{1,2}\right)}$ to $\mathbf{u}_{\mathrm{J}\left(\mathrm{A}_{1}\right)}$ and $\mathbf{u}_{\mathrm{J}\left(\mathrm{A}_{1,2}\right)}$, respectively, and $\mathbf{Z}_{\mathrm{E}_{2}\left(\mathrm{~A}_{2}\right)}$ and $\mathbf{Z}_{\mathrm{E}_{2}\left(\mathrm{~A}_{1,2}\right)}$ are incidence matrices relating records of $\mathbf{y}_{\mathrm{E}_{2}\left(\mathrm{~A}_{2}\right)}$ and $\mathbf{y}_{\mathrm{E}_{2}\left(\mathrm{~A}_{1,2}\right)}$ to $\mathbf{u}_{\mathrm{J}\left(\mathrm{A}_{2}\right)}$ and $\mathbf{u}_{\mathrm{J}\left(\mathrm{A}_{1,2}\right)}$, respectively, and $\mathbf{e}_{\mathrm{J}_{1}}$ and $\mathbf{e}_{\mathrm{J}_{2}}$ are the vectors of residuals associated with $\mathbf{y}_{\mathrm{E}_{1}}$ and $\mathbf{y}_{\mathrm{E}_{2}}$, respectively.

The corresponding mixed model equations (MME) can be written as:

$\left[\begin{array}{c}\hat{\mathbf{u}}_{J\left(A_{1,2}^{0}\right)} \\ \left.\hat{\mathbf{u}}_{J\left(A_{1}\right)}\right) \\ \left.\hat{\mathbf{u}}_{J\left(A_{2}\right)}\right) \\ \hat{\mathbf{u}}_{J\left(A_{1,2}\right)}\end{array}\right]=\left[\begin{array}{c}\mathbf{0} \\ \left.\mathbf{Z}_{\mathrm{E}_{1}\left(A_{1}\right)}^{\prime}\right) \mathbf{R}_{\mathrm{E}_{1}}^{\left(\mathrm{A}_{1} \mathrm{~A}_{1}\right)} \mathbf{y}_{\mathrm{E}_{1}\left(\mathrm{~A}_{1}\right)} \\ \mathbf{Z}_{\mathrm{E}_{1}\left(A_{2}\right)} \mathbf{R}_{\mathrm{E}_{2}}^{\left(\mathrm{A}_{2} \mathrm{~A}_{2}\right)} \mathbf{y}_{\mathrm{E}_{2}\left(A_{2}\right)} \\ \mathbf{Z}_{\mathrm{E}_{1}\left(\mathrm{~A}_{1,2}\right)} \mathbf{R}_{\mathrm{E}_{1}}^{\left(\mathrm{A}_{1,2} \mathrm{~A}_{1,2}\right)_{2}} \mathbf{y}_{\mathrm{E}_{1}\left(\mathrm{~A}_{1,2}\right)}+\mathbf{Z}_{\mathrm{E}_{2}\left(\mathrm{~A}_{1,2}\right)}^{\prime} \mathbf{R}_{\mathrm{E}_{2}}^{\left(\mathrm{A}_{1,2} \mathrm{~A}_{1,2}\right)} \mathbf{y}_{\mathrm{E}_{2}\left(A_{1,2}\right)}\end{array}\right]$
(equation 1.1)

is the inverse of the additive
(co)variance matrix including all animals and $\left[\begin{array}{cc}\mathbf{R}_{E_{1}}^{\left(A_{1} A_{1}\right)} & \mathbf{R}_{\mathrm{E}_{1}}^{\left(A_{1} A_{1,2}\right)} \\ \left.\mathbf{R}_{\mathrm{E}_{1}}^{\left(A_{1,2}\right.}\right) & \mathbf{R}_{\mathrm{E}_{1}}^{\left(A_{1,2} A_{1,2}\right)}\end{array}\right]$ and $\left[\begin{array}{cc}\left.\mathbf{R}_{\mathrm{E}_{2}}^{\left(A_{2} A_{2}\right.}\right) & \mathbf{R}_{\mathrm{E}_{2}}^{\left(A_{2} A_{1,2}\right)} \\ \left.\mathbf{R}_{\mathrm{E}_{2}}^{\left(A_{1,2} A_{2}\right.}\right) & \mathbf{R}_{\mathrm{E}_{2}}^{\left(A_{1,2} A_{1,2}\right)}\end{array}\right]$ are the inverse of the residual (co)variance matrices associated with $\mathbf{e}_{\mathrm{J}_{1}}$ and $\mathbf{e}_{\mathrm{J}_{2}}$, respectively.

Assume an internal genetic evaluation (denoted by the subscript E_{0}) of all animals (i.e. animals $\mathrm{A}_{1,2}^{0}, \mathrm{~A}_{1}, \mathrm{~A}_{2}$ and $\mathrm{A}_{1,2}$) including only $\mathbf{y}_{\mathrm{E}_{0}}$ and using the prior distribution $\mathrm{p}\left(\hat{\mathbf{u}}_{\mathrm{E}_{0}} \mid \mathbf{y}_{\mathrm{E}_{1}}, \mathbf{y}_{\mathrm{E}_{2}}\right)=\operatorname{MVN}(\boldsymbol{\mu}, \mathbf{G} *)$ [27] where $\mathbf{G} *$ is the inverse of the left-hand-side (LHS) of the equation 1.1 and $\boldsymbol{\mu}$ is the solutions of the equation 1.1. The model for the genetic evaluation E_{0} can be written as:
$\mathbf{y}_{\mathrm{E}_{0}}=\mathbf{X}_{\mathrm{E}_{0}} \boldsymbol{\beta}_{\mathrm{E}_{0}}+\mathbf{Z}_{\mathrm{E}_{0}} \mathbf{u}_{\mathrm{E}_{0}}+\mathbf{e}_{\mathrm{E}_{0}}$,
where $\mathbf{X}_{\mathrm{E}_{0}}$ and $\mathbf{Z}_{\mathrm{E}_{0}}$ are incidence matrices relating records in $\mathbf{y}_{\mathrm{E}_{0}}$ to the vector of fixed effects $\boldsymbol{\beta}_{\mathrm{E}_{0}}$ and the vector of genetic random effects $\mathbf{u}_{\mathrm{E}_{0}}=\left[\begin{array}{llll}\mathbf{u}_{\mathrm{E}_{0}\left(A_{1,2}^{\prime}\right)}^{\prime} & \left.\mathbf{u}_{\mathrm{E}_{0}\left(\mathrm{~A}_{1}\right)}^{\prime}\right) & \mathbf{u}_{\mathrm{E}_{0}\left(\mathrm{~A}_{2}\right)}^{\prime} & \mathbf{u}_{\mathrm{E}_{0}\left(\mathrm{~A}_{1,2}\right)}^{\prime}\end{array}\right]$, respectively and $\mathbf{e}_{\mathrm{E}_{0}}$ is the vector of residuals.

The MME can be written as:

$$
\left[\begin{array}{lc}
\mathbf{X}_{\mathrm{E}_{0}}^{\prime} \mathbf{R}_{\mathrm{E}_{0}}^{-1} \mathbf{X}_{\mathrm{E}_{0}} & \mathbf{X}_{\mathrm{E}_{0}}^{\prime} \mathbf{R}_{\mathrm{E}_{0}}^{-1} \mathbf{Z}_{\mathrm{E}_{0}} \tag{equation1.2}\\
\mathbf{Z}_{\mathrm{E}_{0}} \mathbf{R}_{\mathrm{E}_{0}}^{-1} \mathbf{X}_{\mathrm{E}_{0}} & \mathbf{Z}_{\mathrm{E}_{0}} \mathbf{R}_{\mathrm{E}_{0}}^{-1} \mathbf{Z}_{\mathrm{E}_{0}}+\mathbf{G}^{*-1}
\end{array}\right]\left[\begin{array}{c}
\hat{\boldsymbol{\beta}}_{\mathrm{E}_{0}} \\
\hat{\mathbf{u}}_{\mathrm{E}_{0}}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{X}_{\mathrm{E}_{0}}^{\prime} \mathbf{R}_{\mathrm{E}_{0}}^{-1} \mathbf{y}_{\mathrm{E}_{0}} \\
\mathbf{Z}_{\mathrm{E}_{0}}^{\prime} \mathbf{R}_{\mathrm{E}_{0}}^{-1} \mathbf{y}_{\mathrm{E}_{0}}+\mathbf{G}^{*-1} \boldsymbol{\mu}
\end{array}\right],
$$

where $\mathbf{R}_{\mathrm{E}_{0}}^{-1}$ is the inverse of the residual (co)variance matrix associated with $\mathbf{e}_{\mathrm{E}_{0}}$.

However, the evaluation \mathbf{J} (equation 1.1), and therefore \mathbf{G}^{*} and $\boldsymbol{\mu}$, are unknown.

Assume that two genetic evaluations (denoted by the subscripts E_{1} and E_{2}, respectively) for two groups of external animals (i.e. animals A_{1} and $A_{1,2}$, and animals A_{2} and $A_{1,2}$, respectively)
which do not include in the genealogy internal animals (i.e. animals $A_{1,2}^{0}$ and A_{2}, and animals $A_{1,2}^{0}$ and A_{1}, respectively) are known. The model for the genetic evaluation E_{1} of only external animals A_{1} and $\mathrm{A}_{1,2}$ including only $\mathbf{y}_{\mathrm{E}_{1}}$ and which does not include in the genealogy animals $\mathrm{A}_{1,2}^{0}$ and A_{2} can be written as:
$\left[\begin{array}{c}\mathbf{y}_{\mathrm{E}_{1}\left(\mathrm{~A}_{1}\right)} \\ \left.\mathbf{y}_{\mathrm{E}_{1}\left(\mathrm{~A}_{1,2}\right.}\right)\end{array}\right]=\left[\begin{array}{cc}\mathbf{Z}_{\mathrm{E}_{1}\left(\mathrm{~A}_{1}\right)} & \mathbf{0} \\ \mathbf{0} & \mathbf{Z}_{\mathrm{E}_{1}\left(\mathrm{~A}_{1,2}\right)}\end{array}\right]\left[\begin{array}{c}\mathbf{u}_{\mathrm{E}_{1}\left(\mathrm{~A}_{1}\right)} \\ \left.\mathbf{u}_{\mathrm{E}_{1}\left(\mathrm{~A}_{1,2}\right)}\right)\end{array}\right]+\left[\begin{array}{c}\mathbf{e}_{\mathrm{E}_{1}\left(\mathrm{~A}_{1}\right)} \\ \left.\mathbf{e}_{\mathrm{E}_{1}\left(\mathrm{~A}_{1,2}\right)}\right)\end{array}\right]$,
where $\mathbf{u}_{\mathrm{E}_{1}\left(\mathrm{~A}_{1}\right)}$ and $\mathbf{u}_{\mathrm{E}_{1}\left(\mathrm{~A}_{1,2}\right)}$ are the vectors of genetic random effects for animals A_{1} and $\mathrm{A}_{1,2}$ for the genetic evaluation E_{1}.

The MME can be written as:

(equation 1.3)
$=\left[\begin{array}{c}\mathbf{Z}_{\mathrm{E}_{1}\left(\mathrm{~A}_{1}\right)} \mathbf{R}_{\mathrm{E}_{1}}^{\left(\mathrm{A}_{1} \mathrm{~A}_{1}\right)} \mathbf{y}_{\mathrm{E}_{1}\left(\mathrm{~A}_{1}\right)} \\ \left.\mathbf{Z}_{\mathrm{E}_{1}\left(\mathrm{~A}_{1,2}\right)} \mathbf{R}_{\mathrm{E}_{1}}^{\left(\mathrm{A}_{12} \mathrm{~A}_{1,2}\right)} \mathbf{y}_{\mathrm{E}_{1}\left(\mathrm{~A}_{1,2}\right)}\right)\end{array}\right]=\mathbf{D}_{\mathrm{E}_{1}-1}^{*-1}\left[\begin{array}{c}\hat{\mathbf{u}}_{\mathrm{E}_{1}\left(\mathrm{~A}_{1}\right)} \\ \left.\hat{\mathbf{u}}_{\mathrm{E}_{1}\left(\mathrm{~A}_{1,2}\right)}\right)\end{array}\right]$
where $\mathbf{G}_{\mathrm{E}_{1}}^{*-1}=\left[\begin{array}{cc}\mathbf{G}_{\mathrm{E}_{1}}^{*\left(\mathrm{~A}_{1} \mathrm{~A}_{1}\right)} & \mathbf{G}_{\mathrm{E}_{1}}^{*\left(\mathrm{E}_{1} \mathrm{~A}_{1,2}\right)} \\ \left.\mathbf{G}_{\mathrm{E}_{1}}^{*\left(A_{1,2} \mathrm{~A}_{1}\right.}\right) & \mathbf{G}_{\mathrm{E}_{1}}^{*\left(\mathrm{~A}_{1,2} \mathrm{~A}_{1,2}\right)}\end{array}\right]=\left[\begin{array}{cc}\mathbf{G}_{\mathrm{E}_{1}\left(\mathrm{~A}_{1} \mathrm{~A}_{1}\right)} & \left.\mathbf{G}_{\mathrm{E}_{1}\left(A_{1} \mathrm{~A}_{1,2}\right)}\right) \\ \mathbf{G}_{\mathrm{E}_{1}\left(\mathrm{~A}_{1,2} \mathrm{~A}_{1}\right)} & \mathbf{G}_{\mathrm{E}_{1}\left(\mathrm{~A}_{1,2} \mathrm{~A}_{1,2}\right)}\end{array}\right]^{-1}$ is the inverse of the additive
genetic (co)variance matrix for the external genetic evaluation E_{1}.

Similarly, the MME for the genetic evaluation E_{2} of only external animals A_{2} and $A_{1,2}$ including only $\mathbf{y}_{\mathrm{E}_{2}}$ and which does not include in genealogy animals $\mathrm{A}_{1,2}^{0}$ and A_{1} can be written as:
(equation 1.4)
where $\hat{\mathbf{u}}_{\mathrm{E}_{2}\left(\mathrm{~A}_{2}\right)}$ and $\hat{\mathbf{u}}_{\mathrm{E}_{2}\left(\mathrm{~A}_{1,2}\right)}$ are the vectors of genetic random effects for animals A_{2} and $\mathrm{A}_{1,2}$ for the genetic evaluation E_{2}, and $\mathbf{G}_{\mathrm{E}_{2}}^{*-1}=\left[\begin{array}{cc}\mathbf{G}_{\mathrm{E}_{2}}^{*\left(\mathrm{~A}_{2} \mathrm{~A}_{2}\right)} & \left.\mathbf{G}_{\mathrm{E}_{2}}^{*\left(\mathrm{~A}_{2} \mathrm{~A}_{1,2}\right.}\right) \\ \mathbf{G}_{\mathrm{E}_{2}}^{*\left(A_{1,2} \mathrm{~A}_{2}\right)} & \mathbf{G}_{\mathrm{E}_{2}}^{*\left(\mathrm{~A}_{1,2} \mathrm{~A}_{1,2}\right)}\end{array}\right]=\left[\begin{array}{cc}\mathbf{G}_{\mathrm{E}_{2}\left(A_{2} \mathrm{~A}_{2}\right)} & \mathbf{G}_{\mathrm{E}_{2}\left(A_{2} \mathrm{~A}_{1,2}\right)} \\ \mathbf{G}_{\mathrm{E}_{2}\left(A_{1,2} \mathrm{~A}_{2}\right)} & \mathbf{G}_{\mathrm{E}_{2}\left(A_{1,2} \mathrm{~A}_{1,2}\right)}\end{array}\right]^{-1}$ is the additive genetic (co)variance matrix for the genetic evaluation E_{2}.

Therefore,
and, similarly,
$\mathbf{D}_{\mathrm{E}_{2}}^{*-1}-\mathbf{G}_{\mathrm{E}_{2}}^{*-1}=\left[\begin{array}{cc}\mathbf{Z}_{\mathrm{E}_{2}\left(\mathrm{~A}_{2}\right)}^{\prime} \mathbf{R}_{\mathrm{E}_{2}}^{\left(\mathrm{A}_{2} \mathrm{~A}_{2}\right)} \mathbf{Z}_{\mathrm{E}_{2}\left(\mathrm{~A}_{2}\right)} & \left.\left.\mathbf{Z}_{\mathrm{E}_{2}\left(\mathrm{~A}_{2}\right)}^{\prime}\right) \mathbf{R}_{\mathrm{E}_{2}}^{\left(\mathrm{A}_{2} \mathrm{~A}_{1,2}\right)} \mathbf{Z}_{\mathrm{E}_{2}\left(\mathrm{~A}_{1,2}\right)}\right) \\ \mathbf{Z}_{\mathrm{E}_{2}\left(\mathrm{~A}_{1,2}\right)} \mathbf{R}_{\mathrm{E}_{2}}^{\left(\mathrm{A}_{1,2} \mathrm{~A}_{2}\right)} \mathbf{Z}_{\mathrm{E}_{2}\left(\mathrm{~A}_{2}\right)} & \left.\mathbf{Z}_{\mathrm{E}_{2}\left(\mathrm{~A}_{1,2}\right)} \mathbf{R}_{\mathrm{E}_{2}}^{\left(\mathrm{A}_{1,2} \mathrm{~A}_{1,2}\right)} \mathbf{Z}_{\mathrm{E}_{2}\left(\mathrm{~A}_{1,2}\right.}\right)\end{array}\right]$
(equation 1.5)
(equation 1.6).

Substituting "unknown" terms of the equation 1.1 by their corresponding terms from the equations 1.3, 1.4, 1.5 and 1.6, the MME (equation 1.1) can be written as:

$$
\begin{aligned}
& =\left[\begin{array}{cc}
\mathbf{Z}_{\mathrm{E}_{1}\left(\mathrm{~A}_{1}\right)}^{\prime} \mathbf{R}_{\mathrm{E}_{1}}^{\left(\mathrm{A}_{1} \mathrm{~A}_{1}\right)} \mathbf{Z}_{\mathrm{E}_{1}\left(\mathrm{~A}_{1}\right)} & \mathbf{Z}_{\mathrm{E}_{1}\left(\mathrm{~A}_{1}\right)} \mathbf{R}_{\mathrm{E}_{1}}^{\left(\mathrm{A}_{1} \mathrm{~A}_{12}\right)} \mathbf{Z}_{\mathrm{E}_{1}\left(\mathrm{~A}_{\mathrm{A}_{12}}\right)} \\
\left.\mathbf{Z}_{\mathrm{E}_{1}\left(\mathrm{~A}_{12},\right.}^{\left(\mathbf{R}_{\mathrm{E}_{1}}^{\left(\mathrm{A}_{12} \mathrm{~A}_{1}\right)} \mathbf{Z}_{\mathrm{E}_{1}\left(\mathrm{~A}_{1}\right)}\right.} \mathbf{Z}_{\mathrm{E}_{1}\left(\mathrm{~A}_{12}\right)}^{\prime} \mathbf{R}_{\mathrm{E}_{1}}^{\left(\mathrm{A}_{1} \mathrm{~A}_{12}\right)} \mathbf{Z}_{\mathrm{E}_{1}\left(\mathrm{~A}_{12}\right)}\right)
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\mathbf{Z}_{\mathrm{E}_{2}\left(\mathrm{~A}_{2}\right)} \mathbf{R}_{\mathrm{E}_{2}}^{\left(\mathrm{A}_{2} \mathrm{~A}_{2}\right)} \mathbf{Z}_{\mathrm{E}_{2}\left(\mathrm{~A}_{2}\right)}+\mathbf{G}_{\mathrm{E}_{2}}^{*\left(\mathrm{~A}_{2} \mathrm{~A}_{2}\right)} & \mathbf{Z}_{\mathrm{E}_{2}\left(\mathrm{~A}_{2}\right)} \mathbf{R}_{\mathrm{E}_{2}}^{\left(\mathrm{A}_{2} \mathrm{~A}_{1,2}\right)} \mathbf{Z}_{\mathrm{E}_{2}\left(\mathrm{~A}_{1,2}\right)}+\mathbf{G}_{\mathrm{E}_{2}}^{*\left(\mathrm{E}_{2} \mathrm{~A}_{1,2}\right)} \\
\left.\mathbf{Z}_{\mathrm{E}_{2}\left(\mathrm{~A}_{1,2}\right)} \mathbf{R}_{\mathrm{E}_{2}}^{\left(\mathrm{A}_{1,2} \mathrm{~A}_{2}\right)} \mathbf{Z}_{\mathrm{E}_{2}\left(\mathrm{~A}_{2}\right)}\right)+\mathbf{G}_{\mathrm{E}_{2}}^{*\left(\mathrm{~A}_{1,2} \mathrm{~A}_{2}\right)} & \left.\mathbf{Z}_{\mathrm{E}_{2}\left(\mathrm{~A}_{1,2}\right)} \mathbf{R}_{\mathrm{E}_{2}}^{\left(\mathrm{A}_{1,2} \mathrm{~A}_{1,2}\right)} \mathbf{Z}_{\mathrm{E}_{2}\left(\mathrm{~A}_{1,2}\right)}\right)+\mathbf{G}_{\mathrm{E}_{2}}^{*\left(\mathrm{~A}_{1,2} \mathrm{~A}_{1,2}\right)}
\end{array}\right]\left[\begin{array}{c}
\hat{\mathbf{u}}_{\mathrm{E}_{2}}\left(\mathrm{~A}_{2}\right) \\
\left.\hat{\mathbf{u}}_{\mathrm{E}_{2}\left(\mathrm{~A}_{1,2}\right.}\right)
\end{array}\right]} \\
& =\left[\begin{array}{c}
\mathbf{Z}_{\mathrm{E}_{2}\left(\mathrm{~A}_{2}\right)}^{\prime} \mathbf{R}_{\mathrm{E}_{2}}^{\left(\mathrm{A}_{2} \mathrm{~A}_{2}\right)} \mathbf{y}_{\mathrm{E}_{2}\left(\mathrm{~A}_{2}\right)} \\
\left.\mathbf{Z}_{\mathrm{E}_{2}\left(\mathrm{~A}_{1,2}\right)}^{\prime} \mathbf{R}_{\mathrm{E}_{2}} \mathrm{~A}_{1,2} \mathrm{~A}_{1,2}\right) \\
\left.\mathbf{y}_{\mathrm{E}_{2}\left(\mathrm{~A}_{1,2}\right.}\right)
\end{array}\right]=\mathbf{D}_{\mathrm{E}_{2}}^{*-1}\left[\begin{array}{c}
\hat{\mathbf{u}}_{\mathrm{E}_{2}\left(\mathrm{~A}_{2}\right)} \\
\hat{\mathbf{u}}_{\mathrm{E}_{2}}\left(\mathrm{~A}_{\mathrm{A}, 2}\right)
\end{array}\right]
\end{aligned}
$$

(equation 1.7).

By replacing $\mathbf{G} *^{-1}$ in the equation 1.2 by the LHS of the equation 1.7 and $\mathbf{G} *^{-1} \boldsymbol{\mu}$ by the RHS of the equation 1.7, the following equations are obtained:
(equation 1.8).

To simplify the system of equations 1.8 , two genetic evaluations including in genealogy all animals (i.e. animals $A_{1,2}^{0}, A_{1}, A_{2}$ and $A_{1,2}$) equivalent to the genetic evaluations E_{1} and E_{2} for the external animals can be performed. Therefore, the following model of a genetic evaluation of all animals including only $\mathbf{y}_{\mathrm{E}_{1}}$ can be written as:

where $\mathbf{u}_{\mathrm{E}_{1}\left(A_{1,2}^{0}\right)}$ and $\mathbf{u}_{\mathrm{E}_{1}\left(\mathrm{~A}_{2}\right)}$ are the vectors of estimated random additive genetic effects for animals $\mathrm{A}_{1,2}^{0}$ and A_{2}.

The corresponding MME can be written as follows:

matrix taking into account all animals.

Similarly, MME for a genetic evaluation of all animals including only $\mathbf{y}_{\mathrm{E}_{2}}$ can be written as:
(equation 1.10).

However, although the vectors $\left[\begin{array}{c}\hat{\mathbf{u}}_{E_{1}\left(A_{1,2}^{0}\right)} \\ \left.\hat{\mathbf{u}}_{\mathrm{E}_{1}\left(A_{2}\right)}\right)\end{array}\right]$ and $\left[\begin{array}{c}\hat{\mathbf{u}}_{\mathrm{E}_{2}\left(A_{1,2}^{0}\right)} \\ \left.\hat{\mathbf{u}}_{\mathrm{E}_{2}\left(A_{1}\right)}\right)\end{array}\right]$ remain unknown in practice, they could be predicted from the known vectors $\left[\begin{array}{c}\hat{\mathbf{u}}_{E_{1}}\left(A_{1}\right) \\ \left.\hat{\mathbf{u}}_{E_{1}\left(A_{1,2}\right)}\right)\end{array}\right]$ and $\left[\begin{array}{c}\hat{\mathbf{u}}_{E_{2}}\left(A_{2}\right) \\ \hat{\mathbf{u}}_{E_{2}}\left(A_{1,2}\right)\end{array}\right]$, e.g. through the selection index theory, respectively.

Therefore, the MME (1.1) can be written as

$$
\left[\mathbf{G}_{\mathrm{E}_{0}}^{-1}+\left(\mathbf{D}_{\mathrm{E}_{1}}^{-1}-\mathbf{G}_{\mathrm{E}_{1}}^{-1}\right)+\left(\mathbf{D}_{\mathrm{E}_{2}}^{-1}-\mathbf{G}_{\mathrm{E}_{2}}^{-1}\right)\right) \hat{\mathbf{u}}_{\mathrm{J}}=\left[\mathbf{D}_{\mathrm{E}_{1}}^{-1} \hat{\mathbf{u}}_{\mathrm{E}_{1}}+\mathbf{D}_{\mathrm{E}_{2}}^{-1} \hat{\mathbf{u}}_{\mathrm{E}_{2}}\right] \text { (equation 1.11). }
$$

By replacing $\mathbf{G} *^{-1}$ in the equation 1.2 by the LHS of the equation 1.11 and $\mathbf{G}{ }^{*-1} \boldsymbol{\mu}$ by the RHS of the equation 1.11, we obtain:
$\left[\begin{array}{ll}\mathbf{X}_{\mathrm{E}_{0}}^{\prime} \mathbf{R}_{\mathrm{E}_{0}}^{-1} \mathbf{X}_{\mathrm{E}_{0}} \\ \mathbf{Z}_{\mathrm{E}_{0}} \mathbf{R}_{\mathrm{E}_{0}}^{-1} \mathbf{X}_{\mathrm{E}_{0}} & \mathbf{Z}_{\mathrm{E}_{0}} \mathbf{R}_{\mathrm{E}_{0}}^{-1} \mathbf{Z}_{\mathrm{E}_{0}}+\mathbf{G}_{\mathrm{E}_{\mathrm{E}_{0}}^{\prime}}^{-1}+\left(\mathbf{D}_{\mathrm{E}_{0}}^{-1}-\mathbf{G}_{\mathrm{E}_{0}}^{-1}-\mathbf{G}_{\mathrm{E}_{1}}^{-1}\right)+\left(\mathbf{D}_{\mathrm{E}_{2}}^{-1}-\mathbf{G}_{\mathrm{E}_{2}}^{-1}\right)\end{array}\right]\left[\begin{array}{l}\hat{\boldsymbol{\beta}}_{\mathrm{E}_{0}} \\ \hat{\mathbf{u}}_{\mathrm{E}_{0}}\end{array}\right]=\left[\begin{array}{c}\mathbf{X}_{\mathrm{E}_{0}}^{\prime} \mathbf{R}_{\mathrm{E}_{0}}^{-1} \mathbf{y}_{\mathrm{E}_{0}} \\ \mathbf{Z}_{\mathrm{E}_{0}} \mathbf{R}_{\mathrm{E}_{0}}^{-1} \mathbf{y}_{\mathrm{E}_{0}}+\mathbf{D}_{\mathrm{E}_{1}}^{-1} \mathbf{u}_{\mathrm{E}_{1}}+\mathbf{D}_{\mathrm{E}_{2}}^{-1} \hat{\mathbf{u}}_{\mathrm{E}_{2}}\end{array}\right]$.

This development could be extended to more than two sources of external information.

