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Tape springs – Main features

Definition: Thin plate curved along its

width used as a compliant mechanism

characterised by its elastic deformation

General characteristics:
� Elastic energy

� Deformation

� No external energy sources

� Space applications
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Tape springs – Mechanical behaviour

� Nonlinear behaviour

� Buckling, hysteresis and self-locking

phenomena

� Senses of bending

Opposite sense

of bending

Equal sense

of bending



Formulation of shells on SE(3)

Motivations:

� Framework based on the Lie group theory where rotations and 

translations are treated in a unified and frame invariant way

� Equilibrium equations formulated in a parameterization-free

way

� Singularities due to rotation parameterization naturally avoided

� Significant reduction of the geometrical nonlinearities

� Locking-free and coupled nonlinear interpolation field for 

translations and rotations

� No need to update the tangent stiffness matrix at each

iteration/time step
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Samcef
Lie

Comparison with a classical formulation

Classical formulation = use of the commercial software SAMCEF 

in which shells are based on the Mindlin-Reissner model

Flat plate with a lumped mass submitted to bending (10 Nm)
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Samcef
Lie (non constant tan. stiff. matrix)
Lie (constant tan. stiff. matrix)
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SE(3)
Unit line

Comparison with a classical formulation

Classical formulation = use of the commercial software SAMCEF 

in which shells are based on the Mindlin-Reissner model

Flat plate with a lumped mass submitted to bending (10 Nm)
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Samcef
Lie

Comparison with a classical formulation

Flat plate with a lumped mass submitted to bending (500 Nm)
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Samcef
Lie

Comparison with a classical formulation

Flat plate with a lumped mass submitted to bending (500 Nm)
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Samcef
Lie (non constant tan. stiff. matrix)
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Samcef
Lie

Comparison with a classical formulation

Flat plate submitted to a surface force (1000 N/m²)
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Samcef
Lie (non constant tan. stiff. matrix)
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Samcef
SE(3)
Theory

Comparison with a classical formulation

Circular plate submitted to a surface force (100 N/m²)
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Samcef
Lie (non constant tan. stiff. matrix)
Lie (constant tan. stiff. matrix)



10
0

10
1

0.016596

0.016982

0.017378

0.017783

0.018197

0.018621

0.019055

Mesh size [mm]

C
en

tra
l d

is
pl

ac
em

en
t [

m
m

]

 

 

Samcef
Lie

Comparison with a classical formulation

Square plate submitted to a surface force (1000 N/m²)
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Samcef
Lie (non constant tan. stiff. matrix)
Lie (constant tan. stiff. matrix)
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Samcef
Lie
Theory

Comparison with a classical formulation

Rhombic plate submitted to a surface force (1 N/m²)
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Samcef
Lie (non constant tan. stiff. matrix)
Lie (constant tan. stiff. matrix)
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Samcef
Lie

Comparison with a classical formulation

Barrel roof submitted to a surface 

force (6250 N/m²)
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Samcef
Lie



Comparison with a classical formulation

Barrel roof submitted to a surface 

force (6250 N/m²)
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Samcef
Lie (non constant tan. stiff. matrix)
Lie (constant tan. stiff. matrix)



Comparison with a classical formulation

Tape spring submitted to a surface force (10 000 N/m²)
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Samcef
Lie
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Lie (non constant tan. stiff. matrix)



Conclusions

� Convergence to the same results for the formulation on SE(3) and 

the classical formulation (Samcef)

� No need to always update the tangent stiffness matrix 

� Reduction of the amount of geometric nonlinearities

� Good representation of nonlinear behaviours

� Good representation of structures with an initial curvature (tape 

springs)

Next developments:

� Improvement of the convergence rate

� Dynamic formulation

� Add a continuation method to model the buckling in tape springs



Nonlinear analysis of tape springs: Comparison of 

two geometrically exact finite element

formulations

Florence Dewalque, Valentin Sonneville and Olivier Brüls

Dept. of Aerospace and Mechanical Engineering, University of Liège, Belgium

11th World Congress on Computational Mechanics

5th European Conference on Computational Mechanics

Barcelona, July 22, 2014

Thank you for your attention


