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The dynamics of elasto-inertial turbulence is investigated numerically from the per-
spective of the coupling between polymer dynamics and flow structures. In particular,
direct numerical simulations of channel flow with Reynolds numbers ranging from 1000
to 6000 are used to study the formation and dynamics of elastic instabilities and their
effects on the flow. Based on the splitting of the pressure into inertial and polymeric
contributions, it is shown that the polymeric pressure is a non-negligible component
of the total pressure fluctuations, although the rapid inertial part dominates. Unlike
Newtonian flows, the slow inertial part is almost negligible in elasto-inertial turbulence.
Statistics on the different terms of the Reynolds stress transport equation also illus-
trate the energy transfers between polymers and turbulence and the redistributive role
of pressure. Finally, the trains of cylindrical structures around sheets of high polymer
extension that are characteristics of elasto-inertial turbulence are shown to be correlated
with the polymeric pressure fluctuations.

Keywords: elasto-inertial turbulence; FENE-P; maximum drag reduction; DNS; pres-
sure split

1. Introduction

Polymer additives are known for producing upward of 80% drag reduction in turbulent
wall-bounded flows through strong alteration and reduction of turbulent activity [1]. The
changes in flow dynamics induced by polymers do not lead to flow relaminarisation but,
atmost, to a universal asymptotic state called maximum drag reduction (MDR) [2]. At the
same time, polymer additives have also been shown to promote transition to turbulence [3],
or even lead to a chaotic flow at very low Reynolds number as in elastic turbulence [4,5].

These seemingly contradictory effects of polymer additives can be explained by the
interaction between elastic instabilities and the flow’s inertia characterising elasto-inertial
turbulence, hereafter referred to as EIT [6,7]. EIT is a state of small-scale turbulence driven
by elastic instabilities that exists by either creating its own extensional flow patterns or
by exploiting extensional flow topologies. EIT could provide answers to phenomena that
current understanding of MDR cannot, such as the absence of a log-law in finite-Reynolds
numbers MDR flows [8,9], and the phenomenon of early turbulence. Moreover, it supports
De Gennes’ picture [10] that drag reduction derives from two-way energy transfers between
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Figure 1. Skin friction coefficient Cf as a function of the Reynolds number ReH for two Weissenberg
numbers, WiH = 4 ( ) and WiH = 30 ( ). Lines indicate correlations for laminar (· · · · · · · ·, Cf =
12/ReH) and turbulent (– – – –, Cf = 0.073Re−1/4

H [11]) Newtonian channel flow, and for MDR (——,
Cf = 0.42Re−0.55

H [12]); Newtonian solutions are also included ( ). Unlike for Newtonian flows, the
skin friction of viscoelastic flows at sufficiently high Weissenberg number departs from the laminar
correlation at subcritical Reynolds number and then smoothly transitions to the MDR asymptote.

turbulent kinetic energy of the flow and elastic energy of polymers at small scales, resulting
in an overall modification of the turbulence energy cascade at high Reynolds numbers.

As shown by viscoelastic pipe experiments and direct numerical simulations [6,7], an
elastic instability can occur at a Reynolds number smaller than the transition in Newtonian
pipe flow if the polymer concentration and Weissenberg number are sufficiently large.
Moreover, it is observed that the skin friction coefficient Cf = τw/(1/2ρU 2

b ), where ρ is
the density, Ub the bulk velocity and τw the wall shear stress, then follows the characteristic
MDR friction law, as shown in Figure 1. Visualisations of numerical simulations indicate
that thin sheets of locally high polymer stretch, tilted away from the wall and elongated in
the flow direction, create trains of spanwise cylindrical structures of alternating sign (see
Figure 2). In low-elasticity flows, EIT is drown out by the canonical Newtonian near-wall
vortices. At higher elasticity, the polymer drag reduction mechanism inhibits Newtonian
vortices and EIT dominates. It is hypothesised that EIT may be an asymptotic state of
parallel wall-bounded flows over a large range of Reynolds numbers.

It is suggested that the formation of sheets of polymer stretch results from the unstable
nature of the nonlinear advection of low-diffusivity polymers [7]. These sheets, hosting
a significant increase in extensional viscosity, create a strong local anisotropy, with a
formation of local low-speed jet-like flow. The response of the flow is through pressure,
whose role is to redistribute energy across components of momentum, resulting in the
formation of waves, or trains of alternating rotational and straining motions. Once triggered,
EIT is self-sustained since the elastic instability creates the very velocity fluctuations it feeds
upon.

The underlying mechanism driving EIT is here further investigated through an analysis
of the pressure, and its interaction with topological structures of the flow and polymer
stress. The approach relies on the splitting of the pressure into inertial and polymeric
contributions [13–15]. Additionally, energy transfers between polymers and turbulence are
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28 V.E. Terrapon et al.

Figure 2. Contour of the normalised polymer extension Cii/L on selected planes and instantaneous
isosurface of the second invariant QA of the velocity gradient tensor in the lower half of the channel
for the subcritical case ReH = 1000 and WiH = 4; QA = 0.1 (red) and QA = −0.1 (cyan). Trains
of mostly spanwise cylindrical QA structures of alternating sign form around thin sheets of large
polymer extension.

further analysed through statistics on the different terms of the Reynolds stress transport
equation.

The paper is organised as follows. Section 2 describes the numerical simulations and
the corresponding parameters, and summarises the main theoretical aspects regarding the
splitting of the pressure. Results are then presented in Section 3. Finally, the key findings
are summarised and discussed in Section 4.

2. Method

2.1. Direct numerical simulations

Channel flow simulations are performed in a Cartesian domain, where x, y and z are the
streamwise, wall-normal and spanwise directions, respectively. For a polymer solution,
the non-dimensional equations governing the flow are the continuity equation, ∇ · u = 0,
where u = (u, v,w) is the velocity vector, and the momentum equation,

∂t u + (u · ∇)u = −∇p + β

ReH

∇2u + 1 − β

ReH

∇ · T . (1)
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Table 1. Parameters used for the three viscoelastic and the Newtonian cases considered here. For
all simulations, the FENE-P model is used with the maximum polymer extension parameter L = 200
and β = 0.9.

ReH
a Reh

b h+ c WiH
d Wih

e Wi+ f DM [%]g Colourh

1000 500 40 4 8 24 + 7
6000 3000 130 4 8 96 −56
6000 3000 120 30 60 720 −61
6000 3000 190 – – – 0

aReynolds number based on the bulk velocity Ub and the total channel height H.
bReynolds number based on the bulk velocity Ub and the channel half-height h (for comparison with previous
publications).
cChannel half-height h normalised by the friction velocity u2

τ = νγ̇ and the viscosity ν.
dWeissenberg number based on the solution relaxation time λ and the integral time scale H/Ub.
eWeissenberg number based on the solution relaxation time λ and the integral time scale h/Ub (for comparison
with previous publications).
fWeissenberg number based on the solution relaxation time λ and the wall-shear rate γ̇ of the corresponding
Newtonian case.
g Drag modification (reduction or increase) measured as the relative change of the skin friction coefficient with
the comparable Newtonian flow friction coefficient (laminar or turbulent).
h Colour scheme used throughout the paper for each specific case.

The Reynolds number is based on the bulk velocity Ub, the full channel height H = 2h and
the kinematic viscosity ν of the solution, ReH = UbH/ν. The polymer stress tensor T is
computed using the FENE-P model [16]:

T = 1

WiH

(
C

1 − tr(C)/L2
− I

)
, (2)

where I is the unit tensor and C is the polymer conformation tensor, whose transport
equation is

∂tC + (u · ∇)C = (∇u) · C + C · (∇u)T − T . (3)

The properties of the polymer solution are the ratio β of solvent viscosity to the zero-shear
viscosity of the solution, the maximum polymer extension L (so that Cii < L2) and the
Weissenberg number WiH = λUb/H based on the solution relaxation time λ and the integral
time scale H/Ub. The Weissenberg number can also be defined as Wi+ = λγ̇ , where γ̇ is the
wall shear-rate of the corresponding Newtonian flow at each Reynolds number.1 Equations
(1)–(3) are solved using finite differences on a staggered grid and a semi-implicit time
advancement scheme [17,18]. After a thorough resolution study, a domain size of 10h ×
2h × 5h with 256 × 151 × 256 computational nodes was chosen. All results have been
verified on domains with a factor 2 in horizontal dimensions and a factor 2 in resolution in
each direction. The CFL number was set to 0.15 to guarantee the boundedness of C.

Three different viscoelastic and one Newtonian cases are considered here, as sum-
marised in Table 1. The lower Reynolds number corresponds to a subcritical2 flow
(ReH < ReH, c, where ReH, c = 1719 defines the intersection between the laminar and
MDR friction drag lines as shown in Figure 1), while the larger Reynolds number corre-
sponds to a value for which the Newtonian flow is turbulent. The Weissenberg numbers at
ReH = 6000 are chosen to achieve high drag reduction (HDR) and MDR, respectively. For
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30 V.E. Terrapon et al.

all three viscoelastic cases, L = 200 and β = 0.9 were used. The corresponding statistics
can be found in [7].

2.2. Inertial and polymeric contributions to pressure

In order to investigate the role of pressure in the mechanism underlying EIT, a similar
approach to Mansour et al. [13], Kim [14] and Ptasinski et al. [15] is followed. Taking the
divergence of the momentum equation (1) leads to a Poisson equation for the pressure:

∇2p = 2QA + 1 − β

Re
∇ · (∇ · T) , (4)

where QA = (− 1/2)∂ iuj∂ jui = (− 1/2)∂ i∂ juiuj is the second invariant of the velocity
gradient tensor. In contrast to a Newtonian flow, a second term appears on the right-hand
side, which represents the contribution from the polymeric stress. For a periodic channel
flow, the pressure satisfies Equation (4) with the boundary conditions

∂p

∂y

∣∣∣∣
y=±h

= β

Re

∂2v

∂y2

∣∣∣∣
y=±h

+ 1 − β

Re

∂2Tyy

∂y2

∣∣∣∣
y=±h

(5)

at the walls and periodicity in x and z.
By splitting the right-hand side of Equation (4) into different terms and separating the

effect of the wall boundary condition, their respective contributions to the total pressure can
be isolated. In particular, we consider here following splitting for the pressure fluctuations
p′(x) = p(x) − P (x):

p′(x) = p′
r(x) + p′

s(x) + p′
p(x) + p′

St(x) , (6)

where fluctuations are denoted by •′ and mean quantities by •. The first three contributions
on the right-hand side of Equation (6) are solutions of [19]:

∇2p′
r = −2

dU

dy

∂v′

∂x
, (7)

∇2p′
s = − ∂u′

i

∂xj

∂u′
j

∂xi

+ d2v′2

dy2
, (8)

∇2p′
p = 1 − β

Re

∂2T ′
ij

∂xi∂xj

, (9)

with the homogeneous wall boundary conditions

∂p′
r

∂y

∣∣∣∣
y=±h

= ∂p′
s

∂y

∣∣∣∣
y=±h

= ∂p′
p

∂y

∣∣∣∣
y=±h

= 0 . (10)

The ‘rapid inertial’ part, p′
r, is linear in the velocity fluctuations and represents the immediate

response to a change imposed on the mean field, while the ‘slow inertial’ part, p′
s, feels

this change through nonlinear interactions [14]. In addition to these two inertial terms,
the pressure in a viscoelastic flow also has an elastic contribution, p′

p, originating in the
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Journal of Turbulence 31

polymeric stress. Finally, the effect of the wall boundary condition is represented by the
Stokes pressure, p′

St, which satisfies

∇2p′
St = 0 , (11)

with the inhomogeneous boundary conditions

∂p′
St

∂y

∣∣∣∣
y=±h

= β

Re

∂2v′

∂y2

∣∣∣∣
y=±h

+ 1 − β

Re

∂2T ′
yy

∂y2

∣∣∣∣∣
y=±h

. (12)

As the Stokes pressure is typically much smaller than the other contributions, it is not
considered here.

This pressure split is applied to the simulation results for the four cases mentioned
above and statistics are computed in order to identify the relative contributions from inertia
and elasticity, as shown below.

3. Results

Equations (7)–(9) have been solved with homogeneous wall boundary conditions to obtain
the three contributions p′

r, p′
s and p′

p. About 250 fields have been collected for each of
the four cases considered, on which statistics have been performed as a function of the
wall-normal coordinate y+ . The + exponent indicates wall units, i.e., a normalisation by
the friction velocity uτ = (νγ̇ )1/2 and viscosity ν.

3.1. Statistics

3.1.1. Pressure fluctuations

The root-mean-square (rms) values of the different pressure contributions and of their sum
across the channel height are shown in Figure 3.3 The most striking observation is that
the level of pressure fluctuations at ReH = 6000 remains almost constant, or even slightly
increases at the wall and at the centre of the channel, when the Weissenberg number is
increased, i.e., when the turbulence is damped (Figure 3(a)). This differs markedly from the
velocity fluctuations, which strongly decrease with drag reduction (see Figures 1 and 2 in
[7]). Pressure fluctuations are, however, much lower in the subcritical case (ReH = 1000).

The qualitative behaviour is different between Newtonian and viscoelastic flows. In
particular, the rms profile is much flatter in the latter case. The splitting of the pressure
shows that the marked peak in the pressure fluctuations seen in the buffer layer for the
Newtonian case originates in the slow pressure (see Figure 3(b)). Figure 3(b) and 3(c)
demonstrates that polymers strongly damp the slow pressure contribution while the rapid
part slightly increases, which explains the flatter profiles in the viscoelastic cases.4 The
dominating contribution comes thus from the rapid pressure in contrast to a Newtonian
turbulent channel flow, where the slow part dominates almost everywhere [19]. This result
differs from the analysis of Ptasinski et al. [15], who found that slow and rapid contributions
are more or less equal at MDR. However, their simulation was performed at a much lower
Weissenberg number and with a lower maximum extensibility parameter than the present
calculations.

The elastic pressure, absent in the Newtonian case, has a non-negligible and increasing
contribution when the Weissenberg number is increased. If the Weissenberg number is high
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(a) All cases
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(b) Newtonian, ReH = 6000
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(c) ReH = 6000, WiH = 4 (HDR)
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(d) ReH = 6000, WiH = 30 (MDR)

Figure 3. Pressure rms as a function of y+ . (a) Total pressure for the Newtonian case at ReH = 6000
( ), and the viscoelastic cases ReH = 1000, WiH = 4 ( ); ReH = 6000, WiH = 4 (HDR,

); and ReH = 6000, WiH = 30 (MDR, ). (b)–(d) Pressure contributions for selected cases:
p′

r ( — · — ); p′
s (· · · · · · · ·); p′

p ( – – – – ); p′
rs = p′

r + p′
s ( ——— ); p′

rsp = p′
r + p′

s + p′
p ( ).

enough, this polymeric contribution is larger than the slow part. This is not the case here
at HDR (Figure 3(c)) where both rapid and slow parts are larger than for the MDR case,
owing to the stronger turbulence.

Figure 4(a) shows the ratio of the rms of the elastic pressure p′
p to the inertial pressure,

p′
rs = p′

r + p′
s, indicating that the polymer contribution is about 15% of p′

rs at WiH = 4 and
increases to about 35%–40% at the larger Weissenberg number. The ratio of the polymeric
to inertial pressure contributions also remains quite constant in the near-wall region. The
ratio of the rms of the slow pressure p′

s to the inertial pressure, p′
rs is shown in Figure 4(b).

This ratio also remains rather flat with only a slight increase towards the channel centre.
The slow part is only about 6% and 20% of the inertial pressure at ReH = 1000 and ReH =
6000, respectively.

It is interesting to notice that the ratio of the polymeric part to the inertial part seems to
depend mostly on the Weissenberg number, while the ratio of the slow part to the inertial
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Figure 4. (a) Ratio of the polymeric p′
p to the inertial p′

rs pressure rms as a function of y+ . (b) Ratio
of the slow p′

s to the inertial p′
rs pressure rms as a function of y+ . Same colour labels as in Figure 3.

part appears to depend on the Reynolds number. This is, however, only speculative and more
cases need to be analysed. Moreover, the splitting into an inertial and elastic contribution
is a simplified view as the polymer stress in Equation (1) can create velocity fluctua-
tions and, thus, indirectly contributes to the inertial pressure and conversely, as discussed
below.

3.1.2. Reynolds stress transport

Dubief et al. [7] suggested that the role of pressure is to redistribute turbulent kinetic
energy across components of momentum, resulting in the formation of waves, or trains
of alternating rotational and straining motions. To illustrate this, various terms in the
transport equation for the Reynolds stress u′

iu
′
j , and, in particular, for the components of

the turbulent kinetic energy u′
αu′

α (no summation is implied on the subscript α) are further
analysed:

D̄u′
iu

′
j

D̄t
= ∂u′

iu
′
j

∂t
+ Uk

∂u′
iu

′
j

∂xk

= −
(

u′
iu

′
k

∂Uj

∂xk

+ u′
ju

′
k

∂Ui

∂xk

)
︸ ︷︷ ︸

Pij

− ∂

∂xk

(
u′

iu
′
ju

′
k + β

Re

∂u′
iu

′
j

∂xk

)
︸ ︷︷ ︸

Tij

− β

Re
2
∂u′

i

∂xk

∂u′
j

∂xk︸ ︷︷ ︸
εij

−
(

u′
j

∂p′

∂xi

+ u′
i

∂p′

∂xj

)
︸ ︷︷ ︸

�ij

+1 − β

Re

(
u′

j

∂T ′
ik

∂xk

+ u′
i

∂T ′
jk

∂xk

)
︸ ︷︷ ︸

u′
j f

′
p,i+u′

i f
′
p,j

, (13)
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34 V.E. Terrapon et al.

where Pij is the production term, Tij the transport term, εij the dissipation term and
f p = ∇ · T the polymer body force.

The last term in Equation (13) represents the creation of Reynolds stress due to polymer
stress fluctuations. It can be separated into two contributions:

1 − β

Re

(
u′

j

∂T ′
ik

∂xk

+ u′
i

∂T ′
jk

∂xk

)
= 1 − β

Re

∂

∂xk

(
u′

j T
′
ik + u′

iT
′
jk

)

−1 − β

Re

(
T ′

ik

∂u′
j

∂xk

+ T ′
jk

∂u′
i

∂xk

)
︸ ︷︷ ︸

Pp
ij

. (14)

The first term on the right-hand side is in the divergence form and thus corresponds to
the transport of Reynolds stress by fluctuating polymer stress. The second term, Pp

ij , is the
polymer stress work. In particular, Pp

ii represents the transfer of energy between the mean
turbulent kinetic energy and the mean elastic energy of the polymers [7,20]. This term can
be either positive or negative, and a positive value corresponds to an energy transfer from
the polymers to the turbulence.

Similarly, the velocity–pressure gradient correlation

�ij = −u′
i

∂p′

∂xj

− u′
j

∂p′

∂xi

(15)

can be separated into two contributions, �ij = �ij + d
(p)
ij , representing the pressure–strain

and the pressure–diffusion, respectively [19]. They are defined as

�ij = p′
(

∂u′
i

∂xj

+ ∂u′
j

∂xi

)
= 2p′S ′

ij , (16)

− d
(p)
ij = ∂p′u′

i

∂xj

+ ∂p′u′
j

∂xi

. (17)

Taking half the trace of Equation (13) leads to the transport equation for the turbulent
kinetic energy k. In the case of a fully developed channel flow, the only contribution to Pii

is the streamwise component Pxx . The pressure–diffusion term, d
(p)
ii , is in the divergence

form and thus represents a transport term. On the other hand, �ii is deviatoric and thus
does not contribute to changes in k, but merely redistributes the turbulent kinetic energy
across the components. In particular, in a Newtonian channel flow, turbulent kinetic energy
is produced from the mean shear through Pxx ; this energy is then redistributed from u′

xu
′
x

to u′
yu

′
y and u′

zu
′
z through the terms �αα .

This well-known picture changes, however, in the viscoelastic case. In particular, the
terms Pp

αα offer a new path for the production of k, i.e., the transfer of energy from the
polymers to the turbulence. Moreover, this term does not solely contribute to u′

xu
′
x , but to

all three components.
Figure 5 shows the production terms for the diagonal components of the Reynolds

stress tensor. Compared to a Newtonian flow, the production term Pαα is much lower in a
drag-reduced flow (see Figure 5(a) and 5(b)). Nevertheless, the most interesting aspect is

D
ow

nl
oa

de
d 

by
 [

87
.6

4.
13

.3
1]

 a
t 1

1:
56

 0
4 

Se
pt

em
be

r 
20

14
 



Journal of Turbulence 35

y+

P
xx+

100 101 1020

0.1

0.2

0.3

0.4

0.5

(a) Streamwise, Newtonian

y+

P
xx+  , 

P
 p xx +

100 101 102-0.02

0

0.02

0.04

0.06

(b) Streamwise, viscoelastic

y+

P
 p yy +

 , 
P

 p zz +

100 101 102-0.006

-0.004

-0.002

0

0.002

(c) Wall-normal and spanwise, viscoelastic

Figure 5. (a) and (b) Streamwise production terms P+
xx ( – – – – ) and Pp+

xx ( ——— ) as a function
of y+ . The polymer contribution is positive, indicating a transfer of energy from the polymers to the
turbulence. (c) Wall-normal and spanwise production terms Pp+

yy ( · · · · · · · · ) and Pp+
zz ( — · — )

as a function of y+ . In this case, energy is transferred from the turbulence to the polymers, but the
levels are much lower than in the streamwise direction. Same colour labels as in Figure 3.

that the streamwise transfer of energy from the polymers to the turbulence, Pp
xx , dominates.

In other words, the turbulence is mainly sustained by the polymers, as already recognised
in previous studies [7,18,20]. On the other hand, the polymer production for the two other
components of the diagonal is negative (see Figures 5(c)), indicating a transfer of energy
from the flow to the polymers. The transfer rates are, however, 10 times lower than for the
streamwise component. It is also interesting to see that Pp

xx has almost the same level for
both HDR and MDR, while all other production terms are much lower at MDR.

The analysis above indicates that energy is transferred from the polymers to the flow
through the streamwise component, and that a small portion of this energy goes back to the
polymers through the wall-normal and spanwise components. The redistribution of energy
from u′

xu
′
x to u′

yu
′
y and u′

zu
′
z is achieved through the pressure–strain term �ij. The different

components of the diagonal, �αα , are shown in Figures 6–8. Their qualitative behaviour is
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(a) Newtonian, ReH = 6000

y+

+ xx

100 101 102-0.015
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-0.005

0

0.005

(b) ReH = 1000, WiH = 4

y+

+ xx

100 101 102-0.015

-0.01

-0.005

0

0.005

(c) ReH = 6000, WiH = 4 (HDR)

y+

+ xx

100 101 102-0.015

-0.01

-0.005

0

0.005

(d) ReH = 6000, WiH = 30 (MDR)

Figure 6. Streamwise pressure–strain component �+
xx as a function of y+ obtained from the different

pressure contributions: p′
r ( — · — ); p′

s ( · · · · · · · · ); p′
p ( – – – – ); p′

rs = p′
r + p′

s (———);
p′

rsp = p′
r + p′

s + p′
p ( ). Same colour labels as in Figure 3. �xx is negative in most of the domain

indicating an energy transfer away from the streamwise component.

very similar to a Newtonian flow at a similar Reynolds number [19], but with lower levels
owing to the turbulence reduction. One can observe that �xx is negative while �yy and
�zz are positive for y+ � 10, which demonstrates the redistribution of energy from the
streamwise component to both the wall-normal and spanwise components. Note, however,
that �xx is negative and �yy positive very close to the wall. Similar conclusions can be
drawn from �ij and u′

j f
′
p,i + u′

if
′
p,j (not shown here).

Unlike for Newtonian flows, the largest contribution to the pressure-strain term comes
from the rapid part, and a non-negligible contribution from the polymer part is observed.
The polymeric contribution is comparatively larger for �yy and lower for �zz, which tends
to indicate that the elastic contribution slightly favours a two-dimensional flow, the three-
dimensionality being mostly driven by the inertial part. On the other hand, the slow part is
very weak, except for �yy at HDR in the centre of the channel. Interestingly, the behaviour of
the rapid contribution to �yy differs between the Newtonian and the viscoelastic cases (see
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(a) Newtonian, ReH = 6000

y+

+ yy

100 101 102-0.005
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0

0.0025

0.005

(b) ReH = 1000, WiH = 4

y+

+ yy

100 101 102-0.005

-0.0025

0

0.0025

0.005

(c) ReH = 6000, WiH = 4 (HDR)

y+

+ yy

100 101 102-0.005

-0.0025

0

0.0025

0.005

(d) ReH = 6000, WiH = 30 (MDR)

Figure 7. Wall-normal pressure–strain component �+
yy as a function of y+ obtained from different

pressure contributions. Same line style as in Figure 6 and same colour labels as in Figure 3. �yy is
positive in most of the domain indicating an energy transfer to the wall-normal component.

Figure 7). In the Newtonian case, it is positive in the near-wall region and then becomes
negative for y+ � 10; in the viscoelastic case, it is exactly the opposite. Actually, the
rapid contribution in the viscoelastic case behaves exactly like the slow contribution in the
Newtonian case.

The Reynolds shear stress production Pxy is shown in Figure 9. The same qualitative
behaviour is observed for Newtonian and viscoelastic flows, but with a lower magnitude
in drag-reduced flows due to the reduction of turbulence intensity by polymers. Pxy is
negative, indicating that Reynolds shear stress is produced. However, this production of
Reynolds shear stress is compensated by a positive polymer contribution through Pp

xy . The
lower magnitude of the production term Pxy and this cancelling effect between Pxy and
Pp

xy explains the very low levels of Reynolds shear stress seen in MDR flows (see Figure 2
of [7]).

A difference between Newtonian and viscoelastic flows is also observed for the
x − y component of the velocity–pressure gradient correlation. In particular, �xy in the
viscoelastic cases is negative (i.e., production of Reynolds shear stress) around y+ ≈ 10,
which is not observed in the Newtonian case (see Figure 10). This behaviour is directly
caused by the polymer pressure contribution p′

p.
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(a) Newtonian, ReH = 6000
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0.008
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(b) ReH = 1000, WiH = 4
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(c) ReH = 6000, WiH = 30 (HDR)
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+ zz
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0.002

0.004
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0.01

(d) ReH = 6000, WiH = 30 (MDR)

Figure 8. Spanwise pressure–strain component �+
zz as a function of y+ obtained from the different

pressure contributions. Same line style as in Figure 6 and same colour labels as in Figure 3. �zz is
positive everywhere indicating an energy transfer to the spanwise component.

y+

P
xy+

100 101 102-0.08

-0.06

-0.04

-0.02

0

(a) Newtonian, ReH = 6000

y+

P
xy+  , 

P
 p xy +

100 101 102-0.01

-0.005

0

0.005

0.01

(b) Viscoelastic

Figure 9. Production terms P+
xy ( – – – – ) and Pp+

xy ( ——— ) of Reynolds shear stress −u′
xu

′
y as

a function of y+ . Same colour labels as in Figure 3. Both terms cancel each other in the viscoelastic
cases, explaining the very low levels of Reynolds shear stress observed.
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(a) Newtonian, ReH = 6000
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(b) ReH = 1000, WiH = 4
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y+

xy+

100 101 102-0.005

-0.0025

0

0.0025

0.005
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Figure 10. Pressure–strain component �+
xy as a function of y+ obtained from the different pressure

contributions: p′
r ( — - — ); p′

s (· · · · · · · ·); p′
p ( – – – – ); p′

rs = p′
r + p′

s ( ——— ); p′
rsp = p′

r + p′
s + p′

p
( ). Same colour labels as in Figure 3.

3.2. Instantaneous fields

As shown in Figure 2, the flow is characterised by trains of cylindrical QA structures of
alternating sign around thin sheets of large polymer extension. This is further illustrated in
Figure 11, which shows the contour of the polymer stress component Txx and isolines of
QA in an x–y plane for the lower Reynolds number case. The long thin sheets of large
polymer extension surrounded by cylindrical structures are clearly visible.

A small region of the x–y plane around one of these sheets (indicated by the dashed box
in Figure 11) is shown in Figures 12 and 13. The first figure shows the instantaneous contour
of the polymeric pressure contribution pp and isolines of QA, and illustrates the strong
correlation between these two quantities. The largest fluctuations of pp are of alternating
sign and located on each side of the sheet, mostly in between cylindrical QA structures.
The wavelength of these structures is the same as the wavelength of the QA structures.
On the other hand, the inertial pressure prs does not show such a clear correlation. Large
fluctuations of prs are rather correlated with the centre of strong QA structures, as shown in
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Figure 11. Instantaneous contour of the polymer stress component Txx and isolines of QA (dash lines
represent negative values) in an x–y plane for ReH = 1000 and WiH = 4. The flow is from left to
right and the dashed box represents the region plotted in the next two figures.

Figure 12. Instantaneous contour of the polymeric pressure contribution pp and isolines of QA (dash
lines represent negative values) in an x–y plane for ReH = 1000 and WiH = 4. The region plotted
corresponds to the dashed box in Figure 11. A clear correlation between pp and QA is visible.

Figure 13. Instantaneous contour of the inertial pressure contribution prs and isolines of QA (dash
lines represent negative values) in an x–y plane for ReH = 1000 and WiH = 4. The region plotted
corresponds to the dashed box in Figure 11. Unlike the previous figure, no clear correlation between
prs and QA is visible.
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Figure 14. Schematics of the typical structures observed around thin sheets of large polymer
extension (black line) in the near-wall region: second invariant of the velocity gradient tensor QA

(blue), pressure p (red) and polymer body force f p (green). Dotted lines indicate a negative value.

Figure 13. In particular, as in inertial turbulence, positive values of QA correspond to low
pressure regions, and thus, to vortical regions [21]. The analysis of the polymer body force
f p = ∇ · T (not shown here) indicates that the polymer body force is mostly parallel to the
sheet with opposite sign on each side. Additionally, f p also alternates direction along
the sheet with the same wavelength as the QA structures and opposite sign, indicating that
the polymers are most likely the driving force that creates these structures.

The overall picture gained from this analysis is schematically summarised in Figure 14.
It is believed that the combined effect of advection at low diffusivity and existing flow
perturbations leads to the formation of sheets of high polymer extension and, in turn, to a
large increase in the extensional viscosity, and thus in the polymer stress. Small perturbations
of the sheets cause the polymer body force to alternate direction, and thereby, create these
cylindrical QA structures. The pressure adapts to ensure zero divergence of the velocity and
redistribute part of the turbulent kinetic energy from the streamwise to the other components.
Once triggered, this process appears to be self-sustained, at least over the hundreds of flow
through-time simulated here. Therefore, it can be conjectured that these characteristic trains
of cylindrical structures are mostly driven by the polymers. Nonetheless, an indirect effect
from inertia probably also contributes to the dynamics. Finally, note that, since the present
analysis is based on correlations, these causal connections are only speculative. Further
analysis is still required to ascertain this.

4. Conclusion and future work

A new state of small-scale turbulence, elasto-inertial turbulence, has been recently discov-
ered in polymeric solutions. EIT has not only provided answers to previously unexplained
phenomena such as early turbulence [6,22], it is also a unique window into the creation
of turbulence by means other than those known in Newtonian turbulence. The current
understanding of EIT is that it is driven by both inertial and elastic instabilities, leading to
strong alterations of the flow dynamics compared to the Newtonian case. In particular, the
flow departs from the laminar solution at a Reynolds number lower than the transitional
Reynolds number observed for a Newtonian fluid. The topology of coherent structures iden-
tified by the second invariant QA of the velocity gradient tensor is dramatically different
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than the coherent structures observed in Newtonian near-wall turbulence. Interestingly, our
simulations show that EIT coherent structures extend to larger Reynolds numbers where
the skin friction reaches the MDR asymptotic law. The spatial organisation of regions of
highly stretch polymers is also found to be similar between Re = 1000 and 6000. In
this context, the present analysis aimed at better characterising the dynamics of EIT and, in
particular, to study the role of pressure in the relationship between the QA structures and
the organisation of polymer stretch.

The splitting of the pressure into different components, in particular, into an elastic and
an inertial part, has provided a tool to assess the relative contributions of both components
to the overall dynamics. It is shown that the elastic, or polymer, pressure is a non-negligible
component of the total pressure fluctuations, although the rapid part dominates. Unlike
Newtonian flows, the slow part is much lower in elasto-inertial turbulence. Statistics also
demonstrate the redistributive role of pressure, transferring energy from the streamwise to
the other components. Finally, a schematic description of the typical structures encountered
in EIT is proposed. It is postulated that those small-scale structures, associated with thin
sheets of large polymer extension, are directly driven by the polymers. Nonetheless, an
indirect inertial contribution is still possible, and most likely required for self-sustaining
dynamics.

In a broader context, elasto-inertial turbulence offers a new perspective on the interaction
between polymers and flow. First, its existence at Re = 1000, for which the Newtonian flow
is laminar, clearly establishes a pathway of energy from polymers to flow, lending support to
De Gennes’ theory of energy transfers between polymers and flow [10]. Then, the existence
of EIT at larger Reynolds number raises some questions as to its role in MDR and the
nature of MDR, which will be addressed in future publications.

Many questions remain unanswered, such as the mechanism by which small perturba-
tions of the sheet lead to a body force of alternating sign, the role of those elastic instabilities,
the validity of the above conclusions at larger Reynolds numbers, the two-dimensional na-
ture of these instabilities. Finally, the possible existence of EIT in other flows, specifically
non-wall-bounded flows, remains a speculation based on our current definition: EIT occurs
in parallel flows with a mean shear. Consequently, one may anticipate that EIT may live in
shear flows (mixing layers, jets) or in a Kolmogorov flow. Further analysis is thus required
to obtain a definite description of the physical mechanisms underlying EIT, which will be
part of future work.
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Notes
1. In laminar flows, γ̇ = 6Ub/H , so that Wi+ = 6WiH.
2. The Newtonian flow is laminar.
3. Note that p′2

rsp = (p′
r + p′

s + p′
p)2 �= p′2

r + p′2
s + p′2

p .
4. The subcritical case (not shown here) is qualitatively similar to the MDR case but with lower

values.
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