
Experimental modal analysis of a beam travelled
by a moving mass using Hilbert Vibration

Decomposition

Mathieu BERTHA
Jean-Claude GOLINVAL

University of Liège

30 June, 2014



The research is focused on the identification
of time-varying systems
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M (t) ẍ(t) + C(t) ẋ(t) + K(t) x(t) = f (t)

Dynamics of such systems is characterized by :
I Non-stationary time series
I Instantaneous modal properties

I Frequencies : ωr(t)
I Damping ratio’s : ξr(t)
I Modal deformations : qr(t)



The Hilbert Transform
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The Hilbert transform H of a signal x(t) is the convolution product of
this signal with the impulse response h(t) = 1

π t

H(x(t)) = (h(t) ∗ x(t))

= p.v.
∫ +∞

−∞
x(τ)h(t − τ) dτ

=
1
π

p.v.
∫ +∞

−∞

x(τ)
t − τ

dτ

It is a particular transform that remains in the time domain

It corresponds to a phase shift of −π
2 of the signal



The Hilbert transform and the analytic signal
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The analytic signal z is built as

z(t) = x(t) + iH(x(t))
= A(t) eiφ(t)

The instantaneous properties of the signal can
then be obtained

A(t) = |z(t)|
φ(t) = ∠z(t)

ω(t) = dφ
dt



The Hilbert Vibration Decomposition (HVD) method
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x(t)

Analytic signal
z(t) = x(t) + iH(x(t))

Frequency extraction
ω(t) = dφ(t)

dt = d∠z(t)
dt

Lowpass filtering
ω(t) → ωk(t)

Synchronous demodulation
xk(t)

Sifting process
x(t) := x(t) − xk(t)

It is an iterative process

The sifting of the signal extracts monocomponents
from higher to lower instantaneous amplitude

It is applicable to single channel measurement

Crossing monocomponents may be a problem



The experimental set-up
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2.1 meter aluminum beam
Steel block (≈ 3.5 kg, 38.6%)

1 shaker (random force)
7 accelerometers
LMS SCADAS & LMS Test.Lab system



Time invariant modal identification
of the beam subsystem
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Time-varying dynamics of the system
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The sifting process and the benefit
of the source separation
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x(t)

Source separation
x(t) → s(t)

Analytic signal
z(t) = s1(t) + iH(s1(t))

Phase extraction
φ(t) = ∠z(t)

Trend extraction
φ(t) → φ(k)(t)

VKF
x(k)(t), V k(t)

Sifting process
x(t) := x(t) − x(k)(t)



Other modes are extracted after few iterations
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Monocomponents and complex amplitudes
are extracted with a Vold-Kalman filter

Mathieu BERTHA (ULg) EURODYN 2014, June 2014 10

The Vold-Kalman model and the modal
expansion are very similar.

The extracted complex amplitudes are then
considered as unscaled mode shapes

Vold-Kalman filter: x(t) =
∑

k ak(t) ei φk(t)

l l
Modal expansion: x(t) =

∑
k Vk(t) ηk(t)



The moving mass affects both
frequencies and mode shapes
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Thank you for your
attention


