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The research is focused on the identification
of time-varying systems

M(t)&(t) + C(t) z(t) + K(t) z(t) = f(t)

Dynamics of such systems is characterized by :

» Non-stationary time series
» Instantaneous modal properties

» Frequencies : wr(t)
» Damping ratio’s : &r(1)
» Modal deformations : ¢, (1)
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The Hilbert Transform

The Hilbert transform H of a signal z(t) is the convolution product of

this signal with the impulse response h(t) = -

H(z(t)) = (h(1) x 2(1))
+oo
= pw / z(T)h(t — 7) dT
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It is a particular transform that remains in the time domain

It corresponds to a phase shift of —7 of the signal
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The Hilbert transform and the analytic signal

The analytic signal z is built as

z2(t) = x(t)+ tH(z(t))
= A1) i)

The instantaneous properties of the signal can
then be obtained

A(t) = [2(1)]
o(t) = flz(t)
N wlt) = 2
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The Hilbert Vibration Decomposition (HVD) method

( =(t) )

It is an iterative process

o Ana'(y;':s'g;a(' o) } The sifting of the signal extracts monocomponents
Z! =T 7 I
from higher to lower instantaneous amplitude

Frequency extraction
d¢(z) dlz(z)

It is applicable to single channel measurement

w(t) — wk(t

Crossing monocomponents may be a problem

xk (t)

Slftlng process
aif(B) = ol —zk
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Synchronous demodulatlon }
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The experimental set-up

2.1 meter aluminum beam
Steel block (= 3.5 kg, 38.6%)

1 shaker (random force)
7 accelerometers

LMS SCADAS & LMS Test.Lab system
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Time invariant modal identification
of the beam subsystem
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Time-varying dynamics of the system
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The sifting process and the benefit
of the source separation
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x(t)
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Source separation
z(t) — s(t)

Analytic signal
2(t) = s1(t) + i H(s1(2))
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Phase extraction

o(t) = Z(t)

Trend extraction

B(t) = o (t)

VKF
z(y (1), Vi(t)

Sifting process
z(t) == x(t) — o) (1)
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Other modes are extracted after few iterations

Source separation
z(t) — s(t)

Analytic signal

Phase extraction

o(t) = Z(t)

Trend extraction

B(t) = o (t)

VKF
z(y (1), Vi(t)

Sifting process
z(t) == x(t) — o) (1)
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Monocomponents and complex amplitudes
are extracted with a Vold-Kalman filter

The Vold-Kalman model and the modal
expansion are very similar.

The extracted complex amplitudes are then
considered as unscaled mode shapes

Vold-Kalman filter: x(t) =Y,  ax(?)

!
Modal expansion:  x(t) =Y, Vi(t)
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The moving mass affects both
frequencies and mode shapes
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Thank you for your
attention
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