Human cortical excitability depends on time awake and circadian phase <u>Julien Q. M. Ly^{1,2*}</u>, Giulia Gaggioni^{1*}, Sarah L. Chellappa^{1*}, Soterios Papachilleos¹, Alexandre Brzozowski¹, Chloé Borsu¹, Mario Rosanova³, Simone Sarasso³, Simon N. Archer⁴, Derk-Jan Dijk⁴, Christophe Phillips¹, Pierre Maquet^{1,2}, Marcello Massimini³ and Gilles Vandewalle¹ **Objectives:** The dynamics of neuronal excitability is considered to be mainly driven by sleep homeostasis directly depending on time spent awake. However, no study has been properly designed to investigate a putative circadian timing system influence on human cortical excitability. Here we assessed this circadian modulation using transcranial magnetic stimulation coupled with electroencephalography (TMS/EEG). **Methods:** Twenty-two healthy young men (18-30 years) underwent 8 TMS/EEG sessions during a 28h sustained wakefulness under stringent constant routine conditions. Participants were stratified in two groups according to a polymorphism in *PERIOD3* (*PER3*), known to affect sleep-wake regulation (15 *PER3*^{4/4}; 7 *PER3*^{5/5}). Cortical excitability was inferred from the normalized amplitude of the first component of TMS-evoked EEG potentials over the prefrontal cortex, a brain region highly sensitive to sleep deprivation. **Results:** Cortical excitability significantly increased with time spent awake. However, the dynamics of this change was not linear and presented a pronounced local decrease around the so-called evening wake-maintenance zone. Conversely, a marked local amplification was found at the end of biological night when the circadian system maximally promotes sleep. This time-course was best predicted by the interaction of linear (sleep homeostasis) and sine-wave (circadian) functions. Interestingly, analyses by genotypes showed that the overnight difference in cortical excitability between sleep and wake maintenance zones was more pronounced in *PER3*^{5/5}. **Conclusions**: These results demonstrate that temporal changes in cortical excitability depend on the interplay between sleep homeostasis and circadian timing system. Fundings: FNRS, AXA, WBI. Keywords: TMS/EEG, sleep homeostasis, circadian timing system, sleep deprivation ¹Cyclotron Research Centre, University of Liège, Liège, Belgium ² Department of Neurology, CHU de Liège, Liège, Belgium ³ Department of Clinical Sciences, Università degli Studi di Milano, Milan, Italy ⁴ Surrey Sleep Research Centre, University of Surrey, Guildford,