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ABSTRACT 

This paper presents an inverse modelling approach for parameter estimation of 

a model dedicated to the description of moisture mass transfer in porous 

hygroscopic building materials. The hygric behaviour of unfired clay-based 

masonry samples is specifically studied here and the Moisture Buffer Value 

(MBV) protocol is proposed as a data source from which it is possible to 

estimate several parameters at once. Those include materials properties and 

experimental parameters. For this purpose, the mass of two clay samples with 

different compositions is continuously monitored during several consecutive 

humidity cycles in isothermal conditions. Independently of these dynamic 

experimental tests, their moisture storage and transport parameters are 

measured with standard steady-state methods. 

 A simple moisture transfer model developed in COMSOL Multiphysics is 

used to predict the moisture uptake/release behaviour during the MBV tests. 

The set of model parameters values that minimizes the difference between 

simulated and experimental results is then automatically estimated using an 

inverse modelling algorithm based on Bayesian techniques. For materials 

properties, the optimized parameters values are compared to values that were 

experimentally measured in steady state. And because a precise understanding 

of parameters is needed to assess the confidence in the inverse modelling 

results, a sensitivity analysis of the model is also provided.  

 

 

  

  



1.  INTRODUCTION 

Clay has been used as a construction material since man has started building. In 2012 UNESCO  

released an inventory of Earth construction heritage sites [1]. It shows the immense legacy of 

earth construction and earth architecture around the world. These sites demonstrate how durable 

this material can be. In modern times earth has to compete with materials such as concrete and 

due to its natural variability, earth is often considered as a primitive material not fit for modern 

construction. However, earth based masonry and renders have many qualities that are becoming 

more and more important in the context of global climate change and the challenge to reduce 

carbon emissions. The choice of using earth as a construction material varies depending on the 

economical situation of a country. In developing countries earth is a cheap material that can 

often be sourced close to the building site making it the first choice for economical reasons. In 

richer industrialised countries, earth is chosen for its sustainable, highly hygroscopic and 

aesthetic qualities [2]. 

Clay-based materials show high moisture storage capacity through surface adsorption and 

capillary condensation effects in the hygroscopic domain. Such phenomena coupled with 

moisture transport inside the porous structure are stated to offer a regulation capacity of the 

indoor air humidity [3], improving comfort for occupants [4-6]. One way to quantify this 

regulation behaviour is to evaluate the moisture buffer capacity, i.e. the moisture exchange 

capacity under a dynamic exposure to ambient relative humidity (RH) cycle. The relative 

humidity variations can be caused either by temperature change of the ambient air or through 

changing the amount of moisture in it.  

The NORDTEST project [7] has been one of the first attempts to find a consensus for an 

experimental protocol able to adequately characterize the buffer capacity through the definition 

of a global parameter called the Moisture Buffer Value (MBV). Beside the direct humidity 

regulation that is evaluated by the MBV at material scale, the buffer performance of 

hygroscopic materials also causes latent heat effects whose impact on energy balance is only 

partially assessed [8]. 

Along with the will to characterize porous hygroscopic and capillary materials experimentally, 

the modelling of their behaviour has progressed substantially in the last decades [9-12]. Indeed, 

Heat Air and Moisture (HAM) models which deal with detailed hygrothermal analysis of porous 

materials have improved in accuracy through the development of computer power and a better 

knowledge of the involved phenomena. Many HAM computer models and associated software 

have been developed for building applications and some have been commercialized [13, 14]. 

The main difference between the models is in the description of the moisture flows that can 

have several levels of complexity, ranging from diffusivity models using moisture content as 

driving potential to conductivity models using the actual thermodynamic driving potential and 

separated liquid and vapour flows [15]. All these models rely on material and boundary 



condition parameters, most of them being time consuming to obtain.  

The computation of temperature and moisture content fields in building materials, from the 

known parameters and boundary conditions forms a direct HAM problem [16]. This approach is 

the most common in Building Physics, where the aim is often to predict the behaviour of 

material assemblies under various climatic solicitations. The validity of such approaches relies 

on the quality of characterization for the hygrothermal properties of the material. In contrast to 

direct modelling process, there exist several methods that allow parameter estimation from 

temperature and moisture content field measurements, which establishes a new kind of inverse 

HAM problem. Among inverse modelling methods, the Bayesian approaches are becoming more 

and more popular in environmental models. In Bayesian optimization, parameters are not 

unknowns with a single value to determine, but stochastic variables whose distributions have to 

be specified. The distribution given before estimation is called 'a priori' and the distribution 

given after integration of the experimental data is called 'a posteriori'. Historically, the 

emergence of the Markov Chain Monte Carlo (MCMC) simulations with the Random Walk 

Metropolis algorithm as first widely used approach [17] have greatly simplified the estimation 

of posterior distribution of parameters. Recently, Ter Braak [18] developed the Differential 

Evolution-Markov Chain (DE-MC) method, able to run several Markov chains in parallel with a 

so called 'genetic' algorithm for the sampling process, improving the parameter space 

exploration efficiency. The Differential Evolution Adaptive Metropolis (DREAM) algorithm 

[19, 20] is an evolution of the DE-MC, able to automatically tune the scale and orientation of 

the proposed parameter distributions (i.e. self-adaptive randomized subspace sampling) during 

the evolution towards posterior distribution. A good review about Bayesian approaches and 

inverse modelling algorithms evolution can be found in [21].  

The goal of this paper is to illustrate the use of a MCMC sampler to estimate the parameters of a 

HAM model in an inverse modelling problem. For this purpose, we propose to study the 

applicability of the MBV protocol as the source of experimental data to estimate hygric 

properties of porous construction materials. Specifically, the mass variation of different clay-

based samples is measured experimentally during a MBV test. In parallel, their moisture storage 

and transport properties are measured in steady-state conditions. The DREAM algorithm is then 

coupled to a simplified moisture transfer model which simulates the moisture exchange of 

samples. The parameters sampling process consists in automatically tuning the HAM model in 

order to match experimental mass variation by testing various combinations of parameters 

values and evaluating the resulting model efficiency. Eventually, the inverse modelling approach 

can propose a 'best parameters set' which minimizes the difference between the simulated and 

the measured moisture uptake/release of sample. Four parameters are estimated in this paper; 

two are directly related to the material and two others linked to experimental conditions. For the 



first category, the best estimated parameters resulting from the inverse modelling approach can 

be compared to their corresponding value measured in steady-state.  

The questions arising from this study are: (1) how the different model parameters interact during 

the MBV cycle, with possible correlations; (2) is it reliable to use this single dynamic 

experiment to retrieve several parameters at once with the inverse modelling method; (3) do the 

dynamic conditions of the MBV test offer a more 'realistic' configuration for material properties 

assessment? 

2.  THE MOISTURE BUFFER VALUE  

The need for a standardized parameter to characterize the moisture buffering capacity of 

materials led to the definition of the Moisture Buffer Value (MBV) during the NORDTEST 

project [4] together with the proposal of a dynamic experimental protocol for materials 

classification. The practical MBV is defined as :‘‘the amount of water that is transported in or 

out of a material per open surface area, during a certain period of time, when it is subjected to 

variations in relative humidity of the surrounding air’’ [7]. Concretely, the samples are subjected 

to cyclic step changes in relative humidity (RH) at a constant temperature of 23 °𝐶 and are 

weighted regularly. The cycle is composed by moisture uptake during 8 hours at high RH 

followed by moisture release 16 hours at low RH and is repeated until constant mass variation 

between 2 consecutive cycles is reached. The practical MBV in 𝑘𝑔/(𝑚2 ∙ %𝑅𝐻) is then given 

by Eq.1.  

𝑀𝐵𝑉𝑝𝑟𝑎𝑐𝑡𝑖𝑐𝑎𝑙 =
∆𝑚

𝐴 ∙ ∆𝑅𝐻
 (1) 

where ∆𝑚 is the mass variation during the 8 hours absorption phase or  the 16 hours desorption 

phase in one complete cycle, 𝐴 (𝑚2) is the total exchange surface and ∆𝑅𝐻 is the difference 

between the high and low relative humidity of the cycle. This experimental value is a direct 

measurement of the amount of moisture transported to and from the material for the given 

exposure cycle. In the original protocol, the cycle is fixed to a 75/33%RH scheme. 

A theoretical value of the MBV, called 𝑀𝐵𝑉𝑖𝑑𝑒𝑎𝑙, can be computed analytically using semi-

infinite solid theory and Fourier series without transfer resistance at exchange surface. There is 

always a disagreement between measured and analytically calculated due to the dynamic nature 

of the experimental protocol, the film resistance on specimen exchange surface and deviations 

from the typical step transitions . However is has been shown in McGregor et al. [22] that a 

good agreement can be found between measured and calculated MBV when reducing the film 

resistance in the dynamic test and improving the precision of the steady state measured 

properties.  

 



3.  MATERIALS AND METHODS 

3.1  Samples 

Two different soils were used for the experimental measurement. The Gr soil is a natural soil 

extracted from the Wealden clay group in the UK. The natural soil had high clay content, so 

50% by weight of fine builders sand was added. The final particle size distribution consisted of 

18% of clay, 24% of silt and 58% of sand. The Mt is a manufactured soil; it was prepared with 

10% of a commercial bentonite, 15% of kaolin clay, 20% of silt and 55% of sand. 

The tested sample blocs have all three a cylindrical shape and a nominal height of 3cm, which is 

stated sufficient given the theoretical moisture penetration depth during the MBV experiment. 

Lateral and back faces are sealed from water exchange with aluminium tape providing one-

dimensional conditions. Table 1 gives the general physical properties of the samples including 

their volume, true exchange surface area and dry density. 

Table 1. Properties of the tested samples 

 Volume of sample Exchange surface area Dry density 

 𝒄𝒎³ 𝒎² 𝒌𝒈/𝒎³ 

Gr8 21.92 0.0078 2010 

Mt9 24.06 0.008 1860 

 

The vapour resistance factors of the two samples were determined by the wet cup method 

described by the ISO 12572 Standard. Samples are sealed on the top of a cup containing 

potassium nitrate solution. The cup is placed in a chamber at 50%HR and 23°C, giving typically 

94±0.60%HR in the air layer above the salt solution. The processed results give a value of 𝜇 = 

8.8 for Gr8 sample and 8.3 for Mt9 sample.  

The moisture storage curves were determined by a Dynamic Vapour Sorption (DVS) system. 

The DVS equipment precisely records the mass of a sample of up to 4g in varying RH 

conditions. The sorption isotherms were precisely recorded up to 95%RH within 10 days. 

Above 95%RH the samples need much longer to reach Equilibrium Moisture Content (EMC) 

and therefore the equilibrium was not expected to be reached at these levels but this is not 

considered a limitation for this study as 95%RH is above the RH level from all tests. Once the 

adsorption curve measurement is finished, the DVS apparatus initiates the reverse cycle to 

obtain the experimental points of the desorption curve. All equilibrium moisture content values 

are expressed as variable 𝑢 (in kg of water per kg of dry material, noted in figures in a 

simplified manner as 𝑘𝑔/𝑘𝑔). Figure 1 shows the DVS curves for the two tested materials. 



 

Fig. 1. Moisture storage curves 

It can be observed that absorption curves only start to rise steeply from around 80% due to the 

increase of capillary condensation effects. As a consequence, it is assumed that hysteresis 

phenomena are negligible during the MBV experiments performed later and only absorption 

curves will be considered. Indeed, the chosen relative humidity cycle imposed on samples is 

16hrs at 50% and 8hrs at 85%. A relative humidity superior to 80% is thus not expected to be 

found during a prolonged period in the material. . For each material, a continuous moisture 

storage function 𝑢(𝜑) is then fitted on absorption experimental points by minimizing the sum of 

least squared errors. The Smith [23] model was selected for its easy handling and the good 

description  in the range of humidity considered: 

𝑢(𝜑) = 𝐶1 + 𝐶2 ln(1 − 𝜑) (2) 

where 𝐶1 and 𝐶1 are empirical parameters. Table 2 shows the optimized values for both 

materials. A major advantage of using Smith function is an expression of the moisture capacity 

𝜉 =
𝜕𝑢

𝜕𝜑
 dependant only on one constant parameter: 

𝜉(𝜑) =
𝐶2
𝜑 − 1

 (3) 

This is particularly interesting in the inverse modelling approach that we introduce in this paper 

as it will limit the number of parameters needed to characterize the behaviour of the sample 

during the MBV experiment. Moreover, the data in Table 2 shows that Mt9 material has a 

greater moisture capacity in comparison to Gr8 and is thus expected to show a greater practical 

MBV as its vapour resistance factor is also smaller. Figure 2 shows the fitted Smith functions 

and experimental points on the 50-90% range for both samples as well as obtained moisture 

capacities functions.  

 

 



Table 2. Smith model empirical parameters fitted on the 50-90%RH range for absorption curves 

Parameters Gr8 Abs Mt9 Abs 

𝑪𝟏 0.0036 0.0029 

𝑪𝟐 -0.0083 -0.0124 

Fig. 2. Fitting the Smith model on experimental data (left); and moisture capacities calculated from 

Smith model (right) 

3.2  MBV Test platform 

The MBV was recorded in a climatic chamber (TAS) offering a stability of +/- 0.3 to 1.0°C and 

+/- 3.0 % of RH. As previously said, the test chamber was set to produce cycles of 85%RH 

during 8 hours and 50%RH during 16 hours with a constant temperature of 23°C. The values 

used where consistently used at the University of Bath and are better representations of the 

climate in the UK than the values used for the NORDTEST protocol. The weight of the samples 

were continuously logged with a reading every minute on a scale (Ohaus) with a precision of 

0.01g. The scale and the sample were covered with a wind shield to maintain an air velocity as 

close as possible to 0.1m/s which was recommended by the NORDTEST and is typical of the 

interior air velocity in a building. The samples were conditioned at 19°C and 55%RH in an 

environmental controlled room. The tests run for at least 7 consecutive cycles so the behaviour 

over a longer period can be observed. Relative humidity and temperature sensors (Tinytag) 

recoded the internal conditions above the specimens for control. Figure 3 shows the complete 

experimental set-up. 

The relative humidity transitions are close to perfect steps with times of 12min for low to high 

RH transitions and 14min for high to low RH. The control sensors put in the chamber indicate a 

mean measurement of 85.9%RH during adsorption phase and 49.6%RH during desorption 

phase. The measured dynamic humidity cycle is used as input for boundary conditions during 

the modelling phase instead of ideal step transitions with chamber set points. Concerning the 

temperature, a mean value of 23.21°C was measured during the whole cycle and this constant 

value was used to determine vapour saturation pressure when needed.  



  

Fig. 3. Experimental set-up 

Figure 4 presents the measured ambient relative humidity and temperature in the chamber 

during a typical 24hrs cycle.  

 

Fig. 4. Ambient conditions in the chamber 

3.3   Description of the moisture transfer model  

3.3.1  Moisture balance equation 

Modelling the hygric behaviour of the clay-based samples during the MBV determination 

experiment is considered as a tool for parameter estimation through an inverse modelling 

approach. The moisture transfer model was developed in COMSOL Multiphysics and is 

interoperable with the parameter sampling algorithm that is encoded in Matlab and presented in 

the next section.  



The following hypotheses were taken for the mathematical description of mass transfer:  

(1) The soil sample is non-deformable and isotropic; (2) the fluid phases do not chemically react 

with the solid matrix; (3) The dry air pressure is constant (no air advection) and the total gas 

pressure gradients are considered negligible; (4) no liquid transport is considered and vapour 

pressure is the only driving potential for moisture movement; (5) there is a local thermodynamic 

equilibrium between the different phases; (6) there is no thermal diffusion (Soret effect); (7) no 

hysteresis phenomena is present as explained before.  

The dependent variable chosen for this problem is the relative humidity 𝜑 and which was solved 

in 1D. Since the experiment was conducted under isothermal conditions, the heat balance 

equation was not considered here, even if some latent effects near the surface of the material 

might happen. For a material having an ideal MBV similar to the clay samples considered here, 

Dubois et al. [24] showed that, during a MBV test with 33/75%RH cycles, the amplitude of 

temperature variation at sample surface was very low (less than 3°C). In consequence, it can be 

assumed here that temperature does not have a significant impact on the moisture exchange 

behaviour.  

Since the experiment was conducted under isothermal conditions, the heat balance equation is 

not considered here, even if some latent effects near the surface of the material might alter 

slightly the moisture transfer [24]. The mass conservation equation was formulated with relative 

humidity 𝜑 as main dependent variable: 

𝜌0 ∙ 𝜉(𝜑) ∙
𝜕𝜑

𝜕𝑡
=
𝛿𝑎𝑝𝑠𝑎𝑡
𝜇

∙
𝜕²𝜑

𝜕𝑥²
 (4) 

where 𝜉 (𝑘𝑔𝑣 ∙ 𝑘𝑔0
−1) is the isothermal moisture capacity considered constant for the given RH 

interval and 𝑝𝑠𝑎𝑡  (𝑃𝑎) is vapour saturation pressure considered constant during the simulation 

and calculated from mean temperature in the chamber during the test (Fig. 4). The vapour 

permeability of the sample is expressed here in terms of vapour resistance factor 𝜇 =
𝛿𝑎

𝛿
 (−) 

where 𝛿 and 𝛿𝑎  (𝑘𝑔 ∙ 𝑃𝑎
−1 ∙ 𝑚−1 ∙ 𝑠−1) are the vapour permeabilities of the sample and dry air 

respectively. 

3.3.2  Boundary conditions 

 

Fig. 5. 1D representation of sample bloc with boundary layer 



Referring to Figure 5, we can write the following boundary and initial conditions for moisture 

transport: 

(𝒋𝒙
𝑴𝒗) ∙ 𝒙 =

𝑝𝑠𝑎𝑡(𝜑∞ − 𝜑𝑠)

𝑍𝑠
 𝑥 = 0 (5) 

(𝒋𝒙
𝑴𝒗) ∙ 𝒙 = 0 𝑥 = 𝐿 (6) 

𝜑(𝑥, 𝑡0) = 𝜑0 0 < 𝑥 < 𝐿 (7) 

where 𝒋𝒙
𝑴𝒗  (𝑘𝑔 ∙ 𝑚−2 ∙ 𝑠) is the vapour flux density, 𝜑∞ and 𝜑𝑠 are the ambient relative 

humidity and the relative humidity at the exchange surface respectively, 𝑍𝑠 (𝑃𝑎 ∙ 𝑚² ∙ 𝑠 ∙ 𝑘𝑔
−1) 

the surface resistance, 𝑡0 (𝑠) the initial time and 𝜑0 the initial relative humidity in the sample. 

The input data 𝜑∞ for the ambient air condition used as a boundary in the model were the 

measured RH from the experimental cycles (Fig. 4). 

The surface resistance characterizes the moisture transfer resistance that exists on the material 

surface and slows down the moisture exchange. Its value is generally fixed at 5𝐸7 (𝑃𝑎 ∙ 𝑚2 ∙

𝑠)/𝑘𝑔 which is the usually accepted value for environments with an ambient air velocity around 

0.1 𝑚/𝑠 [7]. It's similar to a value of 𝑍𝑠,𝑣 = 360 𝑠/𝑚 when the surface flux density is written in 

terms of absolute humidity: 

(𝒋𝒙
𝑴𝒗) ∙ 𝒙 =

(𝜔∞ −𝜔𝑠)

𝑍𝑠,𝜔
 (8) 

To calculate 𝐺𝑣(𝑡), the accumulated moisture in the sample at time 𝑡, the following integration 

is performed on material surface: 

𝐺𝑣(𝑡) = ∫ 𝒋𝒙
𝑴𝒗𝑑𝑡

𝑡

0

 (9) 

After that, experimental and simulated data is easily compared through the relative weight 

variation of the sample: 

𝑚(𝑡) − 𝑚0⏟      
𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙

= 𝐺𝑣(𝑡)⏟  
𝑚𝑜𝑑𝑒𝑙

∗ 𝐴 
(10) 

where 𝑚(𝑡) (𝑘𝑔) is the measured weight of the sample at time 𝑡, 𝑚0 (𝑘𝑔) is the measured 

initial weight of the sample and 𝐴 (𝑚2) is its exchange surface area (Table 1). 

3.4   Inverse modelling approach 

3.4.1  Parameter sampling and optimization algorithm 

The recently developed DREAM algorithm [19] was used in order to estimate parameters of the 

moisture transfer model based on the observed moisture uptake/release data sets for both 



samples during the MBV cycles. In the process, the COMSOL model was run continuously 

together with the parameter sampling algorithm offered by DREAM until a convergence 

criterion was respected. It is an optimization process as the parameters set is automatically 

optimized to reduce the error between simulated and observed mass variation of samples. 

First, initial values of parameters were randomly generated in the prior parameter space which 

consists for each parameter of an uniform distribution limited by chosen probable values. Here, 

because multiple Markov chains run simultaneously for global parameter space exploration, an 

initial set of parameters values was assigned to each chain. Then, a so-called likelihood function 

quantified the model output closeness to experimental data for the initial parameter combination 

in each chain, using a classical sum of squared residuals (SSR). Only the four last experimental 

cycles were used to perform this quantitative comparison, although the starting point for the 

simulation was located at the beginning of cycle number 1. 

From initial values of parameters, the differential evolution algorithm generates a new set of 

parameters for each chain, called a child set, as a combination of current parameters stored in all 

chains, called a parent set. All chains are thus updated conditionally on other chains. Based on 

the comparison of resulting likelihood function score between parent and child parameters, 

children parameters are either accepted or rejected, in which case the parent parameters are kept 

in the concerned chain for the next iteration step. The acceptance/reject criterion is based on the 

Metropolis ratio [25]. The process is then repeated until a convergence criterion is respected, i.e. 

a Gelman-Rubin convergence diagnostic value of 1.2 [26]. This chain updating scheme, specific 

to DREAM, improves greatly the efficiency of the MCMC sampling process compared to more 

traditional MCMC methods [20]. 

The output of the algorithm is a posterior distribution for each parameter, i.e. the probability 

distribution function of its value after statistical convergence of the MCMC sampler or in other 

terms, the marginal uncertainty on parameter value given the experimental observations. When 

the convergence diagnostic is achieved, the posterior distribution is stationary. Afterwards, the 

resulting possibility of analyzing the uncertainty of parameters and models outputs is a great 

advantage of the DREAM algorithm. An extensive study including such discussion is found in 

[21]. Figure 6 illustrates the operation of the inverse modelling algorithm. It should be noted 

that experimental data quality plays a crucial role in parametric optimization because 

measurements intervene both as inputs of the model and the likelihood function. In 

consequence, a good confidence in the sensors gathering that information is essential. 



 

Fig. 6. Operation of the parameter sampling and optimization algorithm  

3.4.2  Parameters estimates 

On the basis of the posterior distribution of model parameters, one can determine parameter 

estimates or, in other words, 'best values' of parameters to explain experimental data. This can 

be done either by taking the parameter combination offering the optimal response in terms of 

model performance or by computing averaged values among chains which includes information 

about the marginal distribution.  

For the first technique, referring to Dubois, Evrard [24], the Nash-Sutcliffe efficiency 

coefficient was used as the objective function to optimize: 

𝑁𝑆𝐸 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖(𝑋, 𝜃))²
𝑁
𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑖)²
𝑁
𝑖=1

 (11) 

where 𝑦̂𝑖 is a element of the 𝑁 × 1 vector of model outputs, 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑟) is an 𝑁 × 𝑟 

matrix of input values, 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑑) is the 𝑑 parameter vector, 𝑦𝑖 is a element of the 𝑁 ×

1 vector of measurements and 𝑦̅𝑖 is the mean of all experimental observations. A NSE 

coefficient of 1 means a perfect fit of the model to experimental data. If the indicator falls below 

zero that would imply that the residual variance is larger than data variance and thereby the 

mean value of observed data would be a better predictor that the model. The parameter set that 

minimizes the NSE is written 𝜃𝑜𝑝𝑡 and can stem from any of the Markov chains. 

When it is better to summarize information about the posterior distribution in the estimates, the 

following mean parameter set can be computed: 

𝜃𝑚𝑒𝑎𝑛 =
1

𝑘 ∗ 8
∑ ∑ 𝜃𝑖,𝑗

𝑘

𝑖

8

𝑗
 (12) 

where 𝜃𝑚𝑒𝑎𝑛 is called posterior mean estimate, 𝑘 is the number of last elements used in each 

chains to perform the averaging process and 𝜃𝑖,𝑗 is a single parameter combination in one chain 



𝑗. The number of elements to use in each chain was fixed here to 𝑘=500. 

3.4.3  Parameters assumptions 

For each observed mass variation data set corresponding to one clay-based material, two types 

of parameters are optimized. First, materials hygric properties linked to their porous structure, 

namely the vapour resistance factor of the sample 𝜇 and the parameter 𝐶2 for moisture storage 

function model. The latter determines the moisture capacity function 𝜉(𝜑) on the interest 

relative humidity range as shown in Equation 3. In addition to this first category, the surface 

resistance factor 𝑍𝑠 and the initial relative humidity 𝜑0 constitute boundary and initial 

conditions parameters whose posterior distributions are also estimated through the DREAM 

sampling process. Those two experimental parameters are very difficult to measure and the 

inverse modelling method potentially offers an efficient way to determine them.  

All four parameters to optimize constitute the vector 𝜃 = (𝜇, 𝐶2, 𝑍𝑠, 𝜑0). Table 3 summarizes 

their prior distribution of probability, i.e. a priori knowledge of parameters typical values. It 

consists of uniform distributions in our case, also called noninformative priors. The boundaries 

are defined from "realistic values" knowing previous studies on clay and experimental 

conditions though the range were kept wide enough to analyze the efficiency of the parameter 

sampling convergence with a somewhat overdispersed parameter space.  

Here, one objective is to compare the estimates of 𝜇 and 𝐶2 with values measured 

experimentally in steady-state conditions, for each clay-based sample. The inverse modelling 

approach potentially offers a more realistic assessment of moisture transfer parameters as they 

are assessed from a dynamic experiment consisting of a realistic humidity cycle. Of course, such 

conclusions cannot be inferred if a significant doubt persists concerning the uniqueness of the 

solution of the optimization process.  

Table 3. Prior uniform distribution of parameters 

Parameter Prior distribution Unit 

𝝁 [4 − 25] / 

𝑪𝟐 [-0.05 − 0] / 

𝒁𝒔 [1E6 − 1E8] (𝑃𝑎 ∙ 𝑚2 ∙ 𝑠)/𝑘𝑔 

𝝋𝟎 [0.50 − 0.65] / 

 

6.  RESULTS AND DISCUSSIONS 

6.1  Experimental observations 

The relative mass variations of both samples during the MBV characterization test, for the first 



seven cycles, are shown on Figure 7. The last four cycles, used to perform the parameters 

optimization, are indicated clearly on the figure. The difference between the two materials in 

terms of moisture exchange capacity is directly observable. According to the measured steady-

state hygrothermal properties, we know that Mt9 material shows both higher vapour 

permeability and moisture capacity, resulting in a higher theoretical MBV, which is confirmed 

here. Figure 8 provides the analysis of these data sets in terms of practical MBV (Eq. 1). Two 

values are provided for each cycle and each material, one for the absorption phase and one for 

the desorption phase. We recall here that the cycle used is of type 50/85%RH, which must be 

taken into account when comparing these values with other materials tested according to the 

33/75%RH protocol. It should also be observed that after seven cycle repetitions a stable 

moisture exchange scheme is still not achieved. Indeed, if that were the case, the absorption and 

desorption practical MBV value would be almost identical. The speed of convergence towards 

equilibrium cycle is determined mainly by the initial humidity condition in the sample. Cycles 

stability was not required in this work because the inverse modelling approach allows to work 

on any dynamic data set and no comparison to ideal MBV values was attended. 

 

Fig. 7. Relative mass evolution of the samples during the seven first cycles 

 

Fig. 8. MBVpractical 50-85 results for the experimental data sets 



6.2  Optimization of model parameters  

6.2.1  Parametric sensitivity study 

Before going further in the parameter estimation process, it is important to assess the impact of 

each parameter on the output of the COMSOL model. Therefore, a sensitivity analysis was 

performed on a reference simulated case in which initial values of parameters are fixed arbitrary 

but close to expected values for clay samples (Table 4). The following is a purely theoretical 

analysis: from the reference scenario, one individual parameter was changed at a time and the 

resulting mass variation scheme studied in comparison to the reference output. The parameters 

analyzed correspond to those which were to be optimized with the inverse modelling approach. 

As input in the reference simulation and each parameter sensitivity study, the boundary 

conditions of the model consisted of 7 repetitions of the measured RH cycle (Fig. 4). Indeed, it 

is important to observe the impact of parameters modification over multiple repetitions of the 

RH cycle. The key point is to have confidence in the uniqueness of parameter values to fit a 

particular cycle. If it is proven that the individual modification of two different parameters 

produces a similar effect on sample mass variation, the risk exists that a local minimum of the 

objective function is ignored, although it represents the 'true' value of parameters. Indeed, if 

several parameter combinations produce a similar effect, a small experimental bias alone can 

determine the dominance of one or the other in terms of SSR score in the DREAM algorithm. 

Table 4. Parameters combination in the reference scenario 

𝝆𝟎 𝝁 𝑪𝟐 𝒁𝒔 𝑨 𝝋𝟎 

𝒌𝒈 ∙ 𝒎−𝟑 − − (𝑷𝒂 ∙ 𝒎𝟐 ∙ 𝒔)/𝒌𝒈 𝒎² − 

2000 10 -0.01 5e7 0.08 0.55 

 

For material parameters, i.e. vapour resistance coefficient 𝜇 and Smith model parameter 𝐶2, an 

increase/decrease of +20/-20% of the parameter value (compared to reference case) are 

considered separately. Figure 9 shows the effect of these various schemes on the model 

response in terms of weight variation of the sample.  

It can be observed that increasing any of these two parameters will result in a decrease of 

individual weight cycle amplitude. The inverse is true when decreasing their value. In addition 

to this daily impact, the overall tendency to move towards an equilibrium cycle is also modified. 

Regarding this second effect, the Smith parameter seems to have a stronger impact. Given the 

model assumptions, it can be recalled that the vapour transport coefficient is considered constant 

whereas moisture capacity changes with relative humidity, through the Smith model (Eq. 2). In 

reality, the vapour diffusion coefficient is also dependent on relative humidity. Moreover, liquid 

transport in smaller capillaries might add a contribution to moisture transport during the high 

humidity phase. In addition to the inverse calculation methodology, the goal of this paper is to 



test the ability of the chosen mathematical description to accurately represent the sample 

behaviour.  

  

Fig. 9. Sensitivity of moisture uptake/release due to material hygric parameters; (t.) reference case 

compared to +20 an -20% variation of vapour resistance factor and (b.) compared to +20 an -20% 

variation of moisture storage parameter 𝑪𝟐 

Concerning the boundary and initial conditions parameters, a modification of +50/-50% was 

imposed to the surface resistance 𝑍𝑠 and a +2.5/-2.5% scheme to initial relative humidity in the 

sample 𝜑0. The modification of the initial humidity in the sample had a limited impact because 

of its large effect on resulting mass variation of the sample. Similarly, surface resistance was 

modified with +50 and -50% of its value in order to have a noticeable impact on model output. 

Figure 10 presents the simulated relative weight variation of the reference sample with each of 

these parameters varied individually, similarly to Figure 9. The effect of surface resistance 



appears to be restricted to daily cycles. The major modification in comparison to reference cycle 

occurs at the transition from high to low humidity in the chamber. 

The initial RH in the sample has a clear impact on the transition towards equilibrium cycle. It 

can be explained easily: if the initial RH corresponds to the average of humidity during the 

entire day, the cycle would be in perfect equilibrium from the start. We note that the impact on 

daily cycle is difficult to assess but is supposed to be negligible. 

In order to get a more precise overview about model output sensitivity on parameters 

modifications, results of the study can be expressed in terms of sensitivity residuals, defined as: 

𝜀𝑖 = (𝑦̂𝑖(𝑋, 𝜃𝑟𝑒𝑓) − 𝑦̂𝑖(𝑋, 𝜃′)) (13) 

where 𝜃𝑟𝑒𝑓 is the parameter set with reference values (Table 4) and 𝜃′ is identical to the 

reference set with the modification of one parameter. Figure 11 shows the sensitivity residuals 

for all scenarios with increased values of an individual parameter. Such an approach allows 

precise identification of the impact on long term equilibrium and daily cycles of each individual 

parameter in a highly visual and easily comparable form. The specific impact of each parameter 

on the resulting output is clear. 

The initial relative humidity 𝜑0 plays preferentially on long term evolution, with a moderate 

impact on daily cycles whereas the exchange surface resistance shows precisely the opposite 

behaviour. Material parameters denote a more complex combination of effects. Both impact 

daily cycles in a similar way but the 𝐶2 parameter seems able to modify long term evolution in a 

more noticeable manner. Also, the long term impact of increasing this moisture storage property 

appears to be very similar to an increase of initial humidity in the sample. Given these 

observations, a combination of +20% on 𝜇 value and +1% on 𝜑0 value is illustrated to check if 

the same effect as an increase of 𝐶2 alone can be produced and results are shown on Figure 12. 

It seems that producing exactly the same residuals is not possible which gives confidence for the 

subsequent optimization task. 

With the results of the sensitivity analysis, we can already draw some conclusions regarding the 

inverse modelling approach. First, the model assumptions, and in particular the definition of 

moisture storage and transport functions, will determine the ability of the optimization 

algorithm to extricate a relevant description of the material. In our case, the inclusion of a RH-

dependent moisture capacity potentially reduces the number of local minima in the 𝑆𝑆𝑅(𝜃1…𝑑) 

space. It can be assumed that the global best score in terms of SSR is far from the score of the 

closest local minima. To take a contradictory example, if moisture capacity was considered 

constant in Equation 4, the DREAM tool would probably have difficulty in converging towards 

a single best parameter combination. Of course, the mass variation of a sample during a MBV 

experiment does not provide enough information to determine both complex transport and 

storage functions. This would probably require the definition of a new non-isothermal cycle in 

order to create various vapour pressure and relative humidity gradients in the material. 



A second short remark is specific to the use of MBV cycles for parameter evaluation. It appears 

that the optimization process should not be performed over one unique mass variation cycle 

because some parameter effects only develop over the repetition of RH cycles.    

  

Fig. 10. Sensitivity of moisture uptake/release due to boundary and initial conditions parameters; 

(t.) reference case compared to +50 an -50% variation of surface resistance factor and (b.) 

compared to +2.5 an -2.5% variation of initial relative humidity in the sample 

 



 

Fig. 11. Sensitivity residuals for parameters increase scenarios 

 

 

Fig. 12. Sensitivity residuals for materials parameters 

6.2.2  DREAM algorithm outputs 

The DREAM algorithm was run with 8 Markov chains and a total of 25000 model evaluations 

for each material. The total number of runs was determined during preliminary studies in order 

to provide a sufficient number of iterations after the MCMC sampler convergence criterion to 

compute significant posterior distributions. Figure 13 presents the marginal probability 

distributions of the four parameters for the last 500 sampling iterations in each Markov chain. 

The results are presented in the form of histograms using data from all the chains.  



 

Fig. 13. Marginal posterior probability distributions of the 𝝁, 𝑪𝟐, 𝒁𝒔 and 𝝋𝟎 parameters constructed 

using 4000 samples generated after convergence of the DREAM algorithm  

Each estimated parameter exhibits a narrow posterior distribution with a highly noticeable 

dominant mode. This is true for both tested materials. The uncertainty in parameters values 

given the experimental data seems to be really low. On the basis of posterior distribution data, 

Table 5 provides a summary of parameters estimates for Gr8 material and Table 6 for Mt9 

material. The tables include  parameters estimates vectors defined in section 3.4.2, the 

coefficient of variation (CV) associated to the mean estimates and steady-state experimental 

values of parameters for diffusion resistance factor and Smith function parameter.  

Table 5. 𝜽𝒐𝒑𝒕 the vector of optimal parameters estimates, 𝜽𝒎𝒆𝒂𝒏 the vector of mean parameters 

estimates and associated coefficient of variation, and SS the measured steady-state values of 

hygric transfer parameters (Gr8 Material) 

Parameter 𝜽𝒎𝒆𝒂𝒏 CV (%) 𝜽𝒐𝒑𝒕 SS Value 

𝝁 9.88 0.28 9.90 8.8 

𝑪𝟐 -7.10E-3 0.31 -7.11E-3 -8.30E-3 

𝒁𝒔 2.55E7 1.00 2.56E7 / 

𝝋𝟎 5.42E-1 0.03 5.42E-1 / 

 



Table 6. 𝜽𝒐𝒑𝒕 the vector of optimal parameters estimates, 𝜽𝒎𝒆𝒂𝒏 the vector of mean parameters 

estimates and associated coefficient of variation, and SS the measured steady-state values of 

hygric transfer parameters (Mt9 Material) 

Parameter 𝜽𝒎𝒆𝒂𝒏 CV (%) 𝜽𝒐𝒑𝒕 SS Value 

𝝁 7.40 0.33 7.41 8.3 

𝑪𝟐 -8.95E-3 0.79 -8.99E-3 -1.24E-2 

𝒁𝒔 1.42E7 3.41 1.45E7 / 

𝝋𝟎 5.33E-1 0.08 5.34E-1 / 

Optimal and mean estimates are very close for each parameter in both materials, as it could be 

expected given the narrow posterior distributions. The low parameters uncertainty is also 

confirmed with the fact that the coefficient of variation is ≤1% for all parameters posterior 

distributions other than the surface resistance factor 𝑍𝑠 of the Mt9 material. The latter shows a 

3.4% CV but it should be reminded that the sensitivity of model on this parameter is quite low 

in comparison to other parameters. In consequence, optimal estimates or mean estimates could 

be used equivalently to represent the behaviour of clay samples. 

For both samples, Figure 14 shows the COMSOL model output with all four optimized 

parameters compared to: (1) the experimental mass variation, and (2) the model output when 

using measured steady-state values to describe the vapour permeability and the sorption 

isotherm of the clay and optimized values for surface resistance and initial relative humidity in 

the sample. In consequence, the two model outputs illustrated only differ in the values of hygric 

properties for Gr8 and Mt9 samples.  

The optimal parameter set results in a 𝑁𝑆𝐸 of 0.997 for Gr8 material and a 𝑁𝑆𝐸 of 0.996 for 

Mt9 material reflecting a very high efficiency of the model in the description of clay samples 

mass variation after the optimization process. In contrast, the measured steady-state properties 

result in a NSE of 0.875 for Gr8 material and 0.7513 for Mt9 material. The efficiency found for 

Gr8 sample is very similar to the one found in a previous direct MBV modelling approach [24] 

and can already be considered as a good modelling efficiency. Globally, the optimization 

process can improve further the fitting to experimental data and potentially reduce the 

uncertainty on material and experimental parameters. In particular, when dealing with complex 

hygrothermal models, it can be used as a precious tool for reducing the experimental uncertainty 

linked to material characterization. As improving the precision in experimental material 

characterizing can be expensive and time-consuming, the inverse modelling techniques offers an  

alternative to consider.  

It is certainly interesting to analyze the parameters values obtained after the inverse modelling 

process. The exchange surface resistance 𝑍𝑠 depends on the boundary layer which in turn is 

linked to the airflow configuration around the sample exchange surface. Its value was 

theoretically limited to the range 1E6 (𝑃𝑎 ∙ 𝑚² ∙ 𝑠)/𝑘𝑔 (a very low resistance corresponding to 



hardly any effect of the boundary layer on moisture transfer) to 1E8 (𝑃𝑎 ∙ 𝑚² ∙ 𝑠)/𝑘𝑔  (a very 

high resistance corresponding to a negligible air flow) before the parameter estimation phase 

(Table 3). Those limit values were inspired by values found in [27]. A value of 𝑍𝑠 =5E7 (𝑃𝑎 ∙

𝑚² ∙ 𝑠)/𝑘𝑔 is often presented as a standard value in test chambers corresponding to an averaged 

airflow velocity of 0.1 𝑚/𝑠 above the sample. However, this experimental parameter is often 

poorly controllable in climate chamber experiments and it seems that there is still no accurate 

way to determine it. Inverse modelling estimation can thus provide a solution to this issue 

although the quality of the estimation should be confirmed in complementary studies. Here, the 

estimated values for surface resistance are close to the reference value but differ between the 

two experimental tests. It is difficult to assess the origin of this difference although it can 

supposedly be caused by airflow variations from one test to the other, which could result from 

small difference of sample location in the chamber. Especially when one knows that the mass 

variation sensitivity on that parameter is low around 1E7 (𝑃𝑎 ∙ 𝑚² ∙ 𝑠)/𝑘𝑔  according to [27]. 

Concerning the initial relative humidity 𝜑0 in the material, although its value is supposed to be 

identical for both clay samples, the difference is so small it could be imputed to sample 

manipulation before the test. The estimated values are close to expected provided the sample 

conditioning before the test.  

The most interesting part in results analysis is of course to discuss the values estimated for the 

hygric properties of the materials. Compared to values measured in steady-state, the optimal 

estimate of vapour resistance factor 𝜇 is 12.5% higher for Gr8 material and 11% lower for Mt9 

material. The difference between the two clay materials is thus more pronounced under the 

inverse modelling results. Whereas the steady-state 𝜇 parameter is assessed on the basis of a 

constant mean relative humidity of 72%RH (wet-cup test), the estimated parameter represents in 

fact the vapour transport in the active depth of the material, averaged over various RH 

conditions met during the 24 hours cycle. Resulting identical values for the two methods would 

be particularly astonishing as they not characterize exactly the same behaviour. Still, it is 

confirmed that Gr8 material has a higher resistance to vapour transport. For moisture storage 

parameter 𝐶2, characterizing the moisture capacity evolution with relative humidity, the 

estimated value is respectively 14% higher for Gr8 material and 28% higher for Mt9 material 

compared to steady-state measurement. It corresponds to less moisture storage capacity for both 

materials (Eq. 3). The higher moisture storage capacity observed with the DVS method for Mt9 

material compared to Gr8 is confirmed by the inverse modelling approach but less pronounced. 

Again, the dynamic nature of inverse modelling estimation must be highlighted. The DVS 

provides equilibrium sorption isotherms whereas the values obtained from posterior 

distributions characterize a dynamic behaviour where equilibrium values are not perfectly 

representative. Indeed, a lower moisture capacity for both materials (compared to DVS results) 

can mean a kind of 'latency' in moisture sorption. 



  

Fig. 14. Model output with optimized or steady-state parameters used to describe the hygric 

properties of clay samples compared to experimental cycles 

7.  CONCLUSION 

An inverse modelling method based on Bayesian techniques and MCMC simulations was tested 

for parameter estimation for a moisture transfer model applied to the study of construction 

materials. The MBV protocol, dedicated originally to assess the moisture exchange capacity of 

hygroscopic materials, was proposed here as an experimental data source from which it is 

possible to infer information concerning the moisture storage function and the vapour transport 

coefficient. But the approach can be applied theoretically to all kind of HAM models and case 

studies as long as the HAM model can be combined numerically to a parameter optimization 

algorithm.  



Two different clay masonry materials were first subjected to repeated 50/85%HR cycles in a 

16hrs/8hrs scheme, similar to the NORDTEST protocol. The monitoring of their weight during 

this test constitutes the measurement data intended to be compared with the output of a hygric 

model. Relevant material properties involved in moisture uptake/release behaviour were also 

measured precisely for both samples. This step included a wet-cup test for vapour permeability 

determination and a DVS test to assess their moisture storage at different RH levels.  

The numerical model used to describe the moisture transfer in the clay samples during the MBV 

cycles was developed in COMSOL and uses a simplified mass balance equation, without liquid 

transport. Four parameters were chosen to be optimized in order to fit experimental data. They 

form two categories: (1) The materials properties which include the vapour resistance factor and 

a coefficient characterizing the evolution of moisture capacity with relative humidity in the 

porous structure; (2) Experimental parameters composed of the surface resistance and initial 

humidity in the sample. A sensitivity analysis showed that each parameter had a different impact 

on simulated moisture exchange giving confidence in the optimization process. The latter was 

performed with the recently developed DREAM algorithm combined with the hygric model in 

the Matlab environment. Compared to other inverse modelling tools, DREAM offers the 

advantages of Bayesian techniques and MCMC sampling, i.e. the determination of parameters 

posterior distribution with a possible evaluation of the uncertainty of parameters values and 

model outputs given the experimental data. 

This study showed that the MBV test provides a relevant ground for the estimation of moisture 

transfer properties, in the analysis of highly hygroscopic clay-based material in dynamic 

conditions. This experimental protocol provides important information about the material 

behaviour which can be extracted with an inverse modelling approach. Inverse modelling is still 

not very common in Building Physics but can be very powerful provided the model accurately 

represents the hygrothermal behaviour. The DREAM MCMC sampler converged and provided 

very little dispersed posterior distributions for all parameters. On this basis, the computed 

estimates for vapour transport and moisture storage parameters were compared to their values 

measured under steady-state conditions. Based on the sensitivity analysis of model output, there 

is good confidence in optimized values of parameters and in their representativeness under 

dynamic moisture exchange conditions. There is no reason to believe that steady-state 

parameters provide a 'better' description of the material behaviour. The differences between 

steady-state and estimated values could be partly explained by the dynamic nature of the MBV 

test which causes complex interactions between moisture storage and transport phenomena. The 

estimated parameters through inverse modelling are potentially more representative of the actual 

conditions met in a building where steady-state conditions almost never happen. 

Despite these interesting results, the inverse modelling approach requires some precautions as 

indicated throughout in the text. First, the experimental acquisition system should be highly 

reliable as the observed data uncertainty plays a major role in the optimization process and final 



parameter estimates. Moreover, a precise understanding of the model parameters and their effect 

on model output is required and will help to determine the ideal number of measurement points 

to use in the MCMC sampler, in order to maximize posterior distribution quality and minimize 

computational time. When appropriate, the model itself has to be modified through definition of 

new parameters whose effects on model output can be clearly distinguished. Nevertheless, if 

these conditions are respected, the technique is very promising. Numerous new test protocols 

could be created to highlight various behaviours of construction materials and continue the 

improvement of mathematical models. The inverse modelling approach could also be applied to 

larger scale studies where having experimental data for all needed parameters can be tricky or at 

least a time-consuming task. 

NOMENCLATURE 

𝜹 (𝑘𝑔 ∙ 𝑚−1 ∙ 𝑠−1 ∙ 𝑃𝑎−1) Vapour permeability 

𝝁 (−) Vapour diffusion resistance factor 

𝝃 (𝑘𝑔𝑣 ∙ 𝑘𝑔0
−1) Isothermal moisture capacity 

𝝆 (𝑘𝑔 ∙ 𝑚−3) Density 

𝝋 (−) Relative humidity 

𝝎 (𝑘𝑔 ∙ 𝑘𝑔−1) Absolute humidity 

𝒋𝒙
𝑴𝒗 (𝑘𝑔 ∙ 𝑚2 ∙ 𝑠−1) Vapour flux density 

𝒑𝒔𝒂𝒕 (𝑃𝑎) Vapour saturation pressure 

𝒑𝒗 (𝑃𝑎) Vapour partial pressure 

𝒕 (𝑠) Time 

𝒖 (𝑘𝑔𝑣 ∙ 𝑘𝑔0
−1) Moisture content 

𝒙 (𝑚) Position in the sample 

𝒁𝒔 (𝑃𝑎 ∙ 𝑚² ∙ 𝑠 ∙ 𝑘𝑔−1) Vapour diffusion resistance factor at material surface 

Subscripts   

∞ Related to the climate of the chamber 

𝒂 Related to dry air 

𝒔 Related to the exchange surface of the material 

𝒗 Related to the water vapour 

𝟎 Related to the dry state of the material or to the initial condition 
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