Colour-magnitude diagrams of transiting Exoplanets - II. A larger sample from photometric distances

Amaury H. M. J. Triaud ${ }^{1,2 \star}$, Audrey A. Lanotte ${ }^{3}$, Barry Smalley ${ }^{4}$ and Michaël Gillon ${ }^{3}$
${ }^{1}$ Kavli Institute for Astrophysics \& Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
${ }^{2}$ Fellow of the Swiss national science foundation
${ }^{3}$ Institut d'Astrophysique et de Géophysique, Université de Liège, Allée du 6 Août 17, Sart Tilman, 4000 Liège 1, Belgium
${ }^{4}$ Astrophysics Group, Keele University, Staffordshire, ST5 5BG, UK

Accepted ?. Received ?; in original form ?

Abstract

Colour-magnitude diagrams form a traditional way of presenting luminous objects in the Universe and compare them to each others. Here, we estimate the photometric distance of 44 transiting exoplanetary systems. Parallaxes for seven systems confirm our methodology. Combining those measurements with fluxes obtained while planets were occulted by their host stars, we compose colour-magnitude diagrams in the near and mid-infrared. When possible, planets are plotted alongside very low-mass stars and field brown dwarfs, who often share similar sizes and equilibrium temperatures. They offer a natural, empirical, comparison sample. We also include directly imaged exoplanets and the expected loci of pure blackbodies. Irradiated planets do not match blackbodies; their emission spectra are not featureless. For a given luminosity, hot Jupiters' daysides show a larger variety in colour than brown dwarfs do and display an increasing diversity in colour with decreasing intrinsic luminosity. The presence of an extra absorbent within the $4.5 \mu \mathrm{~m}$ band would reconcile outlying hot Jupiters with ultra-cool dwarfs' atmospheres. Measuring the emission of gas giants cooler than 1000 K would disentangle whether planets' atmospheres behave more similarly to brown dwarfs' atmospheres than to blackbodies, whether they are akin to the young directly imaged planets, or if irradiated gas giants form their own sequence.

Key words: planetary systems - planets and satellites: atmospheres - binaries: eclipsing - stars: distances - brown dwarfs - Hertzsprung-Russell and colour-magnitude diagrams.

It is trivial to convert fluxes measured at occultation, or obtained while observing the phase curves of transiting exoplanets into absolute magnitudes. One only needs a distance measurement. Two colour-magnitude diagrams for transiting -or occulting- exoplanets were presented in Triaud (2014) for seven systems that have Hipparcos parallaxes (van Leeuwen 2007). Coincidentally, this happened approximately a century after the first Herzsprung-Russell diagrams were composed (Hertzsprung 1911; Russell 1914a,b,c).

Colour-magnitude diagrams offer a means to compare exoplanets with each others, using natural units for observers. In addition, they allow to infer global properties without requiring the need to fit complex atmospherical models through the sparse data points that can only be gathered at this stage. Those inferences can be made by

[^0]comparing exo-atmospheres to other objects having similar temperatures and sizes; very low-mass stars and field brown dwarfs are a readily available and well-studied sample. Young, directly imaged planets are routinely compared to field brown dwarfs for this very reason (e.g. Bonnefoy et al. 2013). Finally, irradiated and non-irradiated gas giants can be compared to each others in colour-magnitude space. Those diagrams can offer a tool to pinpoint the processes that lead highly irradiated planets to be bloated (e.g. Demory \& Seager 2011).

Just as the construction of the Herzsprung-Russell diagram led to vast advances in stellar formation and evolution, the compilation of colour-magnitude diagrams for transiting exoplanets will likely spur similar developments. Models in colour-space may predict that different planet families have distinct locations or sequences (dependent on their gravity, their atmospheric structure, their relative abundances...). This would provide diagnostics to select suitable targets for

Figure 1. Distance measurements compared with one another, from our sample, including the two discrepant stars GJ 436 and GJ 1214. Reduced χ_{r}^{2} are given. a) parallactic distances from Hipparcos versus photometric distances from Torres, Winn \& Holman (2008). b) parallactic distances from Hipparcos versus photometric distances estimated in this paper. c) photometric distances from Torres, Winn \& Holman (2008) versus photometric distances estimated in this paper.
further follow-up, in a fashion similar to selecting a particular stellar population, for instance, to remove giant contaminants prior to a survey focusing on G and K dwarfs. In the case of irradiated gas giants specifically, the lack of cloud cover may cause objects to fall in a specific region in colour-space. Being identifiable, it will help optimise the detection of atmospheric features in transmission. In addition, if planets follow defined sequences, magnitudes obtained in one band lead to accurate predictions for others bands. It can only encourage observations at wavelengths more difficult to obtain.

In total, 44 systems (43 planets and one brown dwarf) have been observed at occultation and were present in the literature. Rather than waiting for GAIA (e.g. Perryman et al. 2001) to deliver its much awaited parallaxes, this paper will instead use photometric distances. Thanks to their transiting configurations and to the intensive observational efforts that has been undertaken both in the confirmation and in the characterisation of these objects, the fundamental stellar parameters are accurately known. This means that reliable distances can be computed such as was done for example by Torres, Winn \& Holman (2008). Hertzsprung-Russell diagrams can be represented as luminosity versus effective temperature. We instead opted for using colours instead of temperatures (Beatty et al. 2014), because magnitudes are closer to direct observables.

The paper is organised in the following way: we first outline our procedure to measure photometric distances (Sec. 1) and then describe how the host stars' apparent magnitudes were determind from the Spitzer photometry (Sec. 2). In the following section, different colour-magnitude diagrams are drawn and described in qualitative and quantitative ways. We then discuss our results and conclude.

1 THE DETERMINATION OF PHOTOMETRIC DISTANCES

Our distances are derived from catalogued parameters: we obtained effective temperatures ($T_{\text {eff }}$), surface gravities ($\log \mathrm{g}$) and metallicities ($[\mathrm{Fe} / \mathrm{H}]$) from TEPCAT ${ }^{1}$ (Southworth 2011) and used those to compute stellar radii $\left(R_{\star}\right)$ thanks to a relation provided in Torres, Andersen \& Giménez (2010) (Ch. 8). R_{\star} and $T_{\text {eff }}$ directly lead to stellar luminosities $\left(L_{\star}\right)$ that were in turn converted into bolometric magnitudes (M_{bol}) using the following relation (Cox 2000):
$M_{\text {bol }}=4.75-2.5 \log L_{\star}$
Absolute visual magnitudes $\left(M_{\mathrm{V}}\right)$ were estimated thanks to bolometric corrections estimated by Flower (1996); values are provided in Table B2.

We explored the Tycho2 catalogue (Høg et al. 2000) to compile a list of apparent visual magnitude m_{v}. Failing to find a number of systems we turned to APASS/UCAC4 (Zacharias et al. 2013) and then to TASS (Droege et al. 2006). Distances were obtained from the distance modulus $\left(m_{\mathrm{V}}-M_{\mathrm{V}}\right)$. Errors are propagated throughout.

No reddening corrections, $E(B-V)$ were applied since they are not available for most of our sample. We expect most $E(B-V)<0.1$, leading to offsets $A_{\mathrm{V}}<0.33$ on ($m_{\mathrm{V}}-M_{\mathrm{V}}$) (Maxted, Koen \& Smalley 2011).

The distances we calculated are given in Table B2 and are visually represented in Figure 1. Those plots show our results compared to corresponding distances from the revised Hipparcos catalog (van Leeuwen 2007). We also compare our estimates to photometric distances from Torres, Winn \& Holman (2008), which provides a wider range and greater

[^1]

Figure 2. Apparent magnitude measurements comparing those obtained by WISE to those that we estimated, from the Spitzer images. CoRoT-2A is clearly discrepant in both, because it is blended with CoRoT-2B the WISE data. Reduced χ_{r}^{2} are given. a) on a band centred around $3.6 \mu \mathrm{~m} . \mathrm{b}$) on a band centred around $4.5 \mu \mathrm{~m}$. The discrepant point at ~ 10.3 is the CoRoT- 2 system. Objects $>6^{\text {th }}$ magnitude appear brighter in the WISE 2 band, which may be due to some detector effects. Discrepant points removed, $\chi_{r}^{2}<1$.
overlap of systems than Hipparcos. Our two most discrepant distance measurements are on GJ 436 and GJ 1214. This is most probably caused by the late type of both stars, who, with masses $<0.6 \mathrm{M}_{\odot}$, fall outside the range over which the Torres relation has been calibrated for. We thus adopt the most recent distance estimates, from van Leeuwen (2007) and from Anglada-Escudé et al. (2013) respectively. Removing those two objects, the reduced χ_{r}^{2} for Fig. 1b changes from 2.7 ± 0.8 to 0.6 ± 0.4. All comparisons lead to reduced $\chi_{\mathrm{r}}^{2} \sim 1$. Reddening is thus contained within our error bars.

2 THE DETERMINATION OF SPITZER APPARENT MAGNITUDES

The WISE satellite (Cutri \& et al. 2012) has two bandpasses, W1 and W2, that resemble two of Spitzer's IRAC channels. Kirkpatrick et al. (2011) showed the colour agreement between both spacecrafts, on field brown dwarfs. Needing to use the IRAC $3 \& 4$, for which there is no WISE equivalent, we derived photometry from all Spitzer channels and compared the [3.6] and [4.5] to W1 and W2, to validate our measurements in the redder channels.

We searched the Spitzer Heritage Archive ${ }^{2}$ for all frames obtained on the targets with reported occultations in the published literature (Table B4). Apparent magnitudes were obtained for each set of observations. Our methods for extracting the photometry are located in appendix A, and here summarised. We perform aperture photometry on the IRAC images calibrated by the standard Spitzer pipeline according to the EXOPHOT pyraf pipeline following Lanotte et al. (in prep). Stellar flux is corrected for contribution from visual companions, if relevant. We average those flux and convert

[^2]them into Vega apparent magnitudes following the methods described by Reach et al. (2005). When several observations were made of the same stars, we computed the optimal average of their apparent magnitude in each of Spitzer's Astronomical Observation Request (AOR) to produce the values located in table B2.

Our estimates are graphically compared in Fig. 2 to corresponding bands employed by the WISE satellite. Reduced χ_{r}^{2} are calculated. They indicate very good agreement between both set of values. Despite good agreement some objects are clearly discrepant. For example CoRoT-2A, that is $\sim 0.3 \mathrm{mag}$ fainter in our estimation. We suspect this is because WISE could not distinguish CoRoT-2A from its visual companion, as we have done when deconvoluting. In the 4.5 $\mu \mathrm{m}$ band, objects brighter than the $6^{\text {th }}$ magnitude are also discrepant. Those removed, χ_{r}^{2} drops from 1.7 to 0.4 . All our bright targets remained well within IRAC 2's region of linearity. The discrepancy likely emanates from WISE. Our values can therefore be considered as being more accurate. The low χ_{r}^{2} we obtain reveals we probably overestimate our error bars. We assume the same of the IRAC $3 \& 4$ channels and use our apparent magnitudes to compute the planets'.

3 COLOUR-MAGNITUDE DIAGRAMS

Planet to star flux ratios, measured at occultation in the J, H and K band as well as observed by Spitzer's IRAC 1, 2, 3 and 4 bands were obtained from the literature and transformed into a change in magnitude. Using stellar apparent magnitudes (Table B2), planetary fluxes were thus transformed into apparent magnitudes (Table B4). Although only a technicality, this step is interesting in immediately providing an estimate of whether a certain instrument, or mirror-size is sufficient to detect a given planet. This way we realise that

55 Cnc e, a rocky planet, is a $14^{\text {th }}$ magnitude at $4.5 \mu \mathrm{~m}$, meaning it can be detectable with a medium-size telescope, which it was (Demory et al. 2012). This is also a practical way to compare transiting planets with directly-detected planets. Using our computed distance moduli (Table B2) we obtain absolute magnitudes for stars and planets, that are listed, respectively in Tables B3 \& B5.

The planets' absolute magnitudes are represented by circular, blue symbols arranged as colour-magnitude diagrams in Figs. 3 \& 4. We will now describe how planets are spread with respect to each other but also to ultra-cool dwarfs. Very low-mass stars and brown dwarfs are represented in the background of the same diagrams as diamonds whose colours move from orange to black as a function of their assigned spectral type (ranging from M5 to Y1).

3.1 Comparing with ultra-cool dwarfs

Information comes from comparing a new sample to one already well studied or to a model. Since models for irradiated planets have yet to be computed for colour space, very lowmass stars and field brown dwarfs, who have similar effective temperatures and sizes come as a readily available comparison sample. We can now see if planets follow or depart from the known location of those objects. Our comparison sample was borrowed from Dupuy \& Liu (2012) who recently compiled a vast list of ultra-cool dwarf magnitudes and parallaxes. Later in the paper, a comparison will be made to the expected location of blackbodies (Sec. 4) and to the position of directly detected planets (Fig. 5).

Ultra-cool dwarfs comprise very late M dwarfs and brown dwarfs. They span the M, L, T and Y spectral classes. The distinction between the M, L and T spectral classes is described by Kirkpatrick (2005), while the Y class is defined in Cushing et al. (2011). Covering effective temperatures ranging from roughly 2500 to 1300 K , the L-dwarf sequence is identified by the disappearance of TiO and VO absorption as those species and others condensate into dust clouds that are thickening with decreasing temperatures, causing an accrued reddening. A rapid blueward change in nearinfrared colours for objects with similar effective temperature outlines the transition between spectral classes L7 to T4 (Fig. 3). This colour variation is interpreted as the disappearance of suspended dust from the photosphere. The process through which these condensates of atomic and molecular species vanish is the scene of very active research. Tsuji (2002), Marley et al. (2002) and Knapp et al. (2004) proposed that as the atmosphere cools it reaches a temperature at which dust sedimentation efficiency increases dramatically producing a drain of the cloud decks via a "sudden downpour". Ackerman \& Marley (2001) and Burgasser et al. (2002) instead proposed that, very much like what can be observed on Jupiter where clouds are discretised in separate bands, brown dwarfs' silicate clouds could fragment and progressively reveal the deeper, hotter regions of the atmosphere. This scenario produces clear signatures, such as photometric variability caused by inhomogenous structures rotating in and out of view. Those are being detected on an increasing number of brown dwarfs (Artigau et al. 2009; Radigan et al. 2012; Heinze et al. 2013; Radigan et al. 2014), with some contention which spectral types are more likely to vary and about what causes variability (Wilson, Ra-
jan \& Patience 2014). One could also expect near stochastic modulations like has been noticed on Luhman-16B by Gillon et al. (2013). Further observations confirmed the presence of patchy clouds on Luhman-16B (Crossfield et al. 2014). From spectral type T5 and beyond, atmospheres are thought to be clear and continue to cool down. T dwarfs have effective temperatures between 1500 and $\sim 600 \mathrm{~K}$. The transition to the Y-class is defined by the appearance of ammonia and the disappearance of alkali lines produced by the condensation of sodium and potassium.

Interestingly, transiting planets, most often hot Jupiters, have dayside magnitudes, brightness temperatures and colours that overlap with the entire ultra-cool dwarf range. For instance, WASP-12Ab, the intrinsically brightest planet in the current sample, is as hot as an M6 dwarf. Its inferred size is as large as a $0.16 M_{\odot}$ star (Baraffe et al. 1998). This would allow in principle to draw parallels between planets and ultra-cool dwarfs, especially so , since mass regimes of field brown dwarfs and extrasolar planets are overlapping (Latham et al. 1989; Chauvin et al. 2004; Caballero et al. 2007; Deleuil et al. 2008; Marois et al. 2008; Hellier et al. 2009; Sahlmann et al. 2011; Siverd et al. 2012; Díaz et al. 2013; Delorme et al. 2013; Naud et al. 2014).

3.2 Near-infrared

The J, H and K_{S} bands colour-magnitude diagrams contain a large number of field brown dwarfs (see Dupuy \& Liu (2012) and references therein) but very few planets. Each of Figure 3's panels contain WASP-12Ab, the only planet with firm detections of its emission in each of those nearinfrared bands $\left(\mathrm{M}_{\mathrm{J}}=9.42, \mathrm{M}_{\mathrm{H}}=8.83, \mathrm{M}_{\mathrm{K}_{\mathrm{s}}}=8.16\right)$. A few more measurements were obtained on individual systems, but often in only one band (depicted as dotted lines). WASP-12Ab's location seems to agree well with the top of the ultra-cool dwarf distribution especially in the $\mathrm{J}-\mathrm{H}$ colour. The two colours involving the K_{S}-band would imply that the object is redder than most late M-dwarfs. However, a recent work by Rogers et al. (2013) showed that eclipse depth measurements, notably in the K_{S} bandpass are likely to be biased towards deeper values. This in turns would make authors infer brighter planets, leading to a smaller magnitude and a redder colour index. Bean et al. (2013) observed WASP-19b at low spectral resolution and consistently found shallower occultation depths than broad band measurements would imply.

It remains unclear whether irradiated planetary atmosphere should follow the same general behaviour that very low-mass stars and field brown dwarfs have, whether they would constitute their own sequence or agree with a blackbody (see Sec. 4 for a discussion on the matter). If indeed, irradiated planets and ultra-cool dwarfs were to coincide, then positioning a new measurement in a colour-magnitude diagram will become an efficient method to verify anyone's results. For instance, it can immediately be noticed how most K_{S} bands results imply redder colours than would otherwise be anticipated.

By extension, obtaining a detection in one band would offer straight-forward predictions for the other two bands. As an example, WASP-19b has an absolute magnitude in the H -band, $M_{\mathrm{H}}=9.80 \pm 0.21$ (Tab. B5). Reading on the M_{H} vs $\mathrm{J}-\mathrm{H}$ plot, we notice its magnitude intersects

Figure 3. Near-infrared colour-magnitude diagrams, using the 2 MASS photometric system (i.e., the J, H and K_{S} bands). The blue dots show the dayside emission of transiting planets observed during occultation. Squares and arrows represent upper limits. Lines labelled with the name of a planet show the position of systems where colour or absolute magnitude is missing (not all cases are represented, for clarity). The coloured diamonds underlying the plots are brown dwarfs and directly imaged planets, whose magnitudes are listed in Dupuy \& Liu (2012). Colours represent the spectral class of the object, spanning from M5 (orange) to Y1 (black). Unclassified objects are in grey.
with the M \& L-dwarf sequence at $\mathrm{J}-\mathrm{H}=0.6 \pm 0.1$. This leads to $M_{\mathrm{J}}=10.40 \pm 0.23$, that we can convert into an apparent magnitude. WASP-19b can be predicted to have $m_{\mathrm{J}}=17.60 \pm 0.21$, on a par with WASP-12Ab's measurement (Tab. B4).

3.3 Mid-infrared

In the mid-infrared, all the bands that were considered are the Spitzer's IRAC channels. Both ultra-cool dwarfs and exoplanets have been observed extensively, especially so in the IRAC $1 \& 2$ centred at 3.6 and $4.5 \mu \mathrm{~m}$. Compared to the seven systems presented in Triaud (2014), the first diagrams in the top two rows in Fig. 4 show a marked increase in the number of objects.

3.3.1 [3.6]-[4.5]

The M \& L-dwarf sequence is colour-less in those bands. Objects get fainter for decreasing temperatures. As brown dwarfs transition towards the T sequence, a sharp turn occurs, caused by the widening and deepening methane absorption band at $3.3 \mu \mathrm{~m}$, revealed by the recession of dust clouds in brown dwarfs' atmospheres (e.g. Patten et al. 2006, and references therein). This leads to increasingly redder colours with increasing magnitudes. The clarity of this pattern is handy to compare planets and brown dwarfs together. So far no planet that has had its emission detected clearly falls within the T-range. Good contenders can be found in HAT-P-12b (Hartman et al. 2009) whose upper limit places it beyond the methane kink and in WASP-80b that has a reported effective temperature around 800 K (Triaud et al. 2013a; Mancini et al. 2014). All currently measured hot Jupiters can therefore be compared to the M \& L sequence (GJ 436b, a Neptune, is kept aside for now).

Despite significant scatter, one can notice that objects are not located completely at random. No object redder than $[3.6]-[4.5]=1$ for example exists. All planets but two have colours compatible or redder than brown dwarfs. This gets clearer for absolute magnitudes in the redder channels. Only GJ 436b ([3.6]-[4.5] <0.6) and WASP-8Ab ([3.6]-[4.5] = 0.6) are significantly bluer, two eccentric planets (a third eccentric planet, HAT-P-2b $([3.6]-[4.5]=0)$, is compatible with the colourless L-sequence).

The scatter in colour increases for increasing magnitudes: objects brighter than the median magnitude (GJ 436b removed) consistently have an RMS in colour lower than objects fainter than the median magnitude. This is not because intrinsically fainter planets produce weaker (and harder to measure) occultations. Some of the most significant detections (for instance HD 189733Ab ($\mathrm{M}_{[3.6]}=11.1$, [3.6]-[4.5] $=0.1)$, $\left.\operatorname{HD} 209458 \mathrm{~b}\left(\mathrm{M}_{[3.6]}=10.4,[3.6]-[4.5]=0.8\right)\right)$ are amongst the fainter planets. The graphs shuffled borderline and significant measurements by using absolute magnitudes. A clear detection arises because the host star and the planet are bright in apparent magnitudes, for instance thanks to their proximity to the Solar system.

The known hot Jupiters' diversity in radius (0.8 to 2 $R_{\text {jup }}$), which does not exist for field brown dwarfs, cannot be held responsible for the scatter either. A change in radius translates with a decrease in absolute magnitude, but
no change in colour as shown in Fig. 6 when we compare with blackbodies, the current effects are much larger. This forces us to turn to other processes such as an increased diversity (in atmospheric structure or in absorbents) at colder temperatures, or to some intrinsic variability (with an amplitude $\sim 1.5 \mathrm{mag}$). If such is the case, repeated measurements should be attempted.

3.3.2 [4.5]-[5.8]

Brown dwarfs face a similar pattern than in the previous subsection, but orientated in the opposite direction. It also marks the transition between the L and T spectral classes. With decreasing temperatures, CO (that has absorption in the IRAC 2 bandpass) reacts with H_{2} to produce CH_{4}, it also produces $\mathrm{H}_{2} \mathrm{O}$ that has several important absorption features around $5.8 \mu \mathrm{~m}$. This makes the atmosphere become increasingly bluer with decreasing effective temperature.

The hot Jupiters, again, are all located in the absolute magnitude range of the M \& L-sequence. Apart from GJ 436b, all are marginally bluer than their ultra-cool dwarf counterparts. Would we consider each planet individually, we would conclude that each is consistent with the M \& Lsequence when in fact the general population clearly is not. It is systematically biased towards the blue: They have a mean colour inferior to 0 when all brown dwarfs are above 0 in the same absolute magnitude range. Water absorption has been noticed in several transmitted spectra (e.g. Deming et al. 2013), which would indicate that planets may depart from ultra-cool dwarfs' atmospheres in that water absorption appears at higher temperatures.

Alternatively planetary atmospheres and ultra-cool dwarfs could be reconciled if ultra-cool dwarfs contain an absorbant around $4.5 \mu \mathrm{~m}$ that planets do not possess. If present, it would increase the planets' absolute magnitudes in the IRAC 2 channel at $4.5 \mu \mathrm{~m}$, moving each point closer to 0 .

3.3 .3 [3.6]-[5.8] छ3 [5.8]-[8.0]

Those two colours show a redward trend with decreasing luminosity. At [3.6]-[5.8] and at [5.8]-[8.0] planets and ultracool dwarf overlap very well: as many objects are found on either side of the brown dwarf sequence showing statistical agreement. Planets may be slightly offset towards redder colours, in [5.8]-[8.0] but only marginally so at the moment.

This agreement between planets and ultra-cool dwarfs could in principle act as a sort of calibration, validating that measurements in those bands are well estimated (in value and error bar). However, we have to remember here that hot Jupiters are significantly larger than the typical brown dwarf ($\sim 1.3-1.6 \mathrm{R}_{\text {jup }}$ vs $0.8-0.9 \mathrm{R}_{\mathrm{jup}}$). Reducing the planets size to the brown dwarf level should normally lead the planets to be dimmer by 0.8 to 1.5 magnitudes (see Fig. 6 and Sec. 4). At first sights, both classes of objects should not be compatible. The fact that both groups have similar absolute magnitudes, indicates that hot Jupiters have lower surface emissivity than ultra-cool dwarfs.

Figure 4. Mid-infrared colour-magnitude diagrams, using Spitzer's IRAC photometric system. The blue dots show the dayside emission of transiting planets observed during occultation. Squares and arrows represent upper limits. Lines labelled with the name of a planet show the position of systems where colour or absolute magnitude is missing (not all cases are represented, for clarity). The coloured diamonds underlying the plots are ultra-cool dwarfs and directly imaged planets, whose magnitudes are listed in Dupuy \& Liu (2012). Colours represent the spectral class of the object, spanning from M5 (orange) to Y1 (black). The only unclassified object here, in grey, is WD 0806-661B (Luhman et al. 2012).

Figure 5. Same diagrams as the top line in Fig. 3 but showcasing the behaviour of blackbodies at 10 pc, whose effective temperature is changed while keeping its size constant. The plain grey line is for a $0.9 \mathrm{R}_{\mathrm{Jup}}$ object, similar to the radius of a brown dwarf, and the plain black line represents a $1.8 \mathrm{R}_{\mathrm{Jup}}$, the size of WASP-12Ab. The white-filled dots $\left(0.9 \mathrm{R}_{\mathrm{Jup}}\right)$ and diamonds ($1.8 \mathrm{R}_{\mathrm{Jup}}$) along the blackbodies indicate the location of a 4000,3000 and 2000 K object. For reference, the blue, empty diamonds highlight the position of young, directly detected exoplanets whose data is located in Table B1.

3.3.4 Summary from mid-IR colours

If a reason is found to explain the apparent agreement at [3.6]-[5.8] \& [5.8]-[8.0] then we could conclude that the 4.5 $\mu \mathrm{m}$ band measurements are at the source of the observed divergence between irradiated gas giants and brown dwarfs in the [3.6]-[4.5] \& [4.5]-[5.8] colours. Introducing some additional absorber within the planets' spectrum, around $4.5 \mu \mathrm{~m}$, would move planets closer to 0 in both diagrams while keeping the [3.6]-[5.8] \& [5.8]-[8.0] untouched. The fact that the intrinsically fainter planets display a greater divergence from the ultra-cool dwarfs in colours based on the $4.5 \mu \mathrm{~m}$ band, may imply that they have an increased atmospheric diversity, some of them with, and some without that absorbant. We prefer this interpretation over intrinsic variability whose otherwise required amplitude would seem too large to explain the data. The discrepant [4.5] band has been noticed by a number of authors, with Knutson et al. (2009) proposing that a temperature-inversion in the temperaturepressure profile is responsible (Fortney et al. 2008). However this interpretation has been disputed by Madhusudhan et al. (2011), who argue that disparities in relative abundances, notably the carbon to oxygen ratio, can reproduce the observations equally well.

A number of other measurements exists, notably observed in narrow bands (Gillon et al. 2009; Smith et al. 2011; Crossfield et al. 2012; Gillon et al. 2012; Lendl et al. 2013; Anderson et al. 2013), in the z^{\prime} band (López-Morales et al. 2010; Lendl et al. 2013; Abe et al. 2013) or observed by folding the CoRoT and Kepler lightcurves (e.g. Snellen, de Mooij \& Albrecht (2009); Alonso et al. (2009); Morris, Mandell \& Deming (2013); Demory et al. (2013); Sanchis-Ojeda et al. (2013)). Because of a lack of measured brown dwarfs to compare them to and often, because of a lack of apparent magnitudes in those particular bands, it seemed futile to do this exercise at this time. It will however become something worth investigating.

4 COMPARISON WITH BLACKBODIES

Hot Jupiter emission measurements are often compared to complex models and to blackbodies, with frequent claims that planet spectra are compatible with the shape expected of a blackbody. WASP-12Ab is one of the most noticeable examples (Crossfield et al. 2012). Hansen, Schwartz \& Cowan (2014) surveyed the literature for objects whose emission has been detected in several datasets at the same wavelength and, taking the variation in results as a systematic error bar, found that planets have featureless spectra resembling blackbodies.

To answer this claim, and also because we should not expect irradiated planets and ultra-cool dwarfs to be exactly the same, plotting the location of blackbodies within a colour-magnitude diagram seemed warranted. The blackbody loci can provide context by revealing how brown dwarfs depart from a blackbody and how irradiated gas giants compare to these departures. Figs. 5 and 6 have a 0.9 R $_{\text {Jup }}$ and a $1.8 \mathrm{R}_{\mathrm{Jup}}$ sized black-body plotted for all temperatures between 4000 and 400 K . Those sizes where chosen as they represent the maximum size brown dwarfs are expected to have (with an age >1 Gyr; Baraffe et al. 2003), and the approximate size of WASP-12Ab, one of the largest known exoplanet.

If planets were blackbodies their measurements should be comprised strictly between the 0.9 and $1.8 \mathrm{R}_{\text {Jup }}$ blackbodies. They cannot be above and cannot be below that strip (except for HD 149026b and GJ 436b). In the nearinfrared (the only transiting planet in Fig. 5) and midinfrared, WASP-12Ab is lying near or on top of the expected blackbody line, in absolute magnitude and colour. Its location is also slightly above the 3000 K mark, which is compatible with its estimated equilibrium temperature of $2990 \pm 110 \mathrm{~K}$ as provided by Crossfield et al. (2012).

Whether WASP-12Ab follows the behaviour of a late M dwarf better than a blackbody is irrelevant in this case: in all colours, the M \& L sequence intersects with the expected blackbody line at WASP-12Ab's location in the

Figure 6. Same diagrams as the top line in Fig. 4 but showcasing the behaviour of blackbodies at 10 pc whose effective temperature is changed while keeping its size constant. In plain grey, is drawn a $0.9 \mathrm{R}_{\mathrm{Jup}}$ object, similar to the radius of a brown dwarf, and in plain black a $1.8 \mathrm{R}_{\mathrm{Jup}}$, the size of WASP-12Ab. The two bottom panels have an added dotted grey line, which is a blackbody the size of GJ $436 \mathrm{~b}\left(0.38 \mathrm{R}_{\mathrm{Jup}}\right)$. The marks along the blackbodies indicate the expected location of a $4000,3000,2000$ and 1000 K object.
colour-magnitude diagram ${ }^{3}$. The planet is where it ought to be. Having only few examples to work with, we added to Fig. 5 the directly imaged planets (Table B1). Apart from the recently announced GU Psc b (Naud et al. 2014), those young planets show good agreement with their M \& L-dwarf counter parts, but continue redder and fainter instead of turning into the blueward L-T transition, not unlike grey atmospheres. Irradiated planets could follow blackbodies, the ultra-cool dwarf's sequence, the path of the young directly imaged planets, or their own sequence. To differentiate between these four solutions, measurements of cooler transiting planets are required in near-infrared bands. HAT-P-12b and WASP-80b are good contenders.

In the mid-infrared, the picture is more complex. In the

3 reflected light likely plays no part in placing WASP-12Ab at this special location. It is expected to be about three orders of magnitude fainter than thermal emission (Seager \& Deming 2010)
$\mathrm{M}_{[3.6]}$ vs [3.6]-[4.5] diagram, there are seven planets redder or brighter than the $1.8 \mathrm{R}_{\text {Jup }}$ blackbody. Thirteen systems are bluer or fainter than the $0.9 \mathrm{R}_{\text {Jup }}$ blackbody. Due to the dispersion (increasing with increasing magnitude), neither the brown dwarfs, nor the blackbodies would seem to better explain all the measurements. We note that only two systems are more than 1σ above the $1.8 \mathrm{R}_{\text {Jup }}$ blackbody (HD 209458b and XO-4b), and one (WASP-8Ab) is away from the brown dwarfs. All other gas giants lie in agreement with a triangular confinement bordered by the blackbody on one side and the ultra-cool dwarf atmospheres on the other two. Targeting planets at the cool junction between the T-dwarfs and the blackbody expectations will show if planets follow the T-sequence, a blackbody, or their own sequence (for example when reflected starlight starts producing a strong effect). This means studying gas giants cooler than 1000 K (whose size would presumably be closer to 0.9 than $1.8 \mathrm{R}_{\mathrm{Jup}}$).

The $\mathrm{M}_{[3.6]}$ vs [4.5]-[5.8] diagram shows that the Lsequence is slightly brighter than a $0.9 \mathrm{R}_{\text {Jup }}$ blackbody would predict, but generally follows the same slope. Brown dwarfs clearly depart when they transition to the T spectral class. In section 3.3.2 we noted the blueward bias of hot Jupiters. This is strengthened when compared to a blackbody. Planets clearly depart. If each measurement is only 1 to 2σ away, what we lack in precision we gain in the number of systems measured. Hot Jupiters are not featureless. Again here, the departure between the brown dwarfs and the blackbody happens below 1000 K .

Gas-giants and ultra-cool dwarfs agree well in $\mathrm{M}_{[3.6]}$ vs [3.6]-[5.8]. However planets do not match the expectations of a blackbody: All but four planets are found bluer or fainter than the $0.9 \mathrm{R}_{\text {Jup }}$ blackbody line. The fact that planets follow the same slope as a blackbody suggests a behaviour similar to a grey atmosphere, implying that opacities in these bands are grey. Hot-Jupiters are not blackbodies and here behave more like dwarfs do. The final diagram, plotting $\mathrm{M}_{[3.6]}$ vs [5.8]-[8.0] shows good agreement: brown dwarfs appear to follow the expected blackbody (being slightly below, maybe evidence they are slightly smaller than $0.9 \mathrm{R}_{\text {Jup }}$), so do hot Jupiters but with a large scatter. This would indicate that the opacity is grey in these bands and approach Planck's law.

The location of a blackbody with the size of GJ 436b ($0.38 \mathrm{R}_{\text {Jup }}$) was added and goes right through its measurement at [5.8]-[8.0]. A change in radius is only a translation in absolute magnitude. GJ 436b sits right at the 1000 K marks, which would imply a similar temperature, much higher than its estimated equilibrium temperature of ~ 700 K (Deming et al. 2007). If this is not the indication of excess energy produced by its on-going tidal circularisation (Maness et al. 2007; Beust et al. 2012), this should be seen as a reminder that effective temperature is different from equilibrium temperature and that touching the blackbody sequence, does not mean a measurement agrees with it, as temperature too needs to be accounted for. Shape is not all.

5 DISCUSSION \& CONCLUSION

We computed photometric distances that allowed us to obtain the absolute magnitude of occulting planets. They were used to compile colour-magnitude diagrams. Planets on their own would not offer much information. This is why we compared their location in these diagrams, to the location of very low-mass stars and field brown dwarfs, and to the behaviour expected of pure blackbodies. By defining a blackbody sequence with a lower size of $0.9 \mathrm{R}_{\text {Jup }}$ and an upper one of $1.8 \mathrm{R}_{\text {Jup }}$, we describe a locus in the form of a strip where all hot Jupiters should congregate would they follow Planck's law.

In the near-infrared, three clear conclusions can be drawn:

- Planets are brighter in K_{S} band measurements, and in average redder than the $\mathrm{M} \& \mathrm{~L}$ brown dwarf sequence (this probably has an instrumental origin).
- WASP-12Ab is as much compatible with a blackbody as with the $\mathrm{M} \& \mathrm{~L}$ sequences, because that is the location where both intersect.
- A clear distinction between irradiated gas giants following a brown dwarf behaviour, the young directly-imaged planets, or a blackbody will emerge for equilibrium temperatures cooler than $\sim 2000 \mathrm{~K}$.

In the mid-infrared we obtained the following general trends:

- Gas giants are only in agreement with the blackbody locus in the [5.8]-[8.0] colour. Deviations, made significant by the number of objects considered, in the other colours imply that planet are not pure blackbodies, although individual objects may appear to be.
- Gas giants are bluer in the [4.5]-[5.8] colour than a blackbody or the M \& L brown dwarf sequence. This shows that hot Jupiters are not featureless.
- Combining this with an increased scatter as magnitudes increase in the [3.6]-[4.5], provides support that some gas giants are missing an absorbant at $4.5 \mu \mathrm{~m}$.
- This affects only certain planets making us conclude that atmospheric diversity increases with decreasing absolute magnitude, presumably, with decreasing equilibrium temperature.
- Clearly associating planets to the brown dwarf locus or to the blackbody strip can be made by obtaining the emission (dayside or nightside) of gas giants with effective temperatures below 1000 K at [3.6] and [4.5].

It is worth noting at this point that the observed increase in atmospheric diversity is found under the upper limits placed by Demory et al. (2013) on Kepler-7b. This planet's detected occultation and phase curve in the Kepler bandpass have been interpreted as reflected light from an inhomogeneous, high albedo, cloud layer, mostly located on the dayside. From studying HD 189733Ab's phase curve inside a colour-magnitude diagram, Triaud (2014) made a similar inference: the presence of clouds can hide the effect of some absorbing species, or can locally change the atmospheric chemistry. We can therefore wonder whether the existence of clouds can be linked to the presence or absence of an absorbing feature in Spitzer's $4.5 \mu \mathrm{~m}$ channel that leads to the scatter present in the [3.6]-[4.5] and [4.5]-[5.8] colours.

If brown dwarf atmospheres and irradiated exoplanets are set to coincide, then it is perhaps not surprising that since most exoplanets fall in the range occupied by the M \& L types, they too would have an opaque cloud layer at least on the dayside. Clouds are likely to leak over the terminator covering transmitted features. This provides context to the frequently announced featureless transmission spectra on several exoplanets (e.g. Bean, Miller-Ricci Kempton \& Homeier 2010; Berta et al. 2012; Sing et al. 2013; Jordán et al. 2013). GJ 436b is found on the continuation of the M \& L sequences, and too shows a featureless transmission spectrum (Knutson et al. 2014). The scatter in colour of the emitted spectra for the colder of the transiting gas giants can give hope that some will possess an inhomogeneous cloud cover, revealing the deeper parts of their atmospheres through cloud holes. Using colour-magnitude diagrams would become a useful tool to select the right exoplanet sample before attempting an observing campaign aimed at producing transmission spectra.

Burrows \& Ostriker (2014) point out, in their sup-
plementary materials, that for an equivalent emerging flux, the spectra of an irradiated and of an isolated planet are dissimilar, notably by possessing widely different temperature-pressure profiles. The widening range in colour could also originate from distinctions in the impacting irradiative stellar flux, or on how this energy affects different atmospheres. An irradiated planet, for instance emits more strongly at $4.5 \mu \mathrm{~m}$ than its isolated equivalent.

An obvious extension of this work would be to explore other colours, notably in some narrow bands where successful occultations measurements have been obtained by a number of investigators. Ultra-cool dwarf magnitudes can be obtained from the many spectra that have been acquired of these objects and integrating over the correct bandpasses. It would be interesting to know whether those fall into regions sensitive to additional species, which could greatly help our understanding of exoplanetary atmospheres. For instance, Demory et al. (2013) have shown how bright Kepler-7 is in Kepler's optical bandpass, Kmag, compared to its midinfrared magnitude. It is therefore likely that a Kmag-[3.6] or a Kmag-[4.5] would be a tracer of cloudy structures on the dayside of exoplanets. We cannot but encourage authors to report apparent magnitudes in the bands that they report occultations in.

From studying those diagrams we can make judgements about the most interesting planets to obtain emission measurements on. Some objects are particular in deviating from the global trends we outlined above, with the clearest example found with GJ 436b. Its small size is not sufficient to explain its discrepancy. The absence of a detection in the 4.5 $\mu \mathrm{m}$ band signifies it is the bluest object in the current sample in the [3.6]-[4.5] colour, and the reddest in [4.5]-[5.8]. While being broadly consistent with the shape of a blackbody, its inferred effective temperature ($\sim 1000 \mathrm{~K}$) appears unreasonably high. The study of the other smaller planets, GJ 1214 b (Charbonneau et al. 2009), GJ 3470 b (Bonfils et al. 2012) and HD 97658b (Dragomir et al. 2013) can show if they manifest an atmospheric behaviour similar to GJ 436b's.

Arguably there are now enough measurements over the M \& L sequences; it is scientifically interesting to reserve our ressources to extend beyond that range. Going further up along the M sequence would need hot Jupiters orbiting A stars (like WASP-33 (Collier Cameron et al. 2010; Deming et al. 2012)) that are hard to come about and hard to analyse: many A stars are within the instability strip and display oscillations (WASP-33 is a δ Scuti). Exploring further down, closer to the T regime, especially for equilibrium temperatures below 1000 K can be achieved by targeting longer period planets (WASP-8Ab for example is close to the L-T transition (Queloz et al. 2010; Cubillos et al. 2013)). The main issue in observing colder planets are the weak signals that can be expected from them. This can be mitigated by selecting host stars of late spectral classes such as WASP-80 (Triaud et al. 2013a).

So far very few transiting (or occulting) brown dwarfs have been detected (Deleuil et al. 2008; Anderson et al. 2011a; Bouchy et al. 2011; Siverd et al. 2012; Díaz et al. 2013). Orbiting hot, and large stars their occultation can be hard to obtain, but are doable (Beatty et al. 2014). However, those brown dwarfs are mostly found on short orbits, like hot Jupiters. They have inferred temperatures similar to M or

L objects but differ from usual brown dwarfs in that they are inflated. Because of their size, they fall on isochrones younger than the inferred age of the star they orbit (Triaud et al. 2013b). Proximity acts like a rejuvenation. Obtaining several brightness measurements over the M, L and T range, preferably on long period objects would in principle procure a radius calibration for field brown dwarfs.

ACKNOWLEDGMENTS

The authors would like to thank Franck Selsis, Mercedes López-Morales, Jacqueline Radigan, Mickael Bonnefoy, Josh Winn, Kevin Schlaufman and Jay Pasachoff for inspiring reflections, for explanations - for reminders - and for providing comments and reactions to the text. We would like to also thank and acknowledge the influence of our referee, Hans Deeg, whose suggestions improved the paper and helped clarify it.
A. H. M. J. Triaud is a Swiss National Science Foundation fellow under grant number P300P2-147773.

This publication makes use of data products from the following projects, which were obtained through the Simbad and VizieR services hosted at the CDS-Strasbourg:

- The Two Micron All Sky Survey (2MASS), which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation.
- The Wide-field Infrared Survey Explorer (WISE), which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration.
- The Tycho2 catalog (Høg et al. 2000).
- The Amateur Sky Survey (TASS) (Droege et al. 2006).
- The Fourth U.S. Naval Observatory CCD Astrograph Catalogue (UCA4) (Zacharias et al. 2013).
- The AAVSO Photometric All-Sky Survey (APASS), funded by the Robert Martin Ayers Sciences Fund.

We gathered the Spitzer Space Telescope data from the Spitzer Heritage Archive. References to exoplanetary systems were obtained by an extensive use of the paper repositories, ADS and arXiv, but also through frequent visits to the exoplanet.eu (Schneider et al. 2011) and exoplanets.org (Wright et al. 2011) websites.

REFERENCES

Abe L. et al., 2013, A\&A, 553, A49
Ackerman A. S., Marley M. S., 2001, ApJ, 556, 872
Alonso R. et al., 2008, A\&A, 482, L21
-, 2004, ApJL, 613, L153
Alonso R., Deeg H. J., Kabath P., Rabus M., 2010, AJ, 139, 1481
Alonso R., Guillot T., Mazeh T., Aigrain S., Alapini A., Barge P., Hatzes A., Pont F., 2009, A\&A, 501, L23
Anderson D. R. et al., 2011a, ApJL, 726, L19
-, 2008, MNRAS, 387, L4
-, 2010, ApJ, 709, 159
—, 2011b, MNRAS, 416, 2108
-, 2013, MNRAS, 430, 3422
Anglada-Escudé G., Rojas-Ayala B., Boss A. P., Weinberger A. J., Lloyd J. P., 2013, A\&A, 551, A48
Artigau É., Bouchard S., Doyon R., Lafrenière D., 2009, ApJ, 701, 1534
Bakos G. Á. et al., 2011, ApJ, 742, 116
-, 2007a, ApJ, 670, 826
-, 2007b, ApJ, 656, 552
Baraffe I., Chabrier G., Allard F., Hauschildt P. H., 1998, A\&A, 337, 403
Baraffe I., Chabrier G., Barman T. S., Allard F.,
Hauschildt P. H., 2003, A\&A, 402, 701
Barge P. et al., 2008, A\&A, 482, L17
Baskin N. J. et al., 2013, ApJ, 773, 124
Bean J. L., Désert J.-M., Seifahrt A., Madhusudhan N., Chilingarian I., Homeier D., Szentgyorgyi A., 2013, ApJ, 771, 108
Bean J. L., Miller-Ricci Kempton E., Homeier D., 2010, Nature, 468, 669
Beatty T. G. et al., 2014, ApJ, 783, 112
Beerer I. M. et al., 2011, ApJ, 727, 23
Berta Z. K. et al., 2012, ApJ, 747, 35
Beust H., Bonfils X., Montagnier G., Delfosse X., Forveille T., 2012, A\&A, 545, A88

Blecic J. et al., 2014, ApJ, 781, 116
—, 2013, ApJ, 779, 5
Bonfils X. et al., 2012, A\&A, 546, A27
Bonnefoy M. et al., 2013, A\&A, 555, A107
-, 2011, A\&A, 528, L15
Bouchy F. et al., 2011, A\&A, 525, A68
-, 2005, A\&A, 444, L15
Burgasser A. J., Marley M. S., Ackerman A. S., Saumon D., Lodders K., Dahn C. C., Harris H. C., Kirkpatrick J. D., 2002, ApJL, 571, L151

Burke C. J. et al., 2007, ApJ, 671, 2115
Burrows A. S., Ostriker J. P., 2014, Proceedings of the National Academy of Science, 111, 2409
Butler R. P., Vogt S. S., Marcy G. W., Fischer D. A.,
Wright J. T., Henry G. W., Laughlin G., Lissauer J. J., 2004, ApJ, 617, 580
Caballero J. A. et al., 2007, A\&A, 470, 903
Cáceres C. et al., 2011, A\&A, 530, A5
Carson J. et al., 2013, ApJL, 763, L32
Charbonneau D. et al., 2005, ApJ, 626, 523
—, 2009, Nature, 462, 891
Charbonneau D., Brown T. M., Latham D. W., Mayor M., 2000, ApJL, 529, L45
Chauvin G., Lagrange A.-M., Dumas C., Zuckerman B., Mouillet D., Song I., Beuzit J.-L., Lowrance P., 2004, A\&A, 425, L29
Christiansen J. L. et al., 2010, ApJ, 710, 97
Collier Cameron A. et al., 2007, MNRAS, 375, 951
-, 2010, MNRAS, 407, 507
Cox A. N., 2000, Allen's astrophysical quantities
Croll B., Albert L., Lafreniere D., Jayawardhana R., Fortney J. J., 2010a, ApJ, 717, 1084
Croll B., Jayawardhana R., Fortney J. J., Lafrenière D., Albert L., 2010b, ApJ, 718, 920
Crossfield I. J. M., Barman T., Hansen B. M. S., Tanaka I., Kodama T., 2012, ApJ, 760, 140

Crossfield I. J. M. et al., 2014, Nature, 505, 654

Cubillos P. et al., 2013, ApJ, 768, 42
Cushing M. C. et al., 2011, ApJ, 743, 50
Cutri R. M., et al., 2012, VizieR Online Data Catalog, 2311, 0
Cutri R. M. et al., 2003, VizieR Online Data Catalog, 2246, 0
Dawson R. I., Fabrycky D. C., 2010, ApJ, 722, 937
de Mooij E. J. W., Brogi M., de Kok R. J., Snellen I. A. G.,
Kenworthy M. A., Karjalainen R., 2013, A\&A, 550, A54
de Mooij E. J. W., de Kok R. J., Nefs S. V., Snellen I. A. G., 2011, A\&A, 528, A49
Deleuil M. et al., 2008, A\&A, 491, 889
Delorme P. et al., 2013, A\&A, 553, L5
Deming D. et al., 2012, ApJ, 754, 106
Deming D., Harrington J., Laughlin G., Seager S., Navarro S. B., Bowman W. C., Horning K., 2007, ApJL, 667, L199

Deming D. et al., 2011, ApJ, 726, 95
—, 2013, ApJ, 774, 95
Demory B.-O. et al., 2013, ApJL, 776, L25
-, 2011, A\&A, 533, A114
Demory B.-O., Gillon M., Seager S., Benneke B., Deming D., Jackson B., 2012, ApJL, 751, L28

Demory B.-O., Seager S., 2011, ApJS, 197, 12
Díaz R. F. et al., 2013, A\&A, 551, L9
Dragomir D. et al., 2013, ApJL, 772, L2
Droege T. F., Richmond M. W., Sallman M. P., Creager R. P., 2006, PASP, 118, 1666

Dupuy T. J., Liu M. C., 2012, ApJS, 201, 19
Enoch B. et al., 2011, AJ, 142, 86
Flower P. J., 1996, ApJ, 469, 355
Fortney J. J., Lodders K., Marley M. S., Freedman R. S., 2008, ApJ, 678, 1419
Fressin F., Knutson H. A., Charbonneau D., O'Donovan F. T., Burrows A., Deming D., Mandushev G., Spiegel D., 2010, ApJ, 711, 374

Gillon M. et al., 2014, A\&A, 563, A21
-, 2009, A\&A, 506, 359
-, 2010, A\&A, 511, A3
-, 2007, A\&A, 472, L13
Gillon M., Pont F., Moutou C., Bouchy F., Courbin F., Sohy S., Magain P., 2006, A\&A, 459, 249
Gillon M. et al., 2012, A\&A, 542, A4
Gillon M., Triaud A. H. M. J., Jehin E., Delrez L., Opitom C., Magain P., Lendl M., Queloz D., 2013, A\&A, 555, L5

Hansen C. J., Schwartz J. C., Cowan N. B., 2014, ArXiv e-prints
Hartman J. D. et al., 2009, ApJ, 706, 785
Hebb L. et al., 2009, ApJ, 693, 1920
-, 2010, ApJ, 708, 224
Heinze A. N. et al., 2013, ApJ, 767, 173
Hellier C. et al., 2009, Nature, 460, 1098
-, 2011, A\&A, 535, L7
Henry G. W., Marcy G. W., Butler R. P., Vogt S. S., 2000, ApJL, 529, L41
Hertzsprung E., 1911, Publikationen des Astrophysikalischen Observatoriums zu Potsdam, 63
Høg E. et al., 2000, A\&A, 355, L27
Johns-Krull C. M. et al., 2008, ApJ, 677, 657
Jordán A. et al., 2013, ApJ, 778, 184
Joshi Y. C. et al., 2009, MNRAS, 392, 1532
Kirkpatrick J. D., 2005, ARA\&A, 43, 195
Kirkpatrick J. D. et al., 2011, ApJS, 197, 19

Knapp G. R. et al., 2004, AJ, 127, 3553
Knutson H. A., Benneke B., Deming D., Homeier D., 2014, Nature, 505, 66
Knutson H. A., Charbonneau D., Allen L. E., Burrows A., Megeath S. T., 2008, ApJ, 673, 526
Knutson H. A., Charbonneau D., Burrows A., O'Donovan F. T., Mandushev G., 2009, ApJ, 691, 866

Knutson H. A. et al., 2012, ApJ, 754, 22
Kovács G. et al., 2007, ApJL, 670, L41
Lagrange A.-M. et al., 2009, A\&A, 493, L21
Latham D. W. et al., 2009, ApJ, 704, 1107
—, 2010, ApJL, 713, L140
Latham D. W., Stefanik R. P., Mazeh T., Mayor M., Burki G., 1989, Nature, 339, 38

Laughlin G., Deming D., Langton J., Kasen D., Vogt S., Butler P., Rivera E., Meschiari S., 2009, Nature, 457, 562 Lendl M., Gillon M., Queloz D., Alonso R., Fumel A., Jehin E., Naef D., 2013, A\&A, 552, A2

Lewis N. K. et al., 2013, ApJ, 766, 95
López-Morales M., Coughlin J. L., Sing D. K., Burrows A., Apai D., Rogers J. C., Spiegel D. S., Adams E. R., 2010, ApJL, 716, L36
Luhman K. L., Burgasser A. J., Labbé I., Saumon D., Marley M. S., Bochanski J. J., Monson A. J., Persson S. E., 2012, ApJ, 744, 135
Machalek P., Greene T., McCullough P. R., Burrows A., Burke C. J., Hora J. L., Johns-Krull C. M., Deming D. L., 2010, ApJ, 711, 111
Machalek P., McCullough P. R., Burke C. J., Valenti J. A., Burrows A., Hora J. L., 2008, ApJ, 684, 1427
Machalek P., McCullough P. R., Burrows A., Burke C. J., Hora J. L., Johns-Krull C. M., 2009, ApJ, 701, 514
Madhusudhan N., Mousis O., Johnson T. V., Lunine J. I., 2011, ApJ, 743, 191
Magain P., Courbin F., Sohy S., 1998, ApJ, 494, 472
Mahtani D. P. et al., 2013, MNRAS, 432, 693
Mancini L. et al., 2014, A\&A, 562, A126
Mandushev G. et al., 2007, ApJL, 667, L195
Maness H. L., Marcy G. W., Ford E. B., Hauschildt P. H., Shreve A. T., Basri G. B., Butler R. P., Vogt S. S., 2007, PASP, 119, 90
Marley M. S., Seager S., Saumon D., Lodders K., Ackerman A. S., Freedman R. S., Fan X., 2002, ApJ, 568, 335

Marois C., Macintosh B., Barman T., Zuckerman B., Song I., Patience J., Lafrenière D., Doyon R., 2008, Science, 322, 1348
Maxted P. F. L. et al., 2013, MNRAS, 428, 2645
Maxted P. F. L., Koen C., Smalley B., 2011, MNRAS, 418, 1039
Mazeh T. et al., 2000, ApJL, 532, L55
McArthur B. E. et al., 2004, ApJL, 614, L81
McCullough P. R. et al., 2008, ArXiv e-prints
-, 2006, ApJ, 648, 1228
Mohanty S., Jayawardhana R., Huélamo N., Mamajek E., 2007, ApJ, 657, 1064
Morris B. M., Mandell A. M., Deming D., 2013, ApJL, 764, L22
Naef D. et al., 2001, A\&A, 375, L27
Naud M.-E. et al., 2014, ApJ, 787, 5
Noyes R. W. et al., 2008, ApJL, 673, L79
Nymeyer S. et al., 2011, ApJ, 742, 35
O'Donovan F. T. et al., 2007, ApJL, 663, L37

O’Donovan F. T., Charbonneau D., Harrington J., Madhusudhan N., Seager S., Deming D., Knutson H. A., 2010, ApJ, 710, 1551
O’Donovan F. T. et al., 2006, ApJL, 651, L61
O'Rourke J. G. et al., 2014, ApJ, 781, 109
Pál A. et al., 2008, ApJ, 680, 1450
Patten B. M. et al., 2006, ApJ, 651, 502
Perryman M. A. C. et al., 2001, A\&A, 369, 339
Pollacco D. et al., 2008, MNRAS, 385, 1576
Queloz D. et al., 2010, A\&A, 517, L1
Radigan J., Jayawardhana R., Lafrenière D., Artigau É., Marley M., Saumon D., 2012, ApJ, 750, 105
Radigan J., Lafrenière D., Jayawardhana R., Artigau E., 2014, ArXiv e-prints
Reach W. T. et al., 2005, PASP, 117, 978
Rogers J., López-Morales M., Apai D., Adams E., 2013, ApJ, 767, 64
Rogers J. C., Apai D., López-Morales M., Sing D. K., Burrows A., 2009, ApJ, 707, 1707
Russell H. N., 1914a, Nature, 93, 227
—, 1914b, Nature, 93, 252
—, 1914c, Nature, 93, 281
Sahlmann J. et al., 2011, A\&A, 525, A95
Sanchis-Ojeda R., Rappaport S., Winn J. N., Levine A., Kotson M. C., Latham D. W., Buchhave L. A., 2013, ApJ, 774, 54
Sato B. et al., 2005, ApJ, 633, 465
Schneider J., Dedieu C., Le Sidaner P., Savalle R., Zolotukhin I., 2011, A\&A, 532, A79
Seager S., Deming D., 2010, ARA\&A, 48, 631
Shannon C. E., 1949, Proc. IRE, 37, 10
Sing D. K. et al., 2013, MNRAS, 436, 2956
Siverd R. J. et al., 2012, ApJ, 761, 123
Smalley B. et al., 2010, A\&A, 520, A56
Smith A. M. S. et al., 2012, A\&A, 545, A93
Smith A. M. S., Anderson D. R., Skillen I., Collier Cameron A., Smalley B., 2011, MNRAS, 416, 2096

Snellen I. A. G., de Mooij E. J. W., Albrecht S., 2009, Nature, 459, 543
Southworth J., 2011, MNRAS, 417, 2166
Stetson P. B., 1987, PASP, 99, 191
Stevenson K. B. et al., 2012, ApJ, 754, 136
Street R. A. et al., 2010, ApJ, 720, 337
Todorov K., Deming D., Harrington J., Stevenson K. B., Bowman W. C., Nymeyer S., Fortney J. J., Bakos G. A., 2010, ApJ, 708, 498
Todorov K. O. et al., 2013, ApJ, 770, 102
—, 2012, ApJ, 746, 111
Torres G., Andersen J., Giménez A., 2010, A\&ApR, 18, 67
Torres G. et al., 2007, ApJL, 666, L121
Torres G., Winn J. N., Holman M. J., 2008, ApJ, 677, 1324
Triaud A. H. M. J., 2014, MNRAS, 439, L61
Triaud A. H. M. J. et al., 2013a, A\&A, 551, A80
-, 2013b, A\&A, 549, A18
Tsuji T., 2002, ApJ, 575, 264
van Leeuwen F., 2007, A\&A, 474, 653
Wang W., van Boekel R., Madhusudhan N., Chen G., Zhao G., Henning T., 2013, ApJ, 770, 70

Wheatley P. J. et al., 2010, ArXiv e-prints
Wilson D. M. et al., 2008, ApJL, 675, L113
Wilson P. A., Rajan A., Patience J., 2014, ArXiv e-prints Winn J. N. et al., 2011, ApJL, 737, L18

Wright J. T. et al., 2011, PASP, 123, 412
Zacharias N., Finch C. T., Girard T. M., Henden A., Bartlett J. L., Monet D. G., Zacharias M. I., 2013, AJ, 145, 44
Zhao M., Milburn J., Barman T., Hinkley S., Swain M. R., Wright J., Monnier J. D., 2012a, ApJL, 748, L8
Zhao M., Monnier J. D., Swain M. R., Barman T., Hinkley S., 2012b, ApJ, 744, 122

APPENDIX A: OBTAINING CALIBRATED APPARENT MAGNITUDES WITH SPITZER

Apparent magnitudes in all four IRAC bands are based on IRAC images calibrated by the standard Spitzer pipeline (version S18.18 or S18.25 depending on their availability at the time of the data reduction). They are delivered to the community as Basic Calibrated Data (BCD) sets and can be easily found at the Spitzer Heritage Archive ${ }^{4}$. According to the brightness of each targets, some sets were observed in the IRAC channels in sub-array mode, some in full-array mode and a number in both. This forced us to employ two different data reductions. The sub-array mode offers a high temporal resolution for observing very bright sources (available exposure times : 0.02, 0.1 and 0.4 seconds) on a portion of the array detector (32×32-pixel). The fullarray mode provides 256×256-pixel (5.22 ' $\times 5.22^{\prime}$) frames for longer exposure times of $2,12,30$ and 100 seconds.

A1 Aperture photometry

Each BCD set provided by sub-array mode is composed of 64 sub-array images. These data are reduced according to the EXOPHOT pyraf pipeline following Lanotte et al. (in prep) to get raw light curves. For each sub-array image, a 2-D elliptical Gaussian profile fit is performed on the point spread function (PSF) of the target to obtain its PSF centre coordinates. We operate aperture photometry thanks to the IRAF/DAOPHOT ${ }^{5}$ software (Stetson 1987). For each sub-array image, the software measures the stellar flux on apertures centred on our estimated PSF locations, ranging from 2.5 to 5.9 pixels by increments of 0.1 pixel, and subtracts the background level evaluated in an annulus extending from 12 to 15 pixels from the centre of aperture. For each block of 64 sub-array images, the discrepant values for the measurements of the x - and y-position, and the stellar and background flux are rejected using a $3-\sigma$ median clipping. The remaining measurements in each BCD set are averaged.

The full-array mode images are reduced in the same way, except that the PSF centres are determined by a fluxweighted centroid. This method is better adapted to lower signal-to-noise data.

At this stage, the first measurements of each light curve are discarded if they correspond to deviant values for all or some of the the external parameters (detector or pointing

[^3]stabilisation). Finally we perform for each light curve a moving median filtering to discard outlier measurements due, for instance, to cosmic hits. We also reject the measurements during a planetary transit, if present, to always consider the total stellar flux. Ideally one should measure the flux coming from the stellar system only during the occultation of the planet to only consider the stellar flux. However the planetary emission is negligible in comparison to flux variations induced by instrumental effects such as the 'pixel-phase' and the 'ramp' effects. The first one lies in the dependence of the observed flux with the stellar centroid location on the pixel of the IRAC $\operatorname{InSb}(3.6$ and $4.5 \mu \mathrm{~m}$) arrays. It is due to the inhomogeneous intra-pixel sensitivity combined to the jitter of the telescope and to the poor sampling of the PSF. The second effect is the increase of the detector response at the start of AORs and is attributed to a charge-trapping mechanism resulting in a dependence of the gain of the pixels to their illumination history. We refer the reader to Knutson et al. (2008) and references therein for more informations about these instrumental systematics.

The pixel phase response changed at the beginning of the Warm mission, with the consequence that the correction map of the cryogenic phase of Spitzer could not be used for all the data. Since no complete correction map is available for the Warm phase of Spitzer at the time of our analysis, we do not correct the flux measurements for the intra-pixel sensitivity. In practice, those intra-pixel flux variations are partially averaged out thanks to variations in the location of the PSF during an observational run. We do not model the 'ramp' effect but simply remove the more affected sequence of measurements.

For each dataset (called AOR = Astronomical Observation Request in Spitzer terminology), we average all remaining measured stellar fluxes computed for each radius separately. We then apply the appropriate aperture correction to determine the stellar flux as it would be falling into a circular aperture radius of 10 pixels. This is carried out in order to remain consistent with the magnitude calibrations present in Reach et al. (2005). The IRAC instrument handbook provides aperture corrections for different aperture radii and background annuli. However only three aperture corrections can be applied for the sub-array mode data, so that we generate other aperture correction factors to coincide with all our photometric apertures. Indeed the accuracy of the flux measurement resides in the choice of the photometric aperture radius. While small aperture radii are dominated by imprecisions due to under-sampling the PSF and pixel to pixel response, larger radii are affected by larger background contributions. We thus perform aperture photometry on deconvolved images reconvolved by the best-fitting partial PSF model to derive the aperture corrections required for deriving the observed flux of the star. The deconvolution photometry is made using DECPHOT following a procedure described in Gillon et al. (2006) and optimised for Spitzer data by Lanotte et al. (in prep). DECPHOT is based on the image-deconvolution method of Magain, Courbin \& Sohy (1998) that, contrarily to traditional deconvolution methods, respects the sampling theorem of Shannon (1949) and preserves the photometric flux. The aperture corrections are normalised to the flux falling into a circular aperture radius of 10 pixels subtracted to the background level measured in an annulus from 12-20 pixels.

Table A1. Dilution factors in the stellar flux from CoRoT-2A and WASP-8A caused by their visual companion. These factors are estimated for a range of aperture radii.

Aperture radius	Dilution (\%)			
	CoRoT-2A		WASP-8A	
(pixels)	$[3.6]$	$[4.5]$	$[3.6]$	$[4.5]$
2.5	4.08	2.72	0.85	1.23
3.0	7.51	5.80	2.54	3.56
3.5	12.98	11.31	6.34	7.87
4.0	17.44	15.60	9.90	11.83
4.5	18.91	17.19	11.43	13.76

Then we average all flux corrected for aperture and take the resulting value as the observed flux measurement for the dataset. The mean of the errors on each corrected flux is taken as our error bar on the measured stellar flux. We convert the measured flux in Jansky and apply the colour and inter-pixel corrections ${ }^{6}$. Finally the flux densities are converted into Vega apparent magnitudes using the zeromagnitude flux densities computed by Reach et al. (2005). The associated error bars are dominated by the uncertainty in the absolute calibration.

A2 Deconvolution of blended stars

Two systems in our sample (CoRoT-2 and WASP-8) are blended by a visual companion. Gillon et al. (2010) and Deming et al. (2011) have evaluated the dilution factor: the correction to the measured flux needed to remove the dilution caused by CoRotT-2A's visual companion. Their correction factors at $4.5 \mu \mathrm{~m}$ return a magnitude disparity of ~ 0.3 mag using our measured fluxes using the method described above. No similar work has been done for WASP-8. In order to measure the dilution factor induced in the flux measurement with a higher precision, we performed once again a deconvolution of the data for those two stars. We used DECPHOT to operate aperture photometry on model images considering two stars or the target only. We compute the dilution factor for both systems using all our aperture radii to reduce the errors of the inferred factors. The standard deviations of CoRoT- 2 and WASP- 8 fluxes due to the change of aperture radius are 0.11 and 0.07%, respectively, at $3.6 \mu \mathrm{~m}$, and 0.04 and 0.08% at $4.5 \mu \mathrm{~m}$. For comparison, the standard deviations of isolated target fluxes due to the change of aperture radius are encompassed between 0.01 and 0.06%. Table A1 gives dilution factors according to some aperture radius, the target, and the instrument. With these factors, fluxes for each aperture are corrected and the same procedure as described in the previous section is carried out to yield corrected apparent magnitudes.

Table B1. Absolute magnitudes reported for some directly imaged planets.

Name	M_{J}	M_{H}	$\mathrm{M}_{\mathrm{K}_{\mathrm{s}}}$	Refs
κ And b	12.7 ± 0.3	11.7 ± 0.2	11.0 ± 0.4	1
HR 8799 b	16.30 ± 0.16	14.87 ± 0.17	14.05 ± 0.08	2
HR 8799 c	14.65 ± 0.17	13.93 ± 0.17	13.13 ± 0.08	2
HR 8799 d	15.26 ± 0.43	13.86 ± 0.22	13.11 ± 0.12	2
2 M 1207 b	16.38 ± 0.09	14.45 ± 0.09	13.31 ± 0.08	3,4
β Pic b	12.6 ± 0.3	12.0 ± 0.2	11.2 ± 0.1	$5,6,7$
GU Psc b	14.71 ± 0.23	14.29 ± 0.23	13.99 ± 0.23	8

References: (1) Carson et al. (2013); (2) Marois et al. (2008); (3) Chauvin et al. (2004); (4) Mohanty et al. (2007); (5) Lagrange et al. (2009); (6) Bonnefoy et al. (2011); (7) Bonnefoy et al. (2013); (8) Naud et al. (2014)

APPENDIX B: TABLES

[^4]| Name | parallactic distance (pc) | photometric distance (pc) | distance modulus$\left(m_{\mathrm{V}}-M_{\mathrm{V}}\right)$ | apparent magnitudes | | | | | | | Refs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | m_{J} | m_{H} | $\mathrm{m}_{\mathrm{K}_{\mathrm{s}}}$ | $\mathrm{m}_{\text {[3.6] }}$ | $\mathrm{m}_{[4.5]}$ | $\mathrm{m}_{[5.8]}$ | $\mathrm{m}_{\text {[8.0] }}$ | |
| HD 189733A | 19.45 ± 0.26 | 19.1 ± 1.0 | 1.41 ± 0.12 | 6.073 ± 0.032 | 5.587 ± 0.031 | 5.541 ± 0.021 | 5.450 ± 0.065 | 5.530 ± 0.061 | 5.971 ± 0.063 | 5.968 ± 0.059 | 1,2,3,5 |
| HD 209458 | 49.6 ± 2.0 | 49.0 ± 2.2 | 3.45 ± 0.10 | 6.591 ± 0.020 | 6.366 ± 0.038 | 6.308 ± 0.026 | 6.258 ± 0.043 | 6.305 ± 0.035 | 6.791 ± 0.064 | 6.765 ± 0.057 | 1,2,3,5 |
| HD 80606 | - | 65.8 ± 3.9 | 4.09 ± 0.13 | 7.702 ± 0.030 | 7.400 ± 0.034 | 7.316 ± 0.020 | 7.257 ± 0.063 | 7.348 ± 0.037 | - | 7.742 ± 0.061 | 1,3,5 |
| HD 149026 | 79.4 ± 4.4 | 80.8 ± 4.0 | 4.54 ± 0.11 | 7.118 ± 0.024 | 6.899 ± 0.018 | 6.819 ± 0.017 | 6.840 ± 0.062 | 6.827 ± 0.045 | 7.305 ± 0.062 | 7.230 ± 0.060 | 1,2,3,5 |
| GJ 436 | 10.14 ± 0.24 | *6.1 ± 0.9 | -1.07 ± 0.35 | 6.900 ± 0.024 | 6.319 ± 0.023 | 6.073 ± 0.016 | 5.889 ± 0.031 | 5.836 ± 0.023 | 6.277 ± 0.062 | 6.265 ± 0.023 | 1,2,3,7 |
| GJ 1214 | 14.55 ± 0.13 | *9.1 ± 4.4 | -0.2 ± 1.4 | 9.750 ± 0.024 | 9.094 ± 0.024 | 8.782 ± 0.020 | 8.488 ± 0.064 | 8.397 ± 0.060 | - | | 1,3,4 |
| 55 Cnc | 12.34 ± 0.11 | 12.2 ± 0.9 | 0.44 ± 0.17 | 4.768 ± 0.244 | 4.265 ± 0.234 | *4.015 ± 0.036 | 4.09 ± 0.11 | 4.065 ± 0.062 | | | 1,2,3,5 |
| TReS-1 | - | 129.7 ± 8.7 | 5.56 ± 0.15 | 10.294 ± 0.022 | 9.887 ± 0.021 | 9.819 ± 0.019 | 9.779 ± 0.047 | 9.779 ± 0.044 | 10.232 ± 0.049 | 10.241 ± 0.048 | 1,3,5 |
| TReS-2 | - | 195.3 ± 12.0 | 6.45 ± 0.14 | 10.232 ± 0.020 | 9.920 ± 0.026 | 9.846 ± 0.022 | 9.782 ± 0.045 | 9.790 ± 0.043 | 10.206 ± 0.069 | 10.252 ± 0.070 | 1,3,5 |
| TReS-3 | - | 258.5 ± 16.1 | 7.06 ± 0.14 | 11.015 ± 0.022 | 10.655 ± 0.020 | 10.608 ± 0.017 | 10.550 ± 0.064 | 10.599 ± 0.064 | 11.029 ± 0.076 | 11.03 ± 0.14 | 1,3,6 |
| TReS-4 | - | 576.0 ± 56.7 | 8.80 ± 0.22 | 10.583 ± 0.018 | 10.350 ± 0.015 | 10.330 ± 0.019 | 10.264 ± 0.064 | 10.279 ± 0.063 | 10.700 ± 0.073 | 10.741 ± 0.074 | 1,3,5 |
| XO-1 | - | 177.9 ± 10.7 | 6.25 ± 0.13 | 9.939 ± 0.022 | 9.601 ± 0.017 | 9.527 ± 0.015 | 9.465 ± 0.061 | 9.515 ± 0.061 | 9.947 ± 0.069 | 9.967 ± 0.075 | 1,3,5 |
| XO-2 | - | 156.0 ± 8.8 | 5.97 ± 0.13 | 9.744 ± 0.022 | 9.340 ± 0.026 | 9.308 ± 0.021 | 9.236 ± 0.064 | 9.294 ± 0.060 | 9.725 ± 0.078 | 9.733 ± 0.072 | 1,3,5 |
| XO-3 | - | 185.7 ± 11.8 | 6.34 ± 0.14 | 9.013 ± 0.029 | 8.845 ± 0.018 | 8.791 ± 0.019 | 8.754 ± 0.039 | 8.757 ± 0.037 | 9.210 ± 0.067 | 9.213 ± 0.067 | 1,3,5 |
| XO-4 | - | 308.2 ± 19.6 | 7.44 ± 0.14 | 9.667 ± 0.021 | 9.476 ± 0.022 | 9.406 ± 0.023 | 9.386 ± 0.066 | 9.409 ± 0.061 | - | - | 1,3,5 |
| HAT-P-1B | - | 129.6 ± 5.9 | 5.56 ± 0.10 | 9.156 ± 0.026 | 8.923 ± 0.030 | 8.858 ± 0.018 | 8.875 ± 0.064 | 8.853 ± 0.065 | 9.278 ± 0.069 | 9.308 ± 0.072 | 1,3,7 |
| HAT-P-2 | 114.3 ± 9.8 | 125.3 ± 13.1 | 5.49 ± 0.24 | 7.796 ± 0.027 | 7.652 ± 0.038 | 7.603 ± 0.020 | 7.544 ± 0.063 | 7.603 ± 0.043 | 8.075 ± 0.063 | 8.054 ± 0.062 | 1,2,3,5 |
| HAT-P-3 | - | 166.4 ± 14.4 | 6.11 ± 0.20 | 9.936 ± 0.022 | 9.542 ± 0.028 | 9.448 ± 0.025 | 9.382 ± 0.065 | 9.450 ± 0.062 | - | - | 1,3,5 |
| HAT-P-4 | - | 293.5 ± 19.4 | 7.34 ± 0.15 | 10.100 ± 0.022 | 9.837 ± 0.020 | 9.770 ± 0.020 | 9.749 ± 0.072 | 9.799 ± 0.068 | - | | 1,3,5 |
| HAT-P-6 | - | 277.8 ± 19.1 | 7.22 ± 0.15 | 9.558 ± 0.023 | 9.440 ± 0.018 | 9.313 ± 0.019 | 9.289 ± 0.067 | 9.301 ± 0.063 | - | | 1,3,5 |
| HAT-P-7 | - | 320.8 ± 17.4 | 7.53 ± 0.12 | 9.555 ± 0.030 | 9.344 ± 0.029 | 9.334 ± 0.018 | 9.291 ± 0.068 | 9.281 ± 0.043 | 9.727 ± 0.081 | 9.759 ± 0.068 | 1,3,5 |
| HAT-P-8 | - | 227.8 ± 12.7 | 6.79 ± 0.12 | 9.214 ± 0.022 | 9.004 ± 0.018 | 8.953 ± 0.013 | 8.942 ± 0.064 | 8.932 ± 0.060 | - | | 1,3,5 |
| HAT-P-12 | - | 139.1 ± 9.6 | 5.72 ± 0.16 | 10.794 ± 0.023 | 10.236 ± 0.022 | 10.108 ± 0.016 | 10.084 ± 0.048 | 10.135 ± 0.047 | | | 1,3,7 |
| HAT-P-23 | - | 355.0 ± 40.8 | 7.75 ± 0.27 | 11.103 ± 0.022 | 10.846 ± 0.022 | 10.791 ± 0.020 | 10.822 ± 0.066 | 10.770 ± 0.068 | - - | - | 1,3,5 |
| WASP-1 | - | 346.4 ± 34.8 | 7.70 ± 0.23 | 10.586 ± 0.019 | 10.364 ± 0.016 | 10.276 ± 0.018 | 10.234 ± 0.047 | 10.237 ± 0.044 | 10.65 ± 0.19 | 10.71 ± 0.13 | 1,3,5 |
| WASP-2 | - | 153.9 ± 8.3 | 5.94 ± 0.12 | 10.166 ± 0.027 | 9.752 ± 0.026 | 9.632 ± 0.024 | 9.588 ± 0.066 | 9.606 ± 0.065 | 10.02 ± 0.11 | 10.032 ± 0.071 | 1,3,7 |
| WASP-3 | - | 251.4 ± 18.8 | 7.00 ± 0.17 | 9.603 ± 0.020 | 9.407 ± 0.014 | 9.361 ± 0.015 | 9.366 ± 0.045 | 9.356 ± 0.063 | 9.773 ± 0.067 | 9.758 ± 0.072 | 1,3,5 |
| WASP-4 | - | 280.9 ± 31.1 | 7.24 ± 0.25 | 11.179 ± 0.025 | 10.842 ± 0.026 | 10.746 ± 0.021 | 10.710 ± 0.051 | 10.732 ± 0.046 | - | - | 1,3,5 |
| WASP-5 | - | 318.6 ± 19.9 | 7.52 ± 0.14 | 10.949 ± 0.022 | 10.650 ± 0.025 | 10.598 ± 0.023 | 10.539 ± 0.069 | 10.590 ± 0.072 | - | - | 1,3,7 |
| WASP-8A | - | 85.1 ± 10.7 | 4.65 ± 0.29 | 8.501 ± 0.027 | 8.218 ± 0.049 | 8.086 ± 0.023 | 8.084 ± 0.085 | 8.162 ± 0.077 | - | 8.552 ± 0.063 | 1,3,5 |
| WASP-12A | - | 436.3 ± 37.3 | 8.20 ± 0.19 | 10.477 ± 0.021 | 10.228 ± 0.022 | 10.188 ± 0.020 | 10.111 ± 0.042 | 10.100 ± 0.038 | 10.541 ± 0.074 | 10.55 ± 0.10 | 1,3,5 |
| WASP-14 | - | 208.4 ± 15.9 | 6.60 ± 0.17 | 8.869 ± 0.021 | 8.650 ± 0.019 | 8.621 ± 0.019 | 8.586 ± 0.046 | 8.576 ± 0.043 | - | 9.034 ± 0.064 | 1,3,5 |
| WASP-17 | - | 476.0 ± 36.0 | 8.39 ± 0.17 | 10.509 ± 0.027 | 10.319 ± 0.024 | 10.224 ± 0.027 | 10.196 ± 0.064 | 10.193 ± 0.065 | - | 10.66 ± 0.11 | 1,3,5 |
| WASP-18 | 99 ± 11 | 122.6 ± 6.7 | 5.44 ± 0.12 | 8.409 ± 0.018 | 8.231 ± 0.055 | 8.131 ± 0.027 | 8.098 ± 0.046 | 8.115 ± 0.044 | 8.561 ± 0.047 | 8.573 ± 0.063 | 1,2,3,5 |
| WASP-19 | - | 275.9 ± 13.4 | 7.20 ± 0.11 | 10.911 ± 0.026 | 10.602 ± 0.022 | 10.481 ± 0.023 | 10.445 ± 0.047 | 10.486 ± 0.047 | 10.91 ± 0.13 | 10.754 ± 0.085 | 1,3,7 |
| WASP-24 | - | 332.5 ± 23.8 | 7.61 ± 0.16 | 10.457 ± 0.022 | 10.219 ± 0.026 | 10.148 ± 0.023 | 10.132 ± 0.067 | 10.156 ± 0.066 | - | - | 1,3,5 |
| WASP-26A | - | 293.4 ± 20.5 | 7.34 ± 0.16 | 10.021 ± 0.022 | 9.775 ± 0.023 | 9.690 ± 0.023 | 9.680 ± 0.075 | 9.708 ± 0.067 | - | - | 1,4,5 |
| WASP-33 | 116 ± 11 | 123.1 ± 7.2 | 5.45 ± 0.13 | 7.581 ± 0.021 | 7.516 ± 0.024 | 7.468 ± 0.024 | 7.427 ± 0.066 | 7.438 ± 0.060 | - | - | 1,2,3,5 |
| WASP-43 | | 106.1 ± 7.2 | 5.31 ± 0.24 | 9.995 ± 0.024 | 9.397 ± 0.025 | 9.267 ± 0.026 | 9.129 ± 0.063 | 9.214 ± 0.061 | - | - | 1,3,7 |
| WASP-48 | - | 466.0 ± 49.0 | 8.34 ± 0.24 | 10.627 ± 0.025 | 10.441 ± 0.032 | 10.372 ± 0.022 | 10.340 ± 0.065 | 10.360 ± 0.069 | - | - | 1,3,5 |
| CoRoT-1 | - | 715.2 ± 58.2 | 9.27 ± 0.18 | 12.462 ± 0.029 | 12.218 ± 0.026 | 12.149 ± 0.027 | 12.12 ± 0.12 | 12.114 ± 0.095 | - | - - | 1,3,7 |
| CoRoT-2A | - | 255.0 ± 16.2 | 7.03 ± 0.14 | 10.783 ± 0.028 | 10.438 ± 0.037 | 10.310 ± 0.031 | 10.297 ± 0.071 | 10.309 ± 0.078 | - | 10.627 ± 0.072 | 1,3,7 |
| Kepler-7 | - | 893.3 ± 50.5 | 9.76 ± 0.13 | 11.833 ± 0.020 | 11.601 ± 0.022 | 11.535 ± 0.020 | 11.545 ± 0.077 | 11.536 ± 0.074 | - | - | 1,3,7 |
| KELT-1 | - | 251.3 ± 13.0 | 7.00 ± 0.12 | 9.682 ± 0.022 | 9.534 ± 0.030 | 9.437 ± 0.019 | 9.390 ± 0.063 | 9.405 ± 0.061 | - | - | 1,3,5 |

References: (1) this paper; (2) van Leeuwen (2007); (3) Cutri et al. (2003); (4) Anglada-Escudé et al. (2013); (5) Høg et al. (2000); (6) Droege et al. (2006); (7) Zacharias et al. (2013)
\star flagged in the 2MASS catalog
Table B3. Adopted distance and estimated stellar absolute magnitudes using data presented in table B2, in the Vega-based magnitude convention.

Name	adopted distance (pc)	Absolute M_{V}	absolute magnitudes						
			M_{J}	M_{H}	$\mathrm{M}_{\mathrm{K}_{\mathrm{s}}}$	$\mathrm{M}_{[3.6]}$	$\mathrm{M}_{[4.5]}$	$\mathrm{M}_{[5.8]}$	$\mathrm{M}_{[8.0]}$
HD 189733A	19.1 ± 1.0	6.27 ± 0.12	4.67 ± 0.12	4.18 ± 0.12	4.14 ± 0.11	4.04 ± 0.13	4.12 ± 0.13	4.57 ± 0.13	4.56 ± 0.13
HD 209458	49.0 ± 2.2	4.18 ± 0.10	3.140 ± 0.099	2.915 ± 0.099	2.86 ± 0.10	2.80 ± 0.11	2.85 ± 0.10	3.34 ± 0.11	3.31 ± 0.11
HD 80606	65.8 ± 3.9	4.91 ± 0.13	3.61 ± 0.13	3.31 ± 0.13	3.22 ± 0.13	3.17 ± 0.14	3.26 ± 0.13		3.65 ± 0.14
HD 149026	80.8 ± 4.0	3.60 ± 0.11	2.58 ± 0.11	2.36 ± 0.11	2.28 ± 0.11	2.30 ± 0.12	2.29 ± 0.12	2.77 ± 0.13	2.69 ± 0.13
GJ 436	10.14 ± 0.24	11.68 ± 0.35	6.870 ± 0.057	6.289 ± 0.056	6.043 ± 0.052	5.858 ± 0.063	5.806 ± 0.054	6.25 ± 0.082	6.235 ± 0.056
GJ 1214	14.55 ± 0.13	14.9 ± 1.4	8.936 ± 0.030	8.280 ± 0.031	7.968 ± 0.028	7.674 ± 0.065	7.58 ± 0.062		-
55 Cnc	12.2 ± 0.9	5.50 ± 0.17	4.33 ± 0.29	3.83 ± 0.29	3.58 ± 0.17	3.66 ± 0.19	3.63 ± 0.17		-
TReS-1	129.7 ± 8.7	5.86 ± 0.11	4.73 ± 0.14	4.32 ± 0.16	4.25 ± 0.15	4.21 ± 0.16	4.21 ± 0.16	4.67 ± 0.16	4.68 ± 0.15
TReS-2	195.3 ± 12.0	4.80 ± 0.11	3.78 ± 0.13	3.47 ± 0.14	3.39 ± 0.19	3.33 ± 0.14	3.34 ± 0.14	3.75 ± 0.15	3.80 ± 0.15
TReS-3	258.5 ± 16.1	5.33 ± 0.12	3.95 ± 0.14	3.59 ± 0.18	3.55 ± 0.14	3.49 ± 0.16	3.54 ± 0.15	3.97 ± 0.16	3.97 ± 0.19
TReS-4	576.0 ± 56.7	3.13 ± 0.16	1.78 ± 0.21	1.55 ± 0.22	1.53 ± 0.22	1.46 ± 0.23	1.48 ± 0.22	1.90 ± 0.23	1.94 ± 0.23
XO-1	177.9 ± 10.7	5.00 ± 0.12	3.69 ± 0.13	3.35 ± 0.13	3.28 ± 0.13	3.21 ± 0.15	3.26 ± 0.15	3.70 ± 0.15	3.72 ± 0.16
XO-2	156.0 ± 8.8	5.28 ± 0.10	3.78 ± 0.13	3.37 ± 0.14	3.34 ± 0.13	3.27 ± 0.14	3.33 ± 0.14	3.76 ± 0.14	3.77 ± 0.14
XO-3	185.7 ± 11.8	3.51 ± 0.14	2.67 ± 0.14	2.50 ± 0.14	2.45 ± 0.14	2.41 ± 0.15	2.41 ± 0.15	2.87 ± 0.15	2.87 ± 0.15
XO-4	308.2 ± 19.6	3.37 ± 0.13	2.22 ± 0.13	2.03 ± 0.14	1.96 ± 0.14	1.94 ± 0.15	1.96 ± 0.16	-	-
HAT-P-1B	129.6 ± 5.9	4.31 ± 0.10	3.59 ± 0.10	3.36 ± 0.10	3.29 ± 0.10	3.31 ± 0.12	3.29 ± 0.12	3.71 ± 0.12	3.74 ± 0.12
HAT-P-2	125.3 ± 13.1	3.20 ± 0.24	2.30 ± 0.23	2.16 ± 0.23	2.11 ± 0.24	2.05 ± 0.24	2.11 ± 0.24	2.59 ± 0.24	2.56 ± 0.24
HAT-P-3	166.4 ± 14.4	5.75 ± 0.13	3.83 ± 0.20	3.44 ± 0.18	3.34 ± 0.18	3.28 ± 0.20	3.34 ± 0.20		-
HAT-P-4	293.5 ± 19.4	3.78 ± 0.13	2.76 ± 0.15	2.50 ± 0.14	2.43 ± 0.15	2.41 ± 0.16	2.46 ± 0.16	-	-
HAT-P-6	277.8 ± 19.1	3.25 ± 0.15	2.34 ± 0.15	2.22 ± 0.15	2.09 ± 0.15	2.07 ± 0.16	2.08 ± 0.16	-	-
HAT-P-7	320.8 ± 17.4	2.95 ± 0.11	2.02 ± 0.12	1.81 ± 0.12	1.80 ± 0.12	1.76 ± 0.13	1.75 ± 0.13	2.20 ± 0.14	2.23 ± 0.14
HAT-P-8	227.8 ± 12.7	3.57 ± 0.12	2.43 ± 0.12	2.22 ± 0.12	2.17 ± 0.13	2.15 ± 0.14	2.14 ± 0.14	-	-
HAT-P-12	139.1 ± 9.6	7.05 ± 0.15	5.08 ± 0.15	4.52 ± 0.15	4.39 ± 0.15	4.37 ± 0.16	4.42 ± 0.16		
HAT-P-23	355.0 ± 40.8	4.31 ± 0.18	3.35 ± 0.26	3.09 ± 0.26	3.04 ± 0.26	3.07 ± 0.27	3.02 ± 0.25	-	-
WASP-1	346.4 ± 34.8	3.61 ± 0.19	2.89 ± 0.22	2.67 ± 0.22	2.58 ± 0.23	2.54 ± 0.21	2.54 ± 0.23	2.95 ± 0.30	3.01 ± 0.26
WASP-2	153.9 ± 8.3	5.88 ± 0.12	4.23 ± 0.18	3.82 ± 0.12	3.70 ± 0.12	3.65 ± 0.13	3.67 ± 0.14	4.08 ± 0.18	4.10 ± 0.13
WASP-3	251.4 ± 18.8	3.63 ± 0.16	2.60 ± 0.17	2.40 ± 0.16	2.36 ± 0.16	2.36 ± 0.17	2.35 ± 0.17	2.77 ± 0.18	2.76 ± 0.18
WASP-4	280.9 ± 31.1	5.24 ± 0.11	3.94 ± 0.24	3.60 ± 0.25	3.50 ± 0.24	3.47 ± 0.26	3.49 ± 0.25	-	-
WASP-5	318.6 ± 19.9	4.63 ± 0.14	3.43 ± 0.14	3.13 ± 0.14	3.08 ± 0.14	3.02 ± 0.15	3.07 ± 0.15	-	-
WASP-8A	85.1 ± 10.7	5.14 ± 0.29	3.85 ± 0.28	3.57 ± 0.28	3.44 ± 0.28	3.43 ± 0.30	3.51 ± 0.29	-	3.90 ± 0.28
WASP-12A	436.3 ± 37.3	3.37 ± 0.11	2.28 ± 0.19	2.03 ± 0.19	1.99 ± 0.20	1.91 ± 0.20	1.90 ± 0.19	2.34 ± 0.20	2.35 ± 0.21
WASP-14	208.4 ± 15.9	3.15 ± 0.17	2.27 ± 0.17	2.06 ± 0.17	2.03 ± 0.17	1.99 ± 0.17	1.96 ± 0.17	-	2.44 ± 0.18
WASP-17	476.0 ± 36.0	3.20 ± 0.13	2.12 ± 0.17	1.93 ± 0.17	1.84 ± 0.16	1.81 ± 0.18	1.80 ± 0.17	-	2.27 ± 0.20
WASP-18	122.6 ± 6.7	3.86 ± 0.12	2.97 ± 0.12	2.79 ± 0.13	2.69 ± 0.13	2.66 ± 0.13	2.67 ± 0.13	3.12 ± 0.14	3.13 ± 0.13
WASP-19	275.9 ± 13.4	5.11 ± 0.10	3.70 ± 0.11	3.40 ± 0.10	3.28 ± 0.11	3.24 ± 0.12	3.28 ± 0.12	3.71 ± 0.17	3.55 ± 0.13
WASP-24	332.5 ± 23.8	3.61 ± 0.12	2.85 ± 0.16	2.61 ± 0.16	2.54 ± 0.16	2.52 ± 0.17	2.55 ± 0.16	-	-
WASP-26A	293.4 ± 20.5	3.96 ± 0.12	2.68 ± 0.15	2.44 ± 0.15	2.35 ± 0.15	2.34 ± 0.17	2.37 ± 0.17	-	-
WASP-33	123.1 ± 7.2	2.69 ± 0.13	2.13 ± 0.13	2.06 ± 0.13	2.02 ± 0.13	1.98 ± 0.14	1.99 ± 0.14	-	-
WASP-43	106.1 ± 7.2	7.36 ± 0.23	4.87 ± 0.15	4.27 ± 0.15	4.14 ± 0.15	4.00 ± 0.15	4.08 ± 0.16	-	-
WASP-48	466.0 ± 49.0	3.38 ± 0.20	2.29 ± 0.23	2.10 ± 0.24	2.03 ± 0.23	2.00 ± 0.24	2.02 ± 0.24	-	-
CoRoT-1	715.2 ± 58.2	4.29 ± 0.18	3.19 ± 0.18	2.95 ± 0.18	2.88 ± 0.17	2.85 ± 0.21	2.84 ± 0.21	-	-
CoRoT-2A	255.0 ± 16.2	5.25 ± 0.11	3.75 ± 0.14	3.41 ± 0.14	3.28 ± 0.14	3.26 ± 0.16	3.28 ± 0.16	-	3.59 ± 0.16
Kepler-7	893.3 ± 50.5	3.25 ± 0.12	2.08 ± 0.12	1.85 ± 0.12	1.78 ± 0.12	1.79 ± 0.15	1.78 ± 0.14	-	-
KELT-1	251.3 ± 13.0	3.70 ± 0.10	2.68 ± 0.12	2.53 ± 0.12	2.44 ± 0.11	2.39 ± 0.13	2.40 ± 0.13	-	-

Name	distance modulus$(m-M)$	m_{J}	apparent magnitudes					$\mathrm{m}_{[8.0]}$ Refs	
			m_{H}	$\mathrm{m}_{\mathrm{K}_{\mathrm{S}}}$	$\mathrm{m}_{[3.6]}$	$\mathrm{m}_{[4.5]}$	$\mathrm{m}_{[5.8]}$		
HD 189733 Ab	1.41 ± 0.12	-	-	-	12.532 ± 0.070	12.400 ± 0.064	12.24 ± 0.13	11.680 ± 0.071	1,2,3
HD 209458 b	3.45 ± 0.10	-	-	-	13.83 ± 0.11	12.984 ± 0.083	13.09 ± 0.17	13.31 ± 0.13	1,4,5,6,7
HD 80606 b	4.09 ± 0.13	-	-	-	-	-	-	15.24 ± 0.23	1,8,9
HD 149026 b	4.54 ± 0.11	-	-	-	15.33 ± 0.10	15.50 ± 0.20	15.70 ± 0.27	15.44 ± 0.14	1,10,11
GJ 436 b	-1.07 ± 0.35	-	-	-	15.27 ± 0.28	> 15.8	15.4 ± 1.1	14.868 ± 0.093	1,12,13,14
GJ 1214 b	-0.2 ± 1.4	-	-	-	> 17.7	> 17.7	-	-	1,15,16
55 Cnce	0.44 ± 0.17	-	-	-	-	13.77 ± 0.27	-	-	1,17,18, 19, 20,21
TReS-1 b	5.56 ± 0.15	-	-	-	-	17.73 ± 0.23	-	16.86 ± 0.18	1,22,23
TReS-2 b	6.45 ± 0.14	-	-	17.86 ± 0.23	17.02 ± 0.20	16.39 ± 0.12	16.96 ± 0.37	16.36 ± 0.20	1,24,25,26
TReS-3 b	7.06 ± 0.14	-	> 18.9	17.80 ± 0.15	16.70 ± 0.12	16.67 ± 0.18	16.90 ± 0.27	16.84 ± 0.18	1,27,28,29
TReS-4 b	8.80 ± 0.22	-	-	-	17.42 ± 0.11	17.35 ± 0.13	17.36 ± 0.34	16.98 ± 0.17	1,30,31
XO-1 b	6.25 ± 0.13	-	-	-	17.13 ± 0.11	16.80 ± 0.11	16.41 ± 0.15	16.66 ± 0.17	1,32.33
XO-2 b	5.97 ± 0.13	-	-	-	16.96 ± 0.24	16.82 ± 0.24	16.67 ± 0.26	16.92 ± 0.52	1,34,35
XO-3 b	6.34 ± 0.14	-	-	-	16.24 ± 0.059	15.869 ± 0.058	16.39 ± 0.53	16.27 ± 0.30	1,36,37
XO-4 b	7.44 ± 0.14	-	-	-	17.52 ± 0.26	16.58 ± 0.10	-	-	1,38,39
HAT-P-1B b	5.56 ± 0.10	-	-	16.26 ± 0.27	16.62 ± 0.12	16.03 ± 0.20	16.01 ± 0.18	15.87 ± 0.20	1,40,41,42
HAT-P-2 b	5.49 ± 0.24	-	-	-	15.05 ± 0.096	15.07 ± 0.079	15.95 ± 0.68	15.19 ± 0.10	1,43,44
HAT-P-3 b	6.11 ± 0.20	-	-	-	16.76 ± 0.32	17.02 ± 0.20	-	-	1,45,46
HAT-P-4 b	7.34 ± 0.15	-	-	-	16.87 ± 0.15	17.08 ± 0.15	-	-	1,47,46
HAT-P-6 b	7.22 ± 0.15	-	-	-	16.62 ± 0.10	16.738 ± 0.087	-	-	1,48,39
HAT-P-7 b	7.53 ± 0.12	-	-	-	16.81 ± 0.21	16.28 ± 0.16	16.25 ± 0.16	16.38 ± 0.27	1,49,50
HAT-P-8 b	6.79 ± 0.12	-	-	-	16.15 ± 0.10	16.319 ± 0.097	-	-	1,51,39
HAT-P-12 b	5.72 ± 0.16	-	-	-	> 18.5	17.8	-	-	1,52,46
HAT-P-23 b	7.75 ± 0.27	-	-	-	17.34 ± 0.10	17.05 ± 0.11	-	-	1,53,54
WASP-1 b	7.70 ± 0.23	-	-	-	17.07 ± 0.10	16.896 ± 0.099	17.06 ± 0.30	16.52 ± 0.17	1,55,56
WASP-2 b	5.94 ± 0.12	-	-	-	17.29 ± 0.69	16.54 ± 0.13	16.81 ± 0.63	16.39 ± 0.27	1,55,56
WASP-3 b	7.00 ± 0.17	-	-	16.27 ± 0.18	-	-	-	-	1,57,58
WASP-4 b	7.24 ± 0.25	-	-	17.58 ± 0.13	16.95 ± 0.12	16.894 ± 0.095	-	-	1,59,60,61
WASP-5 b	7.52 ± 0.14	-	-	-	17.10 ± 0.13	17.35 ± 0.17	-	- -	1,62,63
WASP-8A b	4.65 ± 0.29	-	-	-	15.45 ± 0.20	16.06 ± 0.14	-	16.13 ± 0.31	1,64,65
WASP-12A b	8.20 ± 0.19	17.62 ± 0.24	17.03 ± 0.17	16.363 ± 0.050	16.056 ± 0.053	16.032 ± 0.065	15.94 ± 0.12	15.94 ± 0.15	1,66,67
WASP-14 b	6.60 ± 0.17	-	-	-	15.406 ± 0.060	15.18 ± 0.10	-	15.89 ± 0.14	1,68,69
WASP-17 b	8.39 ± 0.17	-	-	-	-	16.793 ± 0.089	-	17.22 ± 0.21	1,70,71
WASP-18 b	5.44 ± 0.12	-	-	-	14.405 ± 0.088	14.166 ± 0.072	14.641 ± 0.099	14.541 ± 0.081	1,72,73,74
WASP-19 b	7.20 ± 0.11	-	17.00 ± 0.19	-	16.235 ± 0.072	16.094 ± 0.075	16.38 ± 0.23	16.10 ± 0.21	1,75,76
WASP-24 b	7.61 ± 0.16	-	-	-	17.13 ± 0.11	16.89 ± 0.12	-	-	1,77,78
WASP-26A b	7.34 ± 0.16	-	-	-	16.93 ± 0.14	16.78 ± 0.13	-	-	1,79,80
WASP-33 b	5.45 ± 0.13	-	-	14.00 ± 0.12	13.89 ± 0.23	13.406 ± 0.082	-	-	1,81,82,83
WASP-43 b	5.31 ± 0.24	-	16.80 ± 0.17	16.05 ± 0.17	15.281 ± 0.077	15.26 ± 0.074	-	-	1,84,85,86
WASP-48 b	8.34 ± 0.24	-	-	-	17.22 ± 0.11	17.03 ± 0.12	-	-	1,87,54
CoRoT-1 b	9.27 ± 0.18	-	19.31 ± 0.44	18.33 ± 0.15	18.07 ± 0.16	17.91 ± 0.13	-	- -	1,88,89,90,91
CoRoT-2A b	7.03 ± 0.14	-	-	17.3 ± 1.2	16.421 ± 0.092	16.062 ± 0.087	-	16.36 ± 0.14	1,92,89
Kepler-7b	9.76 ± 0.13	-	-	-	> 19.6	> 19.0	-	-	1,94,95
KELT-1 b	7.00 ± 0.12	-	-	-	16.165 ± 0.085	16.152 ± 0.089	-	-	1,96,97

Table B5. Absolute magnitudes for the dayside of occulting extrasolar planets in the Vega-based magnitude convention.

This paper has been typeset from a $\mathrm{T}_{\mathrm{E}} \mathrm{X} / \mathrm{LA}_{\mathrm{E}} \mathrm{X}$ file prepared by the author.

[^0]: * E-mail: triaud@mit.edu

[^1]: ${ }^{1}$ www.astro.keele.ac.uk/jkt/tepcat/

[^2]: 2 http://sha.ipac.caltech.edu/applications/Spitzer/SHA/

[^3]: ${ }^{4}$ http://sha.ipac.caltech.edu/applications/Spitzer/SHA/
 ${ }^{5}$ IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

[^4]: ${ }^{6}$ see $\S 4.4$ and 4.5 of the Spitzer Observer's Manual and http://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/warmfeatures/

