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Acceleration of the convergence of a non-overlapping domain decomposition method
by an approximate deflation technique for high-frequency wave propagation
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Abstract— The analysis of a non-overlapping domain decom-
position method with optimized transmission conditions, applied
to a simplified 1-D problem discretized by finite elements,
is performed to better understand the spectral properties of
the method. An approximate deflation preconditioner is then
introduced to modify the spectrum of the iteration operator, and
speed up the convergence of the GMRES algorithm used to solve
the substructured problem.

I. INTRODUCTION

Domain Decomposition Methods (DDM), combined to clas-
sical discretization methods and Krylov solvers, are very pow-
erful for numerically solving PDEs. Though many variations
of these methods have been described in the literature, few
of them have proved to be effective in dealing with wave
propagation, especially at high frequencies [1]. The main
reason for the poor convergence of the solvers is to be found in
the spectral properties of the associated iteration operator. It is
therefore natural to try and get more insights on the spectrum
of the operator, improve its spectral properties and speed up
convergence.

II. PROBLEM SETTING AND DDM ALGORITHM

As a simplified test problem, we solve the 1-D Helmholtz
equation with wavenumber k in an interval Q = [0,1],
with Dirichlet boundary conditions on one side and Som-
merfeld radiation condition to truncate the domain on the
other side. The domain is decomposed into N equal-size, non-
overlapping subdomains €; ;<;<, with artificial boundaries
3i; = Xj; between Q; and €2;. The iterative scheme, detailed
in [2], uses impedance-type boundary conditions on J;; and
recasts the problem in terms of the set of interface data

g={9ij,1<i#j<N,|i—j|=1})

&Lugmﬂ) + SuEmH) = —&Lug.m) + Sug»m) on ¥;;
_ ,(m)
= Yi;
with the update:
Z(;n-&-l) _ 76nu(»lm+1) + Su(7rz+1) on Zij

(m) (m+1)
= _gjz' +2Su] .

We choose the operator S = —ik, i.e. the DtN map for the
problem, for optimizing the convergence [3]. This procedure
can be rewritten as a fixed point iteration on the unknowns g:

Fg=b, with F=1I—A4, (1)

where applying the operator A amounts to solving the sub-
problems and updating g. The solution of problem (1) can
be accelerated using a Krylov subspace method, e.g. GMRES.
We are therefore interested in the spectrum of operator F’, that
strongly influences the convergence of the solver.
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Fig. 1. (a) Eigenvalues distribution and (b) convergence of the GMRES
algorithm used to solve the unpreconditioned and deflated systems. A
combination of 42 backward and forward plane waves with wavenumbers
k’pi = £(k + 5p)_10<p<10 Was used as deflation basis. N = 80 subdo-
mains ; k = 188.5.

III. SPECTRAL ANALYSIS AND APPROXIMATE DEFLATION

For the purpose of this analysis, the eigenvalues and eigen-
vectors of operator F' are computed and the eigenvalues
are plotted on Fig. 1(a). They are distributed along a circle
centered at (1,0), with some of them approaching (0,0).
These small eigenvalues cause the GMRES algorithm to fail
in building a small dimension subspace containing a good
approximation of the solution g. Using a (right) preconditioner
Qp inspired by eigenvalues deflation techniques [4], [5] to
relocate the smallest eigenvalues at (1,0), but using plane
waves with different wavenumbers k]’, as deflation vectors,
produces a modification of the spectrum such that the eigen-
values of F'Qpy are arranged on a slightly larger circle,
without the smallest ones in magnitude. The convergence of
the preconditioned system is smoother and faster, as shown on
Fig. 1(b). Further results will be included in the full paper.
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