

Calculation Of Crankshaft Twist Angle Using Multibody Simulation And Finite Element Method

Yannick Louvigny and Pierre Duysinx LTAS – Automotive Engineering - University of Liège, B52, Chemin des Chevreuils 1, B-4000 Liège, Belgium e-mail : yannick.louvigny@ulg.ac.be, p.duysinx@ulg.ac.be

Topics of the study

- Calculation of the crankshaft twist angle thanks to a finite element approach
- Dynamic simulations of a twin–cylinder boxer engine using rigid and flexible parts models
- Simulations using super element technique
- Comparison of the results obtained with this approach to the ones obtained with finite element analysis

Background

- Valve and fuel injection timing are based on crankshaft angular position for internal combustion engine (ICE)
- But crankshaft deformations are not considered
- Large crankshaft twist angle can lead to bad injection timing or to contact between pistons and valves
 - Bad combustion process => excessive fuel consumption, pollution
 - Risk of engine breakdown

Objectives

- Definition of the crankshaft twist angle and specification of how to measure it
- Calculation of the crankshaft twist angle for a complete engine cycle in steady state and for several rotation speeds
- Crankshaft model reduction to decrease calculation time (in order to study engine transient operating conditions)

Torsion

- Several definitions depending on the engine configuration and on the objectives of the calculation
 - Here, we studied the torsion of the whole crank

Simulation software

 Engine simulations are performed using finite element approach with SamcefField MECANO software developed by LMS Samtech (Siemens group) and historically by the university of Liège

The 11th World Congress on Computational Mechanics Barcelona, Spain, 20 – 25 July 2014

Twin-cylinder boxer engine

- Twin-cylinder boxer engine:
 - Flat engine with opposed cylinders and pistons moving in phase (reaching their top dead center simultaneously)
 - Naturally balanced, do not require balance shafts
 - Low center of gravity

Engine model

- Engine model is made with real geometry coming from the CAD model of a prototype engine (provided by Breuer Technical Development)
- Engine model is simplified, only the most significant mobile parts are kept for the simulations (pistons, connecting rods and crankshaft)

Engine model

- Pistons and connecting rods are considered as rigid bodies and the crankshaft is meshed with flexible finite elements thanks to the finite element approach of MECANO
- Crankshaft strains and stresses are calculated for the complete engine cycle in a dynamic simulation (with imposed crankshaft rotation speed including or not the gas pressure effect)

Gas pressure model

• Gas pressure inside a cylinder (experimental data)

Finite element model

- Classical finite element approach:
 - 283700 first order tetrahedral elements of 3 mm average size (good compromise for stresses analysis)
 - 21838 second order tetrahedral elements of 11 mm average size

Finite element model

- Multibody approach:
 - Rigid hinge model of bearing surfaces is used
 - Chung-Hulbert time integration algorithm
- Twist angle determination
 - Some particular nodes are connected to each extremities of the crankshaft and their rotation angles are measured
 - Difference between the two rotation angles = torsion
- Simulations (<u>2 engine cycles</u>) take a lot of time (50 hours for 280000 elements or 2.2 hours for 21000 elements) and computing resources

Twist angle at 2000 rpm

The 11th World Congress on Computational Mechanics Barcelona, Spain, 20 – 25 July 2014

Twist angle at 4000 rpm

The 11th World Congress on Computational Mechanics Barcelona, Spain, 20 – 25 July 2014

Super element approach

- Substructure technique used to reduce the size of a problem
- Nonlinearities are assumed concentrate in the joints
 - Motion (especially rotation) and the deformation of a body can be decoupled
 - Deformations of the body remain small and linear in a local frame attached to the body
 - The body is represented by a super element containing the internal modal information and linked to other bodies allowing to keep a relatively simple global dynamic model

Super element approach

- Simulations using super element technique require 3 steps:
- Creation step:
 - Super element of the crankshaft is created by deleting some DOF and keeping only the boundary DOF and a reduced set of eigenmodes (Craig-Bampton condensation method)
 - The mass matrix and the stiffness matrix of the crankshaft are reduced and assembled with the rest of the system like an usual finite element

Super element approach

- Calculation step:
 - Super element is assembled in the global system
 - A dynamic multibody analysis of the global system (the engine in this case) is performed
 - Results from the global simulation are obtained (position, speed, acceleration, force, moment, <u>twist angle</u>...)
- Results recovery step:
 - Some specific results of the crankshaft, for instance strains and stresses, can be recovered by a dynamic analysis of the super element

Super element model

- Dynamic simulation of the engine using a super element model of the crankshaft
 - Super element is created with the crankshaft meshed with 22000 second order tetrahedral elements of 11 mm average size and keeping 5 eigenfrequencies
 - Rigid hinge model of bearing surfaces is used
 - Chung-Hulbert time integration algorithm
 - Engine speed = 4000 rpm

Twist angle with super element Université de Liège

The 11th World Congress on Computational Mechanics Barcelona, Spain, 20 – 25 July 2014

Comparison of twist angles

The 11th World Congress on Computational Mechanics Barcelona, Spain, 20 – 25 July 2014

Crankshaft deformations

Crankshaft deformations

Computation times

- CPU times (on a quad-core 2.8 GHz computer) for a simulation of two engine cycles at 4000 rpm (0.06 s):
 - Refine finite element model : 50 hours
 - Finite element model : 2.2 hours
 - Super element model : 10 secondes + creation of the super element

Conclusions

- Multibody simulations offer interesting prospects for engine design:
 - Determinations of forces and moments acting on each parts of the mechanism
 - Flexible body dynamic simulation
 - Allows strain and stress analysis for each time steps of the simulation
 - Especially, to calculate the torsion of the crankshaft
 - But require lots of computing resources and time => need for reduced order models

Conclusions

- Super element method allows to:
 - Perform quicker simulations
 - Isolate the displacement coming from the deformation and from the rotation

Thank you for your attention