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ABSTRACT 21 

Shallow rectangular reservoirs are common structures in urban hydraulics and river engineering. 22 

Despite their simple geometry, complex symmetric and asymmetric flow fields develop in such 23 

reservoirs, depending on their expansion ratio and length-to-width ratio. 24 

The original contribution of this study is the analysis of the kinetic energy content of the mean flow, 25 

based on UVP velocity measurements carried throughout the reservoir in eleven different geometric 26 

configurations. A new relationship is derived between the specific mean kinetic energy and the 27 

reservoir shape factor. 28 

For most considered geometric configurations, leading to four different flow patterns, the 29 

experimentally observed flow fields and mean kinetic energy contents are successfully reproduced 30 

by an operational numerical model based on the depth-averaged flow equations and a two-length-31 

scale k- turbulence closure. The analysis also highlights the better performance of this depth-32 

averaged k- model compared to an algebraic turbulence model. 33 

Finally, the turbulent kinetic energy in the reservoir is derived from the experimental measurements 34 

and the corresponding numerical predictions based on the k- model agree satisfactorily in the main 35 

jet but not in the recirculation zones. 36 

 37 

Keywords: shallow reservoir, turbulent kinetic energy, UVP measurements, flow fields. 38 
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1.   INTRODUCTION 40 

Rectangular shallow reservoirs are structures commonly used in urban hydraulics and river 41 

engineering. The capacity of these reservoirs varies from a few hundred cubic meters for small 42 

urban drainage structures up to millions of cubic meters for large fluvial schemes. They may serve 43 

either as retention basins to protect against flooding or as settling basins to trap polluted or sediment 44 

material (e.g., Chau and Jiang, 2004; Wu and Chau, 2006). In the former case, deposition should be 45 

minimized, while it must be maximized in the latter case. Therefore, predicting the amount and 46 

location of deposits is essential, both for the design and the optimal operation of such reservoirs. 47 

The geometric configuration of rectangular shallow reservoirs may also be regarded as a useful 48 

idealization of more complex situations, such as river-floodplain systems (Chu et al., 2004) or 49 

applications in different fields of chemical, civil and environmental engineering (Goula et al., 2008; 50 

Lee et al., 2013; Ng and Chau 2014). 51 

Dufresne et al. (2009; 2010a) showed that the pattern of sediment deposits highly depends on the 52 

complex flow fields developing in such reservoirs, as highlighted by recent experimental research 53 

(Camnasio et al., 2011; Camnasio et al., 2013; Dewals et al., 2008; Dufresne et al., 2012). Besides a 54 

symmetric flow with a central jet (patterns S0 and S1), several asymmetric flow patterns were 55 

identified, despite the hydraulic and geometric symmetry of the experimental setups (Figure 1). In 56 

particular, the observed flow patterns are characterized by one or two reattachment points 57 

(respectively, A1 and A2 patterns). 58 

A typology of turbulent flow patterns in shallow rectangular reservoirs was given by Dufresne et al. 59 

(2010b) as a function of the non-dimensional length of the reservoir L / B and its expansion ratio 60 

B / b, where L is the reservoir length, B the lateral expansion and b the width of the channels at 61 

the outlet and inlet of the reservoir. It was shown that the transition between symmetric and 62 

asymmetric flow patterns is controlled by the shape factor S = L / B
0.6

 / b
0.4

. 63 
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The experimentally observed flow patterns were reproduced by numerical simulations either based 64 

on the Reynolds-Averaged Navier-Stokes equations (Dufresne et al., 2009) or using more 65 

operational models based on the shallow water equations (Dewals et al., 2008; Liu et al., 2010; 66 

Dufresne et al., 2011). In particular, Dewals et al. (2008) presented numerical simulations based on 67 

a finite volume model including a two-length-scale depth-averaged k- turbulence closure. Peng et 68 

al. (2011) used a Lattice Boltzmann model with turbulence modelling. 69 

Dufresne (2010a) showed that the trapping efficiency of shallow rectangular reservoirs rises 70 

abruptly when the flow pattern changes from symmetric (S0 or S1) to asymmetric (A1 or A2) as the 71 

geometry of the reservoir is varied and the shape factor S exceeds a threshold value. In this paper, 72 

we investigate for the first time the influence of this shape factor S on the mean kinetic energy 73 

content of the flow. In particular, combining experimental data of Camnasio et al. (2011) and new 74 

numerical simulations, the authors have developed a distinct relationship between the logarithm of 75 

this shape factor and the specific mean kinetic energy content of the reservoir. We also show that 76 

the depth-averaged k- turbulence model used by Dewals et al. (2008) performs well at predicting 77 

the specific mean kinetic energy content of the flow in eleven different geometric configurations. 78 

Next, we present measurements of turbulent kinetic energy for the same range of reservoir 79 

geometries and, using the depth-averaged k- model, we assess the ability of the numerical model to 80 

simulate the distribution of turbulent kinetic energy throughout the basin. This is of paramount 81 

importance to predict diffusion of suspended load and therefore location of sediment deposits. So 82 

far, existing literature on flow in rectangular shallow reservoirs provides neither measurements of 83 

turbulent kinetic energy nor corresponding numerical simulations. 84 

Dewals et al. (2008) used two different turbulence closures: either an algebraic model or a two-85 

length-scale depth-averaged k- model (e.g., Dufresne et al., 2011). However, comparisons between 86 

these turbulence closures for predicting flow in rectangular shallow reservoirs have remained 87 

limited and focused solely on the A1 flow pattern (Dewals et al., 2008). Therefore, we also discuss 88 
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here a comparison of the performance of the algebraic closure and the k- model for all flow 89 

patterns observed experimentally. 90 

2.   LABORATORY EXPERIMENTS 91 

2.1  Experimental setup 92 

Experiments have been carried out in the same facility as described by Dewals et al. (2008) and 93 

Camnasio et al. (2011). It consists in a rectangular reservoir of adjustable length L and width B. 94 

Their maximum values are, respectively, 6 m and 4 m (Figure 2). The maximum water depth in the 95 

reservoir is 0.3 m. The horizontal bottom of the reservoir is smooth and made of polyvinyl chloride 96 

(PVC). The inlet and outlet of the reservoir consist of two horizontal free-surface rectangular 97 

channels, with a constant width b = 0.25 m and a length equal to 1 m. They are located along the 98 

centreline of the reservoir, on two opposite faces of the reservoir (upstream and downstream). 99 

Movable PVC walls enable changes in the length L and the width B of the reservoir, in order to test 100 

different length-to-width ratios L/B and expansion ratios B/b. 101 

In the experiments presented here, the discharge Q is kept constant at the value Q = 7 l/s. By means 102 

of a tailgate located at the downstream end of the outlet channel, the water depth h in the reservoir 103 

is also maintained constant, at the value h = 0.2 m. At the reservoir inlet, these values correspond to 104 

a Reynolds number Rein = 4Vinh/ = 112,000 and a Froude number Frin = Vin/(gh)
0.5

 = 0.1, where Vin 105 

is the average velocity in the inlet channel, g the gravity acceleration and  the kinematic viscosity. 106 

2.2  Velocity measurements 107 

Velocity measurements have been performed using eight ultrasound velocity profilers (UVP) 108 

manufactured by Metflow (Camnasio et al., 2011). Each UVP device measures the flow velocity in 109 

one direction along a profile aligned with the instrument axis. 110 

As depicted in Figure 3, the UVP devices were arranged along two adjacent sides of a horizontal 111 

square grid of 1 m by 1 m, enabling the measurement of the two horizontal velocity components in 112 
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the sixteen points formed by the intersections of the velocity profiles measured by each UVP 113 

device. The distance between these points was about 14 cm. This square grid could be moved all 114 

over the reservoir to obtain the flow field throughout the whole reservoir surface. 115 

A preliminary investigation of the 2D horizontal velocity components was carried out at different 116 

heights z from the bottom (0.01, 0.06, 0.11 and 0.18 m) and at several locations in the reservoir, 117 

from which a mean velocity profile along the depth could be deduced. As a result, the subsequent 118 

velocity measurements have been performed by setting the UVP devices at a height 119 

z = 0.4 h = 0.08 m in order to obtain a representative value of the depth-averaged velocity. 120 

2.3  Experimental tests 121 

Experiments were carried out in the following way: water was circulated in the system until water 122 

depth and discharge reached a steady state; then, the grid formed by the UVP probes was placed at 123 

its first position in the reservoir and the acquisition of velocity data was started. After the 124 

measurements, the grid was moved in the next position in the reservoir, in order to cover 125 

progressively the entire reservoir surface. 126 

Eleven reservoir geometries have been considered, as detailed in Table 1. For a fixed aspect ratio 127 

B / b = 7.5, tests 1 to 5 focus on the effect of the non-dimensional length of the reservoir 128 

(L / B = 1.6 to 3.2) on the transition between flow patterns S0, S1 and A1. This analysis is 129 

complemented by tests 6 to 11 for non-dimensional lengths up to 34.3, but with expansion ratios 130 

varying between 0.7 and 5.5, due to constraints arising from the experimental setup. For each 131 

geometric configuration, Table 1 also provides the shape factor S = L / B
0.6

 / b
0.4

 as introduced by 132 

Dufresne et al. (2010b). 133 

3.   NUMERICAL SIMULATIONS 134 

Numerical simulations of the experimental flow configurations have been carried out with the finite 135 

volume model WOLF 2D of the University of Liege. It solves the shallow water equations on a 136 



7 

Cartesian grid and achieves second-order accuracy in space and time (e.g., Erpicum et al., 2010). 137 

The model is briefly presented hereafter, while Dewals et al. (2008) as well as Dufresne et al. 138 

(2011) describe in detail the application of the computational method for flow in rectangular 139 

shallow reservoirs. 140 

3.1  Mathematical model 141 

The shallow-water equations are used. They correspond to the Reynolds-averaged Navier-Stokes 142 

equations along the x and y directions, averaged along the water depth. Considering a horizontal 143 

bottom, they write as follows (Erpicum et al., 2009): 144 

 
2 2 1 1

2

xybx xx
hhhu hu huv gh

t x y x x y

 

  

     
      
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, (1) 145 
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2

by xy yyh hhv huv hv gh

t x y y x y
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  

     
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, (2) 146 

with t the time, u and v the velocity components along the horizontal directions x and yThe x- and 147 

y-components of the bottom shear stress,bx and by, are estimated using Darcy-Weisbach 148 

formulation:  149 

 2 2

8
  bx f

u u v



            and          2 2

8
 

by f
v u v




  , (3) 150 

in which the friction coefficient f is given by Colebrook formula, assuming a smooth bottom. 151 

The derivatives of the depth-averaged viscous and turbulent stresses xx, xy and yy are expressed 152 

using Boussinesq’s assumption formulated for a depth-averaged flow model (Erpicum et al., 2009): 153 
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,(4) 154 
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,(5) 155 

where k’ is the depth-integrated turbulent kinetic energy, while , 3D

T and 2D

T  refer, respectively, 156 

to the kinematic viscosity of water, the eddy viscosity related to bed-generated turbulence and the 157 
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eddy viscosity related to large-scale transverse shear-generated turbulence. From a local equilibrium 158 

assumption, 3D

T  is given by: 3

*

D

T vc hu  , with *u  the bottom friction velocity and cv ≈ 0.08 for 159 

non-stratified flow of uniform density along the depth (Erpicum et al., 2009). 160 

The two-dimensional large scale eddy viscosity ,2T D  is evaluated as a function of the depth-161 

integrated turbulent kinetic energy k’ and its rate of dissipation : 2

,2T D c k  . These variables 162 

are governed by two additional transport equations: 163 
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 (6) 164 
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 (7) 165 

The terms P and F, representing the production of the large scale horizontal turbulence and the 166 

effect of wall friction are given by the following expressions: 167 

 
,2T D

uh vh u v uh vh u v
P

x y x y y x y x

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, (8) 168 
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2

3
8
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
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 
 

. (9) 169 

The production term P is directly related to the gradients of horizontal velocity components and unit 170 

discharges, while the term F contributes to dissipation of turbulence. The values of the constants 171 

involved in the above equations are given following Erpicum et al. (2009) and Babarutsi and Chu 172 

(1998): c = 0.09, k = 1,  = 1.3, c1 = 1.44, c2 = 1.92 and c3 = 0.8. 173 

The predictions of the k- turbulence model are compared with those obtained with an algebraic 174 

model based on Elder formula (Fischer et al., 1979), in which the eddy viscosity is simply evaluated 175 
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as 
*T hu  . In this model, the derivatives of the depth-averaged viscous and turbulent stresses are 176 

given by: 177 

    xyxx
T T

hh u v v u
h h

x y x x y y x y
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 (11) 179 

Parameter represents an empirical coefficient, which was set here at  = 1, consistently with 180 

previous research (Dewals et al., 2008). 181 

3.2  Numerical model 182 

The numerical model handles Cartesian grids, on which the equations detailed above are solved 183 

based on a finite volume scheme. The reconstruction of the variables is performed linearly, with 184 

slope-limitation. Unlike many shallow-water models based on Riemann solvers (e.g., Lai and Khan 185 

2012), a flux-vector splitting (FVS) technique is used for the discretization of the advective terms. 186 

As shown by Erpicum et al. (2010), this FVS is robust, computationally efficient and Froude-187 

independent. The diffusive and source terms are all evaluated by a centred scheme. Since the model 188 

is used here to compute steady state flows, a dissipative first order 3-step Runge-Kutta algorithm 189 

was used for the time integration.  190 

The grid spacing used for spatial discretization is of 2.5 cm, leading to a total number of 191 

38,800 cells in the largest reservoir configuration. A grid independence test was presented by 192 

Dufresne et al. (2011) based on the grid convergence index proposed by Roache (1994). 193 

The time step used in the simulations is of the order of 5 × 10
-3

 seconds, as it is constrained by the 194 

Courant-Friedrichs-Lewy stability condition. The bottom shear stress terms are discretized semi-195 

implicitly. This enhances the stability of the scheme, at no significant extra computational cost. 196 
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3.3  Boundary and initial conditions 197 

In all simulations, the downstream water depth h = 0.2 m is prescribed as a boundary condition at 198 

the outlet, while the inlet boundary condition is a constant unit discharge hu = 0.028 m²/s, 199 

corresponding to a total discharge of 7 l/s. As detailed by Dewals et al. (2008; 2012), a slight 200 

transverse disturbance (~ 1 %) was introduced in the inflow profile of unit discharge. By acting as a 201 

seed for asymmetry in the simulation, this disturbed boundary condition enables to test the stability 202 

of the computed flow field with respect to small perturbations of the inflow. 203 

At solid walls, the component of the specific discharge normal to the wall is set to zero. As regards 204 

the discretization of the diffusive terms, the gradients of the unknowns in the direction parallel to 205 

the boundary are set to zero for simplicity, while the gradients in the direction normal to the 206 

boundary are properly evaluated by finite difference between the value at the boundary and the 207 

value at the centre of the adjacent cell. 208 

To estimate the turbulence variables at solid walls, the shear velocity is computed using to the law 209 

of the wall. The corresponding depth-integrated turbulent kinetic energy and dissipation rate are 210 

evaluated according to Erpicum et al. (2009): 211 

 
2hU

k
c





            and          
2 3h U

d




 , (12) 212 

with U the shear velocity assuming a logarithmic velocity profile near the wall,  the von Karman 213 

constant and d the distance to the wall. At inlets, the depth-integrated turbulent kinetic energy and 214 

its dissipation rate are set as follows (Choi and Garcia, 2002): 215 

 4 210k hu            and          
3 2

10
k

h
  . (13) 216 

All the numerical simulations were repeated twice, starting from two different initial conditions, 217 

corresponding respectively to water at rest (i.e., symmetric) and to an asymmetric initial flow 218 

pattern. In all considered geometric configurations, the same steady flow pattern was obtained 219 

whatever the initial conditions (symmetric vs. asymmetric), except in the transition zone (i.e., 220 
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S ~ 6.8) as detailed in section 4.2. This demonstrates that, the computed final steady flow showed 221 

some dependency on the initial conditions in the transition zone only, consistently with previous 222 

experimental observations (Dufresne et al., 2010b; Camnasio et al., 2011). 223 

4.   RESULTS 224 

4.1  Flow patterns and velocity profiles 225 

Dufresne et al. (2010b) showed that a symmetric flow pattern is observed for S below 6.2 and an 226 

asymmetric flow pattern for S above 6.8. In-between those two thresholds, the flow was reported to 227 

be in a transition zone, because it alternately showed a symmetric and an asymmetric pattern for 228 

repeated tests in the same conditions. Dufresne et al. (2010b) made no distinction between 229 

symmetric flow patterns with (S1) and without (S0) reattachment point. 230 

As detailed in Table 1, the experimentally observed flow patterns in the present study agree with the 231 

predictions of Dufresne et al. (2010b), except for tests 2 and 3 which are in or close to the transition 232 

zone. The later tests lead here to a symmetric flow field with one reattachment point on each side-233 

wall of the reservoir (S1 pattern). 234 

The numerical model, based on the depth-averaged k- turbulence closure, generally succeeds in 235 

reproducing the same flow pattern as in the experiments, except for the S1 pattern. This flow pattern 236 

was not reproduced by the numerical model, but S0 flow patterns were predicted instead. In the 237 

tested reservoir configurations, the numerical model is thus unable to reproduce the two small and 238 

slowly recirculating upstream eddies, which are observed in the experiments. This may result from 239 

three-dimensional effects which are not incorporated in the numerical model. Dewals et al. (2008) 240 

also highlighted the difficulty of reproducing with a depth-averaged model the small slowly-rotating 241 

vortices present in the upstream of the reservoir, such as in flow pattern S1. 242 

For four reservoir geometries corresponding to the four different flow patterns (Figure 4), 243 

experimentally measured cross-sectional profiles of the longitudinal velocity have been compared 244 
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with numerical results (Figure 5). The k- model is found to perform relatively well at predicting 245 

the width of the main jet and the overall velocity distribution, particularly for test 5 and, for all tests, 246 

in the downstream part of the reservoir. 247 

4.2  Mean kinetic energy 248 

To complement local comparisons along cross-sections, the kinetic energy in the reservoir has been 249 

used as a global indicator to compare measured and computed velocity fields. The kinetic energy 250 

content Etot (m
4
/s

2
) of the reservoir is defined as the integral over the reservoir surface of the local 251 

kinetic energy per unit mass associated to the depth-averaged velocity: 252 

  2 2

tot

1

2
A

E u v dA   (14) 253 

with A the reservoir surface (m
2
). Integral (14) can be evaluated numerically either from the grid of 254 

measured velocity components or from the simulated values in each computational cell. To avoid 255 

the dependence of this indicator to the scale of the considered reservoir, the specific energy content 256 

espec = Etot / A (m
2
/s

2
) has been introduced in this study. This specific energy is further normalized 257 

by a reference specific energy eref to lead to a non-dimensional indicator: end = espec / eref. 258 

The reference specific energy is defined as the specific energy corresponding to an idealized 259 

straight jet in the middle of the reservoir: 260 

 

2 2

ref 2

1 1

2 2

Q bL Q
e

bh BL bBh

 
  

 
. (15) 261 

Consequently, the non-dimensional indicator end takes values of the order of unity and would equal 262 

unity in the hypothetical case of a flow pattern with zero-velocity in the recirculation zones and no 263 

spreading of the jet. 264 

The value of the non-dimensional specific energy content end as derived from the velocity 265 

measurements is shown in Figure 6 as a function of the shape parameter S represented on a 266 

logarithmic axis. The indicator end monotonously decreases as the shape parameter increases, which 267 

is in qualitative agreement with the higher trapping efficiency reported for reservoirs of shape 268 
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parameter higher than the threshold value 6.8 (Dufresne et al., 2010a). In addition, as shown in 269 

Figure 6, the values of end show a distinctive linear tendency, which can be represented by the 270 

following linear relationship between end and the logarithm of S: 271 

 nd

cr

1 1
1 ln

2 2

S
e

S

 
   

 
 (16) 272 

where Scr = 6.5 is the value of the shape parameter at the center of the transition zone, extending 273 

from S = 6.2 to S = 6.8 as defined by Dufresne et al. (2010b). 274 

Although surprisingly simple, relationship (16) could not be predicted nor derived from more 275 

theoretical considerations. In contrast, it confirms once again the important role of the shape factor 276 

S, based on the definition introduced by Dufresne et al. (2010) and, therefore, the relevance of using 277 

this parameter to characterize the influence of the reservoir geometry on the flow characteristics. 278 

Indeed, it enables to lump all relevant geometric parameters (L, B, B, b) into one single non-279 

dimensional number, S. Similarly, in another recent investigation, Peltier et al. (2014a; b) also 280 

highlighted the ability of the parameter S to reflect the overall influence of the reservoir geometry 281 

on the occurrence of meandering flow in such rectangular shallow reservoirs. 282 

Figure 6 reveals that two different flow patterns are obtained for nearly similar values of S slightly 283 

higher than Scr, which is consistent with the experimental evidence of co-existence of both flow 284 

patterns S0 and A1 within the transition zone (Camnasio et al., 2011; Dufresne et al., 2010b). 285 

Next, a comparison between the measured specific kinetic energy and the numerical predictions is 286 

given in Figure 7. The results of the k- model agree relatively well with the measurements, as the 287 

numerical predictions of the specific kinetic energy lead to a mean relative error of 10% and the 288 

relative errors range in-between 3% and 20%. 289 

4.3  Turbulent kinetic energy 290 

The instantaneous horizontal velocity components u and v can be decomposed in the following way: 291 

u = u  + u’ and v = v  + v’. u  and v  represent time-averaged quantities, while u’ and v’ are the 292 
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fluctuating components of velocity due to turbulence. Neglecting the small contribution which 293 

would be given by the vertical velocity fluctuating component w’, the turbulent kinetic energy per 294 

unit mass k can be defined as: 295 

  2 21

2
k u v   . (17) 296 

The experimental values of k were compared to the values of k’ derived from the k- numerical 297 

model. Since this model provides the depth integrated value k’ ≈ k h (Erpicum et al., 2009), the 298 

model output has been simply divided by the water height h to obtain the usual form of turbulent 299 

kinetic energy k. 300 

In Figure 8, the experimental and the numerical profiles of k for different cross sections of the four 301 

reservoir configurations are shown. Along the main jet, where turbulent kinetic energy takes its 302 

maximum values (of the order of 10
-4

 m
2
/s

2
), the experimental values match reasonably well the 303 

turbulence values resulting from the numerical model. On the contrary, the turbulence in the 304 

recirculation zones, outside of the main jet, is in general significantly overestimated by the 305 

numerical model. 306 

5.   DISCUSSION 307 

Besides the depth-averaged k- model discussed above, a simple algebraic model based on Elder 308 

formula (see Equ. (10)-(11)) is another turbulence closure which was also used in previous 309 

literature about rectangular shallow reservoirs, particularly for the experimental setup considered 310 

here (Dewals et al., 2008; 2012; Dufresne et al., 2011). Therefore, we compare here the results of 311 

this algebraic turbulence closure with those of the depth-averaged k- model. 312 

While the k- model succeeds in predicting the observed flow patterns in most geometric 313 

configurations, the predictions of the algebraic turbulence model show more discrepancies 314 

compared to the experiments (Table 1). First, the transitions between the symmetric flow field S0 315 

and the asymmetric flow fields A1 and A2 are shifted, as highlighted by tests n°2 and n°9. Second, 316 
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this model fails to reproduce the A2 flow pattern observed for high values of the shape parameter 317 

and predicts instead a plug flow (tests n°10 and n°11).  318 

The cross-sectional velocity profiles are better reproduced by the depth-averaged k- model than by 319 

the algebraic one, which systematically overestimates the jet diffusion in the reservoir (Figure 5). In 320 

particular, the velocity profiles predicted by the algebraic model for the reservoir of 6 m × 0.75 m 321 

are almost uniform along the reservoir width (plug flow) for x ≈ 2 m and above, in contrast with the 322 

A2 flow pattern observed experimentally. 323 

Similarly, for the mean kinetic energy of the flow, the predictions of the k- model agree 324 

significantly better with the measurements than those from the algebraic model (Figure 7). Indeed, a 325 

significant positive bias is found in the results of the algebraic model, which systematically 326 

overestimates the measurements except for the two configurations in which a plug flow is predicted 327 

instead of an A2 flow pattern (tests n°10 and 11). The root-mean-square error in the case of the 328 

algebraic model (7.2 × 10
-4

 m
2
/s

2
) is more than three times higher than for the k- model (2.1 × 10

-4 
329 

m
2
/s

2
). This confirms the poorer performance of the algebraic model compared to the k- model, as 330 

highlighted above by the comparisons of velocity fields and cross-sectional profiles. 331 

6.   CONCLUSIONS 332 

This paper presents the results of experimental measurements carried out for eleven different 333 

configurations of rectangular shallow reservoirs. The expansion ratio and the length-to-width ratio 334 

of the reservoir have been varied, whereas the hydraulic conditions were kept constant. The flow 335 

fields were measured experimentally throughout the reservoir by means of UVP probes. The 336 

observed flow patterns are consistent with the previous findings by Dufresne et al. (2010b) 337 

regarding the influence of the reservoir geometry on the flow pattern and the role of the shape 338 

factor S. 339 
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For the first time, the mean kinetic energy content of the flow has been analysed as a function of the 340 

geometry of the reservoir. Based on the experimental measurements, a new and simple relationship 341 

between the shape factor S and the non-dimensional specific energy content of the flow has been 342 

derived: the specific mean kinetic energy, normalized by a reference value, is a linear function of 343 

the logarithm of the reservoir shape factor. 344 

We also compare the experimentally measured flow fields to the results of depth-averaged 345 

numerical simulations based on a two-length-scale k- model. This model succeeds in predicting the 346 

observed flow fields fairly accurately, except for small recirculations in the symmetric flow pattern, 347 

which are not reproduced. The specific mean kinetic energy of the entire reservoir has also been 348 

used as a global indicator to compare measured and simulated flow fields. It confirms the ability of 349 

the depth-averaged k- model to reproduce the observed mean kinetic energy of the flow. 350 

Next, an algebraic turbulence model has been tested; but it leads to incorrect flow patterns for 351 

several geometric configurations and the diffusion of the jet in the computed results is strongly 352 

overestimated compared to the measured velocity profiles. 353 

Finally, the k- model has been shown to provide satisfactory predictions of the turbulent kinetic 354 

energy in the main jet, but it leads to systematic overestimations in the recirculation zones, where an 355 

accurate prediction of turbulent diffusion is however essential to predict mixing of suspended 356 

sediments and location of deposits.  357 

For future developments, an enhanced calibration of the k- model may be necessary to improve 358 

these computational results, as well as more advanced turbulence models such as large eddy 359 

simulations. The remaining discrepancies may also result from the three-dimensional nature of the 360 

flow in the recirculation zones, where secondary currents may be involved. This should be further 361 

investigated using a 3D flow model (e.g., Haun et al., 2011; Chau and Jiang, 2001). More advanced 362 

experimental techniques for flow visualization should also be applied in order to verify the 2D or 363 

3D nature of the flow fields, particularly as a function of the shape factor. 364 
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Similarly, the overall influence of hydraulic conditions on the patterns of velocity, mean kinetic 365 

energy and turbulent kinetic energy should be further investigated. This can be achieved by using 366 

validated numerical models such as the model presented here. In addition to the geometry, the main 367 

hydraulic parameters, such as Reynolds number, Froude number and shallowness of the flow, 368 

should be varied systematically to come up with sufficiently generic conclusions. 369 

Finally, simulations predicting the amount and location of sediment deposits should be undertaken 370 

based either on standard morphodynamic models relying on a continuous description of the solid 371 

phase or on Lagrangian approaches for the solid particles (e.g., Tarpagkou and Pantokratoras, 372 

2013). More research is needed to successfully reflect in these simulations the complex interactions 373 

between the mean flow, the turbulence and the convective as well as diffusive transport of 374 

sediments (e.g., Mariotti et al., 2013). 375 

376 



18 

NOMENCLATURE 377 

L = Reservoir length (m) 378 

B = Reservoir width (m) 379 

h = Water depth (m) 380 

b = Width of inlet channel (m) 381 

Etot = Kinetic energy content of the reservoir (m
4
/s

2
) 382 

espec= Specific energy content of the reservoir (m
2
/s

2
) 383 

end= Non-dimensional indicator of the specific energy content of the reservoir (-) 384 

eref= Reference specific energy content of the reservoir (m
2
/s

2
) 385 

Jx,y  = components of the friction slope along the x and y directions (-) 386 

k = Turbulent kinetic energy per unit mass (m
2
/s

2
) 387 

k’ = Depth-integrated turbulent kinetic energy per unit mass (m
³
/s

2
) 388 

Frin = Froude number of the inlet channel (-) 389 

g = Gravitational acceleration (m/s
2
) 390 

Q = Discharge (m
3
/s) 391 

Rein = Reynolds number of the inlet channel (-) 392 

u = Reynolds-averaged and depth-averaged horizontal velocity component in x direction (m/s) 393 

u’ = Fluctuating horizontal velocity component in x direction (m/s) 394 

u  = Time-averaged velocity component in x direction (m/s) 395 

S = Shape factor (-) 396 

Scr = Shape parameter ate the centre of the transition zone (-) 397 

A = Reservoir surface (m
2
)  398 

t = time (s) 399 

u* = Friction velocity (m/s) 400 
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v = Reynolds-averaged and depth-averaged horizontal velocity component in x direction (m/s) 401 

v’ = Fluctuating horizontal velocity component in y direction (m/s) 402 

V = Depth-averaged velocity (m/s) 403 

Vin = Average inlet-channel velocity (m/s) 404 

v = Instantaneous horizontal velocity component in y direction (m/s) 405 

w’ = Fluctuating vertical velocity component in z direction (m/s) 406 

x = Longitudinal coordinate along reservoir length (m) 407 

y = Transversal coordinate along reservoir width (m)  408 

z = Distance along the vertical direction (m) 409 

zb = Elevation of the bottom from a zero reference level (m) 410 

mpirical coefficient of the algebraic model (-) 411 

 = Eddy viscosity of water (m
2
/s) 412 

 = turbulent stress (N/m²) 413 

B = Lateral expansion of the reservoir (m) 414 

 = Water density (N/m
3
) 415 

 = rate of dissipation of turbulent kinetic energy (m
2
/s

3
) 416 

 417 
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FIGURES AND TABLES 495 

 496 

Figure 1: Main flow patterns observed in shallow rectangular reservoirs: the flow shows zero, one 497 

or two reattachment points () depending on the reservoir geometry. Adapted from Dufresne et al. 498 

(2012). 499 

 500 

 501 

Figure 2: Sketch of the experimental reservoir and definition of main geometric notations. 502 
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 503 

Figure 3: Setup of eight UVP devices to enable two-component velocity measurements at sixteen 504 

different points in the flow (○). 505 

 506 

 507 

Figure 4: Flow fields computed in four reservoir geometries using the depth-averaged k- model: 508 

(a) Test 5, (b) Test 6, (c) Test 7 and (d) Test 10. 509 

 510 
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Test 5 

3 m × 4 m 

A0 pattern 

Test 6 

4 m × 3 m 

S1 pattern 

Test 7 

4 m × 2 m 

A1 pattern 

Test 10 

6 m × 0.75 m 

A2 pattern 
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Figure 5: Observed and computed cross-sectional velocity profiles for the four reservoir geometries 511 

corresponding to tests 5, 6, 7 and 10: experimental (●) and simulated with the k- model (——) and 512 

with the algebraic turbulence model (– – –). 513 
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Figure 6: The non-dimensional specific energy content derived from velocity measurements varies 518 

linearly with the logarithm of the shape factor S = L / B
0.6 

/ b
0.4

. 519 
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 521 

Figure 7: Compared to the algebraic turbulence model, the k- model leads to more accurate 522 

predictions of the specific kinetic energy content espec. 523 

 524 

 525 

 526 

Figure 8: Comparison between measured (+) and computed (——) turbulent kinetic energy k for the 527 

different types of flow patterns: (a) L = 3 m, B = 4 m, pattern S1; (b) L = 4 m, B = 3 m, pattern S0; 528 

(c) L = 4 m, B = 2 m, flow pattern A1; (d) L = 6 m, B = 0.75 m, flow pattern A2. The dashed lines 529 

locate each cross-section for which comparisons are presented and they also indicate the zero level 530 

for the corresponding representation of turbulent kinetic energy. 531 
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Table 1: Length L, width B, non-dimensional length L / B, expansion ratio B / b, shape parameter 533 

S = L / B
0.6

 / b
0.4

 as well as observed and simulated flow patterns in the considered geometric 534 

configurations. 535 

Test ID L (m) B (m) L / B (-) B / b (-) S (-) 
Flow patterns 

Observed k- model Alg. mod. 

1 6 4 3.2 7.5 7.2 A1 A1 A1 

2 5.8 4 3.1 7.5 6.9 S1 S0 A1 

3 5.3 4 2.8 7.5 6.3 S1 S0 S0 

4 5 4 2.7 7.5 6.0 S1 S0 S0 

5 3 4 1.6 7.5 3.6 S0 S0 S0 

6 4 3 2.9 5.5 5.8 S1 S0 S0 

7 4 2 4.6 3.5 7.5 A1 A1 A1 

8 4 1 10.7 1.5 12.5 A1 A1 A1 

9 6 1 16.0 1.5 18.8 A1 A1 A2 

10 6 0.75 24.0 1 24.0 A2 A2 Plug flow 

11 6 0.6 34.3 0.7 29.7 A2 A2 Plug flow 

 536 
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