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SUMMARY

Our understanding of the mechanisms involved
in mitochondrial biogenesis has continuously
expanded during the last decades, yet little is known
about how they are modulated to optimize the
functioning of mitochondria. Here, we show that
mutations in the ATP binding domain of Bcs1, a
chaperone involved in the assembly of complex III,
can be rescued by mutations that decrease the
ATP hydrolytic activity of the ATP synthase. Our re-
sults reveal a Bcs1-mediated control loop in which
the biogenesis of complex III is modulated by the en-
ergy-transducing activity of mitochondria. Although
ATP is well known as a regulator of a number of
cellular activities, we show here that ATP can be
also used to modulate the biogenesis of an enzyme
by controlling a specific chaperone involved in its
assembly. Our study further highlights the intramito-
chondrial adenine nucleotide pool as a potential
target for the treatment of Bcs1-based disorders.

INTRODUCTION

Mitochondrial oxidative phosphorylation (OXPHOS), which

provides most of the ATP in animal cells, relies upon five multi-

subunit complexes (I–V) embedded within the inner membrane

of mitochondria. The respiratory complexes (I–IV) transfer elec-

trons to the final acceptor, oxygen. This transfer is coupled to

proton translocation across the inner membrane, and the result-

ing transmembrane proton gradient is used by the ATP synthase

(complex V) to synthesize ATP from ADP and inorganic phos-

phate. Due to its dual genetic origin, nuclear and mitochondrial,

the biogenesis of the OXPHOS system is an intricate process

involving numerous factors that execute highly specific functions

ranging from the synthesis of the individual subunits to their

assembly into the respiratory complexes. In addition, the respi-

ratory complexes are organized into supramolecular structures

or ‘‘supercomplexes,’’ also called respirasomes, containing
Cell
complexes I, III, and IV in higher eukaryotes and complexes III

and IV in yeast (Schägger and Pfeiffer, 2000; Cruciat et al.,

2000; Heinemeyer et al., 2007; Dudkina et al., 2011).

Complex III has a central position in the respiratory chain,

allowing ubiquinol oxidation and cytochrome c reduction. It is

an important site of proton translocation and production of

reactive oxygen species.Complex III consists of 11or 10different

subunits in mammals and yeast, respectively, three of which are

catalytic: cytochrome b (Cytb), cytochrome c1 (Cyt1) and the

Rieske-FeS protein Rip1 (Iwata et al., 1998; Hunte et al., 2000).

In all eukaryotes, Cytb is encoded by the mitochondrial DNA,

whereas the other complex III subunits have a nuclear origin.

The complex is assembled through a dynamicmodular pathway,

starting with an early core containing Cytb and the subunits

Qcr7 and Qcr8 and finishing with the incorporation of Rip1

(Figure 1A; for reviews, see Zara et al., 2009; Smith et al., 2012).

Two proteins, Mzm1 and Bcs1, are required during the late

stages of complex III assembly in yeast. Mzm1 appears to stabi-

lize Rip1 (Cui et al., 2012). Deficiencies of Bcs1 lead to the accu-

mulation of an inactive pre-complex III (pre-III) lacking Rip1

(Nobrega et al., 1992; Cruciat et al., 1999; 2000; Conte et al.,

2011). Bcs1 mediates the translocation of Rip1 from the matrix

to the intermembrane space, and the release of Rip1 depends

on the hydrolysis of Bcs1-bound ATP (Wagener et al., 2011).

Bcs1 is detected in a high-molecular-weight complex that is

anchored to the inner membrane and protruding into the matrix.

An internal signal within the N-terminal domain targets Bcs1 to

mitochondria (Fölsch et al., 1996). Bcs1 contains a Bcs1-specific

domain and a highly conserved AAA region typical of the AAA-

protein family (ATPase associated with diverse cellular activities;

Figure 1B). This region contains the Walker A and B motifs of

P loop ATPases involved in ATP binding and hydrolysis as well

as a number of additional conserved structural elements such

as the SRH (second region of homology). AAA proteins drive

ATP-dependent dissociation, unfolding, or folding of nucleic

acids and proteins (for review, see Hanson and Whiteheart,

2005). In mitochondria, the AAA proteins play a central role in

the biogenesis and quality control of proteins (Gerdes et al.,

2012).

Mutations in the human gene BCS1L (BCS1-like) are the most

frequent nuclear mutations resulting in complex III-related
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Figure 1. The bcs1-F342CMutation Located

in the AAA Domain of Bcs1 Affects the

Assembly of Complex III and of Supercom-

plexes III/IV

(A) Schematic representation of the modular as-

sembly pathway of complex III. The three catalytic

subunits, Cytb, Cyt1, and Rip1, as well as Bcs1 are

in bold.

(B) Schematic representation of the Bcs1 protein.

Positions of the transmembrane domain (TM),

Bcs1-specific domain (gray), and the AAA domain

with the positions of Walker A (red), B (purple),

and SRH (blue) motifs and the amino acid F342

(green, *) are indicated. See also Figure S1.

(C) Theoretical structural model of the AAA domain

of the yeast Bcs1 (amino acids 219–456; Nouet

et al., 2009). The nucleotide (ADP), the main

conserved motifs of AAA proteins, and the residue

F342 are indicated. The figure was generated with

the PyMOL v1.3 software.

(D) Dilution series of cells from WT and bcs1-

F342C were spotted on fermentable (glucose) and

respiratory (glycerol) media and incubated for

4 days at 28�C.
(E) Mitochondrial complexes were analyzed by

BN-PAGE and immunoblotted with antibodies

against Cyt1, Cox2, Bcs1, and Atp2. Positions

of the supercomplexes III2 + IV2 and III2 + IV,

the 500 kDa precomplex III (pre-III), dimers of

complex IV (IV2), dimers (V2) and monomers (V)

of ATP synthase, as well as the positions of the

low-amount band (#) and the band sub-V, are

indicated. *, nonspecific band revealed by the

anti-Bcs1 antibody. Positions of the protein

molecular mass markers (669 and 440 kDa) are

indicated. See also Figure S2.

(F) Mitochondrial complexes from WT and

bcs1-F342C were analyzed by a first-dimension

BN-PAGE followed by a second-dimension

SDS-PAGE and then immunoblotted with anti-

bodies against Rip1, Cyt1, Cox2, Atp2, Atp4, and Atp6. Positions of the protein molecular mass markers are indicated.

(G) Mitochondrial proteins purified from WT, bcs1-F342C, Dbcs1, and Drip1 strains were analyzed by SDS-PAGE and immunoblotted with antibodies against

Cytb, Cyt1, Rip1, Cox2, Atp2, and Nam1 as loading control. In our mitochondrial preparations fromWT, the intermediate (i-Rip1) and mature forms of Rip1 were

detected with Rip1 antibodies.

(H) Mitochondrial proteins purified from the QCR7-c-Myc and QCR7-c-Myc bcs1-F342C strains were subjected to coimmunoprecipitation experiments. The

fractions were analyzed by SDS-PAGE and immunoblotted with antibodies against Rip1, Cytb, Cox2, Atp3, and porin as negative control. T, total; S, supernatant;

W, washing; IP, immunoprecipitate.
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pathologies; very different clinical phenotypes are associated

with these mutations, ranging from the mild Bjornstad syndrome

to the lethal GRACILE syndrome (e.g., de Lonlay et al., 2001;

Visapää et al., 2002; De Meirleir et al., 2003; Hinson et al.,

2007; Fernandez Vizarra et al., 2007;Morán et al., 2010; Kotarsky

et al., 2010; Levéen et al., 2011). An extensive mutational study

of yeast Bcs1 has revealed the importance of the residues

located at the junction between the Bcs1-specific and the AAA

domains for the activity and stability of the protein (Nouet

et al., 2009). Interestingly, several human pathogenic mutations

are located at this junction.

In this paper, we report the identification of extragenic

compensatorymutations of respiratory-deficient bcs1mutations

located in the ATP binding domain of the yeast protein, among

which one is the equivalent of a mutation found in a human

patient. Remarkably, the compensatory mutations preferentially

target the mitochondrial ATP synthase and lead to a strong
568 Cell Metabolism 18, 567–577, October 1, 2013 ª2013 Elsevier In
decrease in the mitochondrial ATP hydrolytic activity while

maintaining a sufficient level of ATP synthesis. We further show

that increasing the ATP concentration in an in vitro assay also

compensates for the Bcs1 deficiency. Based on these findings,

we propose a model in which the ATP dependency of the

protein Bcs1 is not just a requirement for its chaperon activity

but also a way to couple the rate of complex III biogenesis to

the energy-transducing activity of mitochondria.

RESULTS

Characterization of the bcs1-F342C Mutant
Previously, we isolated a yeast mutant with the single amino

acid substitution F342C that modifies a highly conserved region

of the AAA domain of Bcs1 (Nouet et al., 2009; Figure S1 avail-

able online). According to the theoretical three-dimensional

(3D) model of the yeast Bcs1 protein (Figure 1C), the residue
c.
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F342 is located in the vicinity of the conserved SRH motif (see

also Discussion). The bcs1-F342C mutant was unable to grow

on respiratory substrates (Figure 1D), and it did not affect the

steady-state level and oligomerization of Bcs1 (Figure 1E), sug-

gesting that it probably decreased the activity of the protein.

As theOXPHOScomplexes are organized into supramolecular

structures, we have analyzed the effect of the bcs1-F342C

mutation on supercomplexes III/IV and on ATP synthase oligo-

mers. Under the blue native (BN)-PAGE conditions we used,

complexes III and IV were mainly detected in the wild-type

(henceforth designated as WT) as two supercomplexes, III2IV2

and III2IV (Figures 1E and 1F). High-molecular-weight complexes

revealed with the Cyt1 and Cox2 antibodies were detected in the

mutant bcs1-F342C. Two-dimensional BN-SDS analysis (2D)

has shown the absence of Rip1 in these complexes, indicating

that the low amount of Rip1 that accumulates in the bcs1-

F342Cmutant (70% versusWT, Figure 1G) was not incorporated

into complex III. In addition, the typical pre-complex III (pre-III)

previously observed in strains that fail to assemble Rip1 (for re-

view, see Zara et al., 2009; Smith et al., 2012) showed a strong

signal with anti-Cyt1 but a very weak signal with anti-Cox2, as

shown on 2D gels. The weak anti-Cox2 signal in this regionmight

correspond to partial dissociation of higher-molecular-weight

Cox2-containing complexes, yielding some subcomplexes that

comigrate with pre-III. Finally, the complexes around 440 kDa

that are detected with anti-Cox2 in higher abundance in the

mutants probably correspond to free complex IV dimers. Using

a c-Myc-tagged version of the Qcr7 subunit of complex III,

Cox2 was efficiently coimmunoprecipitated in the WT and the

bcs1-F342C mutant, whereas Rip1 was only detected in the

WT immunoprecipitate (Figure 1H). These findings indicate that

pre-III can still interact with complex IV, but the integration of

complex IV into supercomplexes is compromised.

ATP synthase in BN-PAGE was revealed using antibodies

against the subunit Atp2 (Figure 1E). This enzyme was detected

mainly asmonomers (V) and dimers (V2) both inWT andmutants.

The faint band between V and V2 (denoted with a #) also reacted

with antibodies against several other ATP synthase subunits

(Figure S2), suggesting that it could be a dimer that has lost

some subunits during preparation and/or electrophoresis of

the mitochondrial samples. In comparison to V and V2, the

amount of this bandwas too low to be detected in 2D (Figure 1F).

An additional Atp2-containing complex of smaller size (sub-V)

migrating ahead of free F1 was repeatedly observed in the

bcs1-F342C mutant as well as in Dbcs1 and Drip1 strains, but

not in the WT or in other mutants affecting complex III, indicating

that sub-V resulted from a specific lack in Rip1 (Figures 1E and

S2). Due to its low amount, this complex could no longer be

detected in a 2D experiment (Figure 1F). Thus, the bcs1-F342C

mutation only seems to have a slight effect on the integrity of

ATP synthase.

Mutations in the Genes Encoding F1 Subunits
of ATP Synthase Rescue the bcs1-F342C Mutant
As extragenic compensatory mutations may uncover unpredict-

able networks of interacting cellular functions and proteins, we

have applied this approach to the bcs1-F342C mutant in order

to better understand howmitochondria modulate Bcs1 function.

We analyzed four independent revertants of the bcs1-F342C
Cell
mutant (called R2, R3, R12, and R18; Table S1) displaying

various respiratory-sufficient growth phenotypes (Figure 2A).

Each revertant resulted from a compensatory mutation located

in another nuclear gene that we have identified through a com-

bination of molecular cloning and gene candidate approaches

(see Experimental Procedures). DNA sequencing showed that

the bcs1-F342C mutation was still present in each revertant,

and we found missense mutations within the genes ATP1

(atp1-V68G) in R3 and ATP2 (atp2-H400Y, atp2-V499F, and

atp2-A48D) in R2, R12, and R18. The genes ATP1 and ATP2

encode the a and b subunits of the catalytic sector (F1) of the

ATP synthase (Figure 2B). Below, we describe a thorough

biochemical analysis of the properties of the two mutations,

atp1-V68G and atp2-A48D, that exhibited the strongest com-

pensatory effects when associated with the bcs1-F342C muta-

tion in the R3 and R18 revertants.

The level of mature Rip1 and the insertion of functional com-

plex III within supercomplexes was substantially improved in

the bcs1-F342Cmutant by the atp1-V68G and atp2-A48Dmuta-

tions, as revealed by SDS and BN-PAGE analyses (Figure 2C)

and ubiquinol-cytochrome c oxidoreductase activity measure-

ments (Figure 2D). As a result, the oxygen consumption rate in

mitochondria was substantially improved, with values estimated

at �70% in R3 and �30% in R18 with respect to WT, versus

<10% in the bcs1-F342C mutant (Figure 2E and Table S2). The

residual oxygen consumption activity in the bcs1-F342C mutant

did not induce any significant mitochondrial ATP synthesis,

whereas a substantial ATP production of �35% and �15%

with respect to WT was observed in R3 and R18, respectively.

Thus, the atp1-V68G and atp2-A48D mutations improve the

assembly of functional complex III and its insertion into super-

complexes and restore mitochondrial ATP synthesis in the

bcs1-F342C mutant.

The F1 Mutations atp1-V68G and atp2-A48D Lead
to a Strong Decrease in the ATP Synthase Assembly
and Hydrolytic Activity
We next determined how the atp1-V68G and atp2-A48D muta-

tions impact ATP synthase. Being recessive, these mutations

were expected to partially impair the function of the two F1 sub-

units. This possibility was examined first by measurements

of the ATP hydrolytic activity of ATP synthase. Normally, when

properly assembled into F1 oligomers, the Atp1 and Atp2

proteins are responsible for �80%–90% of the ATP hydrolytic

activity of mitochondria. While this activity was mostly unaf-

fected in the bcs1-F342C mutant, it was drastically reduced by

95% in R3 and 80% in R18 with respect to WT (Figure 3A and

Table S3). Similar deficits in ATP hydrolytic activity were

observed in the single mutants atp1-V68G and atp2-A48D. As

revealed by BN-PAGE, both R3 and R18, as well as the single

atp1 and atp2mutants, had a reduced content of fully assembled

F1Fo complexes, and there was no indication of accumulation of

free F1 (Figure 3B). However, despite the reduced content in F1,

the steady levels of the Atp1 and Atp2 were essentially unaf-

fected (Figure 3C). Previous work has shown that these proteins

show a high tendency to form large inclusion bodies in the mito-

chondrial matrix when they cannot associate with each other

(Ackerman and Tzagoloff, 1990; Lefebvre-Legendre et al.,

2005). Aggregates strongly enriched in Atp1 and Atp2 proteins
Metabolism 18, 567–577, October 1, 2013 ª2013 Elsevier Inc. 569



Figure 2. The bcs1-F342C Mutation Is

Compensated for by Mutations in F1 Sub-

units of the Mitochondrial ATP Synthase

R2, bcs1-F342C atp2-H400Y; R3, bcs1-F342C

atp1-V68G; R12, bcs1-F342C atp2-V499F; R18,

bcs1-F342C atp2-A48D.

(A) Dilution series of cells from WT, bcs1-F342C,

and the four revertants, R2, R3, R12, and R18 (see

Table S1) were grown for 3 days at 28�C.
(B) The a-F1, b-F1, and g subunits (Atp1 in orange,

Atp2 in green, Atp3 in gray) are represented

according to the structure of the bovine ATP

synthase (Abrahams et al., 1994). The figure was

generated with the VMD 1.9.1. software. The mu-

tations identified in the four revertants are repre-

sented as blue (atp1) and red (atp2) beads. The

inner membrane (IM) is at the top of the figure.

(C) Mitochondrial proteins from WT, bcs1-F342C,

R3, and R18 were analyzed by SDS-PAGE and

BN-PAGE and immunoblotted with antibodies

against Rip1 and Nam1 (SDS) or Cyt1 (BN) (see

Figure 1F legend).

(D) The ubiquinol cytochrome c oxidoreductase

activity (complex III activity) was measured in

purified mitochondria. The activities of the three

mutants are expressed as a percentage of the

wild-type activity (1,800 nmol of reduced cyto-

chrome c/min/mg of proteins). Data represent

the mean of three independent experiments. Data

are represented as mean ± SEM.

(E) The rates of oxygen consumption and ATP

synthesis were measured on fresh, osmotically

protected mitochondria with NADH as a respira-

tory substrate and after the addition of ADP (see

Tables S2 and S3). Both the O2 consumption and

the ATP synthesis are represented as a percent-

age of the wild-type measurements. Data are

represented as mean ± SEM.
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were indeed observed on electronic micrographs of atp1-V68G

and atp2-A48D cells (Figure S3). Thus, the lowering in mito-

chondrial ATP hydrolytic activity induced by the atp1-V68G

and atp2-A48D mutations is mainly caused by a decreased

ability of the Atp1 and Atp2 proteins to assemble with each

other or by a diminished stability of the F1 oligomers. As a result

of this lower yield in F1, the ATP synthase proton-translocating

domain Fo, whose assembly is dependent on that of F1 (Rak

et al., 2009), also accumulated less efficiently in the atp1-V68G

and atp2-A48D mutants, as shown by their low steady levels in

the Atp6, a main component of the Fo (Figure 3C).

The F1 Mutations atp1-V68G and atp2-A48D Lower
the Energization of the Mitochondrial Inner
Membrane by ATP
The influence of the bcs1-F342C, atp1-V68G and atp2-A48D

mutations was further investigated by mitochondrial membrane

potential (DJ) in vitro analyses. DJ mainly results from the

proton translocation by the respiratory complexes and the ATP

synthase. Consistent with its very low respiratory activity, the

membrane was poorly energized by ethanol in the bcs1-F342C

mutant in comparison to WT, whereas DJ was restored in the

revertants R3 and R18 due to their improved capacity to

assemble complex III. In a first series of experiments (Figure 4A),
570 Cell Metabolism 18, 567–577, October 1, 2013 ª2013 Elsevier In
we tested the effect of the addition of a small amount of ADP,

which induces a DJ consumption while imported into mito-

chondria. Return to the potential established before the addition

of ADP, which reflects its phosphorylation by the ATP synthase,

was null in the bcs1-F342C mutant and much slower in R3 and

R18 than in theWT. In a second series of experiments (Figure 4B),

we directly evaluated the proton pumping activity of the ATP

synthase in the presence of a large excess of ATP. Before the

addition of ATP, the mitochondria were treated with KCN in

order to release, from the F1, the IF1 peptide that inhibits the

ATP hydrolytic activity of F1 (Venard et al., 2003). Consistent

with their high levels of assembled and functional F1Fo com-

plexes, both the WT and bcs1-F342 mutant can efficiently

energize the membrane by hydrolyzing the exogeneous ATP,

whereas R3 and R18 cannot, which is consistent with the ATP

hydrolysis assays, showing the major impact of the atp1 and

atp2 mutations on the ATP hydrolytic activity of F1.

A Specific Mutation in the FO Subunit Atp6 also Rescues
the bcs1-F342C Mutant
In order to better understand the functional links between ATP

synthase and Bcs1, we have tested other mutations in ATP

synthase for their capacity to rescue the bcs1-F342C mutant.

We selected three mutations (atp6-W136R, atp6-L183P, and
c.



Figure 3. The atp1-V68G and atp2-A48D Mutations Affect the

Assembly of ATP Synthase and Lead to a Strong Decrease in the

Hydrolytic Activity of F1

Mitochondria were purified from WT, bcs1-F342C, R3 (bcs1-F342C atp1-

V68G), R18 (bcs1-F342C atp2-A48D), atp1-V68G, and atp2-A48D.

(A) Three independent ATP hydrolysis assays were performed on frozen and

thawedmitochondria in the absence of osmotic protection and in the presence

of saturating amounts of ATP. Specific enzyme activities are represented as

a percentage of the wild-type activity (2,135 nM Pi/min/mg of protein). The

percentage of inhibition of ATP hydrolysis by oligomycin is indicated. See

Table S3 for complete data. Data are represented as mean ± SEM.

(B) BN-PAGE was immunoblotted with antibodies against Atp2 and Tom40,

a protein of the mitochondrial outer membrane used as loading control.

(C) SDS-PAGE was immunoblotted with antibodies against Atp1, Atp2, Atp6,

and the loading control Nam1. See also Figure S3.
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atp6-L247P) affecting Atp6, an essential component of the

Fo proton-translocating domain encoded by the mitochondrial

genome. These mutations correspond to mutations found in

human patients suffering from NARP (neuropathy, ataxia, and

retinitis pigmentosa) or MILS (maternally inherited Leigh syn-
Cell
drome) (for review, see Houstek et al., 2006). Both the rate of

mitochondrial ATP synthesis and hydrolysis are strongly

reduced by 70% and 90%, respectively, in the apt6-W136R

mutant, while the assembly/stability of the ATP synthase is

normal (Kucharczyk et al., 2012, Figure 5A). The atp6-L183P

and atp6-L247P partially compromise the assembly and/or

stability of Atp6 within the ATP synthase, leading to mitochon-

drial ATP production deficits of 40%–60%, whereas the ATP

hydrolytic activity of mitochondria is only modestly decreased

(Kucharczyk et al., 2009; 2010). Each atp6 mutation was

combined with the bcs1-F342C mutation (see Table S1),

and only the atp6-W136R mutation was able to restore the

growth on glycerol (Figure 5B). In the atp6-W136R bcs1-F342C

double mutant, complex III activity and the insertion of this

complex into supercomplexes were partially recovered, whereas

they were not in the atp6-L183P bcs1-F342C (Figures 5C and

5D). Thus, the F1 mutations (atp1-V68G or atp2-A48D) and the

Fo mutation (atp6-W136R) that all lead to a strong decrease in

the rate of mitochondrial ATP hydrolysis can compensate for

the defect in complex III assembly due to the bcs1-F342C

mutation.

ATP Synthase Mutations Can also Rescue a bcs1

Mutation Found to be Pathogenic in Humans
The results described above might hold promise for developing

therapeutic pathways for human diseases caused by Bcs1 defi-

ciencies. In this respect, since the bcs1-F342C mutation has

no known equivalent in human patients, we wanted to know

whether the ATP synthase-mediated compensation could also

rescue, in yeast, a bcs1 mutation that was known to be patho-

genic in humans. We tested the mutation bcs1-F368I found in

a patient with an early-onset encephalopathy (Fernandez-Vizarra

et al., 2007). We constructed, in yeast, the bcs1-F401I mutation

that is the equivalent of the human bcs1-F368I mutation (Fig-

ure S1). According to theoretical three-dimensional (3D) models

of the human and yeast Bcs1 proteins, this mutation is located

near the ATP binding site of Bcs1 (Figure 5E). The bcs1-F401I

mutation led to a stringent respiratory growth deficiency (Fig-

ure 5F) and very severely compromised the activity of complex

III (Figure 5G). As with the bcs1-F342C mutation, the steady-

state levels and oligomerization of Bcs1 were not affected in

the bcs1-F401I mutant (Figure 5E). Thus, the two mutations

seem to have a very similar impact on Bcs1. Two of the ATP

synthase mutations that rescue the bcs1-F342C mutant, one in

F1 (atp1-V68G) and one in Fo (atp6-W136R), were tested for their

capacity to compensate the bcs1-F401I mutant. The two double

mutants (bcs1-F401I, atp1-V68G and bcs1-F401I, atp6-W136R)

were able to grow on respiratory substrates (Figure 5F) and

showed an improved complex III activity (Figure 5G). These

results suggest that Bcs1 mutations responsible for human

diseases might be treatable by modulation of the ATP synthase

activity.

Increasing the ATP Concentration Compensates for the
In Vitro ATPase Deficiency of the bcs1-F342C Mutant
In order to test if and how the bcs1-F342C mutation affected

the activity of Bcs1, we have set up an in vitro assay allowing

the determination of its ATPase activity. We have purified WT

and mutated Bcs1 proteins carrying a hexahistidine tag fused
Metabolism 18, 567–577, October 1, 2013 ª2013 Elsevier Inc. 571



Figure 4. The atp1-V68G and atp2-A48D

Mutations Lower the Potential of the Mito-

chondrial Inner Membrane by ATP

Membrane potential analyses were performed on

fresh osmotically protected mitochondria from

WT, bcs1-F342C, R3, and R18 using Rh-123,

whose fluorescence decay is proportional to the

mitochondrial membrane potential.

(A and B) A total of 50 mM ADP (A) or 1 mM ATP (B)

was added to follow the energization due to ATP

synthesis or hydrolysis, respectively. The other

additions were 0.5 mg/ml Rh-123, 0.15 mg/ml of

proteins, 10 ml ethanol, 0.2 mM KCN, 6 mg/ml

oligomycin, and 3 mM CCCP. KCN, an inhibitor of

complex IV, was used to collapse the membrane

potential induced by the respiratory chain, oligo-

mycin was used to block the ATP synthase, and

CCCP was used to dissipate the proton gradient

across the inner membrane. Experiments have

been repeated three times.
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to their C terminus (Figure S4). The tag had no influence on the

chaperone activity of Bcs1, and both proteins kept their capacity

to form oligomers both in vivo and after purification from mito-

chondrial digitonin extracts (Figure 6A). The ATP hydrolytic

activity of the Bcs1 proteins was measured at different con-

centrations of ATP; at 2.5 and 5 mM, the bcs1-F342C protein

had a rate of ATP hydrolysis 2- to 3-fold lower than that of the

WT protein (Figure 6B). However, at higher ATP concentrations

(10 or 20 mM), no significant difference was observed between

the mutant and the WT (Figure 6C). Similar ATPase activities

were obtained in the presence of oligomycin, which rules out

the contamination by complex V during Bcs1 purification.

Thus, it can be inferred that the reduced hydrolytic activity of

bcs1-F342C is probably due to a lower affinity of the mutated

protein for the nucleotide, and increasing its concentration in

the assay compensates this deficiency.

DISCUSSION

Previous work has established that incorporation of the Rip1

protein into the yeast complex III involves a protein, Bcs1,

belonging to the AAA protein family (Nobrega et al., 1992; Cruciat

et al., 1999; 2000; Conte et al., 2011;Wagener et al., 2011). Here,

we report that modulation of the ATP synthase activity can

improve the activity of a mutated Bcs1 protein via its ATP

dependency.

The mutant bcs1-F342C displayed large amounts of pre-III

resulting from a block in Rip1 assembly. The immunoprecipita-

tion (IP) data suggest that pre-III and complex IV can interact in

the absence of Bcs1 and Rip1, as previously proposed with

Rip1 variants (Cui et al., 2012). These interactions are consistent

with current structural models that predict that Rip1 is not

located at the interface between the two complexes (Heine-

meyer et al., 2007). However, according to the BN-PAGE data,
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the integration of complex IV into super-

complexes is compromised, suggesting

that Bcs1 and Rip1 are essential to

maintaining the integrity of respiratory
chain supercomplexes. Combined defects of OXPHOS com-

plexes were also reported in BCS1L-deficient patients (Fernan-

dez-Vizarra et al., 2007; Morán et al., 2010).

Unexpectedly, a main target for compensatory mutations

rescuing the bcs1-F342C mutant was the ATP synthase. Four

spontaneous compensatory mutations were identified as single

amino acid changes in the two subunits, Atp1 and Atp2, that

form the ATP synthase catalytic head. The functional conse-

quences of two of these mutations, V68G in Atp1 and A48D in

Atp2, were characterized. Both changes severely compromise

the capacity of the Atp1 and Atp2 subunits to bind to each other,

leading to their accumulation in the mitochondrial matrix as

large aggregates. As a result, the content in fully assembled

ATP synthase was substantially lowered, leading to a decrease

in the enzyme’s synthetic and hydrolytic activities. Nevertheless,

in the revertant strains (bcs1-F342C + atp1-V68G or atp2-A48D),

the assembly of Rip1 within the complex III was substantially

improved, as compared to the single bcs1-F342C mutant.

To further understand how ATP synthase defects could

improve complex III assembly in the bcs1-F342C mutant, we

tested its compensation by other mutations of this enzyme.

Substantial rescue was observed with the mutation W136R

in the subunit Atp6 of the ATP synthase proton channel. This

mutation had no effect on the assembly of ATP synthase but

seriously impaired its functioning, as shown by strong deficits

in both the ATP hydrolytic and synthetic activities of mitochon-

dria (Kucharczyk et al., 2012). The bcs1-F342C mutant was

not rescued by two other atp6 mutations (L183P and L247P)

that partially compromise incorporation and/or stability of Atp6

within the ATP synthase, and lead to similar decreases in the

rate of ATP synthesis but with only minimal effect on the ATP

hydrolytic activity.

It is difficult to understand how reducing the capacity of the

ATP synthase to produce ATP could rescue Bcs1-mediated



Figure 5. Mutations in Subunits of F1 and FO

Rescue bcs1 Mutations, One of which Is a

Human Disease-Related Mutation Modeled

in Yeast

(A) Comparison of ATP hydrolysis of atp1-V68G,

atp2-V48D, and the three atp6 mutants. Mutants

that compensate for bcs1-F342C are in bold. See

legend of Figure 3A and Table S3.

(B) Dilution series of cells of the WT, bcs1-F342C,

atp6-W136R, atp6-L183P, and the doublemutants

bcs1-F342C and atp6-W136R or atp6-L183P were

grown for 3 days at 28�C.
(C) Complex III activity as in legend of Figure 2D.

Data are represented as mean ± SEM.

(D) SDS-PAGE and BN-PAGE analysis of mito-

chondrial proteins as in Figures 1E and 1G.

(E) Theoretical structural model of the AAA domain

of the yeast Bcs1 with the positions of the amino

acids F342, F401, and ADP. Mitochondrial com-

plexes of WT and bcs1-F401I were analyzed

by BN-PAGE and immunoblotted with anti-Bcs1

antibody as in Figure 1E.

(F) Dilution series of cells of WT, bcs1-F401I, and

of the double mutants atp6-W136R bcs1-F401I

and atp1-V68G bcs1-F401I were grown for 4 days

at 28�C.
(G) Complex III activity as in legend of Figure 2D.

Data are represented as mean ± SEM.
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defects in complex III assembly. It is important to keep in mind

that ATP synthase is a reversible enzyme that can hydrolyse

ATP coupled to the pumping of protons out of the mitochondrial

matrix through the Fo membrane domain (for review, see Acker-

man and Tzagoloff, 2005). In the bcs1-F342C mutant, the elec-

tron flow and proton gradient generation are severely impaired

due to a drastic effect on complex III assembly; the resulting level

of ATP synthesized in this mutant is under the detection

threshold. However, the ATP synthase is normally assembled

and exhibits a wild-type hydrolytic activity that can bemodulated

by the compensatory mutations. Thus, rather than a reduced

capacity of the ATP synthase to produce ATP, it is the low

F1-mediated ATP hydrolysis that is responsible for improving

the assembly of complex III in the bcs1-F342C mutant.

As the steady-state levels and oligomerization of Bcs1 were

not affected by the F342C mutation, it is probable that the

less-efficient capacity to assemble Rip1 is due to an altered

activity of the protein. The mutated residue is within the AAA

domain of Bcs1, close to the SHR motif that is known to be

required for ATP hydrolysis in other AAA proteins (Karata et al.,

1999; Hanson and Whiteheart, 2005). Modeling of the phenylal-

anine-to-cysteine substitution in the theoretical structure of

Bcs1 suggests that the interactions between the position

342 and conserved amino acids of the SRH motif are indeed
Cell Metabolism 18, 567–577
modified (Figure S1). Thus, the activity of

Bcs1 might be compromised by less-effi-

cient ATP hydrolysis. This hypothesis is

supported by the lower ATPase activity

of the mutated, compared to the WT puri-

fied, Bcs1 protein at ATP concentrations

of 2.5–5 mM, but nearly the same activity
at higher concentrations. Thus, it can be inferred that the

compensatory activity, conferred by a strong decrease in F1-

mediated ATP hydrolytic activity, results from a higher availability

of ATP within mitochondria increasing the ATPase activity of

the mutated Bcs1 protein and concomitant insertion of Rip1

to give fully assembled complex III. This would allow the reestab-

lishment of a proton gradient and the synthesis of ATP by the

remaining F1-Fo complexes. The resulting ATP synthesis would

further increase the matrix ATP content and stimulate Bcs1

activity. According to this suppressor mechanism, a bcs1muta-

tion not affecting the AAA domain should not be suppressed

by the ATP synthase mutations. This was indeed observed

(data not shown).

The genetic interaction between Bcs1 and ATP synthase

revealed by the present study leads us to propose a model in

which the complex III biogenesis would be modulated by the

energetic state of mitochondria (see Figure 7). When yeast cells

rely on oxidative phosphorylation, the level of ATP inside

mitochondria is high and exchanged against cytosolic ADP to

provide the extramitochondrial compartment of the cell with

energy. Large amounts of complex III are required. In cells

producing ATP by fermentation, the intramitochondrial con-

centration of ATP is low, the glycolytic ATP is imported into

mitochondria by the ADP/ATP translocator, and there is no
, October 1, 2013 ª2013 Elsevier Inc. 573



Figure 6. In Vitro ATPase Activity of Purified WT and Mutated Bcs1

(A) Ni-NTA-purified Bcs1 (see Figure S4) was analyzed by 2D BN-PAGE/SDS-

PAGE and immunoblotted with anti-His antibody. Positions of sizemarkers are

indicated.

(B) The in vitro ATPase activity of Ni-NTA partially purified WT and mutated

Bcs1 proteins was measured by monitoring NADH oxidation at 340 nm

through a coupled reaction with pyruvate kinase (PK) and lactate dehydro-

genase (LDH) that kept the ATP concentration constant during the assay.

The absorbance decrease at 340 nm reflects ATPase activity. Control,

no protein added; WT-0 or F342C-0, no ATP added; WT-5 or F342C-5, 5 mM

ATP added.

(C) ATP consumption rates of the mutated versus WT Bcs1 at different

ATP concentrations in the assay (2.5– 20 mM) are represented as

mean values of three independent experiments. Data are represented as

mean ± SEM.

Figure 7. Schema for the Modulation of Complex III Biogenesis

through the ATP-Dependent Activity of Bcs1

(A and B) The ATP/ADP ratio is known to be much higher in respiratory

(ethanol) (A) than in fermentative (glucose) (B) conditions (Beauvoit et al., 1993;

see Discussion).
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need to produce large amounts of complex III. Thus, we propose

that the ATP-dependent activity of Bcs1 is not just a requirement

to exercise its chaperon activity, but also a way to couple the

rate of complex III biogenesis to the energy-transducing activity

of mitochondria.
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The importance of ATP in the control of cellular activities is

well established. There are numerous examples of such control

in catabolic and anabolic pathways, like glycolysis, the Krebs

cycle, and the electron transport chain of mitochondria. How-

ever, in all of these examples, ATP regulates the activity of an

enzyme (e.g., cytochrome oxidase; Beauvoit and Rigoulet,

2001; Ramzan et al., 2010), whereas in the case of Bcs1, ATP

could be used to modulate a late step in the assembly of an

enzyme, complex III. This work shows that ATP might influence

the biogenesis of an enzyme by controlling a protein specifically

involved in its assembly. In the future, it would be interesting

to determine whether other major ATP-dependent systems

involved in mitochondrial quality control, like the m- and i-AAA

proteases, are similarly modulated by the energetic activity of

mitochondria.

The present study further defined the intramitochondrial

adenine nucleotide pool as a potential target to treat Bcs1-based

diseases, since this ATP-dependent compensatory mechanism

is active on another yeast-modeled bcs1 mutation found in

a human patient. We recently showed that yeast models of

ATP synthase disorders could be used for the screening of

drugs active against human diseases caused by defects in this

enzyme (Couplan et al., 2011). Our results indicate that such

an approach might also be fruitful in the case of Bcs1-based

disorders.
c.
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EXPERIMENTAL PROCEDURES

Strains and Media

S. cerevisiae strains are listed in Table S1. The nonfermentable media contain

2% glycerol, and the fermentable media contain either 2% glucose or 2%

galactose with 0.1% glucose. Tetrad dissection was performed using a

Singer MSM micromanipulator.

Genetic Identification of the Compensatory Mutations

Respiratory-competent revertants were isolated after plating independent

subclones of the bcs1-F342C mutant on glycerol medium. Genetic crosses

showed that the compensatory mutations were nuclear and extragenic and

allowed the selection of strains carrying only the compensatory mutation

associated to the WT BCS1 gene. Further crosses suggested that the

compensatory mutations of revertants R2, R12, and R18 are located in the

same gene. We have constructed the double mutant carrying the compen-

satory mutations of R3 and R18 associated to the WT BCS1 gene and

shown that it exhibits a complete respiratory deficiency. After transformation

of this double mutant with the wild-type genomic library, two classes of

respiratory-competent transformants carrying ATP1 or ATP2 were isolated.

Sequencing of these two genes revealed that R3 carries a mutation in ATP1,

and R2, R12, and R18 carry mutations in ATP2.

Gene Deletion, Site-Directed Mutagenesis, and Epitope Tagging

The genes were deleted in the WT strain (CW252) by replacing the open

reading frames (ORFs) with the URA3, LEU2, or KanR markers (see Table

S1). The bcs1-F401I mutant was constructed by site-directed mutagenesis

with the Stratagene QuikChange Kit and inserted at the chromosomal

BCS1 locus. Qcr7 as well as the WT and mutant Bcs1 proteins were tagged

at their C termini with c-Myc or hexahistidine epitopes, respectively (Longtine

et al., 1998). We verified that the introduction of the tag did not induce

a respiratory deficiency. All the constructions were verified by PCR amplifi-

cation and sequencing.

Mitochondria Preparation, SDS-PAGE, and BN-PAGE

Cells were grown overnight at 28�C in galactose medium, and mitochondria

were isolated according to Lemaire and Dujardin (2008). Mitochondrial

proteins were analyzed on 12% SDS-PAGE. For BN-PAGE, mitochondria

were solubilized in digitonin (2%), and the complexes were separated on

5%–10% polyacrylamide gradient gels (Schägger and Pfeiffer, 2000; Lemaire

and Dujardin, 2008). The BN-PAGE strips were placed on the 12% SDS-PAGE

for the second dimension. Both SDS-PAGE and BN-PAGE were electrotrans-

ferred, and immunodetection was carried out using the chemiluminescent

method from Pierce. Polyclonal antibodies against Cyt1, Bcs1, Cytb, and

Nam1 were raised in the laboratory and used at a 1/30,000 ratio for Cyt1

and 1/5,000 for the others. The polyclonal Anti-Rip1 (1/3,000) is from N. Fisher

(Liverpool, UK); the polyclonal antibodies against the subunits of ATP synthase

(1/10,000) are from J. Velours (Bordeaux, France); the monoclonal anti-Cox2

(1/5,000) is from Molecular Probes; the monoclonal anti-c-Myc (1/20,000) is

from J.M. Galan (Paris, France); the polyclonal anti-SDH (1/500) is from B.

Guiard (Gif sur Yvette, France); and the anti-Tom40 is from C. Meisinger

(Freiburg, Germany).

Coimmunoprecipitation Experiments

Mitochondria were solubilized in 50 mM Tris HCl (pH 7.4), 100 mM NaCl, 1%

digitonine for 30 min at 4�C and centrifugated for 15 min at 100,000 3 g.

The supernatants were incubated with polyclonal anti-c-Myc antibodies

coupled with agarose beads. Samples were incubated under gentle shaking

for 90 min at 4�C. The beads were washed three times. The fractions were

analyzed by western blotting experiments.

Determination of the Activities of the Respiratory

Complexes III and IV

The activities were measured spectrophotometrically at 550 nm at 25�C on

2.5–10 mg of isolatedmitochondria (Lemaire and Dujardin, 2008). The ubiquinol

cytochrome c oxidoreductase (complex III) activity was assayed by the rate

of reduction of cytochrome c in the presence of saturating amounts of decylu-

biquinol, and the cytochrome c oxidase (complex IV) activity was assayed by
Cell
the rate of cytochrome c oxidation. The inhibitors, antimycin for complex III and

KCN for complex IV, were used to test the specificity of the signal.

Membrane Potential, ATP Synthesis, and Hydrolysis Measurements

Variations of the membrane potential (Dc) were evaluated in respiration buffer

by measurement of rhodamine 123 (Rh-123) fluorescence quenching with a

SAFAS Monaco fluorescence spectrophotometer. Mitochondria were ener-

gized using ethanol as a respiratory substrate instead of NADH because fluo-

rescence of the latter overlaps that of Rh-123. To determine ATP synthesis

rates, mitochondria (0.3 mg) were placed in a 2 ml thermostatically controlled

chamber at 28�C in respiration buffer. The reaction was started by the addition

of 4 mM NADH and 1 mM ADP and stopped with 3.5% perchloric acid,

12.5 mM EDTA. Samples were then neutralized to pH 6.5 by addition of 2 M

KOH/0.3 M MOPS. The luciferin/luciferase assay (Thermo Labsystems) was

used to determine ATP concentrations. The specific ATPase activity at pH

8.4 of nonosmotically protected mitochondria (20 mg of proteins) was

measured in the presence of saturating amounts of ATP with or without

oligomycin (Lemaire and Dujardin, 2008).

Purification by Ni-NTA Chromatography of Bcs1 Proteins and

Measurements of In Vitro ATPase Activity

A total of 10 mg of mitochondrial proteins was solubilized in 1 ml of buffer A

(50 mM NaCl, 15% w/v glycerol, 15 mM imidazole, 50 mM sodium phosphate

[pH 7.9]) with 2% digitonin. After 30 min of incubation at 4�C, the extract was

clarified by centrifugation at 25,000 3 g for 30 min at 4�C. The supernatant

was mixed with 0.25 ml Ni-NTA agarose beads (QIAGEN) and washed with

buffer A. After an overnight incubation at 4�C, the flow through was collected

by centrifugation at 1,000 3 g for 1 min at 4�C. Beads were washed with

40 volumes of buffer A by centrifugation at 1,000 3 g for 1 min at 4�C, and
Bcs1 proteins were eluted with buffer E (50 mM NaCl, 15% w/v glycerol,

250 mM imidazole, 50 mM sodium phosphate [pH 7.9]). The in vitro ATPase

activity was measured at 28�C under magnetic stirring in 1 ml of activity buffer

(20 units ml�1 of pyruvate kinase, 30 units ml�1 of lactate deshydrogenase,

2 mM phosphoenol pyruvate, 0.2 mM NADH, 5 mM MgCl2, 50 mM HEPES

[pH 7.5], and ATP at the concentrations 0, 2.5, 5, 10, or 20 mM). ATP concen-

trations of 0–5 mM were previously used by Augustin et al. (2009). The molar

extinction coefficient of NADH at 340 nm was 6.22 M�1 cm�1, and the path

length was 1 cm.
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Schägger, H., and Pfeiffer, K. (2000). Supercomplexes in the respiratory

chains of yeast and mammalian mitochondria. EMBO J. 19, 1777–1783.

Smith, P.M., Fox, J.L., and Winge, D.R. (2012). Biogenesis of the cytochrome

bc(1) complex and role of assembly factors. Biochim. Biophys. Acta 1817,

276–286.
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