
E(Rr , Rd) in pressure-driven regime  E(Rr, Rd) in flow-rate-driven regime  
 

E(Ld, ΔQ0) in flow-rate-driven regime 

1-4: Rr/Rs=1.1, Rd/Rs=10, Δxin<Ls  Δxin=3 Ls  
 

 Different recirculation mechanism for each Δxin  

 Asymmetric flow (one droplet blocks, the other not)  
 
 

 Synchronization until Δxin = 2 Ls  

 No synchronization  from Δxin = 3 Ls 

 

5:  Rr/Rs=1.1, Rd /Rs=1, Δxin = Ls. 
 
  Bad synchronization  
 
6: Rr/Rs=1.1, Rd /Rs=10, Δxin = Ls, Ld=0 

Rd  considered as pointlike   does not distribute around the rung  
 
 No synchronization 

Droplet synchronization in multiple interconnected parallel channels 
Stéphanie VAN LOO (1) (2) , Serguei STOUKATCH (2) and Tristan GILET (1)  

= Pairing of droplets flowing in parallel channels 
 Required to promote position control, encounter and coalescence 
 Passive synchronization achieved with bubbles [1] and droplets [2] in a ladder-like channel network 

Our goal: understand, find the limits, optimize and generalize passive synchronization  

Droplet synchronization 

 Droplet production in two flow-focusing  structures 

 Droplets sufficiently separated  one droplet per channel 

 Two parallel channels, each one conveying water drops in continuous oil phase 

 Interconnecting rungs   ladder-like network allowing oil transfer only  

Lumped-element modeling Hypotheses 

Flow analysis and  
synchronization mechanism   

Experimental results 

Observed individual speed V of paired droplets  in  
top and bottom channels, for two Δxin 
               ½ Ls, top;      ½ Ls, bottom 
               2 Ls, top;       4 Ls, bottom 

High speed recording. Two droplets enter the top and bottom 
channels with Δxin = 2Ls.  
No synchronization 
Resulting channel speed : top > bottom, despite ΔQ0 = 0 

1 mm 

t=0 ms 

t=25 ms 

t=85 ms 

t=170 ms 

t=230 ms 

t=305 ms 

t=390 ms 

t=485 ms 

Optimization 

Predicted Δx/Ls  for different Δxin 

(    ½ Ls,   1Ls,   2Ls,    4 Ls) 

Conclusion - Challenges – Future work 

We used lumped-element modelling to better explain the synchronization mechanism. 

We showed that pressure-driven regime should also provide synchronization.  

We encountered several experimental issues that are not solved yet. 

Our next move is to generalize to more complex ladder networks (incl. three channels) .  

Δxin=4Ls 

1. 

2. 

3. 

4. 

5. 6. 

Flows Q/Q0  

Stéphanie van Loo (svanloo@ulg.ac.be) 
(1) Microfluidics Lab, GRASP 
Department of Aerospace and Mechanical Engineering 
University of Liège, Belgium 

 Synchronization in flow-rate  

 & in pressure-controlled regime 

 

Optimal synchronization when: 

 Rd / Rs >> 1 

 Rr  / Rs ≈ 1 

 Ld > 0.1 
  
Weak influence of ΔQ0  

Δxin<Ls 

Δxin=Ls 

Δxin=2Ls 

Ld=0 Rd/Rs=1 
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 Design:                 Rr/Rs, Rd/Rs 

 Input :                  Flow-rate and/or pressure-driven,  

                               ΔQ0 (flow rate imbalance), Ld  

 Initial condition: Δxin = position shift 

E = Synchronization efficiency = max (Δxin) allowing synchronization in 19 rungs  

No sync 

Sync 

No sync 

Sync 

Bad sync 

Sync 
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Droplet = localized resistance Rd 

 Mainly due to end caps 

 Independent on Ld (ok if Ld > W) [3] 

 Rung crossing Rd /2 on each side of the rung  

 Additional resistance Rb in the rung when blocked 
 not required 

 Wr/W< 1 &  Ld> W    Droplets can not flow in the rungs 

Parameters  
Δx 

Rd/2 Rd/2 

Rs (1-Ld) 

Rr 

Rout Rin Rs Ld 

Ld 

Q0 

Observed Δx for  different Δxin. 

   (    ½ Ls,   1 Ls,   2Ls,    4 Ls)  

Evolution with droplet position  

Ld 

W Wd 

Wr 

h 

W/h=1.5 


