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Abstract

This document is the prerequisite for Analysis and Design of Telecommunications Systems
taught at the University of Liège. It is intended to be a reminder of some basic knowledge.

For a textbook, I recommend: Digital and Analog Communication Systems, by L. Couch,
Prentice Hall [1].
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1 Fourier transform and spectrum analysis

De�nition 1. [Fourier transform] Let g(t) be a deterministic signal (also called a waveform),
the Fourier transform of g(t), denoted G, is

G(f) =

∫ +∞

−∞
g(t)e−2πjftdt (1.1)

where f is the frequency parameter with units in Hertz, Hz (that is 1
s ). It is also related to angular

pulsation ω by ω = 2πf .

Note that f is the parameter of the Fourier transform G(f), that is also called (two-sided)
spectrum of g(t), because it contains both positive and negative components.

De�nition 2. [Inverse Fourier transform] The time waveform g(t) is obtained by taking
the inverse Fourier transform of G(f), de�ned as follows

g(t) =

∫ +∞

−∞
G(f)e2πjftdt (1.2)

The functions g(t) and G(f) are said to constitute a Fourier transform pair, because they are
two representations of a same signal.

1.1 Properties

Proposition 3. [Spectral symmetry of real signals] If g(t) is real, then

G(−f) = G∗(f) (1.3)

where ()∗ denotes the conjugate operation.

A consequence is that the negative components can be obtained from the positives ones. Therefore,
the positive components are su�cient to describe the original waveform g(t).

Proposition 4. [Rayleigh] The total energy in the time domain and the frequency domain are
equal:

E =

∫ +∞

−∞
|g(t)|2 dt =

∫ +∞

−∞
‖G(f)‖2 df (1.4)

After integration, ‖G(f)‖2 provides the total energy of the signal in Joule, J . Therefore, it is
sometimes named energy spectral density.

Proposition 5. [Linearity] If g(t) = c1g1(t) + c2g2(t) then G(f) = c1G1(f) + c2G2(f).

This property of linearity is essential in telecommunications, because most systems (channels,
�lters, etc) are linear. The consequence is that any linear system can only modify the spectral
content a signal, but is incapable to add new frequencies.

This property also highlights that a spectrum analysis is adequate for dealing with linear systems.
To the contrary, it is more di�cult to analyze a non-linear system (for example a squaring operator,
g2(t)) in terms of frequencies.
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Operation Function Fourier transform

Conjugate symmetry g(t) is real G(f) = G∗(−f)

Linearity c1g1(t) + c2g2(t) c1G1(f) + c2G2(f)

Time scaling g(at) 1
|a|G

(
f
a

)
Time shift (delay) g(t− t0) G(f) e−2πjft0

Convolution g(t)⊗ h(t) =
∫ +∞
−∞ g(τ)h(t− τ) dτ G(f)H(f)

Frequency shift g(t) e2πjfct G (f − fc)

Modulation g(t) cos (2πfct)
G(f−fc)+G(f+fc)

2

Temporal derivation d
dtg(t) 2πjf G(f)

Temporal integration
∫ t
−∞ g(τ) dτ 1

2πjf G(f)

Table 1: Main properties of the Fourier transform.

1.2 Speci�c signals

Some waveforms play a speci�c role in communications.

1. The Dirac delta function, denoted δ(t), is de�ned by

δ(t) =

{
∞, x = 0
0 x 6= 0

(1.5)

and ∫ +∞

−∞
δ(t) dt = 1 (1.6)

The Dirac delta function is not a true function, so it is said to be a singular function.
However, it is considered as a function in the more general framework of the theory of
distributions. Note that

g(t)⊗ δ(t) = g(t) (1.7)

According to equation 1.6, ∫ +∞

−∞
δ(t)e−2πjft = e0 = 1 (1.8)

As a consequence, 1 is the Fourier transform of δ(t). Likewise, δ(f) is the Fourier
transform of 1. This explains the central role of the Dirac delta function in signal processing
and communications.
The Dirac delta function is also called the unit impulse function.

2. Rectangular pulse

rect(t) =

{
1 − 1

2 < t < 1
2

0 |t| > 1
2

(1.9)

The rectangular pulse is the most common shape form for the representation of digital
signals.

3. Step function (Heaviside function)

u(t) =

{
1 t > 0
0 t < 0

(1.10)
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4. Sign function

sign(t) =

{
1 t > 0
−1 t < 0

(1.11)

5. Sinc function

sinc(t) =
sin(πt)

πt
(1.12)

1.3 Fourier transform pairs

Temporal waveform Fourier transform

δ(t) 1

1 δ(f)

cos(2πfct)
1
2 [δ(f − fc) + δ(f + fc)]

sin(2πfct)
1
2j [δ(f − fc)− δ(f + fc)]

rect
(
t
T

)
T sinc(fT )

sinc(2Wt) 1
2W rect

(
f

2W

)
sign(t) 1

πjf

u(t) 1
2δ(f) + 1

2πjf

1
πt −j sign(f)∑+∞

i=−∞ δ (t− iT0) 1
T0

∑+∞
n=−∞ δ

(
f − n

T0

)
e−πt

2

e−πf
2

e−atu(t), a > 0 1
a+2πjf

e−a|t|, a > 0 2a
a2+(2πf)2

Table 2: Some common Fourier transform pairs.
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2 Signals

2.1 Continuous-time and discrete-time signals

A continuous-time signal g(t) is a signal of the real variable t (time). For example, the signal
cos(2πfct) is a function of time.

A discrete-time signal g[n] is a sequence where the values of the index n are integers. Such a signal
carries digital information.

2.2 Analog and digital signals

An analog signal is a signal with a continuous range of amplitudes.

A digital signal is a member of a set ofM unique signals, de�ned over the T period, that represent
M data symbols.

Figure 2.1 represents an analog and a digital signal (top row). In practice, digital signals are
�materialized� by a continuous-time signal, named a representation. Such representations are
illustrated in Figure 2.1 (bottom row).

1 0 1 0 1 1

Analog information signal Digital information signal

Analog representation Digital representation
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0.5

1

1.5

2

0 2 4 6 8 10
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-1.5
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0.5
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2
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1.5

0 1 2 3 4 5 6
-1.5

-1

-0.5
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1

1.5

0 1 2 3 4 5 6

Figure 2.1: Examples of representations of an continuous-time signal (left) and a discrete-time
signal (right).

2.3 Energy and power

The power in watts [W ] delivered by a voltage signal v(t) in volts to a resistive load R in ohms
[Ω] is given by

P = v(t) i(t) =
v2(t)

R
= R i2(t) (2.1)
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where i(t) is the current.

In communications, the value of the resistive load is normalized to 1 [Ω]. Therefore, the instanta-
neous normalized power is given by

p(t) = v2(t) = i2(t) (2.2)

The averaged normalized power is given by

P = lim
T→∞

1

2T

∫ T

−T
v2(t) dt (2.3)

A signal v(t) is called a power signal if and only if its averaged power is non-zero and �nite, that
is 0 < P <∞.

Example 6. Power of a sinusoid A cos (2πfct). The averaged normalized power delivered to a
1 [Ω] load is

P = lim
T→∞

1

2T

∫ T

−T
A2 cos2 (2πfct) dt (2.4)

= lim
T→∞

A2

4T

∫ T

−T
(1 + cos(4πfct) dt (2.5)

=
A2

2
+ lim
T→∞

A2

4T

(
sin (4πfcT )

4πfc
− sin (−4πfcT )

4πfc

)
(2.6)

=
A2

2
+
A2

2
lim
T→∞

sin (4πfcT )

4πfcT
=
A2

2
(2.7)

Therefore, A
2

2 is the power of a sinusoid A cos (2πfct). The sinusoid is a power signal.

The energy in Joules of a voltage signal v(t) in volts is given by

E =

∫ +∞

−∞
v2(t) dt (2.8)

A signal v(t) is called an energy signal if and only if its energy is non-zero and �nite, that is
0 < E <∞.

2.4 Deterministic vs stochastic tools

As shown in Figure 2.2, the deterministic or stochastic nature of signals depends on the signal and
the location in the communication chain.

transmitter receiver

User's signal deterministic stochastic
Noise and interference stochastic stochastic

Figure 2.2: Deterministic or stochastic nature of signals.

In fact, only the user's signal at the transmitter is fully known; it would make no sense to send
a signal that would be known by the receiver, at least from a communication engineer's point of
view.

Therefore, we need to adapt the tools for describing signals to their intrinsic nature. More precisely,
it appears that stochastic signals can only be described in terms of statistics (mean, average,
autocorrelation function, etc).

Figure 2.3 presents the tools used for describing the power of a signal according to its intrinsic
nature.
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deterministic stochastic

signal to consider voltage / current power
power analysis instantaneous power Power Spectral Density (PSD)

p(t) = |v(t)|2
R = R |i(t)|2 E

{
X2(t)

}
=
∫ +∞
−∞ γX(f)df

Figure 2.3: Description of power adapted to the intrinsic nature of signals.

2.5 Decibel

The decibel is a base 10 logarithm measure, used mainly for powers:

x ↔ 10 log10(x) [dB] (2.9)

When describing powers, decibels should be expressed in dB of watts: dBW . Note that dB is
often a shortcut of dBW .

Typical values are given in the following table:

x [W ] 10 log10(x) [dBW ]

1 [W ] 0 [dBW ]
2 [W ] 3 [dBW ]

0, 5 [W ] −3 [dBW ]
5 [W ] 7 [dBW ]

10n [W ] 10× n [dBW ]

Example 7. Power conversion in [dB]. Assume P = 25 [W ]. Because 25 = 100/2/2, we have that

10 log10(25) = 10 log10(100)− 10 log10(2)− 10 log10(2) (2.10)

= 20− 3− 3 = 14 [dBW ] (2.11)

2.6 Digitization of analog signals

A waveform g(t) is said to be band-limited to B hertz if

G(f) = 0, for |f | ≥ B (2.12)

2.6.1 Sampling theorem

Theorem 8. [Shannon] Any physical waveform w(t), band-limited to B hertz, can be entirely
represented by the following samples series

g

[
n

fs

]
(2.13)

where n is an integer and fs is the sampling, if

fs ≥ 2B (2.14)

The condition fs ≥ 2B is named the Nyquist criterion.
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2.6.2 Impulse sampling

The impulse-sampled series of a waveform is obtained by multiplying it with a train of unit-weight
impulses:

gs(t) = g(t)

+∞∑
n=−∞

δ (t− nTs) (2.15)

The Fourier transform of gs(t) is then

Gs(f) = G(f)⊗ 1

Ts

+∞∑
n=−∞

δ

(
f − n

Ts

)
(2.16)

= fs

+∞∑
n=−∞

G (f − nfs) (2.17)

The spectrum of the impulse sampled signal is the spectrum of the unsampled signal that is
repeated every fs Hz, where fs is the sampling frequency. This is shown in Figure 2.4.

Figure 2.4: E�ects of impulse sampling on a waveform w(t) [1].
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3 Linear systems

3.1 Linear time-invariant systems

An electronic �lter or system ψ (t) is linear when the principle of superposition holds. That is
when the output y(t) to a combination of inputs follows

y(t) = ψ (ag1(t) + bg2(t)) = aψ (g1(t)) + bψ (g2(t)) (3.1)

The system ψ (t) is time-invariant if, for any delayed input g(t− τ), the output is also delayed by
the same amount y(t− τ).

3.2 Impulse response and transfer function

The impulse response to a �lter is the response h(t) when the input is a forcing Dirac delta
function.

The transfer function or frequency response is the Fourier transform of the impulse response,
H.

Using the convolution theorem, we get that if y(t) is the output of a �lter expressed by its impulse
response h(t) to an input g(t), then

Y(f) = H(f)G(f) (3.2)

3.3 Distortionless transmission

In communication, a distortionless channel or ideal channel is a channel whose output is a pro-
portion of the delayed version of the input

y(t) = Ag(t− τ) (3.3)

The corresponding frequency response of an ideal channel is then

Y(f)

G(f)
= Ae−2πjfτ (3.4)
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4 Random variables and stochastic processes

4.1 Gaussian random variable

The Gaussian distribution, also known as the normal distribution, is one of the most (if not the
most) important distribution.

De�nition 9. The probability density function (pdf) of a Gaussian distribution is given by

pdfX = fX(x) =
1

σX
√

2π
e
− (x−µX)2

2σ2
X (4.1)

where µX and σ2
X are the mean and variance respectively.

From this expression, we can see that the mean and variance ofX su�ce to characterize a Gaussian
random variable completely. The Gaussian is also important because of the statistical of law of
large numbers. Basically, this law states that the average of independent random variables of
equal mean tends to a Gaussian distribution. Therefore it is a good approximation for the sum
of a number of independent random variables with arbitrary one-dimensional probability density
functions.

The Gaussian character of a distribution is preserved by linear operations, as stated hereafter.

Proposition 10. If the input of a linear system is Gaussian, then the output is also a Gaussian.

4.2 Stochastic processes

A real random process (or stochastic process) is an indexed set of real functions of some parameter
(usually time) that has certain statistical properties.

As shown in Figure 4.1, each trajectory represents a possible path, named observation or realiza-
tion. Because there are many trajectories, several values are possible for each time t. The common
choice is to concentrate the information of possible values at a given time t1, by a random variable
X(t1). When considering all these random variables, we get the stochastic process X(t).

4.2.1 Stationarity

Let X(t) be a stochastic process (note that we use a �capital� letter X for stochastic processes).
Because stochastic processes X(t) are a collection of random variables, it is interesting to analyze
how they compare over time. This leads to the concept of autocorrelation and stationarity.

De�nition 11. [Autocorrelation function] The autocorrelation of a real stochastic process is
de�ned as

ΓXX (t1, t2) = E {X(t1)X(t2)} (4.2)

The autocorrelation makes a �rst link between two random variables of X(t) taken at di�erent
times.

De�nition 12. A random process is said to be Wide-Sense Stationary [WSS] if

1. µX(t) = constant; the mean of the process does not depend on time.

2. ΓXX (t1, t2) = ΓXX (τ), where τ = t1 − t2.

11



t

t

t

ω1

ω2
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X(t, ω1)X(tk, ω1)

X(tk, ω2)
X(t, ω2)

X(t, ωn)

Observation space Ω

X(tk, ωn)
tk

Figure 4.1: Possible trajectories of a stochastic process.

The autocorrelation function of stationary stochastic processes is an essential tool because, for
τ = 0, it expresses the average power:

ΓXX (τ = 0) = E
{
X2(t)

}
(4.3)

In practice, we thus consider that the power PX of a stochastic process is given by:

PX = E
{
X2(t)

}
(4.4)

Consequently, the Fourier transform of the autocorrelation provides the power distribution in
the frequency domain. This leads to the notion of power spectral density of wide-sense stationary
stochastic processes as de�ned hereafter.

De�nition 13. [Power spectrum or power spectral density of a stationary process]

γX(f) =

∫ +∞

−∞
ΓXX (τ) e−2πjfτdτ (4.5)

In practice,

PX = E
{
X2(t)

}
=

∫ +∞

−∞
γX(f)df (4.6)

Therefore, γX(f) expresses the contribution of each frequency to the total power.

Example 14. Let us consider a signal with a random phase θ ∈ [0, 2π] or [−π,+π]

X(t) = Ac cos (2πfct+ Θ) (4.7)
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This is typical for the carrier signal of a modulated signal. The mean of X(t) is computed as

µX(t) = E {X(t)} =

∫ +π

−π
Ac cos (2πfct+ θ)

1

2π
dθ = 0 (4.8)

The autocorrelation is obtained as follows:

ΓXX (t1, t2) = E {X(t1)X(t2)} (4.9)

=

∫ +π

−π
Ac cos (2πfct1 + θ)Ac cos (2πfct2 + θ)

1

2π
dθ (4.10)

=
A2
c

2
cos [2πfc(t2 − t1)] =

A2
c

2
cos [2πfcτ ] (4.11)

We then conclude that the signal is wide-sense stationary and compute its power spectral density:

γX(f) =
A2
c

4
[δ(f − fc) + δ(f + fc)] (4.12)

4.2.2 Power spectral density and linear systems (= �ltering)

Consider a wide-sense stationary process X(t), a linear system whose transfer function is given by
H(f), and Y (t) the output process.

Theorem 15. The mean of Y (t) is given by:

µY = µXH(0) (4.13)

De�nition 16. [Wiener-Kintchine] The power spectral density Y (t) is given by:

γY (f) = ‖H(f)‖2 γX(f) (4.14)

In addition, if the stochastic process X(t) is Gaussian, then the �ltered output Y (t) is also Gaus-
sian. Remember that an integral is a linear process, so that the integration of a Gaussian process
also results in a Gaussian process.

Proposition 17. [Sum of (stationary) stochastic processes]. Consider the sum

Y (t) = X(t) +N(t) (4.15)

If both signals are uncorrelated (which they are if they are independent), then

γY Y (f) = γXX(f) + γNN (f) (4.16)

4.2.3 Noise and white noise

De�nition 18. [White noise] A white noise is de�ned as a stochastic process whose power spectral
density is constant for each frequency

γN (f) =
N0

2

[
W

Hz

]
(4.17)

In practice, there is no �pure� white noise, but it is not critical as long as its power spectral density
is constant inside the useful bandwidth.

A common signal in telecommunications is a wide-sense stationary zero-mean white Gaussian
noise. This signal is characterized by the following properties:
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• the probability density function of the voltage of the noise is a Gaussian.

• the observed mean voltage has a zero mean.

• its power spectrum is constant for each frequency.

The power of a white noise (for a B large bandwidth) is

PN = N =

∫ +∞

−∞
γN (f) df = 2

∫ fc+
B
2

fc−B2

N0

2
df = 2×B × N0

2
= BN0 (4.18)
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5 Line coding and spectra

5.1 Line coding

Line coding consists to transform a series of bits into a continuous signal X(t). In this signal, each
time period Tb is dedicated to one bit (or several) of the bit stream. In other words, we take a
pulse waveform p(t), limited to the [−Tb2 ,

Tb
2 ] interval (p(t) is zero outside of that interval), and

build the signal

X(t) =

+∞∑
k=−∞

Akp(t− kT ) (5.1)

where Ak is a random variable that encodes the digital information. For example, it is common
to take Ak = ±A and a rectangular unit pulse for p(t).

We can distinguish, among all the possibilities, the following popular signaling format (see Fig-
ure 5.1):

1. Nonreturn-to-zero (NRZ) techniques. This format is obtained for a rectangular pulse shape
g(t). There are two variants: unipolar and polar signaling. For polar signaling, one Ak is
equal to 0. For polar signaling, we have Ak = ±A.

2. Return-to-zero (RZ) techniques. After a period of of αTb, with α < 1, the signal returns to
zero.

3. Manchester signaling, also known as Phase Encoding. It is a line coding in which the
encoding of each data bit has at least one transition and occupies the same time. It therefore
has no DC component, and is self-clocking.

4. Multi-level signaling. Multiple successive bits are encoded over one Tb period. Therefore,
the signaling mechanism needs more than two levels to represent a symbol.

5.2 General formula for the power spectral density of baseband digital

signals

The following expression provides the general formula for the power spectral density of base-
band digital signals, when there is no correlation between the successive bits and the P(f) is the
Fourier transform of the pulse shape:

γX(f) = ‖P(f)‖2 1

Tb

[
σ2
A + µ2

A

+∞∑
m=−∞

1

Tb
δ

(
f − m

Tb

)]
(5.2)
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Figure 5.1: Some binary signaling formats.
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6 Power budget link for radio transmissions

Consider two antennas in free space that are separated by a distance d. One antenna is transmitting
a total power of PT watts of power and the other is receiving PR watts of power in its terminal
impedance. In the direction of transmission, the transmitting antenna has a gain GT , and the
receiving antenna has a gain GR. This situation is depicted in Figure 6.1.

d
PR

PT

Figure 6.1: Link between two antennas in free space (no ground or obstacle).

Theorem 19. [Friis formula] The ratio between the transmitting power and the receiving power,
called free space loss LFS, is given by

LFS =
PT
PR

=

(
4πd

λ

)2
1

GTGR
(6.1)

In decibels, the Friis transmission equation becomes

10 log
PT
PR

= 32, 5 + 20 log f[MHz] + 20 log d[km] −GT [dB] −GR [dB] (6.2)

where f is given in MHz and d is measured in km, for convenience.

Example 20. Consider two identical antennas separated by a distance of 100 [m]. Both antennas
have a directive gain of 15 [dB] in the direction of transmission. If the transmitting antenna sends
a power of 5 [W ] at a frequency of 3 [GHz], then the received power is

PR = PTGTGR

(
λ

4πd

)2

(6.3)

= 5× 31.62× 31.62×
(

0.1

4π × 100

)2

(6.4)

= 31.7 [µW ] (6.5)
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7 Information theory

7.1 Channel capacity

One of the central notion in communication is that of channel capacity.

De�nition 21. The channel capacity is the tightest upper bound on the rate of information that
can be reliably transmitted over a communications channel.

Theorem 22. [Shannon-Hartley] The channel capacity C (conditions for the error rate
Pe → 0) is given by

C [b/s] = B log2

(
1 +

S

N

)
(7.1)

where

• B is the channel bandwidth in Hz

• S
N the signal-to-noise ratio (in watts/watts, not in dB).

7.2 On the importance of the Eb

N0
ratio for digital transmissions

Assume an in�nite bandwidth and a Gaussian white channel, then

C = lim
B→∞

{
B log2

(
1 +

S

N

)}
(7.2)

As

• S = EbRb (Eb is the energy of one bit and Rb = 1
Tb

is the bitrate)

• N = BN0

we have

C = lim
B→∞

{
B log2

(
1 +

EbRb
BN0

)}
= lim
x→0

 log2

(
1 + xEbRbN0

)
x


= log2 e lim

x→0

{
1

1 + xEbRbN0

EbRb
N0

}
=

1

ln 2

EbRb
N0

(7.3)

At maximum capacity: C = Rb, so that Eb
N0

= ln 2 ≡ −1.59 [dB] is the absolute minimum.

18



List of symbols

‖.‖ norm
X∗ conjugate of X
B bandwidth
d distance
dB decibel
Eb bit energy
fc carrier frequency
fs sampling frequency
f frequency
GR receiver antenna gain
g(t) waveform
H(f) transfer function or frequency response
h(t) impulse response
N0/2 power spectral density of noise
P power
Pe bit error probability
p(A) probability of A
p(t) instantaneous normalized power
PT transmit power
Rb bit rate
ΓXX (τ) autocorrelation of a WSS random process X(t)
γX(f) power spectral density of WSS random process X(t)
sign(t) sign function
T time internal, period, sampling period
Tb bit time
t time
σ2
X variance of the random variable X
W bandwidth
G(f) Fourier transform of g(t)
x[n] discrete-time signal
⊗ convolution
δ(t) unit impulse function, Dirac
τ time delay
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