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ABSTRACT 

The non linear behaviour of concrete is often simulated using local constitutive models based on the 
continuous damage mechanics theory. This approach however is not adequate for post-localisation studies 
with strain softening. It is well known that spurious mesh dependence appears in computations and cases of 
failure without energy dissipation. In order to improve computational performance second grade local models 
are chosen to include a meso scale in the continuous damage model. This approach differs from the nonlocal 
one in the sense that it is a local theory with higher order stresses depending only on the local cinematic 
history. 1D numerical computations with concrete specimens are presented. Using a random initialisation of 
the iterative solver of the equilibrium equation we search the existence of various solutions for the boundary 
value study and also to see if the second grade term regularise the problem giving results that are mesh 
insensitive and objective.  

 
1  INTRODUCTION 

Experimentally, concrete specimens exhibit a network of microscopic cracks that nucleate parallel 
to the axis of loading. Due to the presence of heterogeneities in the material (aggregates 
surrounded by a cement matrix), tensile transverse strains generate a self-equilibrated stress field 
orthogonal to the loading direction, a pure mode I (extension) is thus considered to describe the 
behaviour in compression. A classical local model based on continuous damage mechanics is used 
hereafter allowing accounting for the asymmetric behaviour of concrete under tension and 
compression. The influence of microcracking due to the external loads is introduced via a single 
scalar damage variable d ranging from 0 for the undamaged material to 1 for a completely 
damaged material. In order to introduce the non-symmetric behaviour of concrete, the failure 
criterion is expressed in terms of the principal extensions.  
     This approach however is not adequate for post-localisation studies where strain softening 
appears. Calculations performed with a local classical continuum model - which does not 
incorporate an internal length variable - are unable to model objectively intrinsic failure zones. It is 
now well known that a spurious mesh dependence appears in computations and cases of failure 
without energy dissipation. In order to improve computational performance the nonlocal damage 
approach is often used in the literature. A different solution is investigated within this work. 
Second grade local models are chosen to include a meso scale in the continuous damage model. 
This approach differs from the nonlocal one in the sense that it is a local theory with higher order 
stresses depending only on the local cinematic history.  
     Details on the damage mechanics constitutive law are given at the first part of the paper. The 
second gradient local approach is then introduced and different numerical computations with 1D 
concrete specimens in traction are presented. Using a random initialisation of the iterative solver 
of the equilibrium equation we search the existence of various solutions for the boundary value 
study and also to see if the second grade term regularise the problem giving results that are mesh 
insensitive and objective.  

 



2  SCALAR LOCAL DAMAGE MODEL 
Introduced in 1958 by Kachanov (e.g. Kachanov [14]) for creep-related problems, continuum 
damage mechanics has been applied in the 1980s for simulating the non linear behaviour of 
concrete (e.g. Krajcinovic [15], Lemaitre and Mazars [19], Ladeveze [17]). Thermodynamics of 
irreversible processes gave the framework to formulate the adapted constitutive laws (e.g. 
Lemaitre and Chaboche [18]). Considering the material as a system described by a set of variables 
and a thermodynamic potential, constitutive laws are systematically derived along with conditions 
on the kinematics of damage. However, an adequate choice of the potential and of the damage 
variable (scalar, tensor, etc.) remains to be made. Several anisotropic damage models have already 
been proposed (e.g. Dragon and Mroz [8], Mazars and Pijaudier-Cabot [23], Fichant et al. [9, 10]. 
Possible applications cover also dynamic problems (e.g. La Borderie [16], Ragueneau et al. [30]), 
porous materials (e.g. Pijaudier-Cabot and Burlion [29]) and chemical damage (e.g. Gérard et al. 
[12]). A recent literature review on damage mechanics can be found in Pijaudier-Cabot [27]. 
     The outlines of a local scalar 3D damage mechanics law for concrete are presented hereafter 
(e.g. Mazars [21, 22]). In this model, the material is supposed to behave elastically and to remain 
isotropic. The loading surface takes the following form: 
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with eqε an equivalent strain defined as: 
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     The hardening-softening parameter )(dK takes the largest value of the equivalent strain ever 
reached by the material at the considered point to retain the previous loading history. Initially 

)(dK equals the threshold 0dε . Evolution laws for damage are used to describe the response in 
tension or compression (index i refers either to tension (t) or compression (c)):  
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     Ai and Bi and 0dε  are material parameters identified independently from compression tests on 
cylinders and bending tests on beams. The scalar damage variable d that has to be introduced in the 
constitutive equation is a weighted sum of td and cd (variables that correspond respectively to 
damage measured in uniaxial tension and uniaxial compression).  

cctt ddd αα += . (4) 

     We call +σ and −σ  ( −+ += σσσ ) the tensors in which appear only the positive and negative 
principal stress, respectively, and tε , cε the strain tensors defined as: 
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     )(dΛ  is a fourth-order symmetric tensor interpreted as the secant stiffness matrix and it is a 
function of damage. The weights tα  and cα are defined by the following expressions: 
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1=iH if 0≥+= ticii εεε , otherwise 0=iH . tα and cα are the coefficients defining the contribution of 
each type of damage for general loading. From eqn (6) it can be verified that for uniaxial tension 

tct dd === ,0,1 αα and vice versa for compression. 
 

3  LOCAL SECOND GRADIENT MODEL 
It is today well established that strain softening induces bifurcation, strain localisation and failure 
without energy dissipation (e.g. Bazant [2]). One of the possible remedies is to use nonlocal 
constitutive models (e.g. Pijaudier-Cabot and Bazant [28]). A different approach is investigated 
within this work using second grade local models to introduce a meso scale in the continuous 
damage model.  
     Since the work of Aifantis (e.g. Aifantis [1]) second grade models are often used, especially 
within the flow theory of plasticity. Peerlings (e.g. Peerlings et al. [25, 26]) and Fremond 
(Fremond and Nedjar [11]) have also studied second grade damage models. The study presented in 
this paper is about uniqueness of solution involving damage mechanics and the local second 
gradient model proposed in Chambon et al. [4, 5, 6]. Here the word local means that the 
constitutive equation is a relation only between local quantities. The model is a direct extension of 
microstructured or micromorphic continua (Germain [13] and Mindlin [24]). A 2D large strain 
finite element formulation and the corresponding constitutive equations have been developed 
using a mathematical constraint between the micro kinematics description and the usual macro 
deformation gradient field. This constraint is enforced in a weak sense by using Lagrange 
multipliers in order to avoid difficulties with the C1 continuity (second grade models involving the 
first and the second derivatives of the displacement field - Matsushima et al. [20]). The 
implementation of the method in the finite element code LAGAMINE (Université de Liège) has 
recently been completed (e.g. Besuelle [3]). 
      

4  1D NUMERICAL SIMULATIONS 
One-dimensional traction in plane deformations is studied hereafter and the results are compared 
with the analytical solutions (else than the homogeneous one that is always possible) calculated for 
small strains (eg. Chambon et al. [4, 5]). Figure 1 shows the boundary conditions used in the 2D 
version of LAGAMINE. In order to avoid a 2D effect, the condition 02 =u , is applied at the upper 
and lower boundaries along the bar ( u for displacement). The section of the bar is 0.1x1 m2 and its 
length 1m. The right end of the bar is fixed ( 0=iu ) and the external traction force is applied at the 
left end. The additional external forces are assumed to be zero at both ends.  
      
 
 
 
 
 
 

Figure 1. Boundary conditions for simulating 1D traction in a 2D FE code. 
     
     It is assumed that there is no coupling between the first and the second gradient part of the 
model. In order to get localization, the first gradient part has to exhibit softening. The constitutive 
relation is shown in Figure 2. The parameters chosen for the damage law (first gradient part) 
correspond to a typical concrete specimen ( 04.2,5.0,04.1,09.30 01 +==−=+=Α EBAEPaE ttdε , 
parameters that provide PaEA 097.162 +−= ). The second gradient 1D model implicitly defines two 



internal lengths, one (namely 1/ AB ) corresponding to the unloading regime of the first gradient 

part of the model and the other (namely )/( 2AB − ) corresponding to the softening loading regime 
just after the peak. The parameter B is chosen in order to have possible analytical solutions and to 
avoid snack back phenomena ( NEB 0937.0 += , Chambon et al. [4, 5]). Assuming a two-part 
solution (built with a patch of a hard part and a soft one) is possible one finds analytically that the 
length of the soft part is equal to 0.37m. For the case of a three-part solution (hard – soft – hard) 
the length of the soft part equals 0.78m. 
 
 
 
 
 
 
 
 
 

Figure 2. Constitutive model: (a) first gradient part, (b) second gradient part. 
   
     A soon as the peak is reached the problem exhibits a loss of uniqueness. In order to determine 
numerically bifurcation thresholds, an algorithm of random initialisation of the iterative solver of 
the equilibrium equation is used just after the peak (at 042.1 −= Eε , e.g. Chambon et al. [7]). For 
every step, a full Newton-Raphson involving a numerical consistent tangent stiffness operator for 
the complete model (i.e. the second gradient terms as well as the classical ones) is used. The 
results of two meshes with 14 and 50 elements are presented hereafter. 
     Figure 3 shows the global force displacement curve for both meshes. Figure 4 presents the 
distribution of the damage variable d just after the peak ( 042.1 −= Eε ) and Figure 5 at the end of 
the loading ( 049.2 −= Eε ). The differences in the global curves just after the peak are due to the 
different corresponding localisation patterns. The mesh with 14 elements converges to a solution 
with two patches (a hard part and a soft one with a length equal approximately to the length 
calculated analytically). The mesh with 50 elements converges to a three-part solution (hard – soft 
– hard) with the length of the soft part again very similar to the analytical value. The 50-element 
mesh switches after to the two-part solution, thus the localisation pattern and the global curves 
become identical. It is obvious that the use of local second gradient models with local damage 
mechanics laws provide internal lengths and consequently regularization of the solutions but it 
does not restore uniqueness properties for the corresponding boundary value problem.  
 
 
 
 
 
 
 
 
 

 
Figure 3. 1D traction: Force - displacement curves for the two meshes. 
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Figure 4. Localisation patterns (distribution of damage variable) just after the peak ( 042.1 −= Eε ): 
(a) 14-element mesh, (b) 50-element mesh. 

 
 
 
 
 
 
 
 
 
  
 
 

 
Figure 5. Localisation patterns (distribution of damage variable) at the end of the loading 
( 049.2 −= Eε ): (a) 14-element mesh, (b) 50-element mesh. 
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