

Assessment of Solvent Degradation within a Global Process Model of Post-Combustion CO₂ Capture

Grégoire Léonard, Dominique Toye, Georges Heyen

Global context

CO₂ capture and storage as a possible answer to

- Environmental issues
- Growing energy demand and large contribution of fossil fuels

CO2

Figure 75. World net electricity generation by fuel, 2008-2035 (trillion kilowatthours)

International Energy Outlook 2011

Outline

- 1. Introduction: CO₂ capture and solvent degradation
- 2. Experimental study of solvent degradation
- 3. Simulation of the CO₂ capture process with assessment of solvent degradation
- 4. Conclusion and perspectives

Post-combustion CO₂ capture

Most studies on CO₂ capture with amines: energy penalty

⇒ New solvents, Process intensification...

However, simulation does not consider all important parameters!

Focus set on solvent degradation

- Process operating costs:
 - Solvent replacement: up to 22% of the CO₂ capture OPEX^[1]!
 - Removal and disposal of toxic degradation products
- Process performance:
 - Decrease of the solvent loading capacity
 - Increase of viscosity, foaming, fouling...
- Capital costs
 - Corrosion

- Emission of volatile degradation products!

The goal of this work is to develop a model assessing both energy consumption and solvent degradation.

Two steps:

- Experimental study of solvent degradation
- Process modeling with assessment of solvent degradation

Methodology based on 30 wt% MEA (Monoethanolamine)

2. Experimental study of solvent degradation

Degradation is a slow phenomenon (4% in 45 days^[1]).

- ⇒ Accelerated conditions (base case):
- 300 g of 30 wt% MEA
- Loaded with CO₂ (~0,40 mol CO₂/mol MEA)
- 120°C, 4 barg, 600 rpm
- 7 days
- Continuous gas flow: 160 Nml/min,
 5% O₂ / 15% CO₂ / 80% N₂

Identification of degradation products:

- HPLC-RID
 - => MEA
- GC-FID
 - => degradation products
- FTIR
 - => Volatile products (NH₃)

Comparison of the base case with degraded samples from industrial pilot plants:

Similar degradation products (GC spectra)!

Study of the influence of operating variables:

- => Gas feed flow rate and composition (O₂, CO₂)
- => Temperature
- => Agitation rate
- => Presence of dissolved metals and degradation inhibitors

Leads to a kinetic model of solvent degradation:

- => 2 main degradation mechanisms
- => Equations balanced based on the observed proportion of degradation products

Oxidative degradation

MEA + 1,3
$$O_2$$

 \downarrow
 $0,6~{\rm NH_3}$ + 0,1 HEI + 0,1 HEPO + 0,1 HCOOH + 0,8 ${\rm CO_2}$ + 1,5 ${\rm H_2O}$

Thermal degradation with CO₂

MEA +
$$0.5 \text{ CO}_2 \rightarrow 0.5 \text{ HEIA} + \text{H}_2\text{O}$$

Arrhenius kinetics (kmol/m³.s):

Parameters are identified by minimizing the difference between calculated and observed degradation rates.

• Oxidative degradation:

$$r = 535\ 209.e^{-\frac{41730}{8,314.T}}.[O_2]^{1,46}$$

Thermal degradation with CO₂:

$$r = 6,27.1011.e^{-\frac{143106}{8,314.T}}.[CO_2]^{0,9}$$

3. Simulation of the CO₂ capture process with assessment of solvent degradation

Degradation model has been included into a global process model built in Aspen Plus

- ⇒ Steady-state simulation, closed solvent loop
- ⇒ Additional equations in the column rate-based models

Base case degradation:

Parameter	Unit	Absorber	Stripper	Total
MEA degradation	kg/ton CO ₂	8.1e-2	1.4e-5	8.1e-2
NH ₃ formation	kg/ton CO ₂	1.4e-2	8.4e-7	1.4e-2
HEIA formation	kg/ton CO₂	1.1e-5	1.1e-5	2.2e-5
MEA emission	kg/ton CO ₂	8.7e-4	9.4e-9	8.7e-4
NH ₃ emission	kg/ton CO ₂	9.5e-3	3.0e-3	1.3e-2
HCOOH emission	kg/ton CO ₂	1.1e-4	1.4e-5	1.2e-4

=> Degradation mainly takes place in the absorber:

Base case degradation:

Parameter	Unit	Absorber	Stripper	Total
MEA degradation	kg/ton CO₂	8.1e-2	1.4e-5	8.1e-2
NH ₃ formation	kg/ton CO ₂	1.4e-2	8.4e-7	1.4e-2
HEIA formation	kg/ton CO₂	1.1e-5	1.1e-5	2.2e-5
MEA emission	kg/ton CO ₂	8.7e-4	9.4e-9	8.7e-4
NH ₃ emission	kg/ton CO₂	9.5e-3	3.0e-3	1.3e-2
HCOOH emission	kg/ton CO ₂	1.1e-4	1.4e-5	1.2e-4

=> Oxidative degradation is more important than thermal degradation with CO₂

Base case degradation:

Parameter	Unit	Absorber	Stripper	Total
MEA degradation	kg/ton CO ₂	8.1e-2	1.4e-5	8.1e-2
NH ₃ formation	kg/ton CO₂	1.4e-2	8.4e-7	1.4e-2
HEIA formation	kg/ton CO₂	1.1e-5	1.1e-5	2.2e-5
MEA emission	kg/ton CO ₂	8.7e-4	9.4e-9	8.7e-4
NH₃ emission	kg/ton CO ₂	9.5e-3	3.0e-3	1.3e-2
HCOOH emission	kg/ton CO ₂	1.1e-4	1.4e-5	1.2e-4

=> Ammonia is the main emitted degradation product after washing, coming from both absorber and stripper

Comparison with industrial CO₂ capture plants:

81 g MEA/ton CO_2 < 284 g MEA/ton $CO_2^{[1]}$

=> Degradation under-estimated (although 324kg MEA/day at large-scale ~ 4000 tCO₂/day)!

- => Maybe due to simplifying assumptions:
 - Modeling assumptions for the degradation kinetics
 - Presence of SO_x et NO_x neglected
 - Influence of metal ions neglected

Influence of process variables on solvent degradation:

=> Regeneration pressure

Exponential increase of the thermal degradation, but still much lower than oxidative degradation

Influence of process variables on solvent degradation:

⇒ MEA concentration

Influence of MEA concentration on the O_2 mass transfer!

- ⇒ Identification of optimal process operating conditions for the CO₂ capture process:
- Concentrated MEA solvent: 40 wt% MEA (if degradation inhibitors are available).
- Optimized solvent flow rate: 24 m³/h in the simulated configuration.
- Low oxygen concentration in the flue gas: 0% O₂ (or minimum)
- High stripper pressure: 4 bar.
- Equipment for absorber intercooling and lean vapor compression.

4. Conclusion and perspectives

4. Conclusion

Two of the main CO₂ capture drawbacks are considered:

- Solvent degradation is experimentally studied and a kinetic model is proposed
- This model is included into a global process model to study the influence of process variables

- => Both energy and environmental impacts of the CO₂ capture are considered!
- => This kind of model could and should be used for the design of large-scale CO₂ capture plants.

4. Conclusion

- Many challenges are still up to come for the CO₂ capture process!
- => ~ 1 Mton CO₂ has been emitted during this presentation
- Demonstration plants are the next step to evidence large-scale feasibility!
- Further works: CO₂ re-use for methanol synthesis

Thank you for your attention!

Budapest, Escape 24, June 2014

Back-up slides

Mass transfer enhancement due to the chemical reaction in the liquid film

$$N_{O2} = k_L.a. \left(C_{O2}^{interface} - C_{O2}^{bulk}\right).E$$

$$E = Ha = \frac{\sqrt{D_{A,L}.k.C_{B,L}}}{K_L^0}$$

Back-up slides

Table 1. Main peaks identified in GC spectra of degraded MEA samples

		Compound	Structure	Retention time (min)	Туре
1	MEA	monoethanolamine	H_2N OH	7.6	Start amine
2	DEG	diethylene glycol	$HO \longrightarrow O \longrightarrow OH$	15.0	Internal standard
3	HEEDA	N-(2- hydroxyethyl)ethylenediamine	$^{\text{HO}}$ $^{\text{NH}}$ $^{\text{NH}}$ $^{\text{NH}}$ $^{\text{NH}}$	17.0	Quantified
4	HEF	N-(2-hydroxyethyl)formamide	H NH OH	21.1	Identified
5	OZD	2-oxazolidinone	CNH O	22.5	Quantified
6	HEI	N-(2-hydroxyethyl)imidazole	N OH	24.9	Quantified
7	HEIA	N-(2-hydroxyethyl) imidazolidinone	$HN \longrightarrow OH$	31.5	Quantified
8	НЕРО	4-(2-hydroxyethyl)piperazine- 2-one	OH OH	34.3	Quantified
9	HEHEAA	<i>N</i> -(2-hydroxyethyl)-2-(2-hydroxyethylamino)acetamide	HO NH NH OH	36.8	Identified
10	внеох	<i>N,N'</i> -bis(2- hydroxyethyl)oxamide	$HO \longrightarrow NH \longrightarrow NH \longrightarrow OH$	38.7	Quantified

Influence of process variables on solvent degradation:

- => Solvent flow rate
- => Oxygen concentration in the gas feed

Minimum in the solvent flow rate has been experimentally evidenced.