The year 2013 in the European Heart Journal – Cardiovascular Imaging. Part I

Thor Edvardsen1,2,3, Sven Plein4, Antti Saraste5, Luc A. Pierard6, Juhani Knuuti5, Gerald Maurer7, and Patrizio Lancellotti6*

1Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; 2Faculty of Medicine, University of Oslo, Oslo, Norway; 3Centre of Cardiological Innovation, Oslo University Hospital, Rikshospitalet, Oslo, Norway; 4University of Leeds, Leeds, UK; 5Turku PET Centre and Heart Center, Turku University Hospital and University of Turku, Turku, Finland; 6GIGA Cardiovascular Sciences, Heart Valve Clinic, Imaging Cardiology, University of Liège Hospital, CHU Sart Tilman, Liège, Belgium; and 7Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria

Received 19 April 2014; accepted after revision 22 April 2014

The new multimodality cardiovascular imaging journal, European Heart Journal – Cardiovascular Imaging, was created in 2012. Here, we summarize the most important studies from the journal’s second year in two articles. Part I of the review will focus on studies in myocardial function, myocardial ischaemia, and emerging techniques in cardiovascular imaging, and Part II will focus on valvular heart diseases, heart failure, cardiomyopathies, and congenital heart diseases.

Keywords multimodality cardiovascular imaging • echocardiography • nuclear • CMR • CT

Introduction

The multimodality European Heart Journal – Cardiovascular Imaging has successfully transitioned from an exclusive echocardiographic journal 2 years ago. The journal now serves as an important resource for general cardiologists, specialists in all imaging modalities, and other physicians working in the field of cardiovascular imaging. In two articles, we highlight the most important studies that were published in the journal in 2013. Part I is focused on studies in myocardial function, myocardial ischaemia, and emerging techniques in cardiovascular imaging.

Recommendations from the European Association of Cardiovascular Imaging

In addition to publishing original scientific studies, another important assignment for European Heart Journal – Cardiovascular Imaging is to publish position papers, recommendations and expert consensus papers from the European Association of Cardiovascular Imaging (EACVI). In 2013, the EACVI published three recommendations on echocardiographic topics1–3 and one expert consensus in the field of multimodality imaging.4

Myocardial function

During the last few years, it has been apparent that assessment of myocardial deformation by speckle-tracking echocardiography adds important information to functional assessment by ejection fraction (EF) only.5–7 Knowledge of myocardial function is pivotal in the diagnosis and risk stratification of patients with decreased myocardial function.8 The most powerful method is left ventricular (LV) global longitudinal strain (GLS) by two-dimensional (2D) speckle-tracking strain. This was further confirmed in a prospective study of 425 patients referred for cardiac surgery.9 This study demonstrated that GLS was an independent predictor, superior to EF, for early postoperative mortality after adjustment to EuroSCORE.

In an era of multimodality imaging, it is important to know how values compare between imaging modalities. A study by Puntmann et al.10 compared cardiovascular magnetic resonance (CMR) with transthoracic echocardiography (TTE) derived measurements of LV chamber dimensions and wall thickness. In 101 subjects, including 33 patients with dilated LV, good agreement between CMR and TTE, with a three-chamber CMR approach agreeing best with TTE.

Knowledge of myocardial function in cancer survivors after anthracycline treatment is important. A study from Yu et al.11 showed that children had impaired subendocardial circumferential deformation and apical rotation with consequential reduction of transmural circumferential strain and rotation gradients.

Current strain technology by different vendors is not compliant and different absolute strain values have been reported when comparing equipment from two or more vendors. It seems, however, that longitudinal strain is very reproducible, while other deformation directions show poorer reproducibility data. Therefore, the EACVI initiated a standardized approach to deformation imaging jointly...
with the American Society of Echocardiography (ASE). The leaders of the EACVI and the ASE invited representatives from all vendors to participate in a concerted effort to reduce intervender variability of strain measurement. The experience of the committee so far has demonstrated the potential for co-operation among vendors and the imaging societies. The first report will be published during 2014 in our journal. A recent comparison between 3D strain from two different vendors showed that the agreement was poor except for longitudinal strain assessment and confirmed the need for a standardization process.

Echocardiographic machines and software are constantly improving in regard to image quality, spatial resolution, and more. These improvements might lead to slightly different measurements. It will therefore be important to check normal ranges with newer equipment and software. The aim of the Normal Reference Ranges for Echocardiography Study (NORRE Study) is to obtain a set of ‘normal values’ for cardiac chamber geometry and function in a large cohort of healthy Caucasian individuals (25–75 years) using both conventional and advanced echocardiographic techniques. The first results were published in the journal in the beginning of 2014. The NORRE Study was performed in 22 laboratories accredited by the EACVI and in one laboratory in the USA accredited by Intersocietal Commission for the Accreditation of Echocardiography Laboratories. The final sample size was 734 normal subjects, in whom M-mode, 2D, and 3D imaging, colour Doppler, pulsed-wave Doppler, pulsed-wave tissue Doppler, and colour tissue Doppler imaging data were assessed. All studies were analysed in a central echocardiographic core laboratory for quantitative analysis. The first article presented a comprehensive analysis of chamber quantification in the large NORRE cohort. Another study provides normative values for right atrial volumes and function measured by 3D and 2D speckle-tracking echocardiography. Assessment of left atrial (LA) mechanical function using speckle-tracking echocardiography was found to be a valid approach and clinically feasible compared with transoesophageal echocardiography.

Assessment and interpretation of diastolic function remain difficult. The introduction of e’ was launched as a solution to many of these problems, but controversies about its value persist. The value of e’/a’ is not yet determined, but an important contribution to a better knowledge on how to use this ratio was proposed by Kim et al. They studied determinants of preserved diastolic function at the lateral annulus in 1166 consecutive patients with isolated diastolic dysfunction. They found that patients with lateral e’/a’ > 1 were younger, male, and had a lower prevalence of diabetes and hypertension and showed less evidence of LV diastolic dysfunction and structural remodelling as LV hypertrophy and LA enlargement, than those with a lateral e’/a’ < 1. It is also controversial whether septal or lateral e’ should be the preferred measurement. Galderisi et al. showed that the lateral e’ was the most accurate parameter to predict increased LV filling pressure in patients with coronary artery disease (CAD).

The complicated structure of the right ventricle (RV) makes it difficult to image with echocardiography. It consists of an inflow part including the tricuspid valve apparatus; a trabecular part that includes pronounced trabeculations; and an outflow tract consisting of a muscular infundibulum, separating the tricuspid from the pulmonary valve.

The evaluation of the RV function has a very significant role as a prognostic factor in patients with myocardial infarction (MI). Three-dimensional echocardiography may offer benefits for RV assessment than 2D echocardiography. In a recent study of 85 patients with RV infarct and also with inferior myocardial infarct, the use of RV s’ as a parameter of RV performance was of similar value to discover RV MI as the use of 3D echocardiography.

Knowledge of RV and atrial function is also important in pulmonary hypertension. In a porcine model of RV chronic pressure overload, Guihaire et al. found that non-invasive indices of RV function are markers of ventricular—arterial coupling rather than ventricular contractility. The widely used RV fractional area change, tricuspid annular plane systolic excursion, peak systolic tricuspid annular velocity (s’), and the RV myocardial performance index were all found to better correlate to ventricular—arterial coupling as assessed by RV end-systolic elastance/pulmonary arterial elastance.

Ischaemic heart disease

The mortality from atherosclerotic cardiovascular diseases (CVDs) is steadily decreasing in many countries in Western Europe. CVD remains, however, the major cause of death worldwide. This patient group is also the largest group undergoing cardiac imaging procedures in Europe. Traditional risk scores have many limitations and are less accurate in subgroups as diabetics, women, younger patients, and elderly subjects. The role of cardiovascular imaging in detecting subclinical atherosclerosis is increasing and detection of de facto initial disease might overcome some limitations of conventional risk stratification.

CMR has an expanding range of indications and clinical applications. It is particularly useful for *in vivo* imaging of MI with methods available for delineation of myocardial oedema, necrosis/fibrosis, and ischaemia. In an ex vivo pig model of acute MI, Ubachs et al. validated T2-weighted CMR for the quantification of myocardium at risk against single-photon emission computed tomography (SPECT) and infarct size against a histological reference standard. The study showed that CMR accurately determined area at risk, infarct size, and the derived measure of myocardial salvage. Several studies published in 2013 confirmed the prognostic value of CMR in risk stratification after acute MI. In 309 patients, 3-month infarct size ≥ median by late gadolinium enhancement (LGE) CMR was a strong and independent predictor of outcome with an adjusted hazard ratio of 1.13 per 1% increase. In a second study of 199 patients with acute ST elevation (STE) MI, CMR measures on LA function were independently associated with the outcome.

Other studies highlighted the value of combined low-dose dobutamine and LGE CMR in the prediction of remodelling, which was also the topic of a meta-analysis, and the infarct border zone by LGE in the prediction of hard clinical endpoints. Other CMR outcome measures were reviewed in the European Heart Journal — Cardiovascular Imaging by Mavrogeni et al.

Assessment and quantification of myocardial blood flow (MBF) by CMR is increasingly used in clinical practice and now enshrined in European guidelines. Ebersberger et al. evaluated perfusion CMR at 3 T in 116 patients with suspected or known CAD against the invasive reference standard of pressure-wire-derived fractional flow reserve (FFR). CMR had a sensitivity, specificity, and positive and negative
Adenosine stress CT myocardial perfusion imaging could enable the detection of haemodynamic significance of intermediate coronary stenosis detected by CT coronary angiography (CTCA). An experimental study demonstrated that dynamic dual source CT can quantitatively measure MBF and identify regional reductions of MBF during adenosine stress over a wide range of flow-limiting coronary artery obstruction severities with a good correlation to coronary blood flow obtained with intracoronary flow probe or FFR measurements.

The combined or hybrid imaging of myocardial perfusion is gaining increasing interest and various combinations (CT + SPECT, CT + PET, and CT + CMR) have been investigated. In a study by Schaar et al., hybrid SPECT and CT coronary angiography were evaluated in 98 patients and the results of the hybrid approach were compared with standalone SPECT and CTCA for the diagnosis of significant CAD. Parallel to what has been shown earlier, the sensitivities of SPECT and CT angiography were high (93 and 98%), but the specificities were lower (79 and 62%). Hybrid analysis of SPECT and CT angiography improved the overall performance but especially the specificity (95%) without losing sensitivity (96%). The authors confirmed that the combination of anatomy and function improves the performance of the diagnostic test.

Cardiac CT and CAD

CTCA is a useful tool for the detection and especially ruling out obstructive CAD in selected patients with stable angina pectoris. In a retrospective cohort of 498 stable, symptomatic patients with a low-intermediate probability of CAD referred for either CTCA or exercise-stress test, a frontline diagnostic strategy using CT incurred lower costs related to downstream diagnostic utilization, ambulatory visits, and cardiovascular medication than exercise-stress test-based strategy. Meta-analyses of randomized controlled trials showed that CTCA can be effective and safe as the first imaging test to exclude significant CAD also in low-to-intermediate risk patients with acute chest pain in the emergency department. However, downstream utilization of resources is still a matter of debate since different results in the use of subsequent invasive coronary angiographies and revascularizations have been detected.

Evaluation of coronary stents by CTCA remains challenging because partial volume or blooming artefacts from the highly attenuated stent struts cause problems for the delineation of the coronary stent lumen. The study by Gebhard et al. suggested that adaptive statistical iterative reconstruction may be useful in CTCA evaluation of these patients by improving intra-stent luminal area, diameter visualization, and image quality compared with the standard filtered back projection reconstruction.

Myocardial bridging, i.e. intramyocardial course of a coronary artery causing it to be covered by a bridge of myocardium, can be detected by CTCA. Rubinstein et al. found a relatively high (35%) prevalence of myocardial bridging among a cohort of 334 symptomatic patients referred for CCTA and no obstructive CAD. However, there was no association between myocardial bridging and increased risk for cardiovascular death or MI during 6 years of follow-up.

Cardiac CT has potential to improve cardiovascular risk assessment over conventional risk factors of CAD by the detection of coronary calcium and non-calcified plaque as reviewed by Mureddu.
et al. Obesity is associated with the presence of CAD, but the relationships between body mass index (BMI) and conventional risk factors that often co-exist with obesity are complex. In a multi-ethnic, asymptomatic population of 1212 young men, obesity was associated with the presence of coronary artery calcium independently of the conventional risk factors of CAD. Similarly, among 13,874 patients without known CAD undergoing CTCA, individuals with increased BMI had greater prevalence, extent, and severity of CAD that was not fully explained by the presence of traditional risk factors. Furthermore, a higher BMI was independently associated with increased risk of MI during an average of 2.4-year follow-up. In a cohort of 1535 individuals without clinically manifested CAD, the presence of chronic obstructive pulmonary disease in long-term smokers was associated with that of subclinical CAD measured by CCS independently of traditional cardiovascular risk factors. Although CAD is one of the underlying mechanisms of atrial fibrillation, Den Uijl et al. found that in the CTCA prior to radiofrequency catheter ablation for atrial fibrillation, obstructive CAD or the presence of coronary atherosclerosis was not associated with a higher risk for atrial fibrillation recurrence after ablation.

Low-attenuation plaque has been widely investigated as a marker for atherosclerotic plaque vulnerability. Comparison with histology in explanted hearts showed that low-attenuation plaque in CTA can be used as a marker for lipid core plaque, i.e. plaque with a large lipid/necrotic core. However, the (semi)-automated plaque assessment tools based on measurement of the area between the inner and outer vessel walls are prone to errors if cross-sections without any visually apparent plaque are included in the image analysis.

Recent imaging techniques

Pocket-size imaging devices

The miniaturization and improvements in technology have led to the development of pocket-size imaging devices (PSIDs) with good image quality and excellent portability. PSIDs are now widely available, and their potential role in a hospital environment has been investigated but still remains undefined. One study demonstrated that PSID can provide a valuable alternative to TTE in the presence of focused clinical questions and can provide an efficient way of delivering a ward-based transthoracic echo service. Another study showed that the use of PSID after only brief bedside training greatly improved the clinical diagnosis of medical students and junior doctors, over and above history, physical examination, and ECG findings. A third study showed that PSID used by a trained cardiologist has good diagnostic accuracy in the emergency setting compared with a high-end echocardiograph.

Contrast echocardiography

Myocardial contrast echocardiography has many advantages and allows better assessment of wall motion, LV opacification and in many patients myocardial perfusion. One major disadvantage is the price of the contrast agents. The use of contrast agents in the UK is, however, limited to <4% of all transthoracic echocardiographic studies. Major barriers to the implementation of contrast use are the absence of cardiac imaging specialists directly supervising echocardiography departments and the training of sonographers to independently administer contrast. A new area for contrast was

Figure 1: Images of VFM. Velocity vectors were identified without angle dependency (left panel). The left ventricle was divided into three segments: base, mid, and apex (right panel).
demonstrated by Rutz et al. They showed that contrast could assist in detecting chronic heart transplant rejection, i.e. cardiac allograft vasculopathy.

New imaging techniques

There is growing interest for intracardiac flow visualization. Recently developed vector flow mapping (VFM) enables evaluation of local flow dynamics without angle dependency.59

Retarded apical kinetic energy fluid dynamics could be detected using VFM and were shown to be closely associated with LV spherical remodelling in patients with high LA pressure (Figure 1).

Optical coherence tomography (OCT) is a recently developed intravascular imaging modality that allows detailed assessment of atherosclerotic plaque morphology, coronary stents, and abnormal tissue reactions associated with stent implantation. Kawamori et al.60 found that most cases of stent malapposition with a short distance between the strut and vessel wall, thrombus, tissue prolapse, or minor strut edge dissection improved during the 8-month follow-up. Park et al.61 found that the presence of intra-stent thrombi was seen as often in patients with or without aspirin/clopidogrel resistance 195 days after implantation of a drug-eluting stent. A study of Habara et al.62 revealed that the OCT morphological characteristics of drug-eluting stent restenotic tissue varied depending on time after stent implantation. Heterogeneous appearance of intima, thin-cap fibroatheroma-like pattern image, and intra-intimal microvessels were increased from the early (<1 year) to the very late (>3 years) phase. Matsuo et al.63 found that circulating levels of malondialdehyde-modified low-density lipoprotein, which is an oxidized low-density lipoprotein, were associated with the presence of thin-cap fibroatheroma plaque morphology in OCT in patients with either stable angina pectoris or ACS.

Conclusion

This review has summarized the studies in myocardial function, myocardial ischemia, and emerging techniques published in 2013 in the European Heart Journal – Cardiovascular Imaging. Part II of the review will focus on valvular heart diseases, heart failure, cardiomyopathies, and congenital heart diseases.

Conflict of interest: none declared.

Funding

T.E. is funded by the Norwegian Research Council.

References

22. Von Knobelsdorff-Brenkenhoff F, Bublak A, El-Mahmoud S, Wassmuth R, Opitz C, Gribkowsky D et al. Retarded apical kinetic energy fluid dynamics could be detected using VFM and were shown to be closely associated with LV spherical remodelling in patients with high LA pressure (Figure 1).

