

Influence of whey protein denaturation on adherence of soiling particles to stainless steel

Y. Touré, P.G. Rouxhet, C.C. Dupont-Gillain and M. Sindic

yetioman.toure@doct.ulg.ac.be

Fouling and Cleaning in Food Processing 2014, Cambridge, UK, 31 March- 2 April

Presentation outline

1. Introduction

Background

Objectives

2. Experimental aspects

Material

Methods

3. Results and discussion

4. Conclusion

Background

Concern ? Particulate deposition on surface - drying →natural environments →industrial equipments

Where ?

- Storage tanks
- Ducts
- Plates of heaters coolers

→Food processing

Background

Soil attachment and removal: influence of macromolecules at particule-substrate interface

Detry et al. (2011): starch deposit

- presence of macromolecules (polysaccarides, proteins)
- accumulation at substrateparticulate interface
- influence of:
 - details in the mode of drying
 - exposure to moisture

20 µm

Background

Touré et al et al. (2011; 2013): quartz particles deposit

> dextran, weak effect, low adsorption easy desorption

Background

Touré et al et al. (2011; 2013): quartz particles deposit

- BSA:
- on polystyrene: negligible effect
- on glass: drastic 7 cleanability prevention of tight bonds induction of a repulsion

Background

Protein used in food industry improves

fabricated foods qualities

- texture
- appearance

Denaturation of whey protein and fouling:

- deposit build-up and removal controversial question
- particle soil adherence no data available

Background

Understanding the influence of protein denaturation on particulate soils adherence and removal

- practical information on
 - incidence of surface properties of soil and substrate
 - influence of biomacromolecules
- physico-chemical mechanisms involved :
 - interactions solid-solution, solid-solid
 - biomacrolecules at interfaces
- designing easy-to-clean surfaces

Understanding the influence of protein denaturation on particulate soils adherence and removal

This work:

to improve

- evaluating cleanability
- understanding mechanisms involved

Material

Model of whey protein : β -lactoglobulin (β -LGB)

Model of substrate : stainless steel

Model of particulate soil : suspension of quartz particles (10-30 µm)

Substrate pretreatment

Soil preparation

Soiling procedure

Cleaning test

• At given flow rate:

 larger critical detachment radius
←→ lower hydrodynamic drag force required to detach particles

• At given flow rate:

 larger critical detachment radius
←→ lower hydrodynamic drag force required to detach particles

 Increasing the flow rate same critical detachment radius
←→ increasing drag force required to detach particles

Characterization

Solution and supernatants

- UV-visible absorption
- soluble protein concentration
- liquid surface tension

Substrate

- static contact angle
 - water
 - supernatants
- XPS analysis
 - bare substrate
 - conditioned substrates

Solution and supernatants

	Native	Supernatant 0.5 h	Supernatant 4 h
Concentration (g/L)	2.5 ± 0.2	$\textbf{1.1}\pm\textbf{0.2}$	$\textbf{0.6}\pm\textbf{0.1}$

Heating β-LGB solution at 75°C

- 0.5 h \rightarrow aggregation 50%
- 4 h \rightarrow aggregation 75%,
 - lower surface tension
 - ➔ higher activity at water/air interface

Surface chemical composition

Conditioning			Proportion (%) of elements due to	Molar ratios in organic adlayer		
liquid	Heating	Rinsing	adlayer	substrate	O _{org} /C _{tot}	N/C _{tot}	O _{org} /N
none	none 4 h						
-β-LGB	none	none					
		twice					
	0.5 h	none					
		twice					
	4 h	none					
		twice					
supernatant 0.5 h	none	none					
		twice					
supernatant 4 h	none	none					
		twice					
computed for β-LGB							

Computation

 O_{org} and O_{inorg} from XPS spectra adlayer = $C_{tot} + N + O_{org}$ substrate = Fe + Cr + O_{inorg}

Surface chemical composition

Conditioning			Proportion (%) of elements due to Molar ratios in organic adlaye				nic adlayer
liquid	Heating	Rinsing	adlayer	substrate	O _{org} /C _{tot}	N/C _{tot}	O _{org} /N
none	none		55	45			
	4 h		58	42			
-β-LGB	none	none	96	4			
		twice	81	19			
	0.5 h	none	96	4			
		twice	78	22			
	4 h	none	101	-1			
		twice	103	-3			
supernatant 0.5 h	none	none	98	2			
		twice	94	6			
supernatant 4 h	none	none	82	18			
		twice	77	23			
computed for β-LGB		100	0				

Bare samples

presence of organic contaminants

Conditioned samples

- organic layer: dominated by protein
- rinsing : weak desorption, same as BSA and others substrates
 - \rightarrow β -LGB, not quickly desorbed during cleaning test

Contact angle

Water contact angle

higher than expected for surface consisting of chromium and iron oxides: presence of organic contaminants

Supernatant 4 h

Critical detachment radius

Presence of β -LGB :

- native : decrease of critical detachment radius
 - = higher adherence
- denatured (heated 4 h) : further increase of adherence

Critical detachment radius

Heating after soiling with

suspension in water

higher adherence

↔ capillary forces

• suspension in native β-LGB

still higher adherence

Critical detachment radius

Presence of β-LGB

- slightly increased adherence
- contradiction with

BSA/glass, β-LGB/glass, β-LGB/stainless steel cleaned UVO

due to surface contamination with organic compounds

Presence of denatured β-LGB

further increased adherence of soiling particles

4. Conclusion

Presence of β **-LGB**:

- in soiling quartz particles suspension,
 - adsorption and domination of in organic layer
 - limited desorption upon rinsing
- at the quartz particle/stainless steel interface, particle adherence **7**, enhanced by denaturation

Stainless steel vs systems investigated before:

protein influence via

- droplet spreading
- soiling particles aggregation

→

minor importance with respect to

direct effects at interface

Remark on influence of stainless steel surface state stainless steel does not behave as a hydrophilic substrate owing to surface contamination with organic compounds

Broader study, including substrate hydrophobicity is under way

Thank you for your attention! Are there any questions?