
Introduction 
Uncertainty quantification is very much needed to 

support decision making related to e.g. environmental 

impact assessment for waste disposal sites. A 

probabilistic result provides a much stronger basis for 

decision making compared to a single deterministic 

outcome. Accurate posterior exploration of high-

dimensional and CPU-intensive models, which are often 

used for environmental impact assessment, is however a 

challenging task. To quantify the uncertainty 

associated with groundwater flow and solute transport 

in the framework of a near surface radioactive waste 

disposal in Mol/Dessel, Belgium (Fig 1), we investigate 

combining the adaptive Metropolis (AM; Haario et al. 

2001) McMC algorithm, and iterative spatial 

resampling (ISR; Mariethoz et al. 2009) for large-scale 

probabilistic optimization of a steady-state 

groundwater flow model (Rogiers et al. 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Methods 
Groundwater flow model 
 Conditioned on borehole and direct push data (Fig 

1), accounting for non-stationary heterogeneity in 

hydraulic conductivity (K) using distance-weighted 

geostatistics (Machuca-Mory & Deutsch 2012; Figs 

2 & 3) 

 Global parameters (i.e., spatially uniform) 
 HK_HUF_1D: Kh multiplier for lower part model 

 R_BUILT_AREA: built area recharge  

(% of meadow recharge) 

 R_TOTAL: total recharge multiplier 

 Spatially distributed parameters 
 Kh & VANI (vertical anisotropy) 

 41183 cells (each 5th grid cell; interpolated in 

between) 

 Principal components are used for simulation, with 

hydraulic data as primary variable, and CPT and grain-

size based K predictions as secondary variable 

 Compared to reference model parameterization with 

homogeneous hydrogeological units 

 

Probabilistic optimization 
 AM for updating global model parameters, ISR for 

spatially distributed K 

 We use a non-exact variant of rejection sampling 

known as interrupted Markov chain, where we only 

accept better performing candidates, and interrupt 

the chain with probability α=exp(log-likelihood – 

target log-likelihood) 

 

Random walk particle tracking 
 Preliminary results from a basic implementation 

based on LaBolle et al. (2000), assuming constant 

porosity and isotropic dispersion 

 Relative dispersivity fields estimated from outcrop 

investigations (Rogiers et al. 2013) and CPT-based K 

variance (Rogiers 2013) 

 1500-m scale dispersivity in the reference model, 

250-m scale for the updated model simulations, 

using dispersivity-scale dependency from literature 

(Rogiers 2013) 

 

 

Results 
 50 random realizations were  optimized with the 

AM-ISR interrupted Markov chain approach (Fig 4) 

 Global model parameter posterior distributions 

remain poorly characterized with only 50 samples 

(Fig 5) 

 Model performance increased considerably, mainly 

due to better simulation of vertical head differences 

(Fig 6) 

 Groundwater table elevation is mainly affected in 

the southern part; the variance is lowest near the 

river and drain network, and high observation-

density areas (Fig 7) 

 General solute plume evolution is similar, but 

differences exist in terms of arrival time and 

location of the plume in the lower aquifer (Fig 8) 

 Correspondence between ensemble mean log10K 

fields and reference model depends on position in 

stratigraphy, as well as the variance, which 

additionally reflects the presence of primary and 

secondary data (Fig 9) 
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Fig 1: Study area and site investigation points. 
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Fig 2: Non-

stationarity in the 

variogram for the Kh 

and VANI principal 

components. 

Fig 4: Evolution of the log-likelihood in function of the 

number of iterations, for 50 interrupted Markov chains 

Fig 3: Non-stationarity in the mean and primary-

secondary data correlation along the stratigraphical 

succession.. 

Fig 7: A) Ensemble mean groundwater table elevation (masl). 

B) Difference with reference model. C) Variance. 

Fig 9: K fields for the reference model and the ensemble mean and variance. 

Fig 6: Mean and 95% confidence interval for the model ensemble 

head observations and vertical head differences (inset graph). The 

reference model values are shown in red triangles. 

Conclusions 
 Combination of AM and ISR proved to be effective 

for optimization of the non-stationary random 

fields 

 More interrupted Markov chains should be run in 

order to get more robust posterior parameter 

distributions 

 The random walk particle tracking code should be 

further optimized to reduce computation times 
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Fig 5: Global model parameter scatter 

plots, histograms and correlations. 

Fig 8: Solute plume evolution based on a convolution of the random walk 

particle tracking results, with a unit mass per 100 days input flux at 12 

50x50 m source cells. 


