Comment on Bybee et al. (2014):
Pyroxene megacrysts in Proterozoic anorthosites: Implications for tectonic setting, magma source and magmatic processes at the Moho

Jacqueline Vander Auwera a,*, Bernard Charlier a, Jean Clair Duchesne a, Bernard Bingen b, John Longhi c, Olivier Bolle a

a Department of Geology, University of Liège, B-4000 Liège, Belgium
b Norwegian Geological Survey, N-7040 Trondheim, Norway
c Lamont-Doherty Earth Observatory, Palisades, NY 10964, USA

A R T I C L E I N F O
Article history:
Received 1 April 2014
Accepted 4 June 2014
Available online xxxxx
Editor: T.M. Harrison

In their recent paper, Bybee et al. (2014) present new isotopic and geochronological data on High-Alumina Orthopyroxene Megacrysts (HAOM) sampled in three different Proterozoic massif-type anorthosites, namely, the Mealy Mountains Intrusive Suite (MMIS), the Nain Plutonic Suite (NPS) and the Rogaland Anorthosite Province (RAP). The Sm–Nd isochron ages obtained on HAOM from these three provinces indicate that the most aluminarich samples, i.e. those that crystallized at the highest pressure, are 80–120 Ma older than their host anorthosites. Moreover, Sm–Nd isochrons between plagioclase lamellae, host orthopyroxene and whole-rock from the NPS and RAP have decompressed at ages that correspond to the crystallization ages of the host anorthosites at mid crustal level, as recorded by zircon U–Pb data (i.e. Emslie, 1990; Myers et al., 2008; Schärer et al., 1996). There is thus a 70–100 Ma gap between the crystallization of the HAOM at the base of the crust, on the one hand, and their decompression and anorthosite crystallization in the rising diapirs (or crystal mush), on the other hand. The authors interpret these geochronological data by proposing that HAOM crystallized from mantle derived mags ponded at the base of the crust some 100 Ma before the crystallization and emplacement of the anorthosite and that the 100 Ma time interval was spent partly in a convecting and recharging lower crustal magma chamber and partly in the ascent of the anorthosite. As the diapirc rise of the RAP anorthosites was modelled to last for about 2.5 Ma (Barnichon et al., 1999), most of the 100 Ma timespan is left in this case for the lifetime of the lower crustal magma chamber.

These new geochronological data bring very important constraints on the petrogenesis of Proterozoic massif anorthosites (2.12–0.92 Ga: Hamilton et al., 1998; Ryan et al., 1999; Vander Auwera et al., 2011). We agree with the authors that several lines of evidence support that their isochrons record crystallization of the HAOM. These evidences include the consistent ca. 100 Ma timespan between HAOM crystallization and anorthosite emplacement obtained in three different anorthositic provinces. However, we think that there is an alternative explanation to this 100 Ma timespan that has not been explored by the authors. We will discuss this alternative below with a focus on the RAP for which extensive data have been presented on the regional geology, isotopic measurements for the anorthositic massif and the surrounding rocks, completed by extensive experimental study for phase equilibria.

There is an ongoing debate about the mantle or lower crustal source of the anorthosite parent magma. Experimental data acquired on a high-Al basalt (HLCA), parent magma of Proterozoic anorthosites provide a strong constraint as they indicate that, at the lower crustal pressures (10–13 kbar) necessary to produce the characteristic HAOM, this high-Al basalt lies on a thermal divide of the plagioclase + pyroxene liquidus surface requiring that it was produced by partial melting of a gabbronoritic lower crustal source (Duchesne et al., 1999; Longhi et al., 1999). Vander Auwera et al. (2011) identified several possible precursor mafic magmatic events in the Sveconorwegian orogen that could potentially have provided the lower crustal source of the younger RAP (0.93 Ga): the 1.05 Ga Feda suite mafic facies, the volcanic

DOI of original articles: http://dx.doi.org/10.1016/j.epsl.2013.12.015
http://dx.doi.org/10.1016/j.epsl.2014.06.032
* Corresponding author.

http://dx.doi.org/10.1016/j.epsl.2014.06.031
0012-821X/© 2014 Published by Elsevier B.V.
sequences of Gjuve-Morgedal (11.6 Ga), Valdal (1.26 Ga) and Vemork (1.50 Ga). Vander Auwera et al. (2011) favoured the Feda suite because the Nd and Pb isotopic composition of the mafic facies of this suite is very close to the isotopic composition of the high-Al gabbros of the RAP. The 1.04 Ga age obtained by Bybee et al. (2014) for the crystallization of the RAP HAOM with the highest Al₂O₃ content (>8 wt.%) corresponds within error to the age of the Feda suite of southern Norway (1.05 Ga: Bingen and van Breemen, 1998). Moreover, the Pb isotopic composition of the RAP HAOM recalculated back at 1.05 Ga (supplementary data of Bybee et al., 2014) (206/204Pb=1.52/17.50 Ga = 14.91–17.88; 207/204Pb=15.32–15.53) perfectly overlaps the initial Pb isotopic composition of the Feda suite (206/204Pb=16.92–17.32; 207/204Pb=15.43–15.50) (Bingen et al., 1993; Vander Auwera et al., 2011) (Fig. 1). This is also clear when average compositions are compared: Feda (30 samples) (206/204Pb=17.06; 207/204Pb=15.46), HAOM (13 samples) (206/204Pb=17.03; 207/204Pb=15.47). The range of εNd(105 Ga) displayed by the RAP HAOM (–0.9 to +3.4) (Bybee et al., 2014) and the Feda suite (–0.7 to +3.8) (Bingen et al., 1993; Vander Auwera et al., 2011) perfectly overlap too. The RAP HAOM with the highest Al₂O₃ content (>8 wt.%) thus crystallized at the same time as the Feda suite and from a magma that had the same isotopic composition than the Feda suite. Moreover, available isotopic data on the high-Al gabbros (3 samples) of the RAP (Vander Auwera et al., 2011; Weis, 1986) recalculated back at 0.93 Ga display an isotopic composition (206Pb/204Pb=17.28–17.37; 207Pb/204Pb=15.48–15.49) that is in the range of the Pb isotopic composition of the RAP HAOM also calculated back at 0.93 Ga (206Pb/204Pb=15.39–18.21; 207Pb/204Pb=15.37–15.57) (Bybee et al., 2014) (Fig. 1). At 0.93 Ga, the RAP HAOM were thus in chemical, as shown by the experimental data (Fram and Longhi, 1992; Longhi et al., 1999), and isotopic equilibrium with the high-Al basalt (Fig. 1).

The new isotopic data of Bybee et al. (2014) combined with the experimental constraints (Fram and Longhi, 1992; Longhi et al., 1999) thus support a two-step model for the origin of the RAP Proterozoic anorheroses. During the first step, the HAOM (>8 wt. % Al₂O₃) crystallized at 1.05 Ga at the base of a thickened crust most probably from the parent magma of the Feda suite. 120 Ma later, during a second step, the lower crustal gabbroitic cumulates including the HAOM were partially melted to produce the high-Al basalt. According to this model, the HAOM could be restitic minerals of the lower crustal source. This would suggest that the HAOM displaying the highest Al₂O₃ content (and also possibly the mega-plagioclase that locally display ophitic textures with the HAOM) observed and sampled in the RAP are representative fragments of the source, unmelted either because they were crystals too large (up to 1 m) to melt or they were originally incorporated in monomineralic layers. The Feda suite has been interpreted as resulting from the crystallization of a mantle-derived magma of calc-alkaline affinity mixed with crustal melts produced during the lower crustal underplating of the basalts (Bingen et al., 1993).

Experimental data (Müntener et al., 2001) and field observations (Hermann et al., 2001) indicate that this type of magma produces significant amounts of gabbronic cumulates when crystallizing at the base of the crust. As noted by Bybee et al. (2014), the major element composition of the HAOM is generally similar to the composition of the experimentally obtained orthopyroxenes with, however, significant differences in their Mg#s and FeO concentrations, Mg#s (0.49–0.66: Bybee et al., 2014) and FeO concentrations (11.65–19.6 wt.%: Bybee et al., 2014) of the HAOM are respectively lower and higher than the Mg#s (0.88–0.77) and FeO (7.7–13.7 wt.%) concentrations of the experimental orthopyroxenes (Müntener et al., 2001). This difference cannot be explained by the early crystallization of olivine as this mineral is notably absent in the experimental high pressure cumulates (Müntener et al., 2001) due to the shrinking of the olivine stability field with increasing pressure. In agreement with what was initially proposed by Longhi et al. (1999), we suggest that HAOM were part of the more evolved cumulates, containing more ferroan pyroxenes together with Fe-Ti oxides and phosphate, that were preferentially foundered or down-thrusted because of their higher density.

As previously mentioned by Longhi et al. (1999) and recalled by Bybee et al. (2014), the above model requires extensive melting of the lower crust at high temperature. The recent work of Drüppel et al. (2013) on the petrology of sapphire-bearing gneisses occurring just north of the RAP supports this interpretation. Indeed, zircon U-Pb geochronology, phase modelling and geothermobarometry indicate that the sapphire granulites record ultrahigh temperature metamorphic conditions of about 1000°C and ca. 0.75 GPa at 1.01 Ga, i.e. after intrusion of the Feda suite and before emplacement of the RAP, followed by near isothermal decompression at 0.55 GPa. These results thus indicate that at that time, the temperature in the lower crust was well above c. 1000°C. Considering a lower crustal pressure of 1.25 GPa (Charlier et al., 2010; Longhi et al., 1999) and a conservative geothermal gradient of 20°C/km, the temperature at the base of the crust can be estimated at 1390°C. Clearly, improved geochronology of regional metamorphism is required to link pressure-temperature paths in the crust to magmatic events and possible heat sources.

Fig. 1. A. (206Pb/204Pb) of RAP HAOM versus time (Ma). B. (207Pb/204Pb) of RAP HAOM versus time (Ma) same symbols as in A. Data from Bingen et al. (1993), Bybee et al. (2014) and Weis (1986).
In conclusion, we think that the high-Al basalts, parent magmas of massif-type anorthosites are product of melting of a dry lower crustal protolith, in accordance with available experimental data. The data of Bybee et al. (2014) can be interpreted to support crystallization of a gabbronoritic lower crust followed ca. 100 Ma later by melting and production of the anorthosite parent magma. In terms of secular evolution of the earth, it may mean that the Proterozoic was a time where temperature and convection of the mantle was favourable for the remelting of freshly crystallized crustal underplates.

Editorial Acknowledgement

The Editor thanks the reviewers, Carol Frost, for her thoughtful and balanced reviews of both Commentary and Reply.

References

