

Biorefine: Recovery of nutrients and metallic trace elements from different wastes by chemical and biochemical processes

<u>Cédric Tarayre</u> Christophe Fischer Lies De Clercq Evi Michels Erik Meers Jeroen Buysse Frank Delvigne Philippe Thonart

Unit of Bio-industries – Gembloux Agro-Bio Tech, University of Liege

Global context (1)

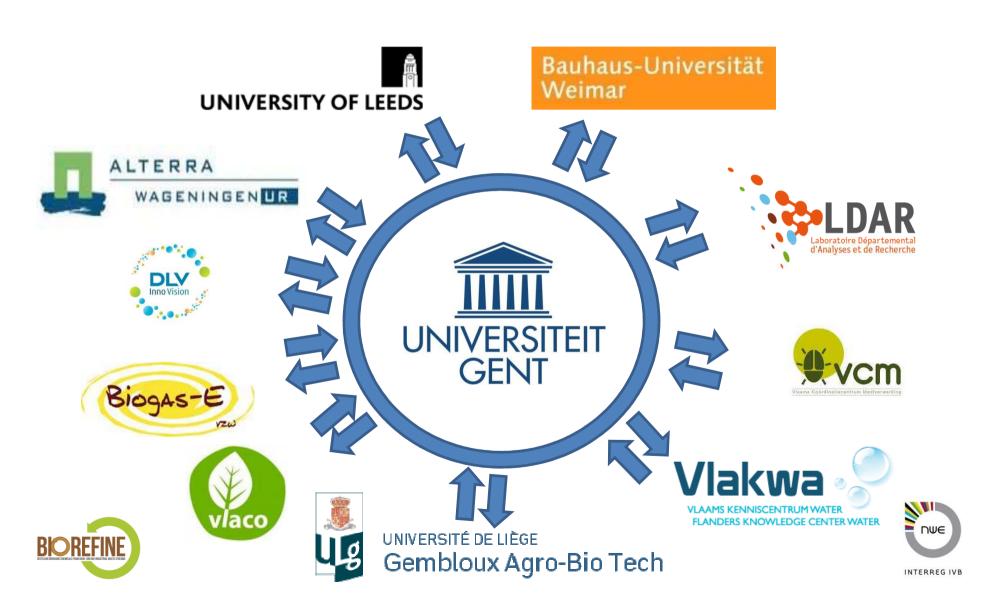
- Nutrients (N, P, K) are necessary for maintaining soil fertility and ensuring global food production
- > The demand for food is increasing
- > The chemical fertilizers became essential
- Minerals are also required in other sectors (inorganic chemistry)

It is now necessary to close the nutrient cycles and evolve to more sustainable resource management

Global context (2)

- ➤ The European Union is developing the environmental legislation
- ➤ Harmonising techniques, standards and markets is necessary
- ➤ Some countries of the NWE region produce large amounts of residues (agriculture and industries)
- > Those materials contain useful nutrients

An asserted action on resource recovery is crucial to sustain our state of society


Interreg IVB Programme - Biorefine

- > European Programme applicable to the NWE region
- ➤ Purpose : improve the economic, environmental, social and territorial situation in the EU

Partners of the Biorefine project

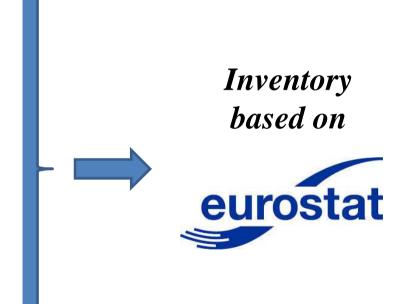
Examples of waste composition

Some wastes contain N, P, K and MTEs in high concentrations

Parameter	Digestate	Sewage sludge	Ashes of poultry manure	Wood ashes
рН	8,3-9,9	6,7-7,6	13	highly alkaline
Ntot (%)	6,5-11,9	7,5-7,75	0	0
Norg (%)	3,4-5,6	7,5-7,75	0	0
NNH4 (%)	2,3-10,9	0,48-0,75	0	0
NNO3 (%)	<0,012	0-0,5	0	0
P2O5 (%)	1,24-3,0	2,4-3,5	12	2,87
K2O (%)	4,5-4,8	0,67-1,25	12	3,64
C (%)	32-36,6	33,3-38,9	0	0
Cd (mg/kg)	0,26-1,87	0,54-0,85	0,8	7,5-9
Cr (mg/kg)	13-23	18-39	13	243-569
Cu (mg/kg)	55-188	104-145	350	124-994
Hg (mg/kg)	0,03-0,04	0,18-0,21	<0,05	0,3-0,36
Ni (mg/kg)	11-13	17-22	17	84-123
Pb (mg/kg)	25-83	26-32	10	316-680
Zn (mg/kg)	258-771	580-860	1550	559-2332
Co (mg/kg)	3-4,4	-	<5	-
As (mg/kg)	0,98-3,3	1,98-3,27	-	44-62

References

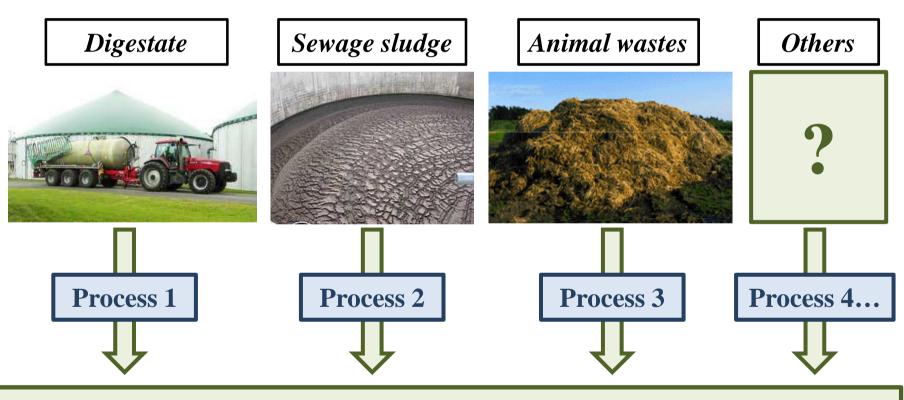
BEAGx


Work packages of the Biorefine project

- > 5 main objectives (Work Packages)
 - ➤ WP1: Networking & interlinkage with projects
 - ➤ WP2: Classification matrix of nutrient sources and recovery and reuse processes
 - ➤ WP3: Pilot scale explorations and demonstrations of good practice techniques
 - ➤ WP4: New strategies and synergies in cross-sectorial resource recovery
 - ➤ WP5: Road map for implementation of new strategies and policies

Inventory of resources

- > What residues?
 - ➤ Manure Slurry
 - > Sewage sludge
 - Digestate
 - > Ashes
 - > Wastewater
 - ➤ Household wastes
 - > Industrial wastes
 - \triangleright Other(s)?

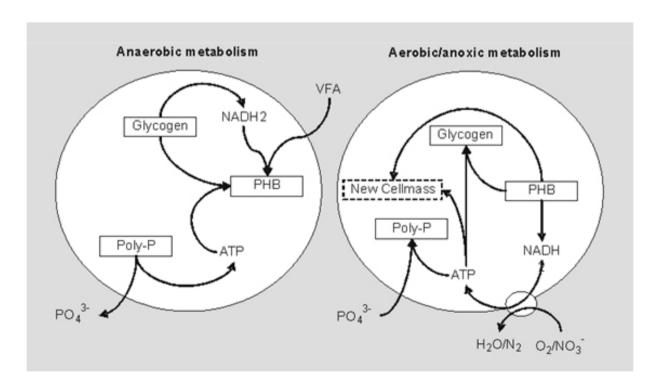

Inventory of existing recovery techniques

- The partners gather information about the recovery techniques applied in their own countries
- > Detailed description of the processes (unit operations)

Mixing		Fermentation	Sedimentation	Distillation
Grindin	g	Filtration	Flotation	Evaporation
Screenir	g	Osmosis	Magnetic sep.	Drying
Agglomera	ting	L/L extraction	Pervaporation	Fluidization
Crystalliza	tion	Ion exchange	Dust removal	Condensation
Precipitat	ing	S/L extraction	Adsorption	Sublimation
Reactio	n	Centrifuging	Absorption	Freeze-drying

Creation of new recovery processes (1)

➤ Creation of new pilote plants specialized in the nutrient recovery from wastes → development of opportunities

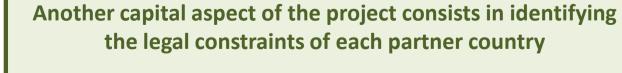


Recovery of nitrogen, phosphorus, potassium and Metallic Trace Elements

BUKEFINE

Creation of new recovery processes (2)

- ➤ Some common processes can be exploited to recover nutrients...
- Example: some WWTPs achieve phosphorus removal by biological techniques (PAOs)



Identification of legal constraints

- The partner countries have their own legislation applicable to wastes
- ➤ European legislation > National legislation > Regional legislation
- The exportation of wastes may be necessary
- The use of new fertilizers stemming from wastes must be allowed in the partner countries

International linking between experts and projects

A cluster has been established in order to gather people and projects concerned in the same objectives

Acknowledgements

UNIVERSITÉ DE LIÈGE Gembloux Agro-Bio Tech

