
Optimization of the service start time for an elementary

shortest path problem with time windows
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Abstract

We investigate an elementary shortest path problem with resource constraints
where a single capacitated vehicle, initially located at a depot, must serve
a set of customers while respecting their individual time windows. When
the vehicle visits a customer, it delivers the customer’s demand and collects
a revenue in return for the delivery. The vehicle can start its trip at any
desired time. The transportation cost is a function of both the total distance
traveled and the duration of the assigned trip. The objective is to determine
the service start time from the depot, the subset of customers to be served,
and the trip to be performed so as to minimize the total loss, which is cal-
culated as the difference between the transportation cost and the revenue
collected from the customers. We develop two exact dynamic programming
algorithms which can deal with an infinite number of Pareto-optimal states
arising from the fact that the starting time and the duration of the trip act
like continuous decision variables. We report computational results obtained
with these algorithms and with a faster heuristic for the elementary shortest
path problem. We also examine the performance of these algorithms when
they are used to solve the pricing subproblem arising in the framework of a
column generation algorithm for a related vehicle routing problem with time
windows.
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1. Introduction

The Shortest Path Problem with Resource Constraints (SPPRC) consists
in determining a least cost path that starts from a source and ends at a sink
of a graph while satisfying a set of constraints that are defined over resources.
Each resource corresponds to a quantity, such as the service time consumed
or the load carried, whose value varies along the arcs of the path. The reader
can refer to Irnich and Desaulniers (2005) for a classification of SPPRCs.

In an Elementary Shortest Path Problem with Resource Constraints (ESP-
PRC), the least cost feasible path has to be an elementary path, that is, a
path in which no vertex is repeated. When the graph is acyclic, there is
no need to impose elementarity. However, when the graph is cyclic with
negative cost consumptions on the arcs, negative cycles may exist and the
elementarity requirement has to be explicitly imposed in the problem.

In this article, we study an extension of the Elementary Shortest Path
Problem with Time Windows where we assume that the vehicle collects a
revenue whenever it serves a customer and the transportation cost is a linear
function depending on both the distance traveled and the duration of the trip.
The time at which the vehicle starts its service at the depot is a continuous
decision variable. For a given path, different service start times at the depot
may provide different values for the total waiting time of the vehicle and
consequently, different values for the transportation cost. Then, the total
loss associated with a trip is computed as the transportation cost of serving
customers less the revenue collected from the customers who are served on
the trip. The objective is to determine the service start time from the depot,
the subset of customers to be served, and the trip to be performed so as to
minimize the total loss function. This problem arises, for instance, as the
pricing sub-problem of a vehicle routing problem (VRP) with time windows
when the drivers are paid per time unit worked and the starting times of
their shifts are to be determined by the decision maker.

We aim at solving this elementary shortest path problem to optimality
using a dynamic programming (DP) algorithm. This approach requires that
the total spent time and the total loss be defined as functions of the service
start time at the depot. This leads to an infinite number of labels to be
handled by the DP algorithm and requires developing appropriate dominance
rules to eliminate irrelevant labels. The main contributions of our study are
to formulate the resource extension functions of the total spent time and the
total loss and to develop suitable dominance rules. In order to clarify these
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claims, we now provide an overview of the literature on related problems.

1.1. Literature review

In an SPPRC, Resource Extension Functions (REFs) can be used to
model the accumulated consumption of resources along partial paths. More
precisely, if (i, j) is an arc, f r

ij is the REF associated with resource r, ri is
the amount of resource r consumed up to vertex i, and Ri is the resource
consumption vector at vertex i, then f r

ij(Ri) represents the minimum accu-
mulated consumption of resource r along a partial path starting from the
source and ending at vertex j after having traversed arc (i, j).

For each resource and each vertex j, there is a resource interval [lbj, ubj].
If the accumulated resource consumption f r

ij(Ri) at vertex j is less than the
resource lower bound lbj, then a certain amount of resource r has to be wasted
by setting its value rj equal to lbj. A path is said to be resource-feasible if
the consumption rj of each resource r at each vertex j visited along the path
can be defined to be at least equal to the corresponding value of the REF and
at most equal to the resource upper bound ubj. Irnich (2008) discusses some
important REF properties that may lead to efficient algorithmic procedures.
Besides, the author reviews different types of REFs that can be used for
modeling complex resource interdependencies inherent in real-life problems.

SPPRCs can be solved using exact DP approaches with a pseudo-polynomial
complexity (Desrochers and Soumis (1988); Desrochers et al. (1992)). A label
indicating the resource consumptions is associated with each feasible partial
path and the partial paths that cannot be extended to Pareto-optimal paths
are eliminated with the help of dominance rules. The algorithm extends only
the non-dominated labels into all feasible directions until the set of Pareto-
optimal complete paths is obtained. In label-setting DP approaches (see
Desrochers and Soumis (1988)), a label is chosen to be extended only if it is
not possible to dominate this label in the following steps of the algorithm,
whereas in label-correcting approaches (see Desrochers et al. (1992)), the
non-dominance of a label cannot be guaranteed until the termination of the
algorithm and the vertices are treated repeatedly throughout the algorithm
to extend their labels. Lagrangian relaxation based bounding and network
pre-processing techniques are proposed to improve the efficiency of the ex-
act solution methods (Aneja et al. (1983); Beasley and Christofides (1989);
Dumitrescu and Boland (2003)). Irnich and Desaulniers (2005) survey the
commonly used SPPRC solution methods. For a more recent survey and for
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exact solution approaches of some well-known classes of SPPRCs, the reader
may refer to Di Puglia Pugliese and Guerriero (2013).

The ESPPRC in cyclic graphs is strongly NP-hard (Dror (1994)). In order
to enforce elementary paths, Beasley and Christofides (1989) suggest associ-
ating an additional binary resource with each vertex. The binary resource
takes value 1 if the vertex is visited on a partial path and takes value 0 other-
wise. The authors underline the fact that this results in a high dimensional
label space, but they do not carry out any further computational experi-
ments. Feillet et al. (2004) propose an exact DP algorithm for the ESPPRC,
which is an extension of the label-correcting algorithm of Desrochers (1988)
developed for the solution of SPPRC and they adopt the idea of Beasley and
Christofides (1989) to define the new DP dominance relation. The authors
also propose the idea of unreachable vertices by identifying vertices which
cannot be visited in any feasible extension of a partial path because of the
resource limitations. This modification sharpens the dominance relation by
discarding a larger number of non-useful labels and reducing the computa-
tion time. Following the mono-directional search proposed by Feillet et al.
(2004), Righini and Salani (2006) propose a Bounded Bi-Directional Search
(BBDS) to speed up the DP algorithm. In bi-directional search, labels are
extended both forward from the source to its successors and backward from
the sink to its predecessors. In order to reduce the number of generated
labels, Righini and Salani (2006) limit the length of the forward and back-
ward paths using two different bounding techniques, namely arc bounding
and resource bounding. They also show how feasible complete paths can
be obtained by linking the generated forward and backward partial paths.
Computational experiments show that the BBDS algorithms outperform the
mono-directional algorithm. The BBDS algorithm with resource bounding
performs better than the one with arc bounding, which is efficient only when
the optimal path is long in terms of the number of visited arcs. Boland et
al. (2006) describe a label setting algorithm for the ESPPRC, where at each
step the lexicographically minimal untreated label is chosen to be extended
and marked as treated. Following the state space relaxation idea of Kohl
(1995), the state space augmenting algorithm of Boland et al. (2006) solves
iteratively a relaxed ESPPRC, considering the binary resources of only a
subset of vertices until the least cost path is elementary. At each iteration,
this subset is expanded by adding some of the vertices that are visited more
than once in the previously generated optimal paths; four different state space
augmenting strategies are proposed. Righini and Salani (2008) develop a sim-
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ilar approach, called Decremental State Space Relaxation (DSSR), in which
the relaxed ESPPRCs are solved using the BBDS algorithm suggested by
Righini and Salani (2006). They also implement an exact branch-and-bound
algorithm, where a lower bound is obtained at each node of the branch-and-
bound tree using the BBDS algorithm with state space relaxation. The lower
bound is improved by using a 2-cycle elimination technique that discards cy-
cles of at most two arcs (Desrochers et al. (1992)). To compare the BBDS
algorithm, the branch-and-bound method, and the DSSR algorithm, the au-
thors work with the instances of Feillet et al. (2004) and Righini and Salani
(2006), that are derived from Solomon’s benchmark instances. The results
show that the BBDS algorithm works faster when the resource constraints
are very tight. However, when the constraints get looser, the computation
time of the BBDS algorithm grows dramatically. The authors conclude that
the DSSR algorithm dominates the other two approaches. Righini and Salani
(2009) solve the Orienteering Problem with Time Windows (OPTW) using
the DSSR algorithm introduced by Righini and Salani (2008). The perfor-
mances of the state space augmenting approaches of Boland et al. (2006)
are tested on instances obtained from the Solomon’s data set and from the
instances generated by Cordeau et al. (1997).

In addition to the exact solution procedures, heuristic approaches are also
proposed for solving the ESPPRC. Irnich and Villeneuve (2006) introduce a
k-cycle elimination algorithm for k ≥ 3. Desaulniers et al. (2008) propose
a tabu search heuristic for solving the ESPPRC. Baldacci et al. (2011) im-
plement an ng-route relaxation of the ESPPRC that provides tighter lower
bounds than the non-elementary relaxations. The proposed relaxation is
shown to be very effective when the resource constraints are loose.

Several real-life problems can be modeled as ESPPRCs. As mentioned
before, Righini and Salani (2009) model the OPTW as an ESPPRC. More-
over, ESPPRCs are faced when more complex problems are solved through
column generation (CG) and branch-and-price (BP) techniques. For more de-
tailed explications about CG procedures, the reader is referred to Lübbecke
and Desrosiers (2005). Ceselli et al. (2009) develop a CG algorithm for a
rich VRP where the pricing ESPPRC is solved using a BBDS algorithm.
Gutiérrez-Jarpa et al. (2010) propose an exact BP algorithm for a VRP with
deliveries, selective pickups, and time windows, where the ESPPRC solution
procedure is accelerated by the DSSR approach. Salani and Vacca (2011)
solve the discrete split delivery VRP with time windows using a BP method.
The pricing sub-problem is solved again using a DSSR algorithm. A simple
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greedy heuristic is employed to obtain a feasible solution at each node of
the branch-and-bound tree. In addition to a tabu search heuristic for solv-
ing the ESPPRC designed for accelerating the CG algorithm, Desaulniers et
al. (2008) compare the quality of the lower bounds when the pricing sub-
problem is relaxed in terms of elementarity. Different cutting strategies are
introduced to strengthen the lower bounds. For recent developments in the
exact solution methods of the VRP, the reader is referred to Baldacci et al.
(2012).

As we mentioned earlier, the problem that we investigate in this article
distinguishes itself from “classical” ESPPRCs by the fact that the start time
from the depot (and hence, the duration of the trip) is a decision variable.
As a consequence, some resource consumptions are functions of the service
start time and DP algorithms must handle an infinite number of labels, thus
requiring appropriate dominance rules.

The issue of infinite number of labels is first treated by Ioachim et al.
(1998) in the context of a SPPRC with time windows when a linear cost is
defined for each vertex as a function of the service start time at that vertex.
They define effective dominance conditions for the cost resource and propose
an exact DP algorithm to solve this problem. Tagmouti et al. (2007) study
an ESPPRC without time windows but they define a service cost for each
vertex as a function of the service start time at that vertex. Based on the
developed dominance rules, a CG is proposed for the corresponding VRP.
Liberatore et al. (2011) consider a VRP with soft time windows, where a
linear penalty has to be paid only if a vertex is visited outside of its time
window. They use a CG algorithm and develop DP dominance relations
for the associated ESPPRC. Bettinelli et al. (2011) treat the service start
time of each vehicle as a decision variable while proposing a branch-and-
cut-and-price algorithm for the multi-depot heterogeneous VRP with time
windows. However, they consider only vehicle fixed costs and distance-based
routing costs. Dabia et al. (2013) also treat the service start time of each
vehicle as a decision variable when the travel times over the arcs are time-
dependent. They propose a BP algorithm for the time-dependent VRP with
time windows that aims at minimizing the total duration of the routes.

The structure of the cost function that we treat in our study differs from
that of the cited references. Consequently, the REFs formulated for the
trip duration and the total loss, as well as the dominance relations, are
novel and are developed here in a self-contained fashion. We incorporate our
dominance rules into an exact mono-directional DP algorithm and an exact
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DP algorithm with BBDS. We also propose a mono-directional DP heuristic
which assumes a fixed start time from the depot for each path and applies the
traditional dominance rules, and we test the performance of these different
approaches.

Further, we develop a CG algorithm to solve the master problem formu-
lation of the corresponding capacitated VRP with time windows. The DP
heuristic is employed during the first iterations of the CG algorithm and one
of the exact DP algorithms is called only when the heuristic fails to find a
column with negative reduced cost.

The paper is organized as follows. Section 2 provides a formal description
of the studied problem. In Section 3.1, the total spent time and the total loss
functions are derived and the dominance rules are established for a forward
DP algorithm. Section 3.2 describes the BBDS algorithm. The DP heuristic
is introduced in Section 3.3. The results of the computational experiments
with the DP algorithms and with the CG algorithm are reported in Section
4. Section 5 concludes the paper.

2. Problem Definition

Consider a directed graph G = (V, U) with the vertex set V and the arc
set U . The vertex set is defined as V = D∪{0, n+ 1}, where D = {1, 2, ..., n}
is the set of n customers, 0 and n+1 represent two copies of the depot known
as the source and the sink, respectively. Every customer i ∈ D can be visited
at most once. If a customer i ∈ D is visited, a non-negative demand di has
to be delivered to him and this visit brings in a non-negative revenue ηi.
Furthermore, every customer i ∈ D is associated with a service time si ≥ 0
and a time window [ai, bi], where ai shows its earliest service start time and
bi the latest. Consequently, if a vehicle arrives at a customer i before ai,
it must wait until ai to start serving the customer. At the depot, there is
a single vehicle of capacity Q that can start serving the customers at any
desired time. However, it can be used for at most a fixed amount of time S.
It takes s0 units of time to load the vehicle at the depot. We assume that
d0 = dn+1 = 0, η0 = ηn+1 = 0, and [a0, b0] = [an+1, bn+1] = (−∞,∞). The
arc set is defined as U = {(i, j) : i, j ∈ V, i 6= j, ai + si + tij ≤ bj}, where tij
denotes the non-negative travel time from i to j. The non-negative travel
distance from i to j is denoted by cij. We assume that both the travel times
and distances satisfy the triangle inequalities.
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We further assume that the transportation cost depends on the total
distance traveled and the total amount of time that the vehicle spends in
order to perform the assigned trip. To be more specific, define α as the cost
per distance unit traveled and β as the cost per time unit use of the vehicle.
For all k ∈ D∪{0}, let Tk be the service start time of the vehicle at vertex k,
and let Tn+1 be the time when the vehicle returns to the depot. As the vehicle
traverses an arc (i, j) ∈ U , it incurs the cost αcij + β(Tj − Ti). Taking into
account the revenue ηi obtained by visiting customer i, the incurred loss on
arc (i, j) can be written as αcij +β(Tj−Ti)−ηi (or equivalently the collected
profit can be defined as ηi − αcij − β(Tj − Ti)). The total loss incurred on a
feasible path from source 0 to sink n+ 1 is then the sum of the losses on the
arcs traversed. Our objective is to determine the optimal value of the service
start time T0 at the source, along with the trip to be performed to reach the
sink, so as to minimize the total loss (or equivalently to maximize the total
profit).

A path (0, ..., n + 1) is feasible only if it is elementary, respects the time
windows of the customers, does not exceed the allowed duration S, and does
not exceed the vehicle capacity Q. As shown by Irnich and Desaulniers
(2005), these constraints can be modeled using resources, which leads to
an ESPPRC. For our problem, we need to define 5+n different resources
to establish the feasibility of possible paths. Indeed, a time resource needs
to be defined to ensure that the customers are served within their given
time windows. The value of the time resource at any vertex i indicates the
service start time Ti at i. Given the value of the time resource, the value
of the total spent time resource at vertex i can easily be determined as
Ti + si − T0. In order to respect the vehicle capacity, we need to define one
more resource related to total delivered demand. The value of this resource
at any vertex i indicates the demand already delivered by the vehicle after
visiting vertex i. Finally, we define a binary resource for each vertex in V
to enforce the elementarity of the path, where a resource is consumed right
after the corresponding vertex is visited.

Then, a path is feasible if, at all vertices of the path, the value of each re-
source falls within an interval called resource interval. For the time resource,
the resource window is simply the time window [ai, bi] for every vertex i ∈ V .
For the total spent time resource and the total delivered demand resource,
the resource windows are given as [0, S] and [0, Q], respectively, at every
vertex. Finally, the elementarity resource window is defined as [0, 1] for all
vertices. If the value of a resource exceeds the upper bound of its associated
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window, then the related path is marked as infeasible. We now describe a
DP algorithm that solves this ESPPRC exactly.

3. Solution Procedures

The procedure we propose is based on the DP algorithm given by Righini
and Salani (2006, 2008). We first present an algorithm considering only the
forward-directional search, and then we introduce the bi-directional search
version of the same algorithm.

3.1. A Dynamic Programming Algorithm

The algorithm is based on assigning labels to every vertex i ∈ V , where a
label represents a partial path from source 0 to vertex i and is composed of dif-
ferent components. For our problem, a label at any vertex i can be denoted by
Li = (Zi, Ti, Hi, Deli, (Elk)ik∈V ), where Zi is the loss of the partial path end-
ing at vertex i and Ti, Hi, Deli, (Elk)ik∈V show the value of the service start
time, total spent time, total delivered demand, and elementarity resources,
respectively. The algorithm starts with an initial feasible label at source 0
and extends labels over and over again to obtain new labels. This is achieved
by extending every feasible label of a vertex i along all arcs (i, j) ∈ U . Every
time a label Li = (Zi, Ti, Hi, Deli, (Elk)ik∈V ) is extended from a vertex i to

a successor vertex j to get a new label Lj = (Zj, Tj, HjDelj, (Elk)jk∈V ), the
loss and the resource values of the new label at j must be computed using
the following REFs:

Zj = Zi + αcij + β(Tj − Ti)− ηi
Tj = max {aj, Ti + si + tij}
Hj = Tj + sj − T0
Delj = Deli + dj

Eljk =

{
Elik + 1, if k = j

Elik, if k 6= j
for all k ∈ V

A label Lj is feasible only if Tj ≤ bj, Hj ≤ S, Delj ≤ Q, and Eljk ≤ 1
for all k ∈ V . If at least one of the components exceeds the corresponding
upper bound, the label is removed from further consideration.
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As mentioned above, the algorithm starts with an initial feasible label
at source 0. This initial label is chosen to be L0 = (0, 0, 0, 0, (0)k∈V ) in
a traditional DP algorithm (see Gutiérrez-Jarpa et al. (2010); Righini and
Salani (2006, 2008)). However, in our problem setting, the vehicle can depart
from the depot at any point in time. Thus, we consider the initial label
as L0 = (0, T0, 0, 0, (0)k∈V ) including the continuous decision variable T0 ∈
(−∞,∞). Furthermore, since there are several paths from source 0 to any
vertex i, we have to apply dominance rules to eliminate those that are not
Pareto-optimal. If there are two labels L1

i = (Z1
i , T

1
i , H

1
i , Del

1
i , (El

1
k)ik∈V )

and L2
i = (Z2

i , T
2
i , H

2
i , Del

2
i , (El

2
k)ik∈V ) representing two distinct paths from

source 0 to vertex i, then L1
i dominates L2

i if and only if Z1
i ≤ Z2

i , T 1
i ≤ T 2

i ,
H1

i ≤ H2
i , Del1i ≤ Del2i , (El1k)i ≤ (El2k)i for all k ∈ V , and L1

i 6= L2
i meaning

that at least one of the inequalities is strict. However, in our problem, the
service start time Tj, the total spent time Hj, and the loss Zj at any vertex
j are functions of T0 and can be denoted by Tj(T0), Hj(T0), and Zj(T0),
respectively. Hence, the DP algorithm must take into account an infinite
number of Pareto-optimal labels which means for us that we first have to
redefine the resource extension functions and then develop new dominance
rules that will help us to cut the number of created labels, accordingly. In the
next subsection, we explicitly define the extension functions for the service
start time, the time cost, and the total loss.

3.1.1. Resources as Functions of the Start Time

Assume that we have a forward partial path starting from source 0 and
visiting i more vertices. Let Vj be the vertex at the (j + 1)st position of the
partial path. Then, a partial path starting from V0 and ending at a vertex
Vi is given as (V0,V1,V2,...,Vi), where V0 represents the source. For simplicity,
we define tVj−1,Vj

as the sum of the service time sVj−1
of Vj−1 and the travel

time tVj−1,Vj
from Vj−1 to Vj, i.e. tVj−1,Vj

= sVj−1
+ tVj−1,Vj

, and furthermore
we denote the index Vj as j in the sequel, e.g. we denote the service start
time TVj

(T0) at Vj as Tj(T0). When the vehicle starts serving V0 at T0, the
service start time T1(T0) at V1 is computed as

T1(T0) = max
{
a1, T0 + t01

}
. (1)

After V1, the vehicle should visit V2 following the given path and the
service start time T2(T0) at V2 is similarly computed as

T2(T0) = max
{
a2, T1(T0) + t12

}
. (2)
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Similarly, we get for all i > 1

Ti(T0) = max
{
ai, Ti−1(T0) + ti−1,i

}
. (3)

So, we obtain Ti(T0) as a function consisting of several nested maximum
functions. Clearly, the first function (1) is a piecewise linear function com-
posed of two linear pieces, one constant and one non-constant piece. At the
second extension given by (2), first t12 is added to (1) which has the effect
of moving up (1) by t12 units and thus obtaining again a piecewise linear
function with two pieces. Then, the maximum of a2 and the piecewise lin-
ear function max

{
a1, T0 + t01

}
+ t12 clearly provides another piecewise linear

function with two pieces. Continuing the extensions in the same manner will
only generate piecewise linear functions with two pieces.

Since the vehicle can start at any time, we initially choose T0 in (−∞,∞).

Then, the vehicle will spend at least
j−1∑
k=0

tk,k+1 time units to reach any vertex

Vj. For simplicity, we denote
j−1∑
k=0

tk,k+1 by θj. Thus, in order to be able to

serve vertex Vj, T0 must be less than or equal to bj− θj. Consequently, if the
vehicle follows the partial path (V0,V1,...,Vi), the latest feasible start time `i
of the vehicle from V0 is expressed as

`i = min
1≤j≤i

{bj − θj} . (4)

Whenever the time resource is extended from a vertex Vj−1 to Vj, the lat-
est feasible start time from V0 should be updated as `j = min {`j−1, bj − θj},
where `0 =∞. As a result, T0 is restricted to be in the interval (−∞, `i] which
thus defines the domain of the function Ti. The fact that T0 is restricted to the
interval (−∞, `i] now changes the number of linear pieces that the function
Ti consists of. At the first extension from V0 to V1, T1(T0) always consists of
two linear pieces. However, starting from the second extension the number of
linear pieces can change. We explained above that at the second extension (2)
the piecewise linear function given by (1) is moved up by t12 units and then
the maximum of a2 and the piecewise linear function T1(T0) + t12 provides a
new piecewise linear function T2(T0). However, now we know that T0 can take
at most the value `2 and if max

{
a2, a1 + t12

}
≥ T1(T0)+t12 for T0 ∈ (−∞, `2],

then the new function T2(T0) will be equal to max
{
a2, a1 + t12

}
which means

that T2(T0) is constant on (−∞, `2]. Once we obtain a constant function at
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any extension, we continue to obtain constant functions in subsequent ex-
tensions since any aj is either greater or less than the constant defining the
time resource function. Hence, all time resource functions are composed of
either two pieces or one piece.

In addition to the latest feasible start time `i from V0, we need to define
the earliest feasible service start time ãi at vertex Vi. Observe that ãi is not
always equal to ai, since the vehicle can arrive Vi after ai. In such a case, ãi
will be equal to ãi−1 + ti−1,i. Hence, if the vehicle follows the partial path
(V0,V1,...,Vi), earliest service start time ãi at vertex Vi can be determined by

ãi = max
{
ai, ãi−1 + ti−1,i

}
(5)

for i > 0, where ã0 = −∞. Thus, the vehicle cannot start serving Vi before
ãi

If we have a partial path (V0,V1,...,Vi), the initial start time function
T1(T0) clearly consists of two pieces unless a1 = b1. As we continue with
extensions of the start time functions, we obtain new functions having either
two pieces or one piece, depending on the following conditions at each vertex
Vi:

• Condition I: ãi < `i + θi.

• Condition II: ãi ≥ `i + θi.

Indeed, we can explicitly define the function Ti(T0) for any partial path
(V0, V1, . . . , Vi) as follows:

Proposition 1. For a feasible partial path (V0, V1, . . . , Vi), the service start
time Ti(T0) at vertex Vi for i ≥ 0 is computed as follows:

• When Condition I holds,

Ti(T0) =

{
ãi, if T0 ≤ ãi − θi
T0 + θi, if ãi − θi ≤ T0 ≤ `i.

• When Condition II holds,

Ti(T0) = ãi for T0 ≤ `i.
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Proof. Although the distinction between Condition I and Condition II will
be useful in our subsequent discussion, let us start by observing that the
statement of the proposition can be reworded as follows: for all T0 ≤ `i,

Ti(T0) =

{
ãi, if T0 ≤ ãi − θi
T0 + θi, if ãi − θi ≤ T0 ≤ `i

(6)

(indeed, when Condition II holds, the non-constant piece of this function
simply vanishes). By induction, we can assume that Eq. (6) holds for vertex
Vi−1, so that Ti−1(T0) consists of a constant piece with value ãi−1 followed
by a unit-slope piece. Now, Ti(T0) is defined by Eq. (3). Let us consider the
two terms of this equation.

If ai < ãi−1 + ti−1,i, then ai < Ti−1(T0) + ti−1,i for T0 ≤ `i−1 by Eq. (6),
and hence Ti(T0) = Ti−1(T0) + ti−1,i by Eq. (3). So, by Eq. (6) its constant
piece is:

Ti(T0) = ãi−1 + ti−1,i if T0 ≤ ãi−1 − θi−1
or equivalently by Eq. (5)

Ti(T0) = ãi if T0 ≤ ãi − θi
since ãi−1 − θi−1 = ãi − θi. On the other hand, the non-constant piece of
Ti(T0) is by Eq. (6):

Ti(T0) = T0 + θi−1 + ti−1,i = T0 + θi if ãi − θi ≤ T0 ≤ `i.

since ãi−1 − θi−1 = ãi − θi and `i ≤ `i−1.
Suppose now alternatively that ai ≥ ãi−1+ti−1,i. Then, ãi = ai by Eq. (5)

and, by Eq. (3),

Ti(T0) = ai = ãi if T0 ≤ ãi−1 − θi−1 ≤ ãi − θi.

However, for ãi−1 − θi−1 ≤ T0 ≤ ãi − θi, Ti−1(T0) = T0 + θi−1. Thus,
for T0 ∈ [ãi−1 − θi−1, ãi − θi], Ti−1(T0) + ti−1,i takes a value on the inter-
val

[
ãi−1 + ti−1,i, ãi

]
. So, max

{
ai, Ti−1(T0) + ti−1,i

}
= ai = ãi for T0 ∈

[ãi−1 − θi−1, ãi − θi]. Hence,

Ti(T0) = ãi if T0 ≤ ãi − θi.
Moreover,

Ti(T0) = Ti−1(T0) + ti−1,i = T0 + θi−1 + ti−1,i = T0 + θi

otherwise.
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Thus, if Condition I is satisfied, Ti(T0) is a function with two pieces, whereas
it is a constant function otherwise. Clearly, the constant piece of the start
time function Ti(T0) will always be equal to ãi regardless of the number of
pieces that the function contains. If the start time function consists of two
pieces, the second piece is a linear function of the form T0 + θi whose slope
is equal to 1 and Ti-intercept is θi.

Now that we are able to explicitly define the start time functions Ti(T0),
we can also express the cost incurred to serve the vertices. Along the partial
path (V0,V1,...,Vi), the time spent by the vehicle is (Ti(T0)− T0) + si. Thus,
the cost incurred while serving the vertices is β (Ti(T0)− T0)+βsi, where β is
the cost per time unit use of the vehicle. Since βsi is a constant term, it will
be dropped in the sequel. Apparently, the time cost is also a function of T0
which is denoted by Ci(T0). Following the definition of the start time function
Ti(T0) given above, the time cost function of the partial path (V0,V1,...,Vi) is
given as follows for all T0 ≤ `i:

• When Condition I holds,

Ci(T0) =

{
β(ãi − T0), if T0 ≤ ãi − θi
βθi, if ãi − θi ≤ T0 ≤ `i.

• When Condition II holds,

Ci(T0) = β(ãi − T0) for T0 ≤ `i.

In order to visualize and understand both start time and time cost func-
tions, we consider next an example.

Example 1: Consider a partial path (V0,V1,V2,V3), where V0 repre-
sents the source 0. The time windows of V1, V2, V3 are given by [8, 15],
[10, 16], [20, 23], respectively, and furthermore t01 = 1, t12 = 3, and t23 =
2. For simplicity, we assume that β = 1. First, we compute the ear-
liest service start time ã1 and the latest feasible start time `1 from the
depot for V1 as ã1 = max {8,−∞} = 8 and `1 = 15 − 1 = 14. Since
ã1 < `1 + θ1, Condition I is clearly satisfied as θ1 = 1. Thus, the start
time function T1(T0) is a piecewise linear function with two pieces and is

given by T1(T0) =

{
8, if T0 ≤ 7

T0 + 1, if 7 ≤ T0 ≤ 14
. Similarly, the time cost func-
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tion is a piecewise linear function with two pieces and is given by C1(T0) ={
8− T0, if T0 ≤ 7

1, if 7 ≤ T0 ≤ 14
. Both functions are depicted in Figure 1.

Figure 1: Start time function T1 and time cost function C1

It is clear that if the vehicle starts from the depot at T0 < 7, then the service
start time T1 at V1 is always equal to 8 which means that the vehicle must
wait since it arrives at V1 before a1. As can be seen, for T0 < 7 the time cost
C1 is linearly decreases as the start time T0 increases, since the waiting time
decreases. For T0 ≥ 7, the service start time T1 at V1 begins to increase, since
the vehicle arrives at V1 after a1. In such a case, the vehicle does not wait and
immediately starts serving the vertex. Furthermore, it can be observed that
the time cost C1 is a constant equal to θ1 = 1. Thus, for ã1−θ1 ≤ T0 ≤ `1, the
time cost is minimized and is constant, since it does not involve the waiting
of the vehicle.

As the vehicle moves further to V2, first ã2 and `2 must be updated follow-
ing the equations (5) and (4), respectively: ã2 = max {10, 8 + 3} = 11 and
`2 = min {14, 16− 4} = 12, where θ2 = 4. Clearly, Condition I is satisfied
again, since ã2 < `2 + θ2. T2(T0) and C2(T0) are depicted in Figure 2 and

defined as follows: T2(T0) =

{
11, if T0 ≤ 7

T0 + 4, if 7 ≤ T0 ≤ 12
and

C2(T0) =

{
11− T0, if T0 ≤ 7

4, if 7 ≤ T0 ≤ 12
.

The last visited vertex is V3 whose time window is [20, 23]. We determine
ã3 and `3 as ã3 = max {20, 11 + 2} = 20 and `3 = min {12, 23− 6} = 12,
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Figure 2: Start time function T2 and time cost function C2

where θ3 = 6. This time, Condition II holds since ã3 > `3 + θ3. T3(T0) and
C3(T0) are shown in Figure 3 and given as follows: T3(T0) = 20 for T0 ≤ 12
and C2(T0) = 20− T0 for T0 ≤ 12.

Figure 3: Start time function T3 and time cost function C3

The latest feasible start time `3 from the depot is in fact determined by V2,
since if the vehicle starts after 12, it is impossible that the vehicle visits V2
on the given path. However, even if the vehicle starts from the depot at
T0 = 12, it arrives at V2 at 16, at V3 at 18 and waits until 20 as it is the
earliest possible service start time of V3. As a result, T3(T0) turns out to
be a constant function showing that the path (V0,V1,V2,V3) creates waiting
time. On the other hand, it is obvious that starting from the depot as late
as possible decreases the amount of waiting time and thus decreases the time
cost as demonstrated by Figure 3. We can observe that the time cost is
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minimized at T0 = `3 = 12.
Besides the time cost, a total loss function additionally involves the travel

distance cost and the revenues collected at vertices and is calculated as

Zi(T0) = Ci(T0) + α
i−1∑
k=0

ck,k+1 −
i−1∑
k=0

ηk at any vertex Vi, where α
i−1∑
k=0

ck,k+1

is the total traveled distance cost and
i−1∑
k=0

ηk is the sum of the revenues on

a path (V0,...,Vi). Thus, in order to determine the total loss Zi(T0), we only

need to add the constant term α
i−1∑
k=0

ck,k+1 −
i−1∑
k=0

ηk to the time cost function

Ci(T0) which has the effect of shifting it up or down.
Example 2: We consider the same partial path of the previous example

and now determine the total loss of V2 and V3. At V2, the total loss Z2(T0) is
computed by Z2(T0) = C2(T0)+α(c01 + c12)− (η0 +η1), whereas Z3(T0) at V3
is calculated as Z3(T0) = C3(T0) +α(c01 + c12 + c23)− (η0 + η1 + η2). For now
assume that c01 = 0.5, c12 = 2, and c23 = 1, the unit distance cost α is equal
to 1 and the revenues are given as η1 = η2 = η3 = 10 (note that since V0
represents the source, its revenue η0 is equal to 0). We first concentrate on the
total loss function at V2. The added constant term of this function is equal to
α(c01+c12)−(η0+η1) = −7.5, in other words the time cost function C2(T0) ={

11− T0, if T0 ≤ 7

4, if 7 ≤ T0 ≤ 12
is shifted down by -7.5. The new function can

easily be constructed as Z2(T0) =

{
3.5− T0, if T0 ≤ 7

−3.5, if 7 ≤ T0 ≤ 12
and displayed

by Figure 4.
Similarly, we add the constant term α(c01+c12+c23)−(η0+η1+η2) = −16.5 to
C3 to obtain the total loss function Z3(T0) = C3(T0)−16.5 = 3.5−T0 for T0 ≤
12 as demonstrated by Figure 5.

Figures 4 and 5 clearly show for which value of T0 the total loss is mini-
mized. For a piecewise linear total loss function, the total loss is minimized
for T0 ∈ [ãi − θi, `i], while for a single-piece linear total loss function there is
a unique minimizer that is given by `i.

Having defined the service start time, the time cost, and total loss func-
tions, we can continue developing new dominance rules to be able to discard
labels that cannot lead us to the optimal solution. To this end, in the next
subsection we develop some propositions that will help us detecting those
labels that can be fully dominated by others.
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Figure 4: Z2 as a function of T0

Figure 5: Z3 as a function of T0

3.1.2. Dominance Rules

As mentioned above, when there are two distinct partial paths ending at
the same vertex, then the first one dominates the second one if the first label
is componentwise less than or equal to the second label (with at least one
strict inequality). So, when we identify a new path from V0 to Vi, we have
to compare this label with every other non-dominated label of Vi created
earlier. Assume that L1

i = (Z1
i , T

1
i , H

1
i , Del

1
i , (El

1
k)ik∈V ) is a non-dominated
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label and L2
i = (Z2

i , T
2
i , H

2
i , Del

2
i , (El

2
k)ik∈V ) a newly created label. Following

the classical dominance rules, in order to check whether L1
i dominates L2

i ,
we have to check whether Z1

i ≤ Z2
i , T 1

i ≤ T 2
i , H1

i ≤ H2
i , Del1i ≤ Del2i ,

(El1k)i ≤ (El2k)i for all k ∈ V . For our problem, we can check easily whether
Del1i ≤ Del2i , (El1k)i ≤ (El2k)i for all k ∈ V , since the corresponding resources
take numerical values. However, comparing the service start time, total spent
time, and total loss of two paths is not so easy since they are functions
of T0. Moreover, if we find out that Z1

i (T0) ≤ Z2
i (T0), T

1
i (T0) ≤ T 2

i (T0),
and H1

i (T0) ≤ H2
i (T0) for all T0, we still cannot guarantee that Z1

i+1(T0) ≤
Z2

i+1(T0), T
1
i+1(T0) ≤ T 2

i+1(T0), and H1
i+1(T0) ≤ H2

i+1(T0) for all T0 when
both paths are extended to the same vertex Vi+1. Therefore, we have to
determine conditions that ensure dominance among functions of T0 when
paths are further extended. To this end, we next establish some propositions
that explicitly define such conditions.

Our first proposition related to the dominance rules is about satisfying
Conditions I and II which appear in the definition of the service start time
and time cost functions.

Proposition 2. If (V0, V1, . . . , Vi) is a feasible partial path and Vk is any
vertex satisfying Condition II on this path, then `j = `k and Condition II
holds for all vertices Vj with k ≤ j ≤ i.

Proof. For a vertex Vj with j ≥ k+1, we have bj−
j−1∑
l=k

tl,l+1 ≥ ãk by definition

of ãk and by feasibility of the partial path (V0, V1, . . . , Vj). Since vertex Vk
satisfies Condition II, we also have

ãk ≥ `k +
k−1∑
l=0

tl,l+1. (7)

Hence, bj −
j−1∑
l=k

tl,l+1 ≥ `k +
k−1∑
l=0

tl,l+1, or equivalently, bj −
j−1∑
l=0

tl,l+1 ≥ `k for

j ≥ k + 1. In view of Eq. (4), this implies that `j = `k, that is, `k does not
change when additional vertices are visited on the given path.

Next we show that Condition II is satisfied for every vertex Vj with j ≥

k + 1. By Eq. (5), we have ãj ≥ ãk +
j−1∑
l=k

tl,l+1. Together with inequality (7),
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this yields ãj ≥ `k +
k−1∑
l=0

tl,l+1 +
j−1∑
l=k

tl,l+1 = `k +
j−1∑
l=0

tl,l+1 = `j +
j−1∑
l=0

tl,l+1,

meaning that Condition II is satisfied for j ≥ k + 1.

The next two propositions is about comparing the latest feasible start
times `i of two distinct partial paths ending at the same vertex Vi, since
`i determines the domain of T0: T0 is restricted to lie in (−∞, `1i ] for the
first label and in (−∞, `2i ] for the second label. In order to fully discard the
second path, we need to have `2i ≤ `1i and `2i+1 ≤ `1i+1, where `1i+1 (`2i+1) shows
the latest feasible start time of the first (second) path when it is extended
to the vertex Vi+1. Otherwise the functions T 2

i+1(T0), H
2
i+1(T0), Z

2
i+1(T0) are

defined for values in (`1i+1, `
2
i+1] and this prevents us from getting rid of the

second label. Proposition 4 states sufficient conditions for this to happen
and Proposition 3 is only used to prove Proposition 4.

Proposition 3. If there are two distinct feasible partial paths, say path 1
(V0, V

1
1 , . . . , V

1
i−1, Vi) and path 2 (V0, V

2
1 , . . . , V

2
i−1, Vi), starting from the depot

and ending at the same vertex Vi such that the total traveling and service time

θ1i =
i−1∑
k=0

tk1,(k+1)1 of the first path is less than or equal to the total traveling

and service time θ2i =
i−1∑
k=0

tk2,(k+1)2 of the second path, and furthermore the

latest feasible start time `1i for the first path is greater than or equal to the
latest feasible start time `2i for the second path, then after extending both
paths to the same vertex Vi+1 the new latest feasible start time `1i+1 for the
first path will still be greater than or equal to the new latest feasible start time
`2i+1 for the second path. In symbols: if θ1i ≤ θ2i and `1i ≥ `2i , then `1i+1 ≥ `2i+1.

Proof. After extending the paths to Vi+1, we have `ji+1 = min
{
`ji , bi+1 − θji − ti,i+1

}
for j = 1, 2. If `1i+1 = `1i , then `1i+1 ≥ `2i+1 since `1i ≥ `2i ≥ `2i+1. If
`1i+1 = bi+1 − θ1i − ti,i+1, then `1i+1 ≥ bi+1 − θ2i − ti,i+1 since θ1i ≤ θ2i , and
hence, `2i+1 ≤ bi+1 − θ2i − ti,i+1 ≤ `1i+1.

Proposition 4. If there are two distinct feasible partial paths, say path 1
(V0, V

1
1 , . . . , V

1
i−1, Vi) and path 2 (V0, V

2
1 , . . . , V

2
i−1, Vi), starting from the depot

and ending at the same vertex Vi such that `1i ≥ `2i and the time cost of
the first path is less than or equal to the time cost of the second path, i.e.
C1

i (T0) ≤ C2
i (T0) for T0 ≤ `2i , then after extending both paths to the same

vertex Vi+1 the new latest feasible start time `1i+1 for the first path will still be
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greater than or equal to the new latest feasible start time `2i+1 for the second
path, namely `1i+1 ≥ `2i+1.

Proof. The minimum value of a time cost function is either βθi or β (ãi − `i)
depending on whether Condition I or II is satisfied at vertex Vi (either two
linear pieces or one linear piece, respectively). Let A be the minimum value
of C1

i , and let B be the minimum of C2
i . Since C1

i (T0) ≤ C2
i (T0) for T0 ≤ `2i ,

we have A ≤ B. We prove the proposition according to the values A and B
can take.
Case 1: Assume that for both paths Condition I is satisfied at vertex Vi.
Then, A = βθ1i ≤ B = βθ2i . Since θ1i ≤ θ2i and `1i ≥ `2i , `

1
i+1 ≥ `2i+1 by

Proposition 3.
Case 2: Assume that at vertex Vi, Condition I is satisfied for path 1 and
Condition II for path 2. Then, A = βθ1i and B = β (ã2i − `2i ). Since A ≤ B,
`2i ≤ ã2i − θ1i . By Proposition 2, `2i+1 = `2i and hence `2i+1 ≤ ã2i − θ1i .

Following Eq. (4) we know that `1i+1 is equal to max
{
`1i , bi+1 − (θ1i + ti,i+1)

}
.

If `1i+1 = `1i , then `1i+1 ≥ `2i+1. Else, `1i+1 = bi+1 − (θ1i + ti,i+1). In such
a case, since path 2 visits Vi+1, we need to have ã2i + ti,i+1 ≤ bi+1. Thus,
ã2i +ti,i+1−(θ1i +ti,i+1) ≤ bi+1−(θ1i +ti,i+1) = `1i+1 implying that ã2i−θ1i ≤ `1i+1.
As `2i+1 ≤ ã2i − θ1i , we obtain `1i+1 ≥ `2i+1 so that the proposition holds.
Case 3: Assume that at vertex Vi, Condition II is satisfied for path 1 and
Condition I for path 2. Since Condition II holds for path 1, ã1i − `1i ≥ θ1i .
Moreover, ã1i − `1i ≤ θ2i due to the fact that A ≤ B which translates into
θ1i ≤ θ2i . Since θ1i ≤ θ2i and `1i ≥ `2i , `

1
i+1 ≥ `2i+1 by Proposition 3.

Case 4: Assume now that for both paths Condition II is satisfied at vertex
Vi. Then, `1i+1 = `1i and `2i+1 = `2i by Proposition 2. Hence, `1i+1 ≥ `2i+1 which
completes the proof.

The following proposition determines the new minimum value of the time
cost when a partial path ending at a vertex Vi is extended to include a new
vertex Vi+1.

Proposition 5. Assume that (V0, V1, . . . , Vi) is a feasible partial path, and
let A be the minimum value of the time cost function Ci(T0). When a vertex
Vi+1 is added to the path, the minimum value of Ci+1(T0) is equal to A′ =
max

{
A+ βti,i+1, β(ãi+1 − `i+1)

}
.

Proof. For simplicity of notations, let t = ti,i+1. As given in the proof of
Proposition 4, the minimum value of the time cost function Ci(T0) is either
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βθi or β (ãi − `i) depending on whether Condition I or II is satisfied at vertex
Vi.
Case 1: Assume that Condition I is satisfied at vertex Vi+1. Then, by
Proposition 2, Condition I necessarily holds at vertex Vi as well, so that A =
βθi and A′ = βθi+1 = β(θi+t) = A+βt. Condition I at vertex Vi+1 translates
into ãi+1 < `i+1 + θi+1 = `i+1 + θi + t, which implies θi + t > ãi+1− `i+1, and
hence A′ = A+βt = β(θi + t) > β(ãi+1− `i+1), so that the proposition holds
in this case.
Case 2: Assume next that Condition II is satisfied at Vi+1, so that A′ =
β(ãi+1 − `i+1) and ãi+1 ≥ `i+1 + θi+1. The latter inequality can be rewritten
as θi + t ≤ ãi+1 − `i+1, and hence β(θi + t) ≤ β(ãi+1 − `i+1) = A′. Consider
now two subcases:
Case 2a: If Condition I holds at Vi, then A = βθi, hence we obtain A+βt ≤
β(ãi+1 − `i+1) and the proposition holds.
Case 2b: If Condition II holds at Vi, then A = β(ãi − `i). Moreover,
`i = `i+1 by Proposition 2, and ãi + t ≤ ãi+1 by definition of ãi+1. Thus,
we successively obtain A + βt = β(ãi − `i + t) ≤ β(ãi+1 − `i+1) = A′, which
completes the proof.

We are now ready to establish conditions under which dominance rules
can be applied to the time cost functions of two distinct paths ending at the
same vertex.

Proposition 6. If there are two distinct feasible partial paths, say path 1
(V0, V

1
1 , . . . , V

1
i−1, Vi) and path 2 (V0, V

2
1 , . . . , V

2
i−1, Vi), starting from the depot

and ending at the same vertex Vi such that `1i ≥ `2i and the time cost of
the first path is less than or equal to the time cost of the second path, i.e.,
C1

i (T0) ≤ C2
i (T0) for T0 ≤ `2i , then the time cost of the first path remains less

than or equal to the time cost of the second path when both paths are extended
to a same vertex Vi+1, i.e., C1

i+1(T0) ≤ C2
i+1(T0) for T0 ≤ `2i+1.

Proof. The non-constant (decreasing) piece of the time cost function Cj
l is

of the form β(ãjl − T0) for all vertices l and for each path j = 1, 2. Let A
be the minimum value of C1

i , and let B be the minimum of C2
i . Also, let

E = βã1i and F = βã2i denote the intercept of C1
i and C2

i , respectively, with
the vertical axis T0 = 0. Since C1

i (T0) ≤ C2
i (T0) for T0 ≤ `2i , we have A ≤ B

and E ≤ F . Let A′, B′, E ′, and F ′ be the corresponding values for C1
i+1

and C2
i+1 when both paths are extended to Vi+1. In order to establish the

proposition, we only need to prove that A′ ≤ B′ and E ′ ≤ F ′.
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Since E ′ = βã1i+1 and F ′ = βã2i+1, the inequality E ′ ≤ F ′ is equivalent
to ã1i+1 ≤ ã2i+1. If ã1i+1 = ai+1, then Eq. (5) implies ã1i+1 ≤ ã2i+1 as required.
Else, if ã1i+1 = ã1i + t (where t = ti,i+1), then Eq. (5) implies ai+1 ≤ ã1i + t.
Since E ≤ F , we have ã1i ≤ ã2i . Hence, ai+1 ≤ ã2i + t and (again by Eq. (5))
ã2i+1 = ã2i + t ≥ ã1i + t = ã1i+1. So, we have proved that E ′ ≤ F ′.

Next we show thatA′ ≤ B′. By Proposition 5, A′ = max
{
A+ βt, β(ã1i+1 − `1i+1)

}
and B′ = max

{
B + βt, β(ã2i+1 − `2i+1)

}
. Let us consider the possible values

of A′. If A′ = A+βt, then, because A ≤ B, we obtain A′ ≤ B+βt ≤ B′, as re-
quired. Else, A′ = β(ã1i+1−`1i+1). We have shown above that ã1i+1 ≤ ã2i+1 and,
by Proposition 4, `1i+1 ≥ `2i+1. Hence, A′ = β(ã1i+1 − `1i+1) ≤ β(ã2i+1 − `2i+1) ≤
B′.

Proposition 6 describes conditions that lead to dominance among time
cost functions. However, we need one more result to state the conditions
needed for dominance among total loss functions of the form Zl(T0) = Cl(T0)+

α
l−1∑
k=0

ck,k+1 −
l−1∑
k=0

ηk (see Subsection 3.1.1).

Proposition 7. If there are two distinct feasible partial paths, say path 1
(V0, V

1
1 , . . . , V

1
i−1, Vi) and path 2 (V0, V

2
1 , . . . , V

2
i−1, Vi), starting from the de-

pot and ending at the same vertex Vi such that `1i ≥ `2i , the time cost of
the first path is less than or equal to the time cost of the second path (i.e.,

C1
i (T0) ≤ C2

i (T0) for T0 ≤ `2i ), and furthermore α

(
i−1∑
k=0

c1k,k+1

)
−

i−1∑
k=0

η1k ≤

α

(
i−1∑
k=0

c2k,k+1

)
−

i−1∑
k=0

η2k, then the total loss of the first path remains less than

or equal to the total loss of the second path for T0 ≤ `2i+1 when both paths are
extended to a same vertex Vi+1, i.e., Z1

i+1(T0) ≤ Z2
i+1(T0) for T0 ≤ `2i+1.

Proof. When a new vertex Vi+1 is added to both paths, the total loss function

of path j up to Vi+1 is Zj
i+1(T0) = Cj

i+1(T0)+α

(
i−1∑
k=0

cjk,k+1

)
+αci,i+1−

i−1∑
k=0

ηjk−

ηi for j = 1, 2. As a consequence of Proposition 6, we have C1
i+1(T0) ≤

C2
i+1(T0) for T0 ≤ `2i+1. In view of the hypotheses of the proposition, we

immediately derive Z1
i+1(T0) ≤ Z2

i+1(T0) for T0 ≤ `2i+1.

With Proposition 7, we obtain all the requirements needed to compare the
total loss functions of two distinct partial paths ending at the same vertex.
Namely, we have to compare their latest feasible start times from the depot,
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time cost functions, and their constant terms composed of the total distance
costs and collected revenues. If the conditions stated in Proposition 7 are
satisfied, we can conclude that one total loss function dominates the other
one.

With the following proposition, we give a result which will allow us to
compare the time and the total spent time resource functions along distinct
paths.

Proposition 8. If there are two distinct feasible partial paths, say path 1
(V0, V

1
1 , . . . , V

1
i−1, Vi) and path 2 (V0, V

2
1 , . . . , V

2
i−1, Vi), starting from the depot

and ending at the same vertex such that `1i ≥ `2i and C1
i (T0) ≤ C2

i (T0) for
T0 ≤ `2i , then the service start time and the spent time at Vi along the first
path is less than or equal to the service start time and the spent time at
Vi along the second path, i.e., T 1

i (T0) ≤ T 2
i (T0) and H1

i (T0) ≤ H2
i (T0) for

T0 ≤ `2i .

Proof. By definition, C1
i (T0) = β(T 1

i (T0)−T0) and C2
i (T0) = β(T 2

i (T0)−T0).
The conclusion immediately follows.

Proposition 8 lets us paraphrase the dominance rules which apply to
our problem (compare with the introduction of Section 3.1.2). Proposi-
tions 7 and 8 advise to compare the time cost functions, the latest feasi-
ble start times, and the sum of the distance costs minus the collected rev-
enues of two distinct paths in order to compare their total loss, service start
time, and total spent time functions. Therefore, it may be necessary to
change the representation of labels in order to adapt the resource exten-
sion functions and to make the comparison of the labels easier. For this
purpose, given a partial path starting from the source and ending at a ver-
tex Vi, we first let the sum of the distance costs minus the collected revenues

α

(
i−1∑
k=0

ck,k+1

)
−

i−1∑
k=0

ηk denote by δi, the minimum value of the time cost func-

tion by Ai, and its Ci-intercept by Ei. Then, a label at a vertex Vi can be rep-
resented by Li = (δi,−`i, Ei, Ai, Deli, (Elk)ik∈V ). If there are two labels L1

i =
(δ1i ,−`1i , E1

i , A
1
i , Del

1
i , (El

1
k)ik∈V ) and L2

i = (δ2i ,−`2i , E2
i , A

2
i , Del

2
i , (El

2
k)ik∈V )

representing two partial paths from source 0 to vertex Vi, then L1
i domi-

nates L2
i if and only if δ1i ≤ δ2i , −`1i ≤ −`2i , E1

i ≤ E2
i , A1

i ≤ A2
i , Del

1
i ≤ Del2i ,

(El1k)i ≤ (El2k)i for all k ∈ V , and L1
i 6= L2

i . Furthermore, when a label Li =
(δi,−`i, Ei, Ai, Deli, (Elk)ik∈V ) is extended from vertex Vi to a successor ver-
tex Vi+1 to obtain a new label Li+1 = (δi+1,−`i+1, Ei+1, Ai+1, Deli+1, (Elk)i+1

k∈V ),
the components of the new label Li+1 can be computed as follows:
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δi+1 = δi + αci,i+1 − ηi
− `i+1 = −min {`i, bi+1 − θi+1}
Ei+1 = βãi+1

Ai+1 = max
{
Ai + βti,i+1, β(ãi+1 − `i+1)

}
Deli+1 = Deli + di+1

Eli+1
k =

{
Elik + 1, if k = i+ 1

Elik, if k 6= i+ 1
for all k ∈ V

where θi+1 is updated as θi + ti,i+1 and ãi+1 as max
{
ai+1, ãi + ti,i+1

}
.

As a summary, we need to make 5 + n comparisons to eliminate the
partial paths which do not lead to optimality. Therefore, if we can reduce
the number of comparisons even by 1, the DP algorithm will be accelerated.
In order to do that, we introduce the following proposition.

Proposition 9. If there are two distinct feasible partial paths, say path 1
(V0, V

1
1 , . . . , V

1
i−1, Vi) and path 2 (V0, V

2
1 , . . . , V

2
i−1, Vi), starting from the depot

and ending at the same vertex, then label L1 dominates L2 if δ1i ≤ δ2i +
βmin {(`1i − `2i ), 0}, E1

i ≤ E2
i , A1

i ≤ A2
i , Del

1
i ≤ Del2i , (El1k)i ≤ (El2k)i for

all k ∈ V , and L1
i 6= L2

i

Proof. If `1i ≥ `2i , then δ1i ≤ δ2i + βmin {(`1i − `2i ), 0} translates into δ1i ≤
δ2i . Then, we have δ1i ≤ δ2i , −`1i ≤ −`2i , E1

i ≤ E2
i , A1

i ≤ A2
i , Del

1
i ≤

Del2i , (El1k)i ≤ (El2k)i for all k ∈ V which brings us back to the original
dominance rules obtained by Proposition 8. Because of Propositions 4 and
6, we know that δ1i+1 ≤ δ2i+1, −`1i+1 ≤ `2i+1, E

1
i+1 ≤ E2

i+1, A
1
i+1 ≤ A2

i+1

when both paths are extended to the same vertex Vi+1. Furthermore, the
inequality δ1i+1 ≤ δ2i+1 + βmin

{
(`1i+1 − `2i+1), 0

}
will hold, since −`1i+1 ≤ `2i+1

and δ1i+1 = δ1i + αci,i+1 − ηi+1, δ
2
i+1 = δ2i + αci,i+1 − ηi+1.

Now assume that `1i < `2i . Then we have δ1i ≤ δ2i + β(`1i − `2i ) and
furthermore δ1i ≤ δ2i since (`1i − `2i ) is a negative number. When both paths
are extended to the same vertex Vi+1, we know that we are going to have
ã1i+1 ≤ ã2i+1 due to the proof of Proposition 6. However, in order to show that
the minimum of the total cost of path 1 is less than or equal to the minimum
of the total cost of path 2, we need to have A1

i+1 + δ1i+1 ≤ A2
i+1 + δ2i+1 .

For simplicity of notations, let t = ti,i+1 and γ = αci,i+1 − ηi+1. As given
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by Proposition 5, the minimum value of the time cost function Ci+1(T0) is
equal to A′ = max

{
A+ βt, β(ãi+1 − `i+1)

}
. Thus, we want to show that

A1
i+1 + δ1i+1 ≤ A2

i+1 + δ2i+1 according to the values of A1
i+1 and A2

i+1.
Case 1: Assume that the minimum of the total cost function of path 1
is A1

i+1 = A1
i + βt + δ1i + γ and the minimum of the total cost function of

path 2 is A2
i+1 = A2

i + βt + δ2i + γ. Since A1
i ≤ A2

i and δ1i ≤ δ2i , we have
A1

i + δ1i ≤ A2
i + δ2i so that the proposition holds in this case.

Case 2: Assume that the minimum of the total cost function of path 1 is
A1

i+1 = A1
i +βt+δ1i +γ and the minimum of the total cost function of path 2 is

A2
i+1 = β(ã2i+1−`2i+1)+δ2i +γ. We have β(ã2i+1−`2i+1)+δ2i +γ ≥ A2

i +βt+δ2i +γ
according to Proposition 5. A2

i +βt+δ2i +γ ≥ A1
i +βt+δ1i +γ since A1

i ≤ A2
i

and δ1i ≤ δ2i so that the proposition holds in this case.
Case 3: Assume that the minimum of the total cost function of path 1 is
A1

i+1 = β(ã1i+1− `1i+1) + δ1i + γ and the minimum of the total cost function of
path 2 is A2

i+1 = A2
i + βt+ δ2i + γ. A2

i + βt+ δ2i + γ ≥ β(ã2i+1− `2i+1) + δ2i + γ
according to Proposition 5. β(ã2i+1 − `2i+1) + δ2i + γ ≥ β(ã1i+1 − `2i+1) + δ2i + γ
since ã1i+1 ≤ ã2i+1. β(ã1i+1−`2i+1)+δ2i +γ ≥ β(ã1i+1−`2i )+δ2i +γ since `2i ≥ `2i+1

by definition of `i. Since δ1i ≤ δ2i +β(`1i−`2i ), we have δ2i ≥ δ1i −β(`1i−`2i ), thus
β(ã1i+1−`2i )+δ2i +γ ≥ β(ã1i+1−`2i )+δ1i −β(`1i−`2i )+γ = β(ã1i+1−`1i+1)+δ1i +γ
because `1i+1 = `1i due to Proposition 2.
Case 4: Assume that the minimum of the total cost function of path 1 is
A1

i+1 = β(ã1i+1 − `1i+1) + δ1i + γ and the minimum of the total cost function
of path 2 is A2

i+1 = β(ã2i+1 − `2i+1) + δ2i + γ. β(ã2i+1 − `2i+1) + δ2i + γ ≥
β(ã1i+1 − `2i ) + δ2i + γ since ã2i+1 ≥ ã1i+1 and `1i+1 = `1i . β(ã1i+1 − `2i ) + δ2i +
γ ≥ β(ã1i+1 − `2i ) + δ1i − β(`1i − `2i ) + γ since δ2i ≥ δ1i − β(`1i − `2i ). Then
β(ã1i+1 − `2i ) + δ1i − β(`1i − `2i ) + γ = β(ã1i+1 − `1i+1) + δ1i + γ since `1i+1 = `1i .

So, for each possible case we show that the minimum of the total cost func-
tion of path 1 is less than or equal to the minimum of the total cost function
of path 2 at the next extension. In order to apply the new dominance rules for
the rest of the extensions, we should prove that the difference β(`2i+k− `1i+k),
where k ≥ 1, does not decrease below the difference (δ2i+k − δ1i+k). In Case 1
and 2 we do not need to have it, because they hold for any value of (`2i − `1i ).
Case 3 and 4 are the cases where Condition II holds for path 1. Once Condi-
tion II holds for path 1, it holds for all vertices Vi+k according to Proposition
2, where k ≥ 1. This means that `1i+k = `1i due to Proposition 2 and `2i+1 ≤ `2i
by definition of `i. Hence, (`2i+k − `1i+k) ≤ (`2i − `1i ) for k ≥ 1.

As a last point, we have to discuss whether the relationship between
A1

i+k ≤ A2
i+k should continue to hold for k ≥ 1. Now suppose that both
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paths are already extended to Vi+1. If at the end of this first extension either
Case 1 or Case 2 holds, A1

i+1 ≤ A2
i+1 due to the proof of Proposition 6.

Moreover, if Case 1 or Case 2 continue to hold for further extensions to Vi+k,
where k > 1, then again due to the proof of Proposition 6 we will have the
inequality A1

i+k ≤ A2
i+k. Now assume that either Case 3 or Case 4 hold at the

first extension to Vi+1. Case 3 and Case 4 are cases where Condition II holds
for path 1 which automatically implies that Condition II will continue to be
satisfied and thus either Case 3 or Case 4 will hold for further extensions to
Vi+k with k > 1. As can be observed in the proof of Case 3 and Case 4, the
minimum of the total cost function of path 1 will be less than or equal to
to the minimum of the total cost function of path 2 independently from the
relationship between A1

i+k and A2
i+k for k > 1.

With Proposition 9, the number of comparisons which are needed to be
realized at every extension of a partial path decreases to 4 + n. As a result,
the dominance rules obtained by the previous propositions are strengthened.

In order to accelerate the DP algorithm, we additionally make use of the
improved definition of labels proposed by Feillet et al. (2004). In view of
their remarks, it is viable to determine vertices which cannot be visited in
any feasible extension of a given partial path, because any extension would
result in exceeding a resource limit. Such vertices are called unreachable and
the value of their elementary resource is set to 1 although they have not been
visited. This definition of labels increases the number of dominated labels and
thus makes the algorithm more efficient with respect to the computational
time. Since we assume that the travel times are non-negative and satisfy the
triangle inequality, we can easily apply the technique of unreachable vertices.

3.2. A Bounded Bi-directional Dynamic Programming Algorithm

In the previous subsection, we have described a mono-directional DP
algorithm, where all paths are extended in forward direction. Within the
framework of this algorithm, every label of a vertex i is extended to every
possible successor of i, which can generate an exponential number of new
labels owing to the number of arcs in the network. In order to accelerate the
solution procedure, we use the BBDS proposed by Righini and Salani (2006),
where labels are extended backward from sink n+1 to the rest of the vertices
in addition to the forward extensions from source 0. Therefore, before going
into the details of our BBDS, we first give the DP algorithm based on the
backward extensions.
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3.2.1. Backward Dynamic Programming Algorithm

The classical backward directional version of the algorithm also assigns
labels to every vertex j and is denoted by Lb

j = (Zb
j , T

b
j , H

b
j , Del

b
j, (Elk)jbk∈V ),

where Zb
j is the loss of backward partial path ending at j, and T b

j , Hb
j , Del

b
j,

(Elk)jbk∈V represent the service start time, total spent time, delivered demand,
and elementarity resources, respectively. The following resource extensions
are utilized, when a label Lb

j of vertex j is extended to a predecessor vertex
i:

Zb
i = Zb

j + αcij + β(T b
j − T b

i )− ηj
T b
i = min

{
bi, T

b
j − tij

}
Hb

i = Tn−1 − T b
i

Delbi = Delbj + di

Elibk =

{
Eljbk + 1, if k = i

Eljbk , if k 6= i
for all k ∈ V

A label Lb
i is feasible only if T b

i ≥ ai, H
b
i ≤ S, Delbi ≤ Q, and Elibk ≤ 1

for all k ∈ V . If T b
i turns out to be less than ai or if at least one of the other

components exceeds its corresponding upper bound, the label is eliminated.
In the backward-directional search process, the service start time Tn+1 at

sink n+ 1 is a decision variable that lies in the interval (−∞,∞). Thus, we
need to adapt the definitions of the time resource T b

j and the total loss Zb
j

for any vertex j, since obviously they are functions of Tn+1 and should be
denoted by T b

j (Tn+1) and Zb
j (Tn+1), respectively. For this purpose, assume

that we are given a backward partial path starting from sink n+1 and visiting
i additional vertices. Let V b

j be the vertex at the (j + 1)st position of the
partial path. Then, a backward partial path starting from V b

0 and ending
at a vertex V b

i is given as (V b
0 , V

b
1 , ..., V

b
i−1, V

b
i ), where V b

0 represents the sink
n+ 1. We define tj,j−1 as the sum of the travel time tV b

j ,V
b
j−1

from V b
j to V b

j−1

and the service time sV b
j

of V b
j , i.e. tj,j−1 = tV b

j ,V
b
j−1

+ sV b
j
. Let θj be equal to

j∑
k=1

tk,k−1. For simplicity, we denote the start of the service time T b
V b
j
(Tn+1)

at V b
j as T b

j (Tn+1) in the sequel. When the vehicle starts serving V b
0 at Tn+1,
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then the service start time T b
1 (Tn+1) at V b

1 is computed as

T b
1 (Tn+1) = min

{
b1, Tn+1 − t10

}
. (8)

Hence, if the vehicle reaches V b
i following the partial path (V b

0 , V
b
1 , ..., V

b
i−1, V

b
i ),

then we obtain Eq. 9 by applying the time resource extension rule repeatedly
starting with Eq. (8).

T b
i (Tn+1) = min

{
bi, T

b
i−1(Tn+1)− ti,i−1

}
(9)

Let ei be the earliest feasible arrival time at sink V b
0 , which is defined as

ei = max1≤j≤i {aj + θj}. The latest feasible service start time b̃i at vertex

V b
i is expressed as b̃i = min

{
bi, b̃i−1 − ti,i−1

}
for i > 0 and b̃0 = ∞. Thus,

the vehicle cannot start serving V b
i after b̃i on a feasible backward partial

path (V b
0 , V

b
1 , ..., V

b
i−1, V

b
i ). Then, the service start time at vertex V b

i can be
defined as a function T b

i (Tn+1) and is given as follows:

• Condition I: If ei − θi < b̃i

T b
i (Tn+1) =

{
Tn+1 − θi, if ei ≤ Tn+1 ≤ b̃i + θi

b̃i, if Tn+1 ≥ b̃i + θi

• Condition II: Else if ei − θi ≥ b̃i

T b
i (Tn+1) = b̃i for Tn+1 ≥ ei

However, it is easy to show that the forward time resource extensions
given in Subsection 3.1.1 can be utilized in order to define backward time
resource extensions. Now let M be a constant. Then, following Eq. (8),
M − T b

1 (Tn+1) will be equal to

M − T b
1 (Tn+1) = max

{
M − b1, (M − Tn+1) + t10

}
. (10)

Similarly, M − T b
i (Tn+1) can be rewritten as

M − T b
i (Tn+1) = max

{
M − bi, (M − T b

i−1(Tn+1)) + ti,i−1
}

. (11)

Thus, when we reverse the time windows of every visited vertex on the
partial path (V b

0 , V
b
1 , ..., V

b
i−1, V

b
i ) as [M − bk,M − ak] for 0 < k ≤ i and
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apply the forward extensions, we obtain Eq. (10) at the first extension and
Eq. (11) at the final extension. Since the vehicle moves back symmetrically
from the sink to the source, all we need to do is to reverse the time windows
of the vertices on a backward path by subtracting them from a constant
M and implement the forward time resource extensions. In the forward DP
constructed in this way, the service start time T b

0 from the source corresponds
to M − Tn+1 and the service start time function at vertex i is given by
Ti(T

b
0 ) = M − T b

i (Tn+1). Since Ti(T
b
0 ) ≤M − ai is required for the feasibility

of a forward partial path, we automatically have T b
i (Tn+1) ≥ ai for any label

of vertex i.
The earliest feasible arrival time ei at sink V b

0 can be obtained by M − `bi ,
where `bi = min1≤j≤i {(M − aj)− θj} is the latest feasible service start time
at the source in the equivalent forward search. Similarly, the earliest service
start time ãbi at vertex V b

i helps us to find the latest feasible service start
time b̃i at V b

i by subtracting it from M , i.e. b̃i = M − ãbi . It is clear that the
backward DP can be solved efficiently using the constructed froward search
process together with the dominance rules given in Subsection 3.1.2

3.2.2. Concatenation of Partial Paths

As suggested by Righini and Salani (2006), in a bounded bi-directional
algorithm a critical resource is selected in order to restrict the number of
forward and backward labels generated. For our problem, we choose the
time resource as the critical resource as it seems to be the most crucial one.
Therefore, paths are extended forward from source 0 without generating new
paths on which the amount of time that the vehicle spends is greater than
S/2. The amount of time that the vehicle spends on a forward path ending
at a vertex i is given by Ti(T0) − T0. We decide to choose T ∗0 for which the
total loss is minimized on that path. Hence, we continue to extend the paths
forward from 0 as long as (Ti(T

∗
0 )−T ∗0 ) ≤ S/2. Similarly, paths are extended

backward from n+ 1 as long as (T ∗n+1 − T b
i (T ∗n+1)) ≤ S/2, where T ∗n+1 is the

minimizer of the total loss function Zb
i (Tn+1).

After realizing all possible forward and backward extensions, we need
to concatenate the partial paths to obtain complete paths starting from
source 0, ending at sink n + 1 and remove the infeasible ones. Let Li =
(δi,−`i, Ei, Ai, Deli, (Elk)ik∈V ) and Lb

i = (δbi ,−`bi , Eb
i , A

b
i , Del

b
i , (Elk)ibk∈V ) be a

forward and backward label associated to feasible partial paths (V0, ..., Vi)
and (Vi, ..., Vn+1) associated to a vertex Vi, respectively. The feasibility of
the complete path (V0, ..., Vi, ..., Vn+1) can be achieved if and only if the con-
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catenation is feasible in terms of time, capacity, and elementarity resources.
It is feasible concerning the capacity if Deli + Delbi − di ≤ Q, while it is
feasible with regard to the elementarity if Elik +Elibk ≤ 1 for all k ∈ V −{Vi}.
Nevertheless, the feasibility of the concatenated path in terms of the time
resource is established by the following proposition.

Proposition 10. Let (V0, ..., Vi) and (Vi, ..., Vn+1) be a feasible forward and
feasible backward partial path associated with a vertex Vi, respectively. The
concatenation of these two partial paths is feasible in terms of time if and
only if the earliest service start time ãi at Vi is less than or equal to the latest
feasible service start time b̃i at Vi, i.e. ãi ≤ b̃i.

Proof. Assume that ãi ≤ b̃i. The concatenated path is feasible if for every

j ≤ i and for every l ≥ i, ãj +
i−1∑
k=j

tk,k+1 +
l−1∑
k=i

tk,k+1 ≤ bl and similarly b̃l −

l−1∑
k=i

tk,k+1 −
i−1∑
k=j

tk,k+1 ≥ aj. For simplicity, let
i−1∑
k=j

tk,k+1 be θji and
l−1∑
k=i

tk,k+1 be

θli. Since the forward partial path is feasible, we have ãj +θji ≤ ãi by Eq. (5).

So, ãj + θji ≤ ãi ≤ b̃i ≤ b̃l − θli ≤ bl − θli since b̃i = min
{
bi, b̃i+1 − ti,i+1

}
.

Thus, ãj +θji +θli ≤ bl. Since aj ≤ ãj, we consequently obtain b̃l−θli−θ
j
i ≥ aj

following the same reasoning. Hence, the concatenated path is feasible.
Now assume that ãi > b̃i. Since the partial paths are feasible, ãi ≤ bi and

b̃i ≥ ai. Thus, ãi > b̃i if and only if there exist a vertex Vj and a vertex Vl
with j < i and l > i for which ãi = aj + θji and b̃i = bl − θli. Then, ãi > b̃i
implies that aj + θji > bl − θli, which is equivalent to aj + θji + θli > bl. Thus,
the concatenated path is infeasible.

In light of Proposition 10, we can simply summarize the conditions for
concatenation of two partial paths. Two labels Li = (δi,−`i, Ei, Ai, Deli, (Elk)ik∈V )
and Lb

i = (δbi ,−`bi , Eb
i , A

b
i , Del

b
i , (El

b
k)ik∈V ) can be linked if the following holds:

ãi ≤ b̃i

Deli +Delbi − di ≤ Q

Elik + Elibk ≤ 1 for all k ∈ V − {Vi}

In the traditional ESPPRC, the objective is to minimize the total distance
traveled. Therefore, once two partial paths are concatenated, the calculation
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of the transportation cost is straightforward, since it only requires the sum-
mation of the total distance traveled on two partial paths. However, the
transportation cost of the problem at hand depends on both the total dis-
tance traveled and the total amount of time that the vehicle spends. The
main drawback is that the waiting time that will occur on a complete path
cannot be calculated a priori. If there are one forward and one backward
partial paths (V0, ..., Vi) and (Vi, ..., Vn+1) with waiting times w1 and w2, re-
spectively, the total waiting time on the complete path (0, ...Vi, ..., Vn+1) is
not necessarily equal to w1 + w2. To overcome this difficulty, we make use
of the concatenation theorem and the computation of total waiting time on
a concatenated path of Savelsbergh (1992) given for the VRPTW with min-
imization of route duration as the objective. This enables us to concatenate
two partial paths and to compute the resulting total loss in constant time.

The concatenation theorem of Savelsbergh (1992) introduces the notion
of a forward time slack which indicates how much the service start time of
a visited vertex can be shifted forward without making the path infeasible
with regard to the time resource. The theorem states that if two feasible
partial paths (V0, ..., Vi) and (Vi+1, ..., Vn+1) with forward time slacks F1 and
F2 for the first vertices are concatenated, the start time T0 from the depot
on the concatenated path can be shifted forward in time by

F = min
{
F1, F2 + w1 + T b

i+1 − (Ti + ti,i+1)
}

(12)

where w1 is the total waiting time occurred on (V0, ..., Vi). Then the start
time from the depot minimizing the duration on the concatenated path
(V0, ..., Vi, ..., Vn+1) is given by T0 +F which coincides with `n+1 in our prob-
lem. In order to compute the waiting time on the concatenated path assum-
ing that the vehicle starts at a certain T0 from the depot, Savelsbergh (1992)
defines the change λ in the service start time at Vi+1 as Ti + ti,i+1 − T b

i+1

and introduces the backward time slack. The backward time slack of a path
indicates how much the service start time of a visited vertex can be shifted
backward without creating additional waiting time on that path. Then four
different cases are determined according to the sign of λ and to whether the
total waiting time w2 on (Vi+1, ..., Vn+1) is positive or zero. The results given
by Savelsbergh (1992) can be outlined as follows, where B2 is the backward
time slack of Vi+1 on the path (Vi+1, ..., Vn+1):

In order to calculate w1, w2, λ, F , and B2, we assume that Ti = ãi and
T b
i+1 = b̃i+1. Hence, we find the total waiting time w that will occur on the
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Table 1: The total waiting time on a concatenated path

λ ≥ 0 λ < 0

w2 = 0 w1 w1 + max {0,−λ−B2}
w2 > 0 w1 + max {0, w2 − λ} w1 + w2 − λ

concatenated path (V0, ..., Vi, ..., Vn+1) with the help of Table 1 assuming that
the vehicle starts from the depot at T0 = ãi− θi if the time function consists
of two pieces and at T0 = `i otherwise. It is also important to emphasize
that for our problem λ can take at most the value 0, since Ti + ti,i+1−T b

i+1 =

ãi + ti,i+1− b̃i+1 ≤ 0 because ãi ≤ b̃i ≤ b̃i+1− ti,i+1. If the forward time slack
F calculated by Eq. (12) is greater than or equal to w, then the real total
waiting time on (V0, ..., Vi, ..., Vn+1) is equal to 0, because the start time from
the depot is T0 + F . Otherwise, it is equal to w − F .

Having defined how we find the minimum total waiting time that will
occur on a concatenated path, we can easily find its minimum total loss and
optimal start time from the depot. Since we already know the waiting times
occurred on the partial paths (V0, ..., Vi) and (Vi+1, ..., Vn+1), we can now add
the missing waiting times multiplied by β to their minimum total losses.
Moreover, the optimal start time from the depot is given by the interval
[T0 + min {F,w} , T0 + F ].

3.3. A Simple Heuristic

Beside the exact mono-directional and bounded bi-directional DP algo-
rithms presented above, we additionally developed a mono-directional DP
heuristic. The heuristic assumes that the vehicle should start serving its first
customer as early as possible. So, it considers in turn each customer i ∈ D
and commences with a partial path Pi starting from the depot and visiting
customer i first. The start time from the depot is then set equal to ai − t0i.
Since the start time from the depot is fixed under these assumptions, the
problem reduces now to a classical ESPPRC, where the arcs costs include an
additional time cost component that is constant for a given path. So, each
initial path Pi can be extended by implementing feasible resource extensions
to obtain complete paths, as in Righini and Salani (2006). Once the search is
over for all i ∈ D, we select the elementary shortest path with minimum loss
among the non-dominated ones and further modify it to get a better start
time from the depot. In order to do that, we first compute the latest feasible
start time from the depot on the chosen path using Eq. (4), i.e., we try to
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shift the start time from the depot forward in time without making the path
infeasible. If such a shift is possible, we recompute the service start times of
the remaining vertices and the total loss incurred on the path.

4. Computational Analysis

In order to assess the performance of the solution procedures proposed
in Section 3, we conducted our experiments on the well-known data sets of
Solomon (1983). Our computational analysis consists of two parts. In the
first part, we test the three algorithms we have developed for our minimum
loss ESPPRC. Then in the second part, we consider the set covering formula-
tion of the corresponding VRPTW, in which the vehicles can start their trips
at any desired time. We utilize the ESPPRC as the pricing subproblem of a
column generation approach that solves the linear relaxation of this problem
to optimality.

The algorithms are tested on the clustered, random, and random-clustered
Solomon instances by considering either the first 50 or the first 100 customers.
The values of the time windows, service times, locations, and demands of the
customers are kept as in the classical instances. The vehicle capacity Q
is set either to 50 or to 100. Since for each data set the number of cus-
tomers and the vehicle capacity are assigned two different values, we obtain
116 instances. The travel distances between the vertices are defined as the
Euclidean distances (with one decimal point and truncation). The travel
times are set equal to the travel distances. The maximum amount of time
S that the vehicle can be used is half the length of the horizon of the orig-
inal instances. As suggested by Feillet et al. (2004) and Righini and Salani
(2006, 2008), the revenues ηi are integer-valued parameters generated from
a uniform distribution as ηi ∼ U (1, 20). Note that the revenues are only
needed for the first section of the computational study. Since the objective
of a classical ESPPRC is to minimize the total distance traveled, the cost
α per distance unit traveled is taken implicitly as 1. Thus, in order for our
experimental results to be coherent, we assign a value of 1 to α. Then, we
carried out some preliminary experiments to determine the cost β per time
unit use of the vehicle. Based on these initial tests, we observe that when β
is greater than 0.1, the total time cost can be significantly higher than the
total distance cost on an optimal path, which thus usually visits only one
or at most two customers. Hence, we decided to set β = 0.1 to allow more
customers to be visited on an optimal path. When β = 0.1, the preliminary
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tests show that the ratio of the time cost to the distance cost on an optimal
path varies between 0.15 and 1.53.

All the algorithms have been coded in C# and the computations have
been performed on a workstation Intel Core i7-3930K 3.20 GHz processor
with 64GB of RAM working under Windows 8 Pro operating system. A
time limit of 3600 seconds is allotted for each solution method in the first
part, whereas 10800 seconds are allowed for the column generation procedure
in the second part.

4.1. Experimental Results for the ESPPRC

We compare the performances of the three methods in terms of accuracy
and efficiency on the set of 116 instances. The results are presented in Tables
2-5. For each solution procedure, we report the computation times in seconds
in column CPU and the number of Pareto-optimal complete paths in col-
umn Labels. The column Dominance shows the percentage of the eliminated
partial paths among all generated partial paths for the mono-directional al-
gorithm. Finally, in order to understand the accuracy of the heuristic, we
compute the absolute value of the percent deviation (PD) of the best solu-
tion (BS) obtained by the heuristic from the optimal objective function value
z∗. PD is expressed by the formula |100× (BS − z∗) /z∗|. An empty row in
any table indicates that the instance cannot be solved by the corresponding
algorithm within the time limit.

As expected, the heuristic turns out to be the most efficient among the
three approaches as its CPU time is the smallest for most of the instances and
it is always able to find a solution, except for two instances, namely R104 and
R112 with 100 customers and capacity 100 (see Table 5). However, although
the BBDS algorithm is an exact approach, it obtains an optimal solution
within the allowed time for all but two instances which are C104 and R112
with 100 customers and capacity 100. (Note that the PD of the best solution
obtained by the heuristic algorithm cannot be reported for C104 with 100
customers and capacity 100 even though the heuristic is able to find a solu-
tion.) On the other hand, for R104 with 100 customers and capacity 100,
the only algorithm that is able to find a solution is the BBDS algorithm.
Tables 2-5 exhibit an increase in the PD of the heuristic algorithm as the
instances get larger. Especially, the PD can be very high for the random
instances with 100 customers and capacity 100. The mono-directional al-
gorithm is not able to provide an optimal solution for 15 instances and for
almost all the instances that can be solved by the mono-directional algorithm
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Table 2: ESPPRC Results for 50 Customers & Capacity 50
Instance Bi-directional Mono-directional Heuristic

CPU Labels CPU Labels Dominance CPU PD Labels
C101 50 0.12 1271 0.09 670 66.65% 0.02 0.00 90
C102 50 0.45 7267 0.58 3232 77.10% 0.01 0.00 176
C103 50 1.14 15416 1.89 5799 83.80% 0.01 0.00 179
C104 50 7.65 60406 13.95 13940 90.85% 0.04 0.00 618
C105 50 0.07 1979 0.05 1009 71.53% 0.00 0.00 85
C106 50 0.04 1276 0.03 696 73.07% 0.00 0.00 101
C107 50 0.10 2693 0.10 1248 77.01% 0.00 0.00 105
C108 50 0.45 8058 0.63 3538 73.59% 0.01 0.00 197
C109 50 1.58 18803 3.65 7067 78.17% 0.01 0.00 217
R101 50 0.08 162 0.03 106 72.25% 0.02 0.00 89
R102 50 0.04 867 0.03 395 77.69% 0.01 0.00 185
R103 50 0.06 1376 0.07 564 81.16% 0.02 0.00 343
R104 50 0.14 2462 0.17 899 84.26% 0.06 0.00 564
R105 50 0.02 406 0.01 233 74.25% 0.01 0.00 156
R106 50 0.05 1180 0.07 585 75.85% 0.02 0.00 263
R107 50 0.06 1389 0.07 555 82.04% 0.02 0.00 295
R108 50 0.07 1336 0.09 527 84.17% 0.03 0.00 304
R109 50 0.03 864 0.04 401 76.49% 0.01 0.00 200
R110 50 0.07 1628 0.17 692 75.70% 0.03 0.00 350
R111 50 0.07 1495 0.11 701 78.22% 0.03 0.00 327
R112 50 0.10 2003 0.15 768 82.30% 0.04 0.00 407
RC101 50 0.08 149 0.04 125 49.63% 0.02 4.79 86
RC102 50 0.01 206 0.02 156 55.91% 0.01 0.00 101
RC103 50 0.01 267 0.04 222 56.14% 0.01 0.00 135
RC104 50 0.02 325 0.03 225 68.40% 0.02 0.00 166
RC105 50 0.01 214 0.02 162 54.07% 0.01 0.00 101
RC106 50 0.01 252 0.02 195 57.45% 0.01 0.00 120
RC107 50 0.01 302 0.04 238 53.27% 0.02 0.00 159
RC108 50 0.02 340 0.05 241 62.14% 0.02 0.00 170

Table 3: ESPPRC Results for 50 Customers & Capacity 100
Instance Bi-directional Mono-directional Heuristic

CPU Labels CPU Labels Dominance CPU PD Labels
C101 50 0.15 2278 0.10 1115 65.52% 0.02 0.00 107
C102 50 2.00 25462 23.52 10112 75.54% 0.02 1.34 314
C103 50 8.97 64980 197.73 23690 82.25% 0.03 0.00 362
C104 50 101.18 316338 0.23 0.00 1804
C105 50 0.24 5205 0.52 2422 68.45% 0.00 0.00 100
C106 50 0.10 2683 0.13 1467 69.85% 0.01 10.07 150
C107 50 0.39 8449 2.29 3479 72.44% 0.01 0.00 160
C108 50 1.71 24120 24.10 10571 71.40% 0.02 0.57 303
C109 50 8.21 71251 213.14 26110 77.52% 0.02 0.00 309
R101 50 0.09 166 0.03 107 72.15% 0.02 0.00 89
R102 50 0.05 1113 0.06 488 75.49% 0.02 0.00 218
R103 50 0.11 2063 0.22 808 78.07% 0.06 0.00 439
R104 50 0.38 4205 0.82 1492 79.16% 0.25 30.79 807
R105 50 0.02 442 0.02 246 73.25% 0.01 0.00 162
R106 50 0.10 1686 0.32 902 67.65% 0.04 0.00 353
R107 50 0.13 2173 0.41 851 75.14% 0.06 0.00 402
R108 50 0.12 1844 0.29 687 81.33% 0.08 0.00 379
R109 50 0.04 1002 0.09 460 73.06% 0.02 0.00 210
R110 50 0.10 2182 0.47 891 72.54% 0.05 34.13 395
R111 50 0.10 2029 0.33 937 74.27% 0.06 59.37 388
R112 50 0.21 3157 0.89 1225 73.90% 0.11 220.48 515
RC101 50 0.09 183 0.06 150 42.31% 0.03 16.63 99
RC102 50 0.01 265 0.25 197 47.64% 0.02 10.67 115
RC103 50 0.02 358 0.79 295 49.69% 0.06 0.00 159
RC104 50 0.03 476 0.68 318 64.39% 0.10 4.03 212
RC105 50 0.01 271 0.27 204 44.55% 0.03 2.85 107
RC106 50 0.02 328 0.22 244 50.96% 0.03 6.42 137
RC107 50 0.03 441 2.06 332 46.31% 0.20 9.83 195
RC108 50 0.04 506 2.22 366 57.84% 0.32 0.00 243
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Table 4: ESPPRC Results for 100 Customers & Capacity 50
Instance Bi-directional Mono-directional Heuristic

CPU Labels CPU Labels Dominance CPU PD Labels
C101 100 0.37 4729 0.29 2574 77.72% 0.03 0.00 191
C102 100 4.94 31818 8.43 8.43081 86.28% 0.04 0.00 412
C103 100 19.88 82579 65.42 31101 90.33% 0.07 0.00 671
C104 100 97.69 220940 209.39 46341 94.67% 0.12 0.00 1026
C105 100 0.73 8767 0.89 4313 80.84% 0.02 0.00 217
C106 100 0.92 10083 1.58 4422 83.95% 0.02 0.00 212
C107 100 1.12 12820 1.62 5269 84.92% 0.02 0.00 270
C108 100 4.33 32305 8.84 12268 84.66% 0.03 0.00 377
C109 100 36.50 81057 289.55 32925 84.58% 0.04 0.00 441
R101 100 0.16 1295 0.11 694 72.80% 0.05 0.00 451
R102 100 2.44 15192 6.35 5877 79.47% 0.38 0.00 1700
R103 100 14.97 48536 177.82 16787 79.88% 5.97 1.04 5782
R104 100 62.17 105580 1329.00 31600 82.26% 15.56 0.00 9373
R105 100 0.74 6363 1.99 3140 69.77% 0.25 11.82 1387
R106 100 9.17 31298 132.22 14207 74.24% 1.83 0.00 3480
R107 100 15.67 51275 250.51 18949 79.88% 5.12 27.41 5223
R108 100 18.94 63603 420.65 20449 81.93% 5.93 0.00 5724
R109 100 3.63 20308 20.92 7815 78.59% 0.89 0.00 2619
R110 100 20.62 53413 407.42 17891 76.78% 3.58 22.09 4613
R111 100 33.84 60128 1103.11 25055 73.99% 7.28 12.12 6517
R112 100 83.05 129694 2355.56 35084 81.51% 25.97 0.00 11664
RC101 100 0.19 1494 0.17 783 72.36% 0.06 75.32 425
RC102 100 0.50 4976 1.03 1848 75.46% 0.15 39.68 775
RC103 100 1.53 9645 3.64 3401 79.06% 0.53 0.00 1310
RC104 100 2.68 13737 12.32 4760 80.02% 1.25 64.88 2033
RC105 100 0.30 3668 0.52 1470 76.38% 0.12 0.15 758
RC106 100 0.45 4352 1.75 2059 71.25% 0.25 0.00 923
RC107 100 0.89 7947 2.68 3048 76.58% 0.49 0.00 1574
RC108 100 2.36 13500 10.30 4447 78.61% 1.35 0.00 2294

Table 5: ESPPRC Results for 100 Customers & Capacity 100
Instance Bi-directional Mono-directional Heuristic

CPU Labels CPU Labels Dominance CPU PD Labels
C101 100 1.10 13905 2.36 7070 76.73% 0.04 0.00 349
C102 100 188.54 289505 0.09 2.97 812
C103 100 858.48 870414 0.43 0.00 2217
C104 100 1.42 4521
C105 100 4.85 39375 25.82 16836 80.91% 0.04 0.00 416
C106 100 6.23 49732 112.57 19023 84.22% 0.03 19.96 385
C107 100 11.75 72867 144.46 26134 84.11% 0.05 9.89 569
C108 100 40.13 183247 1387.18 65829 84.29% 0.08 17.78 734
C109 100 444.10 642447 0.11 0.00 812
R101 100 0.20 1758 0.18 876 70.22% 0.07 22.80 518
R102 100 56.08 88340 43.84 0.87 8797
R103 100 238.16 216272 1346.35 1.63 22135
R104 100 2947.77 611441
R105 100 2.22 13160 15.78 5942 62.32% 1.17 0.00 2192
R106 100 231.95 178815 223.07 4.98 14492
R107 100 362.00 262743 864.62 10.49 21541
R108 100 923.26 368591 999.06 13.09 28943
R109 100 33.22 66797 15.86 4.47 6488
R110 100 430.05 236487 300.08 12.27 15601
R111 100 924.76 317585 702.59 2.44 24321
R112 100
RC101 100 0.36 2564 1.31 1205 66.58% 0.22 75.32 587
RC102 100 2.10 10523 40.52 4034 67.38% 1.23 24.91 1233
RC103 100 7.56 21925 247.24 7973 74.51% 9.06 4.59 2199
RC104 100 18.55 36304 648.53 12923 79.76% 24.00 0.00 4374
RC105 100 0.89 6752 22.69 2508 65.07% 0.77 0.15 1066
RC106 100 1.89 9115 112.54 4147 62.31% 2.50 6.24 1464
RC107 100 4.81 19075 508.36 7050 68.09% 1.40 0.00 2758
RC108 100 15.37 35812 2257.68 12409 71.34% 42.42 0.00 4690
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within the time limit, the bounded bi-directional algorithm is faster than the
mono-directional one. We can clearly claim that the bounded bi-directional
algorithm beats the mono-directional one in terms of both accuracy and ef-
ficiency, and the heuristic in terms of accuracy. On the other hand, it can
be observed that the heuristic algorithm produces solutions of good quality
since it obtains the optimal solution for 72 instances. Another important
remark about the heuristic is that among 116 instances, it can provide a
solution in less than 1 second for 88 instances and in less than 10 seconds for
102 instances. This makes it a natural candidate for finding good solutions
at the initial iterations of a CG procedure (see Subsection 4.2).

In addition to the CPU and the number of Pareto-optimal complete paths,
the percentage of the dominated partial paths is reported for the mono-
directional algorithm. Although the dominance for the mono-directional al-
gorithm is realized functionwise following Proposition 7, the percentage of
the dominated partial paths turns out to be 73.09% on the average showing
that the dominance rules proposed in the paper are profitable. Furthermore,
for 95 instances the percentage of the dominated paths is over 50% indicating
the fact that we are able to detect more than half of the created partial paths
as eligible to be eliminated.

4.2. Experimental Results for Column Generation

When VRPs with additional constraints are solved via branch-and-price,
a set-covering formulation of the VRP is used where each column corresponds
to a feasible vehicle path. Very tight lower bounds can be provided by solv-
ing the linear relaxation of the set-covering formulation, called the master
problem, and branching techniques are used to discard fractional solutions.
The master problem is solved through CG and the pricing subproblem turns
out to be an ESPPRC.

In particular, the ESPPRC we are investigating can be encountered as a
pricing subproblem if a BP algorithm is applied to solve the corresponding
VRP with time windows and capacities, when the objective function has a
time-dependent cost component. Then, the revenues are the dual prices of
the visited vertices. In order to figure out the capability of the developed
DP algorithms, we embed them into a CG procedure devised to solve the
master problem. Note that our major concern is not to develop a full-fledged
branch-and-price procedure; we rather focus on solving the linear relaxation
of the VRPTW.
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We employ CPLEX 12.5.1 to solve the restricted master problem at every
iteration. In order to initialize the CG with a feasible linear program, a
column is generated for every customer, where each column corresponds to
a path that visits only one customer and starts and ends at the depot. At
every iteration, at most 2 × n columns with a negative reduced cost are
generated and among them the most negative n ones are included into the
master problem. If the number of generated columns reaches 3000, columns
that never entered the basis are removed. In the first iterations, the heuristic
algorithm presented in Subsection 3.3 is utilized until it fails to find columns
with a negative reduced cost. Then, the exact bi-directional DP algorithm
is called to find additional columns with negative reduced cost, if any.

Table 6: CG Results for 50 Customers
Instance Capacity 50 Capacity 100

CPU # iter # exact iter column CPU # iter # exact iter column
C101 50 0.83 13 2 459 3.13 20 6 772
C102 50 52.45 19 4 728 370.44 33 5 1451
C103 50 555.65 22 5 932 9559.48 51 8 2326
C104 50 537.32 27 3 1200
C105 50 2.55 15 4 546 11.49 26 7 1047
C106 50 1.63 16 4 512 6.07 25 7 1013
C107 50 6.22 16 5 631 47.38 33 10 1469
C108 50 24.57 18 6 718 170.52 31 8 1382
C109 50 105.93 22 7 959 2151.21 51 12 2374
R101 50 0.31 7 3 248 0.32 7 3 245
R102 50 0.64 13 5 398 1.04 12 5 448
R103 50 2.01 14 4 466 3.73 14 4 555
R104 50 4.69 16 5 607 12.76 16 4 666
R105 50 0.28 10 4 354 0.32 9 3 320
R106 50 1.15 13 5 444 1.65 13 5 481
R107 50 2.26 13 4 496 5.32 15 4 608
R108 50 4.02 13 3 499 14.50 15 3 604
R109 50 0.92 12 5 471 1.72 13 5 475
R110 50 2.69 15 6 514 5.33 14 4 548
R111 50 2.67 14 4 518 6.08 14 4 524
R112 50 6.50 17 4 545 19.65 17 4 664
RC101 50 0.31 8 3 179 0.37 8 4 193
RC102 50 0.15 8 3 172 0.46 7 3 211
RC103 50 0.30 9 4 181 1.42 8 3 216
RC104 50 0.45 8 3 188 5.05 9 3 239
RC105 50 0.17 8 4 187 0.80 9 4 215
RC106 50 0.20 9 4 202 0.67 7 3 197
RC107 50 0.33 8 3 186 5.05 7 2 220
RC108 50 0.51 7 2 194 16.49 8 2 206

We assess the performance of the CG procedure on the same set of 116
instances used for the ESPPRC. The computational results are displayed in
Tables 6 and 7. For each instance, we give the corresponding CPU time in
seconds, the number of columns generated (# column), the total number
of iterations (# iter), and the number of iterations at which the exact DP
algorithm is used to solve the subproblem (# exact iter). We observe that
the CG algorithm provides an optimal solution within the time limit for all
but 16 instances. In particular, CG is able to solve more than half of the
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Table 7: CG Results for 100 Customers
Instance Capacity 50 Capacity 100

CPU # iter # exact iter column CPU # iter # exact iter column
C101 100 8.94 16 2 1166 158.67 33 6 2792
C102 100 5128.26 23 3 1918
C103 100
C104 100
C105 100 46.72 18 3 1361 2754.01 43 8 1537
C106 100 114.02 20 4 1570 10023.71 48 8 2161
C107 100 140.01 18 4 1454
C108 100 1550.70 21 5 1780
C109 100
R101 100 3.53 16 6 942 5.60 15 5 1090
R102 100 58.23 21 6 1543 227.48 27 8 2167
R103 100 553.39 28 9 2237 9346.25 39 14 791
R104 100 878.87 31 7 2664
R105 100 18.59 18 6 1295 125.51 25 8 1760
R106 100 155.33 23 6 1903 4146.51 32 9 2712
R107 100 502.10 25 5 2230
R108 100 974.14 31 5 2792
R109 100 113.19 22 6 1845 1945.79 31 8 2634
R110 100 556.09 27 7 2260
R111 100 503.35 28 6 2363
R112 100 666.77 30 3 2695
RC101 100 3.55 13 5 832 17.68 15 6 1027
RC102 100 20.76 16 7 1091 110.41 18 6 1336
RC103 100 62.64 17 6 1147 895.65 20 6 1665
RC104 100 99.68 16 4 1173 7263.92 22 5 1884
RC105 100 13.64 14 5 918 97.20 17 6 1260
RC106 100 16.00 15 6 1098 317.42 19 8 1476
RC107 100 51.19 15 5 1146 2545.94 22 6 1792
RC108 100 108.04 16 3 1223 9566.38 21 4 1730

largest instances, namely the instances with 100 customers and capacity 100.
Another interesting observation is that the the number of iterations at

which the exact DP algorithm is called is significantly smaller than the total
number of iterations. This indicates that the heuristic is generally able to
find columns with negative reduced costs when they exist and hence, that
the heuristic performs well in many situations.

Finally, let us mention that we have also implemented a version of the CG
algorithm based on the mono-directional DP algorithm, rather than the bi-
directional one. In line with our expectations, the mono-directional variant
is much less efficient than the previous one, be it in terms of CPU time (up
to 35 times slower), or of the number of instances solved to optimality (it
fails for 34 instances and can only solve 7 instances with 100 customers and
capacity 100). In fact, there is no instance for which the mono-directional
variant provides an optimal solution within the allowed time, and the bi-
directional variant does not. For the sake of brevity, we do not provide more
detailed results here.
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5. Conclusion

In this paper we have considered a variant of the ESPPRC in which
a capacitated single vehicle can start from the depot at any desired time
and incurs costs based on both the total distance traveled and the total
duration of the trip. The goal is to determine the optimal service start
time of the vehicle from the depot as well as the trip to be performed so
as to minimize a total loss function. To solve this problem, we propose two
exact DP algorithms, a mono-directional one and a bounded bi-directional
one, and a heuristic solution procedure. Since the structure of the problem
creates infinitely-many Pareto-optimal states, we adapt the well-known DP
algorithms according to this feature and develop piecewise linear functions
modeling resources of the problem. We introduce appropriate dominance
rules to discard feasible paths that cannot result in an optimal solution.

The solution methods are first tested on a set of ESPPRC instances of
varying sizes. The results indicate that the bounded bi-directional DP al-
gorithm outperforms the mono-directional DP algorithm. The heuristic al-
gorithm is also quite satisfactory in the sense that it is the most efficient
one and is able to find the optimal solution for 72 out of 116 instances. We
also incorporate our algorithms in a CG scheme designed for the solution of
the corresponding vehicle routing problem with side constraints. The com-
putational study demonstrates that the heuristic algorithm works efficiently
in this framework, so that the number of subproblems solved by the exact
DP is kept reasonably small. As a consequence, the CG procedure is able
to solve the linear relaxation of many large instances to optimality. This
suggests that our methods can be successfully applied to the related VRP
and can be used to solve instances of moderate sizes within a reasonable time
by branch-and-price.

The ESPPRC we propose here can be extended in several ways. For ex-
ample, one can handle multiple trips performed by a same vehicle. It is also
possible to consider the delivery and backhaul case by dividing the customers
into two disjoint subsets and forcing the vehicle to visit a backhaul customer
after all its delivery customers are visited. We can easily adapt our exact al-
gorithms to tackle such additional side constraints. Another direction which
can be pursued is the acceleration of the ESPPRC. In order to accelerate the
DP algorithm, we have employed the bounded bi-directional algorithm and
identification of unreachable vertices. It is also possible to utilize other accel-
eration techniques such as the decremental state space relaxation proposed
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by Righini and Salani (2008). Furthermore, the heuristic we propose in this
study is in fact based on an exact DP algorithm for the classical ESPPRC.
Thus, in order to accelerate the CG procedure, it may be possible to develop
sophisticated ESPPRC heuristics to be used at the initial iterations. We
leave all these questions for future work.
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