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A B S T R A C T

Data analysis and machine learning have become an integrative part
of the modern scientific methodology, offering automated procedures
for the prediction of a phenomenon based on past observations, un-
raveling underlying patterns in data and providing insights about
the problem. Yet, caution should avoid using machine learning as a
black-box tool, but rather consider it as a methodology, with a ratio-
nal thought process that is entirely dependent on the problem under
study. In particular, the use of algorithms should ideally require a
reasonable understanding of their mechanisms, properties and limi-
tations, in order to better apprehend and interpret their results.

Accordingly, the goal of this thesis is to provide an in-depth anal-
ysis of random forests, consistently calling into question each and
every part of the algorithm, in order to shed new light on its learn-
ing capabilities, inner workings and interpretability. The first part of
this work studies the induction of decision trees and the construction
of ensembles of randomized trees, motivating their design and pur-
pose whenever possible. Our contributions follow with an original
complexity analysis of random forests, showing their good computa-
tional performance and scalability, along with an in-depth discussion
of their implementation details, as contributed within Scikit-Learn.

In the second part of this work, we analyze and discuss the in-
terpretability of random forests in the eyes of variable importance
measures. The core of our contributions rests in the theoretical char-
acterization of the Mean Decrease of Impurity variable importance
measure, from which we prove and derive some of its properties in
the case of multiway totally randomized trees and in asymptotic con-
ditions. In consequence of this work, our analysis demonstrates that
variable importances as computed from non-totally randomized trees
(e.g., standard Random Forest) suffer from a combination of defects,
due to masking effects, misestimations of node impurity or due to
the binary structure of decision trees.

Finally, the last part of this dissertation addresses limitations of ran-
dom forests in the context of large datasets. Through extensive exper-
iments, we show that subsampling both samples and features simul-
taneously provides on par performance while lowering at the same
time the memory requirements. Overall this paradigm highlights an
intriguing practical fact: there is often no need to build single mod-
els over immensely large datasets. Good performance can often be
achieved by building models on (very) small random parts of the
data and then combining them all in an ensemble, thereby avoiding
all practical burdens of making large data fit into memory.
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1
I N T R O D U C T I O N

In various fields of science, technology and humanities, as in biology,
meteorology, medicine or finance to cite a few, experts aim at predict-
ing a phenomenon based on past observations or measurements. For
instance, meteorologists try to forecast the weather for the next days
from the climatic conditions of the previous days. In medicine, practi-
tioners collect measurements and information such as blood pressure,
age or history for diagnosing the condition of incoming patients. Sim-
ilarly, in chemistry, compounds are analyzed using mass spectrome-
try measurements in order to determine whether they contain a given
type of molecules or atoms. In all of these cases, the goal is the pre-
diction of a response variable based on a set of observed predictor
variables.

For centuries, scientists have addressed such problems by deriv-
ing theoretical frameworks from first principles or have accumulated
knowledge in order to model, analyze and understand the pheno-
menon under study. For example, practitioners know from past ex-
perience that elderly heart attack patients with low blood pressure
are generally high risk. Similarly, meteorologists know from elemen-
tary climate models that one hot, high pollution day is likely to be
followed by another. For an increasing number of problems however,
standard approaches start showing their limits. For example, identify-
ing the genetic risk factors for heart disease, where knowledge is still
very sparse, is nearly impractical for the cognitive abilities of humans
given the high complexity and intricacy of interactions that exist be-
tween genes. Likewise, for very fine-grained meteorological forecasts,
a large number of variables need to be taken into account, which
quickly goes beyond the capabilities of experts to put them all into
a system of equations. To break this cognitive barrier and further ad-
vance science, machines of increasing speed and capacity have been
built and designed since the mid-twentieth century to assist humans
in their calculations. Amazingly however, alongside this progress in
terms of hardware, developments in theoretical computer science, ar-
tificial intelligence and statistics have made machines to become more
than calculators. Recent advances have made them experts of their
own kind, capable to learn from data and to uncover by themselves
the predictive structure of problems. Techniques and algorithms that
have stemmed from the field of machine learning have indeed now
become a powerful tool for the analysis of complex and large data,
successfully assisting scientists in numerous breakthroughs of vari-
ous fields of science and technology. Public and famous examples
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2 introduction

include the use of boosted decision trees in the statistical analysis
that led to the detection of the Higgs boson at CERN [Chatrchyan
et al., 2012], the use of random forests for human pose detection in
the Microsoft Kinect [Criminisi and Shotton, 2013] or the implemen-
tation of various machine learning techniques for building the IBM
Watson system [Ferrucci et al., 2010], capable to compete at the hu-
man champion level on the American TV quiz show Jeopardy.

Formally, machine learning can be defined as the study of systems
that can learn from data without being explicitly programmed. Ac-
cording to Mitchell [1997], a computer program is said to learn from
data, with respect to some class of tasks and performance measure
if its performance at those tasks improves with data. In particular,
machine learning provides algorithms that are able to solve classifica-
tion or regression tasks, hence bringing now automated procedures
for the prediction of a phenomenon based on past observations. How-
ever, the goal of machine learning is not only to produce algorithms
making accurate predictions, it is also to provide insights on the pre-
dictive structure of the data [Breiman et al., 1984]. If we are aiming
at the latter, then our goal is to understand what variables or inter-
actions of variables drive the phenomenon. For practitioners, which
are not experts in machine learning, interpretability is indeed often
as important as prediction accuracy. It allows for a better understand-
ing of the phenomenon under study, a finer exploration of the data
and an easier self-appropriation of the results. By contrast, when an
algorithm is used as a black box, yielding results seemingly out of
nowhere, it may indeed be difficult to trust or accept if it cannot
be understood how and why the procedure came to them. Unfortu-
nately, the current state-of-the-art in machine learning often makes it
difficult for non-experts to understand and interpret the results of an
algorithm. While considerable efforts have been put to improve their
prediction accuracy, it is still not clearly understood what makes ma-
chine learning algorithms truly work, and under what assumptions.
Likewise, few of them actually provide clear and insightful explana-
tions about the results they generate.

In this context, the goal of this thesis is to provide a comprehen-
sive and self-contained analysis of a class of algorithms known as
decision trees [Breiman et al., 1984] and random forests [Breiman,
2001]. While these methods have proven to be a robust, accurate and
successful tool for solving countless of machine learning tasks, includ-
ing classification, regression, density estimation, manifold learning or
semi-supervised learning [Criminisi and Shotton, 2013], there remain
many gray areas in their understanding:

(a) First, the theoretical properties and statistical mechanisms that
drive the algorithm are still not clearly and entirely understood.
Random forests indeed evolved from empirical successes rather
than from a sound theory. As such, various parts of the algo-
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rithm remain heuristic rather than theoretically motivated. For
example, preliminary results have proven the consistency of
simplified to very close variants of random forests, but consis-
tency of the original algorithm remains unproven in a general
setting.

(b) Second, while the construction process of a single decision tree
can easily be described within half a page, implementing this
algorithm properly and efficiently remains a challenging task
involving issues that are easily overlooked. Unfortunately, im-
plementation details are often omitted in the scientific literature
and can often only be found by diving into (unequally docu-
mented) existing software implementations. As far as we know,
there is indeed no comprehensive survey covering the imple-
mentation details of random forests, nor with their respective
effects in terms of runtime and space complexity or learning
ability.

(c) Third, interpreting the resulting model remains a difficult task,
for which even machine learning experts still fail at finely ana-
lyzing and uncovering the precise predictive structure learned
by the procedure. In particular, despite their extensive use in a
wide range of applications, little is still known regarding vari-
able importance measures computed by random forests. Empir-
ical evidence suggests that they are appropriate for identifying
relevant variables, but their statistical mechanisms and proper-
ties are still far from being understood.

All throughout this dissertation, our objective is therefore to call into
question each and every part of the random forests methodology,
both from a theoretical and practical point of view. Accordingly, this
work aims at revisiting decision trees and random forests to hope-
fully shed new light on their learning capabilities, inner workings
and interpretability.

1.1 outline and contributions

Part i of this manuscript is first dedicated to a thorough treatment
of decision trees and forests of randomized trees. We begin in Chap-
ter 2 by outlining fundamental concepts of machine learning, and
then proceed in Chapters 3 and 4 with a comprehensive review of
the algorithms at the core of decision trees and random forests. We
discuss the learning capabilities of these models and carefully study
all parts of the algorithm and their complementary effects. In partic-
ular, Chapter 4 includes original contributions on the bias-variance
analysis of ensemble methods, highlighting how randomization can
help improve performance. Chapter 5 concludes this first part with an
original space and time complexity analysis of random forests (and
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their variants), along with an in-depth discussion of implementation
details, as contributed within the open source Scikit-Learn library.
Overall, Part i therefore presents a comprehensive review of previous
work on random forests, including some original contributions both
from a theoretical and practical point of view.

Part ii analyzes and discusses the interpretability of random forests.
In Chapter 6, we study variable importances as computed with a
forest of randomized trees and study how these scores can be inter-
preted in order to reveal the underlying predictive structure learned
from the data. In particular, we derive a theoretical framework from
which we prove theoretical and practical properties of variable im-
portances. In Chapter 7, we then exploit this framework to further
study variable importances as derived from actual random forests
and present successful applications of variable importance measures.
Part ii constitutes the main contributions of this dissertation.

Finally, Part iii addresses limitations of random forests in the con-
text of large datasets. Through extensive experiments, we show in
Chapter 8 that subsampling strategies provides on par performance
while simultaneously lowering the memory requirements. This chap-
ter presents original work.

1.2 publications

This dissertation summarizes several contributions to random forests
algorithms. Publications that have directly stemmed from this work
include:

- [Geurts and Louppe, 2011] Learning to rank with extremely ran-
domized trees, Geurts Pierre and Louppe Gilles. In JMLR: Work-
shop and Conference Proceedings, volume 14, 2011.

- [Louppe and Geurts, 2012] Ensembles on random patches, Louppe
Gilles and Geurts Pierre. In Machine Learning and Knowledge
Discovery in Databases, pages 346–361. Springer, 2012.

- [Louppe et al., 2013] Understanding variable importances in forests
of randomized trees, Louppe Gilles, Wehenkel Louis, Sutera Anto-
nio and Geurts Pierre. In Advances in Neural Information Pro-
cessing Systems, pages 431–439, 2013.

- [Buitinck et al., 2013] API design for machine learning software: ex-
periences from the scikit-learn project, Buitinck Lars, Louppe Gilles,
Blondel Mathieu et al.. In ECML-PKDD 2013 Workshop: Lan-
guages for Data Mining and Machine Learning, 2013.

- [Botta et al., 2014] Exploiting SNP Correlations within Random For-
est for Genome-Wide Association Studies, Botta Vincent, Louppe
Gilles, Geurts Pierre and Wehenkel Louis. PloS one, 9(4):e93379,
2014.
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During the course of this thesis, several fruitful collaborations have
also led to the following publications. These are not discussed within
this dissertation.

- [Louppe and Geurts, 2010] A zealous parallel gradient descent al-
gorithm, Louppe Gilles and Geurts Pierre. In Learning on Cores,
Clusters and Clouds workshop, NIPS, 2010

- [Marée et al., 2014] A hybrid human-computer approach for large-
scale image-based measurements using web services and machine learn-
ing, Marée Raphaël, Rollus Loic, Stevens Benjamin et al. Pro-
ceedings IEEE International Symposium on Biomedical Imag-
ing, 2014.

- [McGovern et al., 2014] Solar Energy Prediction: An International
Contest to Initiate Interdisciplinary Research on Compelling Meteo-
rological Problems, Amy McGovern, David John Gagne II, Lucas
Eustaquio et al., 2014. Submitted.

- [Sutera et al., 2014] Simple connectome inference from partial corre-
lation statistics in calcium imaging, Antonio Sutera, Arnaud Joly,
Vincent Francois-Lavet et al., 2014. Submitted.
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2
B A C K G R O U N D

Outline

In this chapter, we introduce supervised learning and fundamental
concepts on which this work builds upon. In Section 2.1, we first de-
scribe classification and regression learning tasks and then formally
define the notion of model. In Section 2.2, we proceed with a dis-
cussion on performance evaluation and then describe, in Section 2.3,
procedures for selecting the best possible model. Finally, we conclude
in Section 2.4 with a brief overview of some of the main methods in
supervised learning.

2.1 learning from data

In the examples introduced in Chapter 1, the objective which is sought
is to find a systematic way of predicting a phenomenon given a set of
measurements. In machine learning terms, this goal is formulated as
the supervised learning task of inferring from collected data a model
that predicts the value of an output variable based on the observed
values of input variables. As such, finding an appropriate model is
based on the assumption that the output variable does not take its
value at random and that there exists a relation between the inputs
and the output. In medicine for instance, the goal is to find a decision
rule (i.e., a model) from a set of past cases (i.e., the collected data)
for predicting the condition of an incoming patient (i.e., the output
value) given a set of measurements such as age, sex, blood pressure
or history (i.e., the input values).

To give a more precise formulation, let us assume as set of cases or
objects taken from a universe Ω. Let us arrange the set of measure-
ments on a case in a pre-assigned order, i.e., take the input values
to be x1, x2, ..., xp, where xj ∈ Xj (for j = 1, ...,p) corresponds to the
value of the input variable Xj. Together, the input values (x1, x2, ..., xp)
form a p-dimensional input vector x taking its values in X1 × ... ×
Xp = X, where X is defined as the input space. Similarly, let us de-
fine as y ∈ Y the value of the output variable Y, where Y is defined
as the output space1. By definition, both the input and the output
spaces are assumed to respectively contain all possible input vectors
and all possible output values. Note that input variables are some-

1 Unless stated otherwise, supervised learning is reduced to the prediction of a sin-
gle output variable. More generally however, this framework can be defined as the
prediction of one or several output variables.

9



10 background

times known as features, input vectors as instances or samples and the
output variable as target.

Among variables that define the problem, we distinguish between
two general types. The former correspond to quantitative variables
whose values are integer or real numbers, such as age or blood pres-
sure. The latter correspond to qualitative variables whose values are
symbolic, such as gender or condition. Formally, we define them as
follows:

Definition 2.1. A variable Xj is ordered if Xj is a totally ordered set. In
particular, Xj is said to be numerical if Xj = R.

Definition 2.2. A variable Xj is categorical if Xj is a finite set of values,
without any natural order.

In a typical supervised learning task, past observations are summa-
rized by a dataset called learning set. It consists in a set of observed
input vectors together with their actual output value and formally
defined as follows:

Definition 2.3. A learning set L is a set of N pairs of input vectors and
output values (x1,y1), ..., (xN,yN), where xi ∈ X and yi ∈ Y.

Equivalently, a set of p-input vectors xi (for i = 1, ...,N) can be de-
noted by a N × p matrix X, whose rows i = 1, ...,N correspond to
input vectors xi and columns j = 1, ...,p to input variables Xj. Sim-
ilarly, the corresponding output values can be written as a vector
y = (y1, ...,yN).

Data representation

For optimal implementations of machine learning algorithms, data
needs to be represented using structures which allow for high-
performance numerical computation. In this work, code snippets are
described under the assumption that data is represented using a data
structure similar to a NumPy array [Van der Walt et al., 2011].

A NumPy array is basically a multidimensional uniform collection
of values, all of the same type and organized in a given shape. For
instance, a matrix X can be represented as a 2-dimensional NumPy
array of shapeN×p that contains numbers (e.g., floating point values
or integers). This structure allows for random access in constant time,
vectorized high-level operations and efficient memory usage.

Additionally, using a data representation which is close to the ma-
trix formulation, like NumPy arrays, makes it possible to write im-
plementations that are close to their original textbook formulation,
thereby making them easier to code, understand and maintain.

In this framework, the supervised learning task can be stated as
learning a function ϕ : X 7→ Y from a learning set L = (X, y). The ob-
jective is to find a model such that its predictions ϕ(x), also denoted
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by the variable Ŷ, are as good as possible. If Y is a categorical variable
then the learning task is a classification problem. If Y is numerical
variable, then learning task is a regression problem. Without loss of
generality, the resulting models can be defined as follows:

Definition 2.4. A classifier or classification rule is a function ϕ : X 7→ Y,
where Y is a finite set of classes (or labels) denoted {c1, c2, ..., cJ}.

Definition 2.5. A regressor is a function ϕ : X 7→ Y, where Y = R.

Estimator interface

We follow in this work the API conventions proposed by Buitinck
et al. [2013]. Learning algorithms are described as estimator objects
implementing the following interface:

- Hyper-parameters of an algorithm are all passed to the construc-
tor of the estimator. The constructor does not see any actual
data. All it does is to attach hyper-parameters values as public
attributes to the estimator object.

- Learning is performed in a fit method. This method is called
with a learning set (e.g., supplied as two arrays X_train and
y_train). Its task is to run a learning algorithm and to deter-
mine model-specific parameters from the data. The fit method
always returns the estimator object it was called on, which now
serves as a model and can be used to make predictions.

- Predictions are performed through a predict method, taking as
input an array X_test and producing as output the predictions
for X_test based on the learned parameters. In the case of clas-
sification, this method returns labels from Y = {c1, c2, ..., cJ}. In
the case of regression, it returns numerical values from Y = R.

With this API, a typical supervised learning task is performed as
follows:

# Instantiate and set hyper-parameters

clf = DecisionTreeClassifier(max_depth=5)

# Learn a model from data

clf.fit(X_train, y_train)

# Make predictions on new data

y_pred = clf.predict(X_test)

2.2 performance evaluation

In the statistical sense, input and output variables X1, ...,Xp and Y are
random variables taking jointly their values from X× Y with respect to
the joint probability distribution P(X, Y), where X denotes the random



12 background

vector (X1, ...,Xp). That is, P(X = x, Y = y) is the probability that
random variables X and Y take values x and y from X and Y when
drawing an object uniformly at random from the universe Ω.

Accordingly, using an algorithm A for learning a model2 ϕL whose
predictions are as good as possible can be stated as finding a model
which minimizes its expected prediction error, defined as follows:

Definition 2.6. The expected prediction error, also known as general-
ization error or test error, of the model ϕL is3

Err(ϕL) = EX,Y{L(Y,ϕL(X))}, (2.1)

where L is the learning set used to build ϕL and L is a loss function mea-
suring the discrepancy between its two arguments [Geurts, 2002].

Equation 2.1 basically measures the prediction error of ϕL over all
possible objects in Ω (each represented by a couple (x,y) ∈ X× Y),
including the observed couples from the learning set L but also all
the unseen ones from X × Y \ L. Indeed, the goal is not in fact to
make the very-most accurate predictions over the subset L of known
data, but rather to learn a model which is correct and reliable on all
possible data.

For classification, the most common loss function is the zero-one loss
function4 L(Y,ϕL(X)) = 1(Y 6= ϕL(X)), where all misclassifications
are equally penalized. In this case, the generalization error of ϕL

becomes the probability of misclassification of the model:

Err(ϕL) = EX,Y{1(Y 6= ϕL(X))} = P(Y 6= ϕL(X)) (2.2)

Similarly, for regression, the most used loss function is the squared
error loss L(Y,ϕL(X)) = (Y − ϕL(X))

2, where large differences be-
tween the true values and the predicted values are penalized more
heavily than small ones. With this loss, the generalization error of the
model becomes:

Err(ϕL) = EX,Y{(Y −ϕL(X))
2} (2.3)

2 Unless it is clear from the context, models are now denoted ϕL to emphasize that
they are built from the learning set L.

3 EX{f(X)} denotes the expected value of f(x) (for x ∈ X) with respect to the probability
distribution of the random variable X. It is defined as

EX{f(X)} =
∑
x∈X

P(X = x)f(x).

4 1(condition) denotes the unit function. It is defined as

1(condition) =

1 if condition is true

0 if condition is false
.
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2.2.1 Estimating Err(ϕL)

In practice, the probability distribution P(X, Y) is usually unknown,
making the direct evaluation of Err(ϕL) infeasible. Equivalently, it is
often not possible to draw additional data, thereby making infeasible
the empirical estimation of Err(ϕL) on a (virtually infinite) set L ′

drawn independently from L. In most problems, L constitutes the
only data available, on which both the model needs to be learned
and its generalization error estimated. As reviewed and described on
multiple occasions by several authors [Toussaint, 1974; Stone, 1978;
Breiman et al., 1984; Kohavi et al., 1995; Nadeau and Bengio, 2003;
Hastie et al., 2005; Arlot and Celisse, 2010], the generalization error
in Equation 2.1 can however be estimated in several ways.

To make notations clearer, let us first define E(ϕL,L′) as the aver-
age prediction error of the model ϕL over the set L′ (possibly differ-
ent from the learning set L used to produce ϕL), that is:

E(ϕL,L′) =
1

N′

∑
(xi,yi)∈L′

L(yi,ϕL(xi)) (2.4)

where N′ is the size of the set L′.
The first and simplest estimate of the generalization error is the

resubstitution estimate or training sample estimate. It consists in empiri-
cally estimating Err(ϕL) on the same data as the learning set L used
to build ϕL, that is:

Êrr
train

(ϕL) = E(ϕL,L) (2.5)

In general, the resubstitution error is a poor estimate of Err(ϕL). In
particular, since most machine learning algorithms aim at precisely
minimizing Equation 2.5 (either directly or indirectly), it typically
results in an overly optimistic estimate of the generalization error,
which accounts for all couples (x,y), i.e., not only those from L.

The second approach is the test sample estimate. It consists in di-
viding the learning set L into two disjoint sets Ltrain and Ltest, called
training set and test set, and then to use each part respectively for learn-
ing a model and estimating its generalization error. The test sample
estimate of the generalization error of the model ϕL that would be
obtained from L is then given as the average prediction error over
Ltest of the model ϕLtrain built on Ltrain:

Êrr
test

(ϕL) = E(ϕLtrain ,Ltest) (2.6)

As a rule-of-thumb, Ltrain is usually taken as 70% of the samples in
L and Ltest as the remaining 30%, though theoretical work [Guyon,
1997] suggests to progressively reduce the size of test set as the size of
L increases. In any case, care must be taken when splitting L into two
subsets, so that samples from Ltrain can be considered independent
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from those in Ltest and drawn from the same distribution. This is
however usually guaranteed by drawing Ltrain and Ltest simply at
random from L. While being an unbiased estimate of Err(ϕL), the
test sample estimate has the drawback that it reduces the effective
sample size on which the model ϕLtrain is learned. If L is large, then
this is usually not an issue, but if L only contains a few dozens of
samples, then this strategy might not correctly approximate the true
generalization error of the model that would have been learned on
the entire learning set.

When L is small, the K-fold cross-validation estimate is usually pre-
ferred over the test sample estimate. It consists in randomly dividing
the learning set L into K disjoint subsets, L1, ...,LK, and then to esti-
mate the generalization error as the average prediction error over the
folds Lk of the models ϕL\Lk learned on the remaining data:

Êrr
CV

(ϕL) =
1

K

K∑
k=1

E(ϕL\Lk ,Lk) (2.7)

The assumption behind this approach is that since each model ϕL\Lk

is built using almost all L, they should all be close to the model
ϕL learned on the entire set. As a result the unbiased estimates
E(ϕL\Lk ,Lk) should also all be close to Err(ϕL). While more com-
putationally intensive, the K-fold cross-validation estimate has the ad-
vantage that every couple (x,y) ∈ L is used for estimating the gener-
alization error of ϕL. In a typical setting, K is usually fixed to 10, a
value often yielding stable and reliable estimates [Kohavi et al., 1995].

Expected generalization error

As we have shown, our goal is to estimate the generalization error
Err(ϕL) conditional on the learning set L. A related quantity is the
expected generalization error

EL{Err(ϕL)}, (2.8)

averaging over everything which is random, including the random-
ness in the learning set L used to produce ϕL. As discussed by Hastie
et al. [2005], this quantity is close, yet different from Err(ϕL). The au-
thors point out that most estimates, including K-fold cross-validation,
effectively estimate Equation 2.8 rather than Equation 2.1.

2.2.2 Bayes model and residual error

In theory, when the probability distribution P(X, Y) is known, the best
possible model, i.e., the model ϕB which minimizes the generaliza-
tion error of Equation 2.1, can be derived analytically and indepen-
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dently of any learning set L. By conditioning on X, the generalization
error of this model can be rewritten as:

EX,Y{L(Y,ϕB(X))} = EX{EY|X{L(Y,ϕB(X))}} (2.9)

In this latter form, the model which minimizes Equation 2.9 is a
model which minimizes the inner expectation point-wise, that is:

ϕB(x) = arg min
y∈Y

EY|X=x{L(Y,y)} (2.10)

In the literature, ϕB is known as the Bayes model and its generalization
error Err(ϕB) as the residual error. It represents the minimal error
that any supervised learning algorithm can possibly attain, that is
the irreducible error purely due to random deviations in the data.

Definition 2.7. A model ϕB is a Bayes model if, for any model ϕ built
from any learning set L, Err(ϕB) 6 Err(ϕL).

In classification, when L is the zero-one loss, the Bayes model is:

ϕB(x) = arg min
y∈Y

EY|X=x{1(Y,y)}

= arg min
y∈Y

P(Y 6= y|X = x)

= arg max
y∈Y

P(Y = y|X = x) (2.11)

Put otherwise, the best possible classifier consists in systematically
predicting the most likely class y ∈ {c1, c2, ..., cJ} given X = x.

Similarly, for regression with the squared error loss, we have:

ϕB(x) = arg min
y∈Y

EY|X=x{(Y − y)
2}

= EY|X=x{Y} (2.12)

In other words, the best possible regressor consists in systematically
predicting the average value of Y at X = x.

For practical problems, P(X, Y) is unknown and the Bayes model
cannot be derived analytically. In this context, the effectiveness of a
model ϕL may be difficult to evaluate since (estimates of) Err(ϕL)

may not be very indicative of the goodness of ϕL if the lowest attain-
able error Err(ϕB) is unknown. On simulated data however, where
the distribution is known, deriving ϕB and Err(ϕB) is feasible. This
is beneficial as Err(ϕB) can now be used for comparing the test set
error of ϕL and thereby evaluate the actual effectiveness of ϕL with
respect to the best model one can possibly build.

From a theoretical point of view, the concepts of Bayes model and
residual error are also useful to study the learning capabilities of an
algorithm. In particular, as L gets arbitrarily large, a fundamental
question is to know whether it is possible to produce a model ϕL
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which is consistent, that is such that its generalization error gets arbi-
trarily close to the lowest possible generalization error Err(ϕB). For-
mally, consistency is defined as follows [Devroye et al., 1996]:

Definition 2.8. A learning algorithm A is said to be weakly consistent
for a certain distribution P(X, Y) if EL{Err(ϕL)}→ Err(ϕB) as the size N
of the learning set L used to build ϕL using A tends to infinity.

Definition 2.9. A learning algorithm A is said to be strongly consistent
for a certain distribution P(X, Y) if Err(ϕL) → Err(ϕB) almost surely as
the size N of the learning set L used to build ϕL using A tends to infinity.

Note that the definition of consistency depends on the distribution
P(X, Y). In general, a learning algorithm A can be proven to be consis-
tent for some classes of distributions, but not for others. If consistency
can be proven for any distribution P(X, Y), then A is said to be univer-
sally (strongly) consistent.

2.3 model selection

From the previous discussion in Section 2.2.2, it appears that to solve
the supervised learning problem it would be sufficient to estimate
P(Y|X) from the learning sample L and then to define a model ac-
cordingly using either Equation 2.11 or Equation 2.12. Unfortunately,
this approach is infeasible in practice because it requires L to grow ex-
ponentially with the number p of input variables in order to compute
accurate estimates of P(Y|X) [Geurts, 2002].

2.3.1 Selecting the (approximately) best model

To make supervised learning work in high-dimensional input spaces
with learning sets of moderate sizes, simplifying assumptions must
be made on the structure of the best model ϕB. More specifically, a
supervised learning algorithm assumes that ϕB – or at least a good
enough approximation – lives in a family H of candidate models,
also known as hypotheses in statistical learning theory, of restricted
structure. In this setting, the model selection problem is then defined
as finding the best model among H on the basis of the learning set L.

Approximation error

Depending on restrictions made on the structure of the problem, the
Bayes model usually does not belong to H, but there may be models
ϕ ∈ H that are sufficiently close to it. As such, the approximation
error [Bottou and Bousquet, 2011] measures how closely the models
in H can approximate the optimal model ϕB:

Err(H) = min
ϕ∈H

{Err(ϕ)}− Err(ϕB) (2.13)
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To be more specific, let θ be the vector of hyper-parameters values
controlling the execution of a learning algorithm A. The application
of A with hyper-parameters θ on the learning set L is a deterministic5

process yielding a model A(θ,L) = ϕL ∈ H. As such, our goal is to
find the vector of hyper-parameters values yielding to the best model
possibly learnable in H from L:

θ∗ = arg min
θ

Err(A(θ,L)) (2.14)

Again, this problem cannot (usually) be solved exactly in practice
since it requires the true generalization error of a model to be com-
putable. However approximations θ̂∗ can be obtained in several ways.

When L is large, the easiest way to find θ̂∗ is to use test sample es-
timates (as defined by Equation 2.6) to guide the search of the hyper-
parameter values, that is:

θ̂∗ = arg min
θ

Êrr
test

(A(θ,L)) (2.15)

= arg min
θ

E(A(θ,Ltrain),Ltest) (2.16)

In practice, solving this later equation is also a difficult task but ap-
proximations can be obtained in several ways, e.g., using either man-
ual tuning of θ, exhaustive exploration of the parameter space using
grid search, or dedicated optimization procedures (e.g., using ran-
dom search [Bergstra and Bengio, 2012]). Similarly, when L is scarce,
the same procedure can be carried out in the exact same way but
using K-fold cross-validation estimates (as defined by Equation 2.7)
instead of test sample estimates. In any case, once θ̂∗ is identified,
the learning algorithm is run once again on the entire learning set L,
finally yielding the approximately optimal model A(θ̂∗,L).

When optimizing θ, special care must be taken so that the resulting
model is neither too simple nor too complex. In the former case, the
model is indeed said to underfit the data, i.e., to be not flexible enough
the capture the structure between X and Y. In the later case, the model
is said to overfit the data, i.e., to be too flexible and to capture isolated
structures (i.e., noise) that are specific to the learning set.

As Figure 2.1 illustrates, this phenomenon can be observed by ex-
amining the respective training and test estimates of the model with
respect to its complexity6. When the model is too simple, both the
training and test estimates are large because of underfitting. As com-
plexity increases, the model gets more accurate and both the training
and test estimates decrease. However, when the model becomes too
complex, specific elements from the training set get captured, reduc-
ing the corresponding training estimates down to 0, as if the model

5 If A makes use of a pseudo-random generator to mimic a stochastic process, then
we assume that the corresponding random seed is part of θ.

6 Unless mentioned otherwise, complexity here refers to the complexity of the model
in function space. Computational complexity is studied later in Section 5.1
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Figure 2.1: Training and test error with respect to the complexity of a model.
The light blue curves show the training error over Ltrain while the
light red curves show the test error estimated over Ltest for 100
pairs of training and test sets Ltrain and Ltest drawn at random
from a known distribution. The thick blue curve is the average
training error while the thick red curve is the average test error.
(Figure inspired from [Hastie et al., 2005].)

were perfect. At the same time, the test estimates become worse be-
cause the structure learned from the training set is actually too spe-
cific and does not generalize. The model is overfitting. The best hyper-
parameter value θ is therefore the one making the appropriate trade-
off and producing a model which is neither too simple nor to com-
plex, as shown by the gray line on the figure.

As we will see later in Chapter 4, overfitting can also be explained
by decomposing the generalization error in terms of bias and vari-
ance. A model which is too simple usually has high bias but low
variance, while a model which is too complex usually has low bias
but high variance. In those terms, finding the best model amounts to
make the appropriate bias-variance trade-off.

2.3.2 Selecting and evaluating simultaneously

On real applications, and in particular when reporting results, it usu-
ally happens that one wants to do both model selection and model
assessment. That is, having chosen a final model A(θ̂∗,L), one wants
to also estimate its generalization error.

A naive assessment of the generalization error of the selected model
might be to simply use the test sample estimate Êrr

test
(A(θ̂∗,L)) (i.e.,

E(A(θ̂∗,Ltrain),Ltest)) that was minimized during model selection. The
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issue with this estimate is that the learned model is not independent
from Ltest since its repeated construction was precisely guided by the
minimization of the prediction error over Ltest. As a result, the min-
imized test sample error is in fact a biased, optimistic, estimate of
the true generalization error, sometimes leading to substantial under-
estimations. For the same reasons, using the K-fold cross-validation
estimate does not provide a better estimate since model selection was
similarly guided by the minimization of this quantity.

To guarantee an unbiased estimate, the test set on which the gen-
eralization error is evaluated should ideally be kept out of the entire
model selection procedure and only be used once the final model is
selected. Algorithm 2.1 details such a protocol. Similarly, per-fold es-
timates of the generalization error should be kept out of the model
selection procedure, for example using nested cross-validation within
each fold, as explicited in Algorithm 2.2.

Algorithm 2.1. Train-Valid-Test set protocol for both model selection and
evaluation.

(a) Divide the learning set L into three parts Ltrain, Lvalid and Ltest;

(b) Perform model selection on Ltrain ∪Lvalid using test sample estimates,
i.e., find:

θ̂∗ = arg min
θ

Êrr
test

(A(θ,Ltrain ∪Lvalid)) (2.17)

= arg min
θ

E(A(θ,Ltrain),Lvalid); (2.18)

(c) Evaluate the (unbiased) generalization error of the final model as

E(A(θ̂∗,Ltrain ∪Lvalid),Ltest); (2.19)

(d) Learn the final model A(θ̂∗,L) on the entire learning set.

Algorithm 2.2. Nested K-fold cross-validation protocol for both model se-
lection and evaluation.

(a) Divide the learning set L into K folds L1, ...,LK;

(b) For each fold k = 1, ...,K:

i. Divide L \Lk = L−k into K folds L−k
1 , ...,L−k

K ;

ii. Perform model selection on the subset L−k using nested K-fold
estimates, i.e., find:

θ̂∗k = arg min
θ

Êrr
CV

(A(θ,L−k)) (2.20)

= arg min
θ

1

K

K∑
l=1

E(A(θ,L−k \ L−k
l ),L−k

l ); (2.21)
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iii. Evaluate the generalization error of the selected sub-model as

E(A(θ̂∗k,L \Lk),Lk); (2.22)

(c) Evaluate the (unbiased) generalization error of the selected model as
the average generalization estimate of the sub-models selected over the
folds:

1

K

K∑
k=1

E(A(θ̂∗k,L \Lk),Lk); (2.23)

(d) Perform model selection on the entire learning set L using K-fold cross-
validation estimates, i.e., find:

θ̂∗ = arg min
θ

Êrr
CV

(A(θ,L)) (2.24)

= arg min
θ

1

K

K∑
k=1

E(A(θ,L \Lk),Lk); (2.25)

(e) Learn the final model A(θ̂∗,L) on the entire learning set.

2.4 classes of learning algorithms

Before proceeding in the next chapters, and for the rest of this work,
to an in-depth analysis of the class of tree-based methods, we briefly
review in this section some of the other learning algorithms that have
matured in the field, including linear methods, support vector ma-
chines, neural networks and nearest neighbor methods.

2.4.1 Linear methods

One of the oldest class of supervised learning algorithms is the class
of linear methods from the field of statistics. In these methods, the
central assumption made on H is that the output variable Y can be
described as a linear combination of the input variables X1, ...,Xp (i.e.,
as an hyperplane), or at least that the linear model is a reasonable
approximation. For regression, H includes all models ϕ of the form:

ϕ(x) = b+
p∑
j=1

xjwj (2.26)

For binary classification (i.e., when Y = {c1, c2}), H includes all mod-
els ϕ of the form:

ϕ(x) =

c1 if b+
∑p
j=1 xjwj > 0

c2 otherwise
(2.27)
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Figure 2.2: A good separating hyperplane is an hyperplane that maximizes
the distance to the nearest training data points.

Linear methods come in many flavors but mostly differ from each
other in the way they estimate the coefficients b and wj (for j =

1, . . . ,p), usually using some specific optimization procedure to min-
imize a specific criterion. Among all of them, the most famous is the
method of least squares. It consists in finding the b and wj coefficients
that minimize the resubstitution estimate (Equation 2.5) using the
squared error loss.

Despite an apparent simplicity, linear methods often provide reli-
able predictions and an interpretable description of how the input
variables affect the output. Contrary to their name, linear methods
can also be used to model non-linear relations between X and Y, for
example by applying these methods on (non-linear) transformations
of the input variables. For more details on (generalized) linear meth-
ods, see the reviews of MacCullagh and Nelder [1989], Hastie et al.
[2005], Bishop and Nasrabadi [2006] or Duda et al. [2012].

2.4.2 Support vector machines

When data points from the learning set are linearly separable, there
exist several hyperplanes (i.e., several linear models) that are in fact
equally as good when evaluated in resubstitution. In generalization
however, these hyperplanes are usually not equivalent. As illustrated
in Figure 2.2, a good separation is intuitively achieved when the dis-
tance (also known as the margin) to the nearest training data points is
as large as possible, since in general the larger the margin the lower
the generalization error of the model.
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Mathematically, support vector machines [Boser et al., 1992; Cortes
and Vapnik, 1995] are maximum-margin linear models of the form of
Equation 2.27. Assuming without loss of generality that Y = {−1, 1}
and that b = 0, support vector machines are learned by solving the
following primal optimization problem:

min
w,ξ

{
1

2
‖w‖2 +C

N∑
i=1

ξi

}
(2.28)

subject to

yi(w · xi) > 1− ξi, ξi > 0. (2.29)

In its dual the form, the optimization problem is

max
α


N∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjxi · xj

 (2.30)

subject to

0 6 αi 6 C, (2.31)

where C is an hyper-parameter that controls the degree of misclassi-
fication of the model, in case classes are not linearly separable. From
the solution of dual problem, we have

w =

N∑
i=1

αiyixi, (2.32)

from which the final linear model can finally be expressed.
Support vector machines extend to non-linear classification by pro-

jecting the original input space into a high-dimensional space (the
so-called kernel trick), where a separating hyperplane can hopefully
be found. Interestingly, the dual optimization problem is exactly the
same, except that the dot product xi ·xj is replaced by a kernel K(xi, xj),
which corresponds the dot product of xi and xj in the new space.

2.4.3 Neural networks

The family of neural networks methods finds its origins in attempts to
identify mathematical representations of information processing in
biological systems. While this objective is still far from being reached,
(artificial) neural networks have nonetheless proven all their worth
from a statistical point of view, and have actually grown into one of
the most effective methods in machine learning.

A neural network is usually made of several units, also known as
neurons, of the form

hj(x) = σ(wj +
n∑
i=1

wijxi), (2.33)
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Figure 2.3: An artificial neural network.

where σ is a non-linear activation function, such as the sign func-
tion, the sigmoid function or the softmax activation. In most cases,
these units are structured into successive layers, where the outputs
of a layer are directed through weighted connections, also known as
synapses, to the inputs of the next layer. As an example, Figure 2.3
illustrates a three layered neural network. The first layer is the input
layer, which transmits the input values x = (x1, ..., xp) to the second
layer. The second layer is made of activation units hj, taking as in-
puts the weighted values of the input layer and producing non-linear
transformations as outputs. The third layer is made of a single activa-
tion unit, taking as inputs the weighted outputs of the second layer
and producing the predicted value ŷ. Assuming that this structure is
fixed and that all units from the network make use of the same activa-
tion function σ, the hypothesis space H therefore includes all models
ϕ of the form

ϕ(x) = σ(w5 +
4∑
j=1

wj5σ(wj +

p∑
i=1

wijxi)). (2.34)

As for linear methods, learning a neural network amounts to esti-
mate the weights wij that minimize some specific loss function, using
some specific optimization procedure. Among all of them, the most
famous is the backpropagation algorithm [Bryson, 1975].

Recent advances on neural networks, now themed as deep learning,
have recently shown the capability of these models to autonomously
learn high-level and very effective representations of data. On vari-
ous difficult tasks, such as image classification or speech recognition,
neural networks have indeed achieved outstanding performance, out-
performing both human operators and state-of-the-art methods. From
a theoretical point of view however, little is still known about what
makes them truly work. In particular, picking the appropriate com-
bination of number of units, layers and types of activation functions
remains a delicate task, which unfortunately makes (deep) neural net-
works still difficult to use for non-experts. Reviews on recent develop-
ments include the works of Hinton [2007], Arel et al. [2010] or Bengio
et al. [2013].
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2.4.4 Nearest neighbor methods

Nearest neighbor methods belong to a class of non-parametric algo-
rithms known as prototype methods [Hastie et al., 2005]. They dis-
tinguish from other learning algorithms in the sense that they are
memory-based and require no model to be fit.

The principle behind nearest neighbor methods is to find a number
of training samples closest in distance to the new sample, and then
infer from these the value of the output variable. For regression, the
k-nearest neighbor algorithm [Fix and Hodges, 1951] averages the
output values from the k closest training samples, that is:

ϕ(x) =
1

k

∑
(xi,yi)∈NN(x,L,k)

yi, (2.35)

where NN(x,L,k) denotes the k nearest neighbors of x in L. For clas-
sification, the procedure is the same except that the predicted output
value is computed as the majority class among the k nearest neigh-
bors:

ϕ(x) = arg max
c∈Y

∑
(xi,yi)∈NN(x,L,k)

1(yi = c). (2.36)

In general, the distance function used to identify the k nearest neigh-
bors can be any metric, but the standard Euclidean distance is the
most common choice. A notable variant is the radius-based neighbor
algorithm, in which the predicted output value is computed from the
training samples within a radius r of the new sample. In cases where
data is not uniformly sampled, this latter algorithm can be a better
choice than the k-nearest neighbor method.

Despite their simplicity, nearest neighbor methods usually yield de-
cent results in practice. They are are often successful in classification
situations where the decision boundary is very irregular. From a theo-
retical point of view, an important result due to Cover and Hart [1967]
is the proof of consistency of the method. When the size of L tends to
infinity and k is appropriately adjusted to L, the generalization error
of the model produced by the k-nearest neighbor method is shown to
converge towards the generalization error of the Bayes model.
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Outline

In this chapter, we present a unified framework in which we de-
tail (single) decision trees methods. In Section 3.1, we first give an
overview of the context in which these algorithms have been devel-
oped. In Section 3.2, we proceed with a mathematical presentation,
introducing all necessary concepts and notations. The general learn-
ing algorithm is then presented in Section 3.3 while specific parts of
the algorithm are discussed in finer details in Sections 3.4, 3.5, 3.6. As
such, specific decision tree algorithms (e.g., CART, ID3 or C4.5) are
described as specializations of the general framework presented here.

3.1 introduction

Since always, artificial intelligence has been driven by the ambition
to understand and uncover complex relations in data. That is, to find
models that can not only produce accurate predictions, but also be
used to extract knowledge in an intelligible way. Guided with this
twofold objective, research in machine learning has given rise to ex-
tensive bodies of works in a myriad of directions. Among all of them
however, tree-based methods stand as one of the most effective and
useful method, capable to produce both reliable and understandable
results, on mostly any kind of data.

Historically, the appearance of decision trees is due to Morgan and
Sonquist [1963], who first proposed a tree-based method called auto-
matic interaction detector (AID) for handling multi-variate non-additive
effects in the context of survey data. Building upon AID, methodolog-
ical improvements and computer programs for exploratory analysis
were then proposed in the following years by several authors [Son-
quist, 1970; Messenger and Mandell, 1972; Gillo, 1972; Sonquist et al.,
1974]. Without contest however, the principal investigators that have
driven research on the modern methodological principles are Breiman
[1978a,b], Friedman [1977, 1979] and Quinlan [1979, 1986] who simul-
taneously and independently proposed very close algorithms for the
induction of tree-based models. Most notably, the unifying work of
Breiman et al. [1984], later complemented with the work of Quinlan
[1993], have set decision trees into a simple and consistent method-
ological framework, which largely contributed in making them easy
to understand and easy to use by a large audience.

25
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As we will explore in further details all throughout this work, the
success of decision trees (and by extension, of all tree-based meth-
ods) is explained by several factors that make them quite attractive in
practice:

- Decision trees are non-parametric. They can model arbitrarily
complex relations between inputs and outputs, without any a
priori assumption;

- Decision trees handle heterogeneous data (ordered or categori-
cal variables, or a mix of both);

- Decision trees intrinsically implement feature selection, making
them robust to irrelevant or noisy variables (at least to some
extent);

- Decision trees are robust to outliers or errors in labels;

- Decision trees are easily interpretable, even for non-statistically
oriented users.

Most importantly, decision trees are at the foundation of many
modern and state-of-the-art algorithms, including forests of random-
ized trees (on which this work is about, see Chapter 4) or boosting
methods [Freund and Schapire, 1995; Friedman, 2001], where they are
used as building blocks for composing larger models. Understanding
all algorithmic details of single decision trees is therefore a manda-
tory prerequisite for an in-depth analysis of these methods.

3.2 tree structured models

When the output space is a finite set of values, like in classification
where Y = {c1, c2, ..., cJ}, another way of looking at a supervised learn-
ing problem is to notice that Y defines a partition over the universe
Ω, that is

Ω = Ωc1 ∪Ωc2 ∪ · · · ∪ΩcJ , (3.1)

where Ωck is the of set objects for which Y has value ck. Similarly, a
classifier ϕ can also be regarded as a partition of the universe Ω since
it defines an approximation Ŷ of Y. This partition however is defined
on the input space X rather that directly on Ω, that is

X = Xϕc1 ∪X
ϕ
c2
∪ ...∪XϕcJ , (3.2)

where Xϕck is the set of description vectors x ∈ X such that ϕ(x) = ck.
Accordingly, learning a classifier can be restated as learning a parti-
tion of X matching as closely as possible the best possible partition,
i.e., the one engendered by the Bayes model ϕB over X:

X = XϕBc1 ∪X
ϕB
c2
∪ ...∪XϕBcJ . (3.3)
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Partitioning with noise

Notice that when Y cannot be univocally determined given X = x, e.g.,
when there is noise on Y, then there may exist two distinct objects
from the universe Ω such that their representations x1 and x2 in the
input space are equal, yet such that the corresponding output values
y1 and y2 are different. In other words, the subsets

XΩck = {xi|i ∈ Ω, Y = ck} (3.4)

may not be disjoint. By contrast, since ϕ defines a function from X to
Y, any input x ∈ X is mapped to exactly one output value y ∈ Y and
the subsets Xϕck are therefore necessarily disjoint, which means that
no model will ever perfectly predict the true output value in all cases.
As discussed in Section 2.2.2, this limitation is unavoidable and can
in fact be viewed as the cause of the residual error.

From a geometrical point of view, the principle of tree structured
models is beautifully simple. It consists in approximating the parti-
tion of the Bayes model by recursively partitioning the input space X

into subspaces and then assign constant prediction values ŷ ∈ Y to all
objects x within each terminal subspace. To make things clearer, let
us first define the following concepts:

Definition 3.1. A tree is a graph G = (V ,E) in which any two vertices (or
nodes) are connected by exactly one path.

Definition 3.2. A rooted tree is a tree in which one of the nodes has been
designated as the root. In our case, we additionally assume that a rooted tree
is a directed graph, where all edges are directed away from the root.

Definition 3.3. If there exists an edge from t1 to t2 (i.e., if (t1, t2) ∈ E)
then node t1 is said to be the parent of node t2 while node t2 is said to be a
child of node t1.

Definition 3.4. In a rooted tree, a node is said to be internal if it has one
or more children and terminal if it has no children. Terminal nodes are also
known as leaves.

Definition 3.5. A binary tree is a rooted tree where all internal nodes have
exactly two children.

In those terms, a tree-structured model (or decision tree) can be defined
as a model ϕ : X 7→ Y represented by a rooted tree (often binary, but
not necessarily), where any node t represents a subspace Xt ⊆ X of
the input space, with the root node t0 corresponding to X itself. Inter-
nal nodes t are labeled with a split st taken from a set of questions Q.
It divides the space Xt that node t represents into disjoint subspaces
respectively corresponding to each of its children. For instance, the
set of all binary splits is the set Q of questions s of the form “Does
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t0

t1 t2

t3 t4

X1 ≤ 0.7

X2 ≤ 0.5

c2

c2 c1

Figure 3.1: A decision tree ϕ built for a binary classification problem from
an input space X = [0, 1]× [0, 1]. (Figure inspired from Breiman
et al. [1984].)

x ∈ XA?”, where XA ⊂ X is some subset of the input space. Any split
s of this form divides Xt into two subspaces respectively correspond-
ing to Xt ∩XA for the left child of t and to Xt ∩ (X\XA) for the right
child of t. Terminal nodes are labeled with a best guess value ŷt ∈ Y

of the output variable. If ϕ is a classification tree, then ŷt ∈ {c1, ..., cJ}
while if ϕ is a regression tree, then ŷt ∈ R. As such, the predicted
output value ϕ(x) is the label of the leaf reached by the instance x
when it is propagated through the tree by following the splits st (see
Algorithm 3.1).

Algorithm 3.1. Prediction of the output value ŷ = ϕ(x) in a decision tree.
1: function Predict(ϕ, x)
2: t = t0
3: while t is not a terminal node do
4: t = the child node t ′ of t such that x ∈ Xt ′

5: end while
6: return ŷt
7: end function

As an example, Figure 3.1 illustrates a decision tree ϕ made of
five nodes and partitioning the input space X = X1 × X2 = [0; 1]×
[0; 1] for a binary classification problem (where Y = {c1, c2}). Node
t0 is the root node and corresponds to the whole input space Xt0 =

X. It is labeled with the binary split X1 6 0.7 (i.e., the question “Is
X1 6 0.7?”) which divides Xt0 into two disjoint subsets Xt1 ∪ Xt2 .
The first set corresponds to its left child t1 and represents the set of
all input vectors x ∈ X0 such that x1 6 0.7. Similarly, the second set
corresponds to its right child t2 and represents the set of all input
vectors x ∈ Xt0 such that x1 > 0.7. Likewise, t1 is labeled with the
split X2 6 0.5 which further divides Xt1 into two disjoint subsets
Xt3 ∪ Xt4 respectively corresponding to the sets of all input vectors
x ∈ Xt1 such that x2 6 0.5 and x2 > 0.5. Terminal nodes t2, t3 and
t4 are represented by squares labeled with an output value ŷt. They
form together a partition (as defined by Equation 3.2) of X, where
each set Xϕck is obtained from the union of the subspaces Xt of all
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t2

t3

t4

0.7

0.5

X1

X2

Figure 3.2: Partition of X induced by the decision tree ϕ into homogeneous
subspaces. Blue dots correspond to objects of class c1 while red
dots correspond to objects of class c2. (Figure inspired from
Breiman et al. [1984].)

terminal nodes t such that ŷt = ck. In this case, Xϕc1 = Xt4 while
Xϕc2 = Xt2 ∪Xt3 . As shown in Figure 3.2, the partition induced by ϕ
on X divides the input space into subspaces that are more and more
class homogeneous, starting from X at the root node, then Xt1 ∪Xt2
at the second level of tree and finally (Xt3 ∪Xt4) ∪Xt2 at the leaves.
As we will explore in Section 3.6, the partition is in this case made
of rectangles because of the nature of the splits st ∈ Q dividing the
nodes. Predictions are made by propagating instances through the
tree and using as output value the value labeling the terminal nodes
in which they fall into. For example, as shown in blue in Figure 3.1,
an object x = (x1 = 0.2, x2 = 0.7) falls into t4 and therefore ϕ(x) =

ŷt4 = c1.
Finally, let us note that from a graph theory point of view, deci-

sion trees belong to a larger family of methods known as induction
graphs [Zighed and Rakotomalala, 2000]. In this more general frame-
work, the structure is a directed acyclic graph, which allows for nodes
to be both divided and recombined.

3.3 induction of decision trees

Learning a decision tree ideally amounts to determine the tree struc-
ture producing the partition which is closest to the partition engen-
dered by Y over X. Since it is unknown, the construction of a decision
tree is usually driven instead with the objective of finding a model
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which partitions the learning set L as well as possible. Among all
decision trees ϕ ∈ H however, there may exist several of them that
explain L equally best. Following Occam’s Razor principles [Blumer
et al., 1987] of preferring the explanation which makes as few assump-
tions as possible, that is to favor the simplest solution that fits the data,
learning a decision tree from L is therefore usually restated as find-
ing the smallest tree ϕ∗ (in terms of internal nodes) minimizing its
resubstitution estimate E(ϕ∗,L). While this assumption makes sense
from a generalization point of view, it also makes sense regarding in-
terpretability. A decision tree which is small is easier to understand
than a large and complex tree.

As shown by Hyafil and Rivest [1976], finding the smallest tree ϕ∗

that minimizes its resubstitution estimate is an NP-complete problem.
As a consequence, under the assumption that P 6= NP, there exists
no efficient algorithm for finding ϕ∗, thereby suggesting that find-
ing efficient heuristics for constructing near-optimal decision trees is
the best solution to keep computation requirements within realistic
boundaries.

Following the framework of Breiman et al. [1984], let us broadly
define an impurity measure i(t) as a function that evaluates the good-
ness of any node t (we delay to Section 3.6 for a more precise defi-
nition). Let assume that the smaller i(t), the purer the node and the
better the predictions ŷt(x) for all x ∈ Lt, where Lt is the subset of
learning samples falling into t, that is all (x,y) ∈ L such that x ∈ Xt.
Starting from a single node representing the whole learning set L,
near-optimal decision trees can then be grown greedily by iteratively
dividing nodes into purer nodes. That is, by iteratively dividing into
smaller subsets the subsets of L represented by the nodes, until all ter-
minal nodes cannot be made purer, hence guaranteeing near-optimal
predictions over L. The greedy assumption to make the resulting tree
as small as possible, thereby seeking for good generalization, is then
to divide each node t using the split s∗ that locally maximizes the
decrease of impurity of the resulting child nodes.

Formally, the decrease of impurity of a binary split s is defined as
follows:

Definition 3.6. The impurity decrease of a binary split s ∈ Q dividing
node t into a left node tL and a right node tR is

∆i(s, t) = i(t) − pLi(tL) − pRi(tR) (3.5)

where pL (resp., pR) is the proportion NtL
Nt

(resp., NtRNt ) of learning samples
from Lt going to tL (resp., to tR) and where Nt is the size of the subset Lt.

On the basis of this concept, a general greedy procedure for the
induction of decision trees can now be described formally as outlined
in Algorithm 3.2. Note that for the sake of clarity, Algorithm 3.2 is
formulated in terms of binary splits. However, as we will explore
later in Section 3.6, it generalizes naturally to n-ary multiway splits.
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Algorithm 3.2. Greedy induction of a binary decision tree.
1: function BuildDecisionTree(L)
2: Create a decision tree ϕ with root node t0
3: Create an empty stack S of open nodes (t,Lt)
4: S.push((t0,L))
5: while S is not empty do
6: t,Lt = S.pop( )
7: if the stopping criterion is met for t then
8: ŷt = some constant value
9: else

10: Find the split on Lt that maximizes impurity decrease

s∗ = arg max
s∈Q

∆i(s, t)

11: Partition Lt into LtL ∪LtR according to s∗

12: Create the left child node tL of t
13: Create the right child node tR of t
14: S.push((tR,LtR))
15: S.push((tL,LtL))
16: end if
17: end while
18: return ϕ
19: end function

The rest of this chapter is now dedicated to a detailed discussion of
specific parts of Algorithm 3.2. Section 3.4 discusses assignment rules
for terminal nodes (Line 8 of Algorithm 3.2) while Section 3.5 outlines
stopping criteria for deciding when a node becomes terminal (Line 7

of Algorithm 3.2). Section 3.6 then presents families Q of splitting
rules, impurity criteria i(t) to evaluate the goodness of splits and
strategies for finding the best split s∗ ∈ Q (Line 10 of Algorithm 3.2).
As we will see, the crux of the problem is in finding good splits and
in knowing when to stop splitting.

Lookahead search

Obviously, the greedy assumption on which Algorithm 3.2 relies may
produce trees that are suboptimal. A natural improvement of the
greedy strategy is lookahead search, which consists in evaluating the
goodness of a split, but also of those deeper in the tree, assuming this
former split was effectively performed. As empirically investigated in
[Murthy and Salzberg, 1995], such an approach is however not only
more computationally intensive, it is also not significantly better than
greedily induced decision trees. For this reason, more elaborate vari-
ants of Algorithm 3.2 are not considered within this work. Let us note
however that trees grown with lookahead search are usually shorter,
which may be a strong advantage when interpretability matters.
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3.4 assignment rules

Let us assume that node t has been declared terminal given some
stopping criterion (See next Section 3.5). The next step (Line 8 of
Algorithm 3.2) in the induction procedure is to label t with a constant
value ŷt to be used as a prediction of the output variable Y. As such,
node t can be regarded as a simplistic model defined locally on Xt×Y

and producing the same output value ŷt for all possible input vectors
falling into t.

Let us first notice that, for a tree ϕ of fixed structure, minimizing
the global generalization error is strictly equivalent to minimizing
the local generalization error of each simplistic model in the terminal
nodes. Indeed,

Err(ϕ) = EX,Y{L(Y,ϕ(X))}

=
∑
t∈ϕ̃

P(X ∈ Xt)EX,Y|t{L(Y, ŷt)} (3.6)

where ϕ̃ denotes the set of terminal nodes in ϕ and where the inner
expectation1 is the local generalization error of the model at node t.
In this later form, a model which minimizes Err(ϕ) is a model which
minimizes the inner expectation leaf-wise. Learning the best possible
decision tree (of fixed structure) therefore simply amounts to find the
best constants ŷt at each terminal node.

3.4.1 Classification

When L is the zero-one loss, the inner expectation in Equation 3.6 is
minimized by the plurality rule:

ŷ∗t = arg min
c∈Y

EX,Y|t{1(Y, c)}

= arg min
c∈Y

P(Y 6= c|X ∈ Xt)

= arg max
c∈Y

P(Y = c|X ∈ Xt) (3.7)

Put otherwise, the generalization error of t is minimized by predict-
ing the class which is the most likely for the samples in the subspace
of t. Note that if the maximum is achieved by two or more different
classes, then ŷ∗t is assigned arbitrarily as any one of the maximizing
classes.

Equation 3.7 cannot be solved without the probability distribution
P(X, Y). However, its solution can be approximated by using estimates
of the local generalization error. Let Nt denotes the number of objects
in Lt and let Nct denotes the number of objects of class c in Lt. Then,
the proportion Nct

Nt
can be interpreted as the estimated probability2

1 The joint expectation of X and Y is taken over all objects i ∈ Ω such that xi ∈ Xt.
2 Lower case p denotes an estimated probability while upper case P denotes a theoret-

ical probability.



3.4 assignment rules 33

p(Y = c|X ∈ Xt) (shortly denoted p(c|t)) of class c in t and therefore
be used to solve Equation 3.7:

ŷt = arg min
c∈Y

1− p(c|t)

= arg max
c∈Y

p(c|t) (3.8)

Similarly, let us also define the proportion Nt
N as the estimated prob-

ability p(X ∈ Xt) (shortly denoted p(t)). Plugging this estimate into
Equation 3.6 and approximating the local generalization error with
1− p(ŷt|t) as done above, it follows:

Êrr(ϕ) =
∑
t∈ϕ̃

p(t)(1− p(ŷt|t))

=
∑
t∈ϕ̃

Nt

N
(1−

Nŷtt

Nt
)

=
1

N

∑
t∈ϕ̃

Nt −Nŷtt

=
1

N

∑
t∈ϕ̃

∑
x,y∈Lt

1(y 6= ŷt)

=
1

N

∑
x,y∈L

1(y 6= ϕ(x))

= Êrr
train

(ϕ) (3.9)

Accordingly, approximating Equation 3.6 through local probability
estimates computed from class proportions in Lt reduces to the re-
substitution estimate of ϕ (Equation 2.5). In other words, assignment
rule 3.8 in fact minimizes the resubstitution estimate rather than the
true generalization error.

An important property of assignment rule 3.8 is that the more one
splits a terminal node in any way, the smaller the resubstitution esti-
mate Êrr

train
(ϕ) becomes.

Proposition 3.1. For any non-empty split of a terminal node t ∈ ϕ̃ into
tL and tR, resulting in a new tree ϕ′ where ŷtL and ŷtR are assigned with
rule 3.8,

Êrr
train

(ϕ) > Êrr
train

(ϕ′)

with equality if ŷt = ŷtL = ŷtR .

Proof.

Êrr
train

(ϕ) > Êrr
train

(ϕ′)∑
t∈ϕ̃

p(t)(1− p(ŷt|t)) >
∑
t∈ϕ̃′

p(t)(1− p(ŷt|t))

p(t)(1− p(ŷt|t)) > p(tL)(1− p(ŷtL |tL)) + p(tR)(1− p(ŷtR |tR))
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Nt

N
(1− max

c∈Y

Nct

Nt
) >

NtL
N

(1− max
c∈Y

NctL
NtL

) +
NtR
N

(1− max
c∈Y

NctR
NtR

)

Nt − max
c∈Y

Nct > NtL − max
c∈Y

NctL +NtR − max
c∈Y

NctR

max
c∈Y

Nct 6 max
c∈Y

NctL + max
c∈Y

NctR

max
c∈Y

(NctL +NctR) 6 max
c∈Y

NctL + max
c∈Y

NctR

which is true since maxc∈YNctL (resp., tR) is necessarily greater or
equal to the left term NctL (resp., to right term NctR) in the left-hand
side of the equation. Equality holds if the majority classes are the
same in t, tL and tR.

As a corollary of Proposition 3.1, the resubstitution estimate is min-
imal when terminal nodes can no longer be divided. In particular, it
is equal to zero if the tree can be fully developed, that is if terminal
nodes can be divided until they all contain exactly one object from
L. Based on this result, we will show however in Section 3.6.2 why
using the resubstitution estimate to evaluate the goodness of a split s
has serious defects for classification.

3.4.2 Regression

When L is the squared error loss, the inner expectation in Equation 3.6
is minimized by the expectation of Y in t:

ŷ∗t = arg min
ŷ∈Y

EX,Y|t{(Y − ŷ)
2}

= EX,Y|t{Y} (3.10)

Again, Equation 3.10 cannot be solved without the probability dis-
tribution P(X, Y). However, its solution can approximated using esti-
mates of the local generalization error:

ŷt = arg min
ŷ∈L

1

Nt

∑
x,y∈Lt

(y− ŷ)2

=
1

Nt

∑
x,y∈Lt

y (3.11)

As in classification, using p(t) as estimate of P(X ∈ Xt) and ap-
proximating the local generalization error with 1

Nt

∑
x,y∈Lt(y− ŷt)

2

as done above, one can show that Equation 3.6 reduces to the resub-
stitution estimate of ϕ, thereby indicating that assignment rule 3.11

also minimizes the training error rather the true generalization error.
Most importantly, one can also show that assignment rule 3.11 be-

haves in the same way as 3.8. The more one splits a terminal node in
any way, the smaller the resubstitution estimate Êrr

train
(ϕ) becomes.
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Proposition 3.2. For any non-empty split of a terminal node t ∈ ϕ̃ into
tL and tR, resulting in a new tree ϕ′ where ŷtL and ŷtR are assigned with
rule 3.11,

Êrr
train

(ϕ) > Êrr
train

(ϕ′)

with equality if ŷtL = ŷtR = ŷt.

Proof.

Êrr
train

(ϕ) > Êrr
train

(ϕ′)∑
t∈ϕ̃

p(t)(
1

Nt

∑
x,y∈Lt

(y− ŷt)
2) >

∑
t∈ϕ̃′

p(t)(
1

Nt

∑
x,y∈Lt

(y− ŷt)
2)

∑
x,y∈Lt

(y− ŷt)
2 >

∑
x,y∈LtL

(y− ŷtL)
2 +

∑
x,y∈LtR

(y− ŷtR)
2

Ntŷ
2
t 6 NtL ŷ

2
tL

+NtR ŷ
2
tR

1

Nt
(
∑

x,y∈Lt

y)2 6
1

NtL
(
∑

x,y∈LtL

y)2 +
1

NtR
(
∑

x,y∈LtR

y)2

For simplifying, let us denote s(t) =
∑

x,y∈Lt y = Ntŷt the sum of
the output values in t. Remark that s(t) = s(tL) + s(tR). It comes:

s(t)2

Nt
6
s(tL)

2

NtL
+
s(tR)

2

NtR

(s(tL) + s(tR))
2

NtL +NtR
6
s(tL)

2

NtL
+
s(tR)

2

NtR

(s(tL)NtR − s(tR)NtL)
2

NtLNtR(NtL +NtR)
> 0

Which is necessary true since the numerator is non-negative and
the denominator is strictly positive. Equality holds if s(tL)NtR =

s(tR)NtL , that is if ŷtL = ŷtR .

As for Proposition 3.1, a corollary of Proposition 3.2 is that the
resubstitution estimate is minimal when terminal nodes can no longer
be divided.

3.5 stopping criteria

As we have shown through Propositions 3.1 and 3.2, the deeper a de-
cision tree, the smaller its training estimate, and the better we think
it is. As discussed in Section 2.3 however, increasing model complex-
ity, in this case by enlarging the set of terminal nodes, is likely to
eventually capture noise in the learning set and to cause overfitting.
In other words, it is not because the training estimate can be proved
to go down to zero that the test estimate converges accordingly. On
the contrary, it is very likely to diverge as complexity increases. To
prevent this phenomenon it is therefore necessary to find the right
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trade-off between a tree which is not too shallow nor too deep. The
problem is in knowing when to stop splitting, i.e., in how to carefully
formulate Line 7 of Algorithm 3.2.

Let us first consider the stopping criteria that are inherent to the
iterative partition procedure, regardless of overfitting. Node t is in-
evitably set as a terminal node when Lt can no longer be split, which
happens in the following cases:

(a) When the output values of the samples in Lt are homogeneous.
That is, if y = y′ for all (x,y), (x′,y′) ∈ Lt. In particular, this is
necessarily the case when Nt = 1.

(b) When the input variables Xj are each locally constant in Lt. That
is, if xj = x′j for all (x,y), (x′,y′) ∈ Lt, for each input variable Xj.
In this situation, it is indeed not possible to divide Lt into two
(or more) non-empty subsets.

To prevent overfitting, the stopping criterion is then usually com-
plemented with heuristics halting the recursive partition if Lt has
become too small or if no sufficiently good split can be found. The
most common approaches are formulated as follows:

(c) Set t as a terminal node if it contains less than Nmin samples.
(Nmin is also known as min_samples_split.)

(d) Set t as a terminal node if its depth dt is greater or equal to a
threshold dmax. (dmax is also known as max_depth.)

(e) Set t as a terminal node if the total decrease in impurity is less
than a fixed threshold β. That is, if p(t)∆i(s∗, t) < β.

(f) Set t as a terminal node if there is no split such that tL and
tR both count a least Nleaf samples. (Nleaf is also known as
min_samples_leaf.)

In all of the above, stopping criteria are defined in terms of user-
defined hyper-parameters (Nmin, dmax, β or Nleaf) that have to be
tuned in order to find the right trade-off. Ideally, they need to be
such that they are neither too strict nor too loose for the tree to be
neither too shallow nor too deep. Too large a tree will have a higher
generalization error than the right sized tree. Likewise, too small a
tree will not use some of the information in L, again resulting in a
higher generalization error than the right sized tree. As described in
Section 2.3, choosing the appropriate parameter values is usually per-
formed using a dedicated model selection procedure, which can be
computationally expensive, yet usually imperative for reaching good
generalization performance.
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Pre-pruning and post-pruning

While the stopping criteria presented above may give good results in
practice, the strategy of stopping early the induction of the tree is in
general unsatisfactory. There may be nodes t for which the stopping
criterion is met but whose descendants tL and tR may have splits
that would have in fact reduced the generalization error of the tree.
By declaring t as a terminal node, the good splits on tL and tR are
never exploited.

Another way of looking at the problem of finding the right sized
tree consists in fully developing all nodes and then to prune instead
of stopping. That is, to sequentially remove the nodes that degrade
the generalization error (estimated on an independent validation set)
until the optimal tree is found. Since nodes are pruned after the in-
duction of the tree, this framework is also known as post-pruning. By
opposition, early stopping as described earlier is also referred to as
pre-pruning.

In the context of single decision trees, post-pruning usually yields
better results than pre-pruning. From an interpretability point of
view, it is also a very effective framework for simplifying decision
trees and better understand the structure in the data. However, in
the context of ensemble of decision trees, we will see in Chapter 4

that (pre- or post-)pruning is no longer required to achieve good gen-
eralization performance. For this reason, we refer to the literature
for more detailed discussion on the topic (e.g., [Breiman et al., 1984;
Mingers, 1989a; Zighed and Rakotomalala, 2000]).

3.6 splitting rules

Assuming that the stopping criterion is not met, we now focus on the
problem of finding the split s∗ ∈ Q of t that maximizes the impurity
decrease ∆i(s∗, t) (Line 10 of Algorithm 3.2).

3.6.1 Families Q of splitting rules

As introduced in Section 3.2, a split s of node t is a question that di-
vides the space Xt into disjoint subspaces respectively corresponding
to each of the children of t. Formally, a split is defined as a partition:

Definition 3.7. A split s of node t is a partition of Xt, that is a set of
non-empty subsets of Xt such that every element x ∈ Xt is in exactly one of
these subsets (i.e., Xt is a disjoint union of the subsets).

If s divides Xt into two subsets, then s is said to be a binary split
and its left and right children are denoted tL and tR. In the general
case however, s may divide Xt into more than two subsets, resulting
in as many child nodes ti1 , ..., tiN as subsets (See Figure 3.3).
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Figure 3.3: Binary split of t (left) and N-ary multiway split of t (right).

The set S of all possible splits s is the set of all partitions of Xt. It is
infinitely large as soon as one the input variables can take infinitely
many values. For instance, if Xt = R, then there exists infinitely many
ways of partitioning Xt into two (or more) subsets. Among all of them
however, only those that yield a partition of Lt into non-empty sub-
sets are worth considering. For example, in the binary case, splits re-
sulting in one of the children being empty are not considered because
their goodness cannot be evaluated on the learning set. As such, the
optimization problem of finding the best split s∗ of Xt can be roughly
restated as finding the best partition of the node samples Lt.

Assuming distinct input values for all Nt node samples, the num-
ber of partitions of Lt into k non-empty subsets is given by the Stir-
ling number of the second kind [Knuth, 1992]

S(Nt,k) =
1

k!

k∑
j=0

(−1)k−j
(
k

j

)
jNt , (3.12)

which reduces to 2Nt−1 − 1 for binary partitions. Given the exponen-
tial growth in the number of partitions, the naive strategy of enumer-
ating all partitions and picking the best of them is often computa-
tionally intractable. For this reason, simplifying assumptions must be
made on the best split s∗. More specifically, the induction algorithm
usually assumes that s∗ – or at least a good enough approximation –
lives in a family Q ⊆ S of candidate splits of restricted structure.

The usual family Q of splits is the set of binary splits defined on a
single variable and resulting in non-empty subsets of Lt:

Q = {s|s ∈
p⋃
j=1

Q(Xj),LtL 6= φ,LtR 6= φ} (3.13)

- If Xj is an ordered variable taking values in Xj, then the set of
binary splits on Xj is the set of all binary non-crossing partitions
svj of Xj:

Q(Xj) = {({x|xj 6 v}, {x|xj > v})|v ∈ Xj} (3.14)

From a geometrical point of view, splits of this form partition
the input space X with axis-parallel hyperplanes, as previously
illustrated on Figure 3.2. Accordingly, the decision threshold v
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thus corresponds to the distance of the separating hyperplane
from the origin.

- If Xj is a categorical variable taking values in Xj = {b1, . . . ,bL},
then the set of binary splits on Xj is the set of all binary non-
empty partitions of Xj:

Q(Xj) = {({x|xj ∈ B}, {x|xj ∈ B})|B ⊂ {b1, . . . ,bL}} (3.15)

where B = {b1, . . . ,bL} \ B is the complementary set of B.

Given decomposition 3.13 into subsets Q(Xj), the split s∗ ∈ Q is the
best of the best splits defined on each input variable. That is,

s∗ = arg max
s∗j

j=1,...,p

∆i(s∗j , t) (3.16)

s∗j = arg max
s∈Q(Xj)

LtL ,LtR 6=φ

∆i(s, t) (3.17)

In this framework, the crux of the problem therefore simply reduces
to the implementation of Equation 3.17.

While partitions of form 3.14 and 3.15 certainly constitute the most
common types of splits, alternatives proposed over the years in the
literature are worth mentioning. In ID3 and C4.5, Quinlan [1986, 1993]
replaces binary splits on categorical variables with multiway splits.
That is, if Xj counts L different values b1, . . . ,bL, then splitting on Xj
divides Xt into L child nodes – one for each value of the variable. In
our framework, Q(Xj) therefore reduces to the singleton

Q(Xj) = {({x|xj = bl}|bl ∈ Xj)}. (3.18)

In oblique decision trees, Heath et al. [1993] propose to replace axis-
parallel cutting hyperplanes with hyperplanes of any orientation, re-
sulting into smaller, yet as accurate, decision trees. In this setting how-
ever, decomposition 3.16 no longer holds, hence making the search of
the best split often more computationally intensive. More recently,
several authors (e.g., [Gama, 2004; Criminisi and Shotton, 2013; Botta,
2013]) outlined more general frameworks in which splits are defined
as multi-variate functions, thereby revisiting separating hyperplanes
like in oblique trees or investigating more advanced models like qua-
dratic surfaces or decision trees inside decision trees. Finally, in an an-
other direction, several authors [Adamo, 1980; Yuan and Shaw, 1995;
Olaru and Wehenkel, 2003] propose in fuzzy decision trees to rede-
fine the notion of split as overlapping fuzzy sets (instead of disjoint
subsets), hence allowing samples close to the decision threshold v to
propagate into both child nodes.
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i X1 X2 X3 Y

0 0 0 0 c1

1 0 0 1 c1

2 0 1 0 c2

3 0 1 1 c2

4 0 1 1 c2

5 1 0 0 c2

6 1 0 0 c2

7 1 0 0 c2

8 1 0 0 c2

9 1 1 1 c2

Table 3.1: Toy binary classification problem

3.6.2 Goodness of split

In this section, we describe impurity measures i(t) for evaluating the
goodness of splitting rules. As they are the heart of our contributions
regarding interpretability of tree-based methods (See Chapter 6), the
necessary mathematical foundations that have driven their method-
ological development are studied here in details. Section 3.6.2.1 re-
views impurity functions for classification while Section 3.6.2.2 dis-
cusses criteria for regression.

3.6.2.1 Classification

Let us consider a binary classification problem defined on three bi-
nary categorical input variables X1, X2 and X3. Let us assume that
we have a 10-sample learning set L as listed in Table 3.1. At the root
node t0, Lt0 contains all learning samples and we are looking for the
best binary split defined on one of the input variables. Since each of
them is binary and categorical, Q(Xj) (for j = 1, 2, 3) counts exactly
one single split per input variable, each partitioning Lt0 into two sub-
sets

LtL = {(x,y)|(x,y) ∈ Lt0 , xj = 0},

LtR = {(x,y)|(x,y) ∈ Lt0 , xj = 1}.

As introduced in Section 3.3, our objective is to partition t0 using
the split s∗ that maximizes the impurity decrease

∆i(s, t) = i(t) − pLi(tL) − pRi(tR),

where the impurity function i(t) evaluates the goodness of node t.
Since our goal is to build the decision tree that minimizes generaliza-
tion error, it seems natural to take as proxy i(t) the local resubstitu-
tion estimate at node t:
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Figure 3.4: Splitting on X1 versus splitting on either X2 or X3.

Definition 3.8. In classification, the impurity function iR(t) based on the
local resubstitution estimate defined on the zero-one loss is:

iR(t) = 1− p(ŷt|t) = 1− max
c∈Y

p(c|t) (3.19)

With this criterion, selecting the best split would amount to pick
the split that most decreases training error. In spite of its natural at-
tractiveness however, iR(t) has two serious defects:

(a) As a corollary of Proposition 3.1, ∆i(s, t) is zero for all splits if
the majority class remains the same in both child nodes, that is
if ŷt = ŷtL = ŷtR .

In our toy problem, splitting either on X1, X2 or X3 produces
child nodes in which c2 remains the majority class. As a result,
∆i(s, t0) = 0 for all three possible splits, as if they were equally
bad, or as if no further improvement could be achieved.

(b) It does not sensitively account for changes in the a posteriori
class distributions p(y|tL) and p(y|tR).

In our example, none of the three splits improves training er-
ror. However, splitting on X1 is likely to yield a tree which is
simpler than if the root node had been split on either X2 or
X3. As shown in Figure 3.4, splitting on X1 indeed produces a
right child node that is already terminal and for which no fur-
ther work is required. Splitting on X2 also results in the right
child node to be pure. However, the left child node is in this
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case larger, suggesting that more work is further required. Fi-
nally, splitting on X3 results in child nodes that have to be both
divided further. Splitting on X1 should therefore be preferred,
even if it does not reduce immediately the training error.

In fact, these issues are largely due to the fact that the tree growing
algorithm 3.2 is based on a one-step optimization procedure. A good
impurity criterion should ideally also take into account the possibility
of further improvement deeper in the tree. To avoid the undesirable
properties of iR(t), the choice of i(t) should therefore be guided by
ensuring that i(t) gets progressively smaller when t gets more ho-
mogeneous towards one (or some) of the classes (while not being
necessarily better in terms of misclassification error) and larger when
t is more heterogeneous. In CART, Breiman et al. [1984] identify a
class of impurity function i(t) meeting these requirements:

Theorem 3.3. Let Φ(p1, . . . ,pJ) be a strictly concave J-ary function de-
fined on 0 6 pk 6 1, for k = 1, . . . , J,

∑J
k=1 pk = 1 and such that

- Φ(1, . . . , 0) = Φ(0, 1, . . . , 0) = · · · = Φ(0, . . . , 1) is minimal;

- Φ(1J , . . . , 1J ) is maximal.

Then, for i(t) = Φ(p(c1|t), . . . ,p(cJ|t)) and any split s,

∆i(s, t) > 0,

with equality if and only if p(ck|tL) = p(ck|tR) = p(ck|t) for k = 1, . . . , J.

Proof. Let us first remark that

p(ck|t) =
Nckt

Nt

=
NcktL +NcktR

Nt

=
NtL
Nt

NcktL
NtL

+
NtR
Nt

NcktR
NtR

= pLp(ck|tL) + pRp(ck|tR)

By strict concavity, it comes

i(t) = Φ(p(c1|t), . . . ,p(cJ|t))

= Φ(pLp(c1|tL) + pRp(c1|tR), . . . ,pLp(cJ|tL) + pRp(cJ|tR))

> pLΦ(p(c1|tL), . . . ,p(cJ|tL)) + pRΦ(p(c1|tR), . . . ,p(cJ|tR))

= pLi(tL) + pRi(tR)

with equality if and only if p(ck|tL) = p(ck|tR) for k = 1, . . . , J.

To better understand Theorem 3.3, let us consider a strictly concave
function Φ that satisfies the requirements and let us evaluate on our
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Figure 3.5: Splitting t0 on X1 (above) versus splitting t0 on X3 (below), as
evaluated by a strictly concave impurity function. The figures
show iwith respect to the local probability p(c1) of the first class.
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Figure 3.6: Splitting t0 on X1, as evaluated by the resubstitution estimate
iR(t). The figure shows iR with respect to the local probability
p(c1) of the first class.
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Figure 3.7: Comparison of iR(t), iH(t) and iG(t) with respect to p(c1|t).
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toy problem the goodness of the split defined on X1. As illustrated in
the first plot of Figure 3.5, i(t) is maximum when the uncertainty on
the output value is the largest (i.e., at p(c1|t) = p(c2|t) = 1

2 ) and then
gets progressively smaller when certainty grows towards one of the
classes (i.e., as p(c1|t) gets close to 0 or 1). As shown by Theorem 3.3,
i(t) is also necessarily larger than the weighted sum (illustrated by the
gray dot) of impurities of the child nodes. Visually, the further away
p(c1|tL) and p(c1|tR) from p(c1|t), the larger ∆i(s, t) (illustrated by
the red line) and the better the split s. In particular, even if i(tL) is
larger than i(t) on the first plot of Figure 3.5, impurity is in fact glob-
ally smaller. By contrast, when s does not significantly change the a
posteriori class distributions, as illustrated in the second plot of Fig-
ure 3.5 when splitting t0 on X3, then the closer p(c1|tL) and p(c1|tR)
from p(c1|t) and the smaller ∆i(s, t). Yet, as long as the a posteri-
ori class distributions do not exactly coincide with the a priori class
distribution, then even the slightest changes get captured by ∆i(s, t)
because of strict concavity. It is only when they exactly coincide (i.e.,
when p(c1|tL) = p(c1|tR) = p(c1|t)) that the three red points overlap
and that ∆i(s, t) = 0.

Graphically, it also becomes obvious when comparing Figure 3.5
with Figure 3.6 why the resubstitution estimate iR(t) is not an ap-
propriate impurity function. As long as the majority class within the
child nodes tL and tR is the same as in t, the three red dots remain
aligned in a perfect line and the gray dot overlap with i(t). As a result,
∆i(s, t) is necessarily null no matter the a posteriori class distributions
induced by the split, be them close or far from p(c1|t).

The most common impurity criteria used for classification trees are
the Shannon entropy and the Gini index:

Definition 3.9. The impurity function iH(t) based on the Shannon en-
tropy [Shannon and Weaver, 1949] is:

iH(t) = −

J∑
k=1

p(ck|t) log2(p(ck|t)) (3.20)

Definition 3.10. The impurity function iG(t) based on the Gini index [Gini,
1912] is:

iG(t) =

J∑
k=1

p(ck|t)(1− p(ck|t)) (3.21)

As illustrated on Figure 3.7, both iH(t) and iG(t) satisfy the require-
ments of Theorem 3.3 and exhibit the properties that we are looking
for. The entropy-based impurity iH(t) quantifies the uncertainty of
Y within node t. With this criterion, the impurity decrease ∆iH(s, t),
also known as the information gain, represents the information learned
about Y by splitting t into tL and tR. The Gini-based impurity iG(t)
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measures how often a randomly chosen object x ∈ Lt would be incor-
rectly classified if it were randomly labeled by a class c ∈ Y according
to the distribution p(y|t).

While the Shannon entropy 3.20 and the Gini index 3.21 are robust
and reliable impurity functions usually producing accurate decision
trees, they are not exempt of defects. One of the most well-known
issues is end-cut preference [Morgan and Messenger, 1973; Breiman
et al., 1984], that is the tendency to favor unbalanced splits in which
pL is close to zero or one, often resulting in deep and uninterpretable
decision trees. Another defect is the propensity of preferring splits
based on input variables with many outcomes rather than selecting
input variables without bias with respect to their cardinality [Quin-
lan, 1986; Strobl et al., 2007a]. Intuitively, if |X1| > |X2| and that both
X1 and X2 are independent of Y, then X1 is indeed more likely to be
selected than X2 because of chance. To overcome these issues, numer-
ous variants of impurity measures have been proposed in the liter-
ature, including normalization techniques, distance-based measures
or causality-based impurity functions (see [Wehenkel, 1996; Zighed
and Rakotomalala, 2000; Maimon and Rokach, 2005] for reviews on
the topic). From an empirical point of view however, several stud-
ies [Mingers, 1989b; Miyakawa, 1989; De Mántaras, 1991] have shown
that, while the impurity function may have a significant impact on the
structure of the decision tree, improvements in terms of classification
accuracy are usually not that significant.

3.6.2.2 Regression

When the output variable Y is quantitative, Proposition 3.2 shows that
splitting t in any way reduces the squared error loss on the training
set. In particular, the reduction is positive as long as the values as-
signed to the child nodes are different from the value at t. Contrary
to classification, this only happens in rare circumstances (i.e., when
the mean output values at the child nodes coincide with the mean
output value in t), hence making the regression resubstitution esti-
mate sensitive to changes in (the means of) the a posteriori distribu-
tions, even if these are only slight. As a result, the local resubstitution
estimate does not exhibit the undesirable properties that we had in
classification and in fact constitutes a good criterion for regression.

Definition 3.11. In regression, the impurity function iR(t) based on the
local resubstitution estimate defined on the squared error loss is:

iR(t) =
1

Nt

∑
x,y∈Lt

(y− ŷt)
2 (3.22)

Another way of looking at criterion 3.22 is to notice that it corre-
sponds to the within node variance of the output value in t. Accord-
ingly, s∗ is the split that maximizes the reduction of variance ∆i(s, t)
in the child nodes.
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Equivalence between classification and regression trees

When Y = {0, 1}, the learning problem can either be stated as a binary
classification task where c1 = 0 and c2 = 1 or as a regression task
where the goal is to predict the most accurate predictions ŷ ∈ Y ⊆ R.
Interestingly, regression trees built in this setting are in fact strictly
equivalent to classification trees built using the Gini index iG(t). In-
deed since ŷt = 1

Nt

∑
x,y∈Lt y = p(c2|t) = 1− p(c1|t), it comes:

iR(t) =
1

Nt

∑
x,y∈Lt

(y− ŷt)
2

=
1

Nt

∑
x,y∈Lt

y− 2yŷt + ŷ
2
t

= ŷt − 2ŷ
2
t + ŷ

2
t

= ŷt(1− ŷt)

= p(c2|t)(1− p(c2|t))

=
1

2
iG(t) (3.23)

From a practical point of view, this means that both classification and
regression trees could be implemented using the single criterion 3.22.

3.6.3 Finding the best binary split

Now that we have described families Q of splitting rules and im-
purity criteria to evaluate their respective goodness, the last thing
which is missing to have a complete specification of the induction al-
gorithm 3.2 is an efficient optimization procedure for finding the best
split s∗ ∈ Q. Assuming that Q is the set of binary univariate splits, we
showed in Section 3.6.1 that s∗ is the best of the best binary splits s∗j
defined on each input variable. This leads to the following procedure:

Algorithm 3.3. Find the best split s∗ that partitions Lt.
1: function FindBestSplit(Lt)
2: ∆ = −∞
3: for j = 1, . . . ,p do
4: Find the best binary split s∗j defined on Xj
5: if ∆i(s∗j , t) > ∆ then
6: ∆ = ∆i(s∗j , t)
7: s∗ = s∗j
8: end if
9: end for

10: return s∗

11: end function

Let us now discuss line 4 for ordered and categorical variables.
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Figure 3.8: Binary partitions of Lt on the ordered variable Xj. Setting the
decision threshold v to any value in [vk; vk+1[ yields identical
partitions of Lt, but not of Xt.

3.6.3.1 On an ordered variable

Let Xj be an ordered variable and let Q(Xj) be the set of all binary
non-crossing partitions of Xj, as defined in Equation 3.14. Let also
Xj|Lt = {xj|x,y ∈ Lt} denotes the set of unique values of Xj within
the node samples in t. The best split svj ∈ Q(Xj) on Xj is the best
binary partition of Lt into two non-empty subsets:

LvtL = {(x,y)|(x,y) ∈ Lt, xj 6 v}

LvtR = {(x,y)|(x,y) ∈ Lt, xj > v}

where v is the decision threshold of the split. As illustrated in Fig-
ure 3.8, there exist |Xj|Lt |−1 partitions of Lt into two such non-empty
subsets, i.e., one for each value vk ∈ Xj|Lt , except for the last one
which leads to an invalid partition. In particular, if Xj is locally con-
stant in t (i.e., if all dots overlap in Figure 3.8), then |Xj|Lt | = 1 and Xj
cannot be used to partition t. More importantly, there usually exist
several thresholds v producing the same partition of the node sam-
ples. If vk and vk+1 are two immediately consecutive values in Xj|Lt ,
then all splits svj for v ∈ [vk, vk+1[ indeed produce the same parti-
tion of Lt as svkj does. In terms of impurity decrease ∆i, all of them
are thus equivalent when evaluated on Lt. In generalization however,
these splits may not be strictly the same since they do not produce
the same partition of Xt. As a compromise, the decision thresholds
that are thus usually chosen are the mid-cut-points v′k = vk+vk+1

2 be-
tween consecutive values of the variable, as shown by the dotted line
in Figure 3.8. In practice, this is indeed a good-enough heuristic on
most problems.

In this framework, the best split s∗j is the split sv
′
k

j that maximizes
impurity decrease. Computationally, the exhaustive evaluation of all
these splits can be carried out efficiently when considering decision
thresholds v′k in sorted order, by remarking that ∆i(s

v′k+1
j , t) can be
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computed from ∆i(s
v′k
j , t) in a number of operations linearly propor-

tional the number of samples going from the right child to left child.
As such, the exhaustive evaluation of all intermediate splits can be
performed in linear time with respect toNt, hence guaranteeing good
performance as further shown in Chapter 5.

- In classification, evaluating either ∆iH(s, t) or ∆iG(s, t) boils
down to the computation of p(c|t), p(c|tL) and p(c|tR) for all
classes c ∈ Y. The necessary statistics for computing these prob-
abilities are the numbersNct,NctL andNctR of samples of class
c in t, tL and tR, along with the total numbers Nt, NtL and NtR
of samples in t, tL and tR.Nct andNt can be computed once for
all splits. The four other statistics can be computed iteratively,
from s

v′k
j to s

v′k+1
j :

N
v′k+1
tL

= N
v′k
tL

+ |{(x,y)|(x,y) ∈ L
v′k+1
tL
∩Lv

′
k
tR
}| (3.24)

N
v′k+1
ctL

= N
v′k
ctL

+ |{(x,y)|(x,y) ∈ L
v′k+1
tL
∩Lv

′
k
tR

,y = c}| (3.25)

N
v′k+1
tR

= N
v′k
tR

− |{(x,y)|(x,y) ∈ L
v′k+1
tL
∩Lv

′
k
tR
}| (3.26)

N
v′k+1
ctR

= N
v′k
ctR

− |{(x,y)|(x,y) ∈ L
v′k+1
tL
∩Lv

′
k
tR

,y = c}| (3.27)

where L
v′k+1
tL
∩ L

v′k
tR

are the node samples going from the right
child node to the left child node when switching from s

v′k
j to

s
v′k+1
j .

- In regression, iR(t) can be re-expressed as the difference be-
tween the mean of the squared output values and the square
of the mean output value, that is

iR(t) =
Σt2

Nt
− (

Σt

Nt
)2 (3.28)

where Σt =
∑

x,y∈Lt y and Σt2 =
∑

x,y∈Lt y
2. In this form, the

necessary statistics for computing ∆iR(s, t) are Σt, Σt2 , ΣtL , Σt2L ,
ΣtR and Σt2R

, along with the total numbers Nt, NtL and NtR
of samples in t, tL and tR. As in classification, Σt, Σt2 and Nt
can be computed once for all splits, while NtL and NtR can be
computed from one split to another using Equations 3.24 and
3.26. The four other statistics can be computed iteratively, from
s
v′k
j to s

v′k+1
j :

Σ
v′k+1
tL

= Σ
v′k
tL

+
∑

(x,y)∈L
v′
k+1
tL
∩L

v′
k
tR

y (3.29)

Σ
v′k+1
t2L

= Σ
v′k
t2L

+
∑

(x,y)∈L
v′
k+1
tL
∩L

v′
k
tR

y2 (3.30)

Σ
v′k+1
tR

= Σ
v′k
tR

−
∑

(x,y)∈L
v′
k+1
tL
∩L

v′
k
tR

y (3.31)
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Σ
v′k+1
t2R

= Σ
v′k
t2R

−
∑

(x,y)∈L
v′
k+1
tL
∩L

v′
k
tR

y2 (3.32)

Starting from the initial partition v′0 = −∞, that is where tL is
empty and tR corresponds to t, and using the above update equations
to switch from v′k to v′k+1, the search of best split s∗j on Xj can finally
be implemented as described in Algorithm 3.4 and further illustrated
in Figure 3.9.

Algorithm 3.4. Find the best split s∗j on Xj that partitions Lt.
1: function FindBestSplit(Lt, Xj)
2: ∆ = 0

3: k = 0

4: v′k = −∞
5: Compute the necessary statistics for i(t)
6: Initialize the statistics for tL to 0
7: Initialize the statistics for tR to those of i(t)
8: Sort the node samples Lt such that x1,j 6 x2,j 6 · · · 6 xNt,j
9: i = 1

10: while i 6 Nt do
11: while i+ 1 6 Nt and xi+1,j = xi,j do
12: i = i+ 1

13: end while
14: i = i+ 1

15: if i 6 Nt then
16: v′k+1 =

xi,j+xi−1,j
2

17: Update the necessary statistics from v′k to v′k+1
18: if ∆i(s

v′k+1
j , t) > ∆ then

19: ∆ = ∆i(s
v′k+1
j , t)

20: s∗j = s
v′k+1
j

21: end if
22: k = k+ 1

23: end if
24: end while
25: return s∗j
26: end function

As we will see later in Chapter 5, the algorithm complexity is upper
bounded by the complexity of the sorting operation. In the context
of randomized decision trees however, where finding the very best
split s∗j is not as crucial, we will show that approximation techniques
based on sub-sampling of the node samples or on the discretization
of the variable Xj can help reduce the computational complexity of
procedure without significant impact on accuracy.
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∆ i(s vj ,t)

xi−1,j xi,j

v'k

Lv'ktL Lv'ktR

∆

Xj

Figure 3.9: Loop invariant of Algorithm 3.4. At the end of each iteration,
∆i(s

v′k
j , t) has been computed from the statistics of the previous

split at v′k−1 and compared to the best reduction in impurity ∆
found so far within the splits at v′0 = −∞ to v′k−1.

3.6.3.2 On a categorical variable

Let Xj be a categorical variable and let Q(Xj) be the set of all binary
partitions of Xj = {b1, . . . ,bL}, as defined in Equation 3.15. The num-
ber of non-empty binary partitions in this set is 2L−1 − 1, which may
quickly become highly prohibitive to explore exhaustively when Xj
counts a high number L of categories.

Fortunately, in binary classification, this exponential complexity
can be reduced from looking at 2L−1 − 1 partitions to L − 1 parti-
tions, thanks a theoretical result due to Fisher [1958] and Breiman
et al. [1984]:

Theorem 3.4. Let reorder the categories of Xj such that

p(c1|t,Xj = bl1) 6 p(c1|t,Xj = bl2) 6 · · · 6 p(c1|t,Xj = blL).

If the impurity function i(t) satisfies the requirements of Theorem 3.3, then
one of the L − 1 subsets B = {bl1 , . . . ,blh},h = 1, . . . ,L − 1 defines a
binary partition of the node samples into

LB
tL

= {(x,y)|(x,y) ∈ Lt, xj ∈ B}

LB
tR

= {(x,y)|(x,y) ∈ Lt, xj ∈ B}

which maximizes ∆i(s, t), for s ∈ Q(Xj).

Intuitively, this result indicates that all those categories bl leading
to high probabilities of being of class c1 should be put together into
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one node and the categories leading to lower probabilities into the
other. In practice, this also means that the search of the best binary
split can be performed as if Xj was an ordered variable, by virtually
replacing categorical values bl with p(c1|t,Xj = bl) and using Algo-
rithm 3.4 to find the best binary split on these ordered values.

Unfortunately, Theorem 3.4 does not extend to multi-class classi-
fication (i.e., when J > 2). In this case, an exhaustive exploration
of all 2L−1 − 1 splits must be performed in order to find the best
split. When the number L of categories is small, this can usually be
done within reasonable time. However, as L gets larger, this quickly
becomes infeasible in practice. As an approximation, the usual strat-
egy [Liaw and Wiener, 2002] consists in exhaustively evaluating all
splits when L 6 10 and then switch to random sampling of the sub-
sets B ⊂ {b1, . . . ,bL} when L > 10. In that case, 28 random subsets B

are typically drawn and evaluated.
In regression, given the equivalence of iR(t) with the Gini index,

conditions of Theorem 3.4 are met and the same algorithmic trick can
be applied as in binary classification to compute the optimal split.
In this case, Xj is transformed into an ordered variable by virtually
replacing categorical values bl with the mean output value at bl, i.e.,
1
Nlt

∑
x,y∈Lt,xj=bl y, on which Algorithm 3.4 is then applied to find

the best binary split on these ordered values.

3.7 multi-output decision trees

Up to now, we have assumed that the response was modeled as a
single target variable Y. In some contexts however, the goal may be
to predict several output values y = (y1, . . . ,yq) ∈ Y1 × · · · × Yq
for the same input x. A famous example of such multi-objective task
is multi-label classification (see [Tsoumakas and Katakis, 2007]), in
which a sample x can be assigned to multiple binary labels Yk (for
k = 1, . . . ,q). Another example is image annotation, in which the
goal is to annotate (i.e., classify) every pixel of an image in order to
identify regions or objects (see [Zhang et al., 2012]).

The most straightforward strategy to solve a multi-objective task is
to build an independent and separate model for each of the q output
variables Yk. Distinctively, decision trees offer an alternative strategy
which consists in learning a single multi-output model, capable of pre-
dicting all output variables at once. Algorithmically, multi-output de-
cision trees closely relate to predictive clustering trees [Blockeel et al.,
2000], output kernel trees [Geurts et al., 2006b] or multi-objective de-
cision trees [Kocev et al., 2007], and can easily be implemented on the
basis of the induction procedure developed in this chapter, provided
the following two changes:

- Leaves are labeled with output vectors yt = (yt,1, . . . ,yt,q),
where each yt,k (for k = 1, . . . ,q) is computed using assign-
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ment rule 3.7 in classification (resp. assignment rule 3.10 in re-
gression), as previously done in single output decision trees.

- The impurity decrease of a split is computed as the average im-
purity decrease over the q output variables. Accordingly, splits
are optimized with respect to all output variables, thereby ex-
ploiting correlations between Y1, . . . , Yq whenever possible.

The main advantage of multi-output decision trees is that depen-
dencies between output variables can be taken into account, whereas
building q individual models cannot exploit such correlations, which
may affect the overall accuracy of the model. A second advantage is
that building a single model is often less computationally expensive
than building q different models, both from a time and space com-
plexity point of view.





4
R A N D O M F O R E S T S

Outline

In this chapter, we present the well-known family of random forests
methods. In Section 4.1, we first describe the bias-variance decompo-
sition of the prediction error and then present, in Section 4.2, how
aggregating randomized models through ensembles reduces the pre-
diction error by decreasing the variance term in this decomposition.
In Section 4.3, we revisit random forests and its variants and study
how randomness introduced into the decision trees reduces predic-
tion errors by decorrelating the decision trees in the ensemble. Prop-
erties and features of random forests are then outlined in Section 4.4
while their consistency is finally explored in Section 4.5.

4.1 bias-variance decomposition

In section 2.2, we defined the generalization error of a model ϕL as
its expected prediction error according to some loss function L

Err(ϕL) = EX,Y{L(Y,ϕL(X))}. (4.1)

Similarly, the expected prediction error of ϕL at X = x can be ex-
pressed as

Err(ϕL(x)) = EY|X=x{L(Y,ϕL(x))}. (4.2)

In regression, for the squared error loss, this latter form of the ex-
pected prediction error additively decomposes into bias and variance
terms which together constitute a very useful framework for diagnos-
ing the prediction error of a model. In classification, for the zero-one
loss, a similar decomposition is more difficult to obtain. Yet, the con-
cepts of bias and variance can be transposed in several ways to classi-
fication, thereby providing comparable frameworks for studying the
prediction error of classifiers.

4.1.1 Regression

In regression, assuming that L is the squared error loss, the expected
prediction error of a model ϕL at a given point X = x can be rewritten
with respect to the Bayes model ϕB:

Err(ϕL(x))

55



56 random forests

= EY|X=x{(Y −ϕL(x))2}

= EY|X=x{(Y −ϕB(x) +ϕB(x) −ϕL(x))2}

= EY|X=x{(Y −ϕB(x))2}+ EY|X=x{(ϕB(x) −ϕL(x))2}

↪→ +EY|X=x{2(Y −ϕB(x))(ϕB(x) −ϕL(x))}

= EY|X=x{(Y −ϕB(x))2}+ EY|X=x{(ϕB(x) −ϕL(x))2}

= Err(ϕB(x)) + (ϕB(x) −ϕL(x))2 (4.3)

since EY|X=x{Y − ϕB(x)} = EY|X=x{Y} − ϕB(x) = 0 by definition of
the Bayes model in regression. In this form, the first term in the last
expression of Equation 4.3 corresponds to the (irreducible) residual
error at X = x while the second term represents the discrepancy of ϕL

from the Bayes model. The farther from the Bayes model, the more
sub-optimal the model and the larger the error.

If we further assume that the learning set L is itself a random vari-
able (sampled from the populationΩ) and that the learning algorithm
is deterministic, then the expected discrepancy over L with the Bayes
model can further be re-expressed in terms of the average prediction
EL{ϕL(x)} over the models learned from all possible learning sets of
size N:

EL{(ϕB(x) −ϕL(x))2}

= EL{(ϕB(x) − EL{ϕL(x)}+ EL{ϕL(x)}−ϕL(x))2}

= EL{(ϕB(x) − EL{ϕL(x)})2}+ EL{(EL{ϕL(x)}−ϕL(x))2}}

↪→ +EL{2(ϕB(x) − EL{ϕL(x)})(EL{ϕL(x)}−ϕL(x))}

= EL{(ϕB(x) − EL{ϕL(x)})2}+ EL{(EL{ϕL(x)}−ϕL(x))2}}

= (ϕB(x) − EL{ϕL(x)})2 + EL{(EL{ϕL(x)}−ϕL(x))2} (4.4)

since EL{EL{ϕL(x)}−ϕL(x)} = EL{ϕL(x)}−EL{ϕL(x)} = 0. In sum-
mary, the expected generalization error additively decomposes as for-
mulated in Theorem 4.1.

Theorem 4.1. For the squared error loss, the bias-variance decomposition of
the expected generalization error EL{Err(ϕL(x))} at X = x is

EL{Err(ϕL(x))} = noise(x) + bias2(x) + var(x), (4.5)

where

noise(x) = Err(ϕB(x)),

bias2(x) = (ϕB(x) − EL{ϕL(x)})2,

var(x) = EL{(EL{ϕL(x)}−ϕL(x))2}.

This bias-variance decomposition of the generalization error is due
to Geman et al. [1992] and was first proposed in the context of neural
networks. The first term, noise(x), is the residual error. It is entirely
independent of both the learning algorithm and the learning set and
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Figure 4.1: Residual error, bias and variance at X = x. (Figure inspired from
[Geurts, 2002].)

provides for any model a theoretical lower bound on its generaliza-
tion error. The second term, bias2(x), measures the discrepancy be-
tween the average prediction and the prediction of the Bayes model.
Finally, the third term, var(x), measures the variability of the predic-
tions at X = x over the models learned from all possible learning sets.
All three terms are illustrated in Figure 4.1 for a toy and artificial re-
gression problem. Both noise(x) and var(x) measures the spread of
the two densities while bias2(x) is the distance between their means.

As a typical example, the bias-variance decomposition framework
can be used as a tool for diagnosing underfitting and overfitting (as
previously introduced in Section 2.3). The upper plots in Figure 4.2
illustrate in light red predictions ϕL(x) for polynomials of degree 1,
5 and 15 learned over random learning sets L sampled from a noisy
cosine function. Predictions EL{ϕL(x)} of the average model are rep-
resented by the thick red lines. Predictions for the model learned over
the learning set, represented by the blue dots, are represented in gray.
Predictions of the Bayes model are shown by blue lines and coincide
with the unnoised cosine function that defines the regression problem.
The lower plots in the figure illustrate the bias-variance decomposi-
tion of the expected generalization error of the polynomials.

Clearly, polynomials of degree 1 (left) suffer from underfitting. In
terms of bias and variance, this translates into low variance but high
bias as shown in the lower left plot of Figure 4.2. Indeed, due to the
low degree of the polynomials (i.e., due to the low model complex-
ity), the resulting models are almost all identical and the variability
of the predictions from one model to another is therefore quite low.
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Figure 4.2: Bias-variance decomposition of the expected generalization error
for polynomials of degree 1, 5 and 15.

Also, because of low complexity, none of them really fits the trend of
the training points, even approximately, which implies that the aver-
age model is far from approximating the Bayes model. This results in
high bias. On the other hand, polynomials of degree 15 (right) suffer
from overfitting. In terms of bias and variance, the situation is the
opposite. Predictions have low bias but high variance, as shown in
the lower right plot of Figure 4.2. The variability of the predictions is
large because the high degree of the polynomials (i.e., the high model
complexity) captures noise in the learning set. Indeed, compare the
gray line with the blue dots – they almost all intersect. Put other-
wise, small changes in the learning set result in large changes in the
obtained model and therefore in its predictions. By contrast, the av-
erage model is now quite close from the Bayes model, which results
in low bias1. Finally, polynomials of degree 5 (middle) are neither too
simple nor too complex. In terms of bias and variance, the trade-off is
well-balanced between the two extreme situations. Bias and variance
are neither too low nor too large.

4.1.2 Classification

In direct analogy with the bias-variance decomposition for the squared
error loss, similar decompositions have been proposed in the litera-
ture for the expected generalization error based on the zero-one loss,
i.e., for EL{EY|X=x{1(ϕL(x) 6= Y)}} = PL,Y|X=x(ϕL(x) 6= Y). Most no-

1 Note however the Gibbs-like phenomenon resulting in both high variance and high
bias at the boundaries of X.
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tably, Dietterich and Kong [1995], Breiman [1996], Kohavi et al. [1996],
Tibshirani [1996] and Domingos [2000] have all developed additive
decompositions similar to Theorem 4.1 by redefining the concepts of
bias and variance in the case of classification. While these efforts have
all provided useful insight into the nature of classification error, none
of them really have provided a seductively as simple and satisfactory
framework as in regression (for reviews, see [Friedman, 1997; James,
2003; Geurts, 2005]).

An interesting connection with Theorem 4.1 however is to remark
that classification algorithms usually work by computing estimates

p̂L(Y = c|X = x) (4.6)

of the conditional class probability (e.g., p̂L(Y = c|X = x) = p(c|t) in
decision trees, as defined in Section 3.4) and then deriving a classifi-
cation rule by predicting the class that maximizes this estimate, that
is:

ϕL(x) = arg max
c∈Y

p̂L(Y = c|X = x) (4.7)

As such, a direction for studying classification models is to relate
the bias-variance decomposition of these numerical estimates to the
expected misclassification error of classification rule 4.7.

We now reproduce the results of Friedman [1997] who made this
connection explicit for the case of binary classification. Let us first
decompose the expected classification error into an irreducible part
associated with the random nature of the output Y and a reducible
part that depends on ϕL(x), in analogy with Equation 4.3 for the
squared error loss. (Note that, to simplify notations, we assume that
all probabilities based on the random variable Y is with respect to the
distribution of Y at X = x.)

EL{EY|X=x{1(ϕL(x) 6= Y)}} (4.8)

= PL(ϕL(x) 6= Y)
= 1− PL(ϕL(x) = Y)

= 1− PL(ϕL(x) = ϕB(x))P(ϕB(x) = Y)

− PL(ϕL(x) 6= ϕB(x))P(ϕB(x) 6= Y)
= P(ϕB(x) 6= Y) + PL(ϕL(x) 6= ϕB(x))

− 2PL(ϕL(x) 6= ϕB(x))P(ϕB(x) 6= Y)
= P(ϕB(x) 6= Y) + PL(ϕL(x) 6= ϕB(x))(2P(ϕB(x) = Y) − 1)

In this form, the first term is the irreducible error of the Bayes
model. The second term is the increased error due to the misestima-
tion of the optimal decision boundary. The probability PL(ϕL(x) 6=
ϕB(x)) is the probability for the model of making a decision which
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Figure 4.3: Probability distribution of the estimate p̂L(Y = ϕB(x)).

is different from the decision of the Bayes model. This happens when
the estimate p̂L(Y = ϕB(x)) is lower than 0.5, that is:

PL(ϕL(x) 6= ϕB(x)) = PL(p̂L(Y = ϕB(x)) < 0.5) (4.9)

As Figure 4.3 illustrates, probability 4.9 in fact corresponds to the tail
area on the left side of the decision threshold (at 0.5) of the distribu-
tion of the estimate.

If we now further assume2 that the estimate p̂L(Y = ϕB(x)) is
normally distributed, then probability 4.9 can be computed explicitly
from its mean and variance:

PL(p̂L(Y = ϕB(x)) < 0.5) = Φ(
0.5− EL{p̂L(Y = ϕB(x))}√

VL{p̂L(Y = ϕB(x))}
) (4.10)

where Φ(x) = 1√
2π

∫x
−∞ exp(−t

2

2 )dt is the cumulative distribution
function of the standard normal distribution. In summary, the ex-
pected generalization error additively decomposes as formulated in
Theorem 4.2.

Theorem 4.2. For the zero-one loss and binary classification, the expected
generalization error EL{Err(ϕL(x))} at X = x decomposes as follows:

EL{Err(ϕL(x))} = P(ϕB(x) 6= Y) (4.11)

+Φ(
0.5− EL{p̂L(Y = ϕB(x))}√

VL{p̂L(Y = ϕB(x))}
)(2P(ϕB(x) = Y) − 1)

2 For single decision trees, the normal assumption is certainly not satisfied in all cases,
but the qualitative conclusions are still generally valid. When the computations of
the estimates involve some averaging process, e.g., as further developed in the case
of ensemble of randomized trees, this approximation is however fairly reasonable.
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As a result, Theorem 4.2 establishes a direct connection between
the regression variance of the estimates and the classification error
of the resulting model. In practice, this decomposition has important
consequences:

- When the expected probability estimate EL{p̂L(Y = ϕB(x)} for
the true majority class is greater than 0.5, a reduction of variance
of the estimate results in a decrease of the total misclassification
error. If VL{p̂L(Y = ϕB(x))}→ 0, then Φ→ 0 and the expected
generalization error tends to the error of the Bayes model. In
particular, the generalization error can be driven to its minimum
value whatever the regression bias of the estimate (at least as
long as EL{p̂L(Y = ϕB(x)} > 0.5).

- Conversely, when EL{p̂L(Y = ϕB(x)} < 0.5, a decrease of vari-
ance might actually increase the total misclassification error. If
VL{p̂L(Y = ϕB(x))}→ 0, then Φ→ 1 and the error is maximal.

4.2 ensemble methods based on randomization

Both theorems 4.1 and 4.2 reveal the role of variance in the expected
generalization error of a model. In light of these results, a sensible
approach for reducing generalization error would therefore consist
in driving down the prediction variance, provided the respective bias
can be kept the same or not be increased too much.

As it happens, ensemble methods constitute a beautifully simple way
to do just that. Specifically, the core principle of ensemble methods
based on randomization is to introduce random perturbations into
the learning procedure in order to produce several different models
from a single learning set L and then to combine the predictions of
those models to form the prediction of the ensemble. How predictions
are combined and why does it help is formally studied in the next
sections.

4.2.1 Randomized models

Given a learning set L, a learning algorithm A deterministically pro-
duces a model A(θ,L), denoted ϕL,θ, where θ are hyper-parameters
controlling the execution of A. Let us assume that θ includes a ran-
dom seed parameter for mimicking some stochastic behavior in A,
hence producing (pseudo-)randomized models that are more or less
different from one random seed to another. (We defer the discussion
on specific random perturbations in the case of decision trees to Sec-
tion 4.3.)

In this context, the bias-variance decomposition can be extended
to account for everything that is random, hence considering both L
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and θ as random variables3. Accordingly, theorems 4.1 and 4.2 natu-
rally extend to the expected generalization error EL,θ{Err(ϕL,θ(x))}
of the randomized model ϕL,θ by replacing expectations EL{.} and
variances VL{.} with their respective counterparts EL,θ{.} and VL,θ{.}
computed over the joint distribution of L and θ. In regression, the
bias-variance decomposition of the squared error loss thus becomes:

EL,θ{Err(ϕL,θ(x))} = noise(x) + bias2(x) + var(x), (4.12)

where

noise(x) = Err(ϕB(x)), (4.13)

bias2(x) = (ϕB(x) − EL,θ{ϕL,θ(x)})2, (4.14)

var(x) = EL,θ{(EL,θ{ϕL,θ(x)}−ϕL,θ(x))2}. (4.15)

In this form, variance now accounts for both the prediction vari-
ability due to the randomness of the learning set L and the variabil-
ity due to the randomness of the learning algorithm itself. As such,
the variance of a randomized algorithm is typically larger than the
variance of its deterministic counterpart. Depending on the strength
of randomization, bias also usually increases, but often to a smaller
extent than variance.

While randomizing an algorithm might seem counter-intuitive, since
it increases both variance and bias, we will show in Section 4.2.3 that
combining several such randomized models might actually achieve
better performance than a single non-randomized model.

4.2.2 Combining randomized models

Let us assume a set of M randomized models {ϕL,θm |m = 1, . . . ,M},
all learned on the same data L but each built from an independent
random seed θm. Ensemble methods work by combining the predic-
tions of these models into a new ensemble model, denoted ψL,θ1,...,θM ,
such that the expected generalization error of the ensemble is (hope-
fully) smaller than the expected generalization error of the individual
randomized models.

In regression, for the squared error loss, the most common way to
combine the randomized models into an ensemble is to average their
predictions to form the final prediction:

ψL,θ1,...,θM(x) =
1

M

M∑
m=1

ϕL,θm(x) (4.16)

The rationale is that the average prediction is the prediction that mini-
mizes the average squared error with respect to the individual predic-
tions of the models. In that sense, the average prediction is the closest
prediction with respect to all individual predictions.

3 From now on, and without loss of generality, we assume that the random variable θ
only controls the randomness of the learning algorithm.
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Ambiguity decomposition

For prediction averaging, as defined in Equation 4.16, the ambiguity
decomposition [Krogh et al., 1995] guarantees the generalization error
of the ensemble to be lower than the average generalization error of
its constituents. Formally, the ambiguity decomposition states that

Err(ψL,θ1,...,θM) = E−A (4.17)

where

E =
1

M

M∑
m=1

Err(ϕL,θm), (4.18)

A = EX{
1

M

M∑
m=1

(ϕL,θm(X) −ψL,θ1,...,θM(X))2}. (4.19)

The first term is the average generalization error of the individual
models. The second term is the ensemble ambiguity and corresponds
to the variance of the individual predictions around the prediction of
the ensemble. Since A is non-negative, the generalization error of the
ensemble is therefore smaller than the average generalization error of
its constituents.

In classification, for the zero-one loss, predictions are usually ag-
gregated by considering the models in the ensemble as a committee
and then resorting to majority voting to form the final prediction:

ψL,θ1,...,θM(x) = arg max
c∈Y

M∑
m=1

1(ϕL,θm(x) = c) (4.20)

Similarly, the rationale is that the majority prediction is the prediction
that minimizes the average zero-one error with respect to the individ-
ual predictions. Alternatively, when individual models provide class
probability estimates p̂L,θm(Y = c|X = x), soft voting [Zhou, 2012]
consists in averaging the class probability estimates and then predict
the class which is the most likely:

ψL,θ1,...,θM(x) = arg max
c∈Y

1

M

M∑
m=1

p̂L,θm(Y = c|X = x) (4.21)

As empirically investigated by Breiman [1994], both approaches yield
results that are nearly identical4. From a practical point of view how-
ever, Equation 4.21 has the advantage of providing smoother class
probability estimates for the ensemble, which may prove to be useful
in critical applications, e.g., when (estimates of) the certainty about

4 In the case of ensembles of fully developed decision trees that perfectly classify all
samples from L, majority voting and soft voting are exactly equivalent.
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predictions is as important as the predictions themselves. Addition-
ally, combining predictions in this way makes it easy to study the
expected generalization error of the ensemble – it suffices to plug the
averaged estimates into Theorem 4.2. For these reasons, and for the
rest of this work, predictions in classification are now assumed to
be combined with soft voting (see Equation 4.21) unless mentioned
otherwise.

Condorcet’s jury theorem

Majority voting, as defined in Equation 4.20, finds its origins in the
Condorcet’s jury theorem from the field of political science. Let consider
a group of M voters that wishes to reach a decision by majority vote.
The theorem states that if each voter has an independent probability
p > 1

2 of voting for the correct decision, then adding more voters in-
creases the probability of the majority decision to be correct. When
M → ∞, the probability that the decision taken by the group is cor-
rect approaches 1. Conversely, if p < 1

2 , then each voter is more likely
to vote incorrectly and increasing M makes things worse.

4.2.3 Bias-variance decomposition of an ensemble

Let us now study the bias-variance decomposition of the expected
generalization error of an ensemble ψL,θ1,...,θM , first in the case in
case of regression and then for classification.

To simplify notations in the analysis below, let us denote the mean
prediction at X = x of a single randomized model ϕL,θm and its
respective prediction variance as:

µL,θm(x) = EL,θm{ϕL,θm(x)} (4.22)

σ2L,θm(x) = VL,θm{ϕL,θm(x)} (4.23)

4.2.3.1 Regression

From Theorem 4.1, the expected generalization error of an ensemble
ψL,θ1,...,θM made of M randomized models decomposes into a sum
of noise(x), bias2(x) and var(x) terms.

The noise term only depends on the intrinsic randomness of Y. Its
value stays therefore the same, no matter the learning algorithm:

noise(x) = EY|X=x{(Y −ϕB(x))2} (4.24)

The (squared) bias term is the (squared) difference between the pre-
diction of the Bayes model and the average prediction of the model.
For an ensemble, the average prediction is in fact the same as the av-
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erage prediction of the corresponding randomized individual model.
Indeed,

EL,θ1,...,θM{ψL,θ1,...,θM(x)} = EL,θ1,...,θM{
1

M

M∑
m=1

ϕL,θm(x)}

=
1

M

M∑
m=1

EL,θm{ϕL,θm(x)}

= µL,θ(x) (4.25)

since random variables θm are independent and all follow the same
distribution. As a result,

bias2(x) = (ϕB(x) − µL,θ(x))2, (4.26)

which indicates that the bias of an ensemble of randomized models is
the same as the bias of any of the randomized models. Put otherwise,
combining randomized models has no effect on the bias.

On variance on the other hand, ensemble methods show all their
raison d’etre, virtually reducing the variability of predictions to al-
most nothing and thereby improving the accuracy of the ensemble.
Before considering the variance of ψL,θ1,...,θM(x) however, let us first
derive the correlation coefficient ρ(x) between the predictions of two
randomized models built on the same learning set, but grown from
two independent random seeds θ′ and θ′′. From the definition of the
Pearson’s correlation coefficient, it comes:

ρ(x) =
EL,θ′,θ′′{(ϕL,θ′(x) − µL,θ′(x))(ϕL,θ′′(x) − µL,θ′′(x))}

σL,θ′(x)σL,θ′′(x)

=
EL,θ′,θ′′{ϕL,θ′(x)ϕL,θ′′(x) −ϕL,θ′(x)µL,θ′′(x) −ϕL,θ′′(x)µL,θ′(x) + µL,θ′(x)µL,θ′′(x)}

σ2L,θ(x)

=
EL,θ′,θ′′{ϕL,θ′(x)ϕL,θ′′(x)}− µ2L,θ(x)

σ2L,θ(x)
(4.27)

by linearity of the expectation and exploiting the fact that random
variables θ′ and θ′′ follow the same distribution. Intuitively, ρ(x) rep-
resents the strength of the random perturbations introduced in the
learning algorithm. When it is close to 1, predictions of two random-
ized models are highly correlated, suggesting that randomization has
no sensible effect on the predictions. By contrast, when it is close to
0, predictions of the randomized models are decorrelated, hence in-
dicating that randomization has a strong effect on the predictions. At
the limit, when ρ(x) = 0, predictions of two models built on the same
learning set L are independent, which happens when they are per-
fectly random. As proved later with Equation 4.31, let us finally also
remark that the correlation term ρ(x) is non-negative, which confirms
that randomization has a decorrelation effect only.



66 random forests

From Equation 4.27, the variance of ψL,θ1,...,θM(x) can now be de-
rived as follows:

var(x) = VL,θ1,...,θM{
1

M

M∑
m=1

ϕL,θm(x)}

=
1

M2

[
EL,θ1,...,θM{(

M∑
m=1

ϕL,θm(x))
2}− EL,θ1,...,θM{

M∑
m=1

ϕL,θm(x)}
2

]

by exploiting the facts that V{aX} = a2V{X}, V{X} = E{X2}− E{X}2

and the linearity of expectation. By rewriting the square of the sum of
theϕL,θm(x) terms as a sum over all pairwise productsϕL,θi(x)ϕL,θj(x),
the variance can further be rewritten as:

=
1

M2

[
EL,θ1,...,θM{

∑
i,j

ϕL,θi(x)ϕL,θj(x)}− (MµL,θ(x))2
]

=
1

M2

[∑
i,j

EL,θi,θj{ϕL,θi(x)ϕL,θj(x)}−M
2µ2L,θ(x)

]

=
1

M2

[
MEL,θ{ϕL,θ(x)2}

↪→ +(M2 −M)EL,θ′,θ′′{ϕL,θ′(x)ϕL,θ′′(x)}−M2µ2L,θ(x)

]

=
1

M2

[
M(σ2L,θ(x) + µ

2
L,θ(x))

↪→ +(M2 −M)(ρ(x)σ2L,θ(x) + µ
2
L,θ(x)) −M

2µ2L,θ(x)

]

=
σ2L,θ(x)
M

+ ρ(x)σ2L,θ(x) − ρ(x)
σ2L,θ(x)
M

= ρ(x)σ2L,θ(x) +
1− ρ(x)
M

σ2L,θ(x) (4.28)

As the size of the ensemble gets arbitrarily large, i.e., as M → ∞,
the variance of the ensemble reduces to ρ(x)σ2L,θ(x). Under the as-
sumption that randomization has some effect on the predictions of
randomized models, i.e., assuming ρ(x) < 1, the variance of an en-
semble is therefore strictly smaller than the variance of an individual
model. As a result, the expected generalization error of an ensemble
is strictly smaller than the expected error of a randomized model. As
such, improvements in predictions are solely the result of variance
reduction, since both noise(x) and bias2(x) remain unchanged. Addi-
tionally, when random effects are strong, i.e., when ρ(x)→ 0, variance
reduces to

σ2L,θ(x)
M , which can further be driven to 0 by increasing the

size of the ensemble. On the other hand, when random effects are
weak, i.e., when ρ(x)→ 1, then variance reduces to σ2L,θ(x) and build-
ing an ensemble brings no benefit. Put otherwise, the stronger the
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random effects, the larger the reduction of variance due to ensem-
bling, and vice-versa.

In summary, the expected generalization error of an ensemble ad-
ditively decomposes as stated in Theorem 4.3.

Theorem 4.3. For the squared error loss, the bias-variance decomposition of
the expected generalization error EL{Err(ψL,θ1,...,θM(x))} at X = x of an
ensemble of M randomized models ϕL,θm is

EL{Err(ψL,θ1,...,θM(x))} = noise(x) + bias2(x) + var(x), (4.29)

where

noise(x) = Err(ϕB(x)),

bias2(x) = (ϕB(x) − EL,θ{ϕL,θ(x)})2,

var(x) = ρ(x)σ2L,θ(x) +
1− ρ(x)
M

σ2L,θ(x).

In light of Theorem 4.3, the core principle of ensemble methods
is thus to introduce random perturbations in order to decorrelate as
much as possible the predictions of the individual models, thereby
maximizing variance reduction. However, random perturbations need
to be carefully chosen so as to increase bias as little as possible. The
crux of the problem is to find the right trade-off between randomness
and bias.

Alternative variance decomposition

Geurts [2002] (Chapter 4, Equation 4.31) alternatively decomposes the
ensemble variance as

var(x) = VL{Eθ|L{ϕL,θ(x)}}+
1

M
EL{Vθ|L{ϕL,θ(x)}}. (4.30)

The first term of this decomposition is the variance due to the random-
ness of the learning set L, averaged over the random perturbations
due to θ. It measures the dependence of the model on the learning set,
independently of θ. The second term is the expectation over all learn-
ing sets of the variance with respect to θ. It measures the strength
of the random effects. As the decomposition shows, only this last
part of the variance can be reduced as a result of averaging, which
is consistent with our previous conclusions. The stronger the random
effects, the larger the variance with respect to θ, and hence the larger
of reduction of variance due to ensembling.

Proposition 4.4. Decompositions 4.28 and 4.30 of the prediction variance
for an ensemble are equivalent.

Proof. From Equations 4.28 and 4.30, equivalence holds if Equa-
tion 4.27 is equivalent to

ρ(x) =
VL{Eθ|L{ϕL,θ(x)}}

VL{Eθ|L{ϕL,θ(x)}}+ EL{Vθ|L{ϕL,θ(x)}}
. (4.31)
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From the law of total variance, the denominator of Equation 4.27 ex-
pands to the denominator of Equation 4.31:

σ2L,θ(x) = VL{Eθ|L{ϕL,θ(x)}}+ EL{Vθ|L{ϕL,θ(x)}} (4.32)

Similarly, the numerator of Equation 4.31 can be reexpressed as the
numerator of Equation 4.27, thereby proving the equivalence:

VL{Eθ|L{ϕL,θ(x)}}

= EL{(Eθ|L{ϕL,θ(x)}− EL{Eθ|L{ϕL,θ(x)}})2}

= EL{(Eθ|L{ϕL,θ(x)}− µL,θ(x))2}

= EL{Eθ|L{ϕL,θ(x)}2}− µ2L,θ(x)

= EL{Eθ′|L{ϕL,θ′(x)}Eθ′′|L{ϕL,θ′′(x)}}− µ2L,θ(x)

= EL,θ′,θ′′{ϕL,θ′(x)ϕL,θ′′(x)}− µ2L,θ(x). (4.33)

In this form, ρ(x) is interpreted as the ratio between the variance
due to the learning set and the total variance, accounting for random
effects due to both the learning set and the random perturbations. It
is close to 1 when variance is mostly due to the learning set, hence
yielding correlated predictions. Conversely, it is close to 0 when vari-
ance is mostly due to the random perturbations induced by θ, hence
decorrelating the predictions.

4.2.3.2 Classification

The decomposition of the expected generalization error of an ensem-
ble in classification directly follows from theorems 4.2 and 4.3. Build-
ing an ensemble always reduces the variance of the class probability
estimate EL,θ{p̂L,θ(Y = ϕB(x)} (as shown in Equation 4.28), which
results in a decrease of the misclassification error if the expected esti-
mate remains strictly greater than 0.5 in a randomized model.

Shortcomings addressed by ensembles

In complement with the formal bias-variance analysis carried out in
the previous section, Dietterich [2000b] identifies three fundamental
reasons intuitively explaining why ensembles often work better than
single models.

The first reason is statistical. When the learning set is too small, a
learning algorithm can typically find several models in the hypothe-
sis space H that all give the same performance on the training data.
Provided their predictions are uncorrelated, averaging several models
reduces the risk of choosing the wrong hypothesis.
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The second reason is computational. Many learning algorithms rely
on some greedy assumption or local search that may get stuck in local
optima. As such, an ensemble made of individual models built from
many different starting points may provide a better approximation of
the true unknown function that any of the single models.

Finally, the third reason is representational. In most cases, for a
learning set of finite size, the true function cannot be represented by
any of the candidate models in H. By combining several models in
an ensemble, it may be possible to expand the space of representable
functions and to better model the true function.

4.3 random forests

Random forests5 form a family of methods that consist in building an
ensemble (or forest) of decision trees grown from a randomized vari-
ant of the tree induction algorithm (as described in Chapter 3). Deci-
sion trees are indeed ideal candidates for ensemble methods since
they usually have low bias and high variance, making them very
likely to benefit from the averaging process. As we will review in this
section, random forests methods mostly differ from each other in the
way they introduce random perturbations into the induction proce-
dure. As highlighted in the previous section, the difficulty is to inject
randomness while minimizing ρ(x) and simultaneously maintaining
a low bias in the randomized decision trees.

4.3.1 Randomized induction algorithms

Kwok and Carter [1990]:
Historically, the earliest mention of ensemble of decision trees
is due to Kwok and Carter [1990]. In this work, the authors
empirically observe that averaging multiple decision trees with
different structure consistently produces better results than any
of the constituents of the ensemble. This approach however was
not based on randomization nor was fully automatic: decision
trees were generated by first manually selecting at the top of the
tree splits that were almost as good as the optimal splits, and
then expanded using the classical ID3 induction procedure.

Breiman [1994]:
In a now famous technical report, Breiman [1994] was one of
the earliest to show, both theoretically and empirically, that ag-

5 The term random forests, without capitals, is used to denote any ensemble of decision
trees. Specific variants are referred to using their original designation, denoted with
capitals. In particular, the ensemble method due to Breiman [2001] is denoted as
Random Forests, with capitals.
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gregating multiple versions of an estimator into an ensemble
can give substantial gains in accuracy. He notes and shows
that the average model EL{ϕL} has a lower expected gener-
alization error than ϕL. As such, Bagging consists in approxi-
mating EL{ϕL} by combining models built from bootstrap sam-
ples [Efron, 1979] Lm (for m = 1, . . . ,M) of the learning set L.
The {Lm} form replicates of L, each consisting of N cases (x,y),
drawn at random but with replacement from L.

Note that even though |L| = |Lm| = N, 37% of the couples (x,y)
from L are on average missing in the bootstrap replicates. In-
deed, after N draws with replacement, the probability of never
have been selected is

(1−
1

N
)N ≈ 1

e
≈ 0.368. (4.34)

When the learning algorithm is unstable (i.e., when small changes
in the learning set can cause large changes in the learned mod-
els), Bagging generates individual models that are different from
one bootstrap sample to another, hence making them likely to
benefit from the averaging process. In some cases however, when
the learning set L is small, subsampling 67% of the objects
might lead to an increase of bias (e.g., because of a decrease
in model complexity) which is too large to be compensated by
a decrease of variance, hence resulting in overall poorer per-
formance. Despite this defect, Bagging has proven to be an ef-
fective method in numerous applications, one of its strengths
being that it can be used to combine any kind of models – i.e.,
not only decision trees.

Dietterich and Kong [1995]:
Building upon [Kwok and Carter, 1990], Dietterich and Kong
[1995] propose to randomize the choice of the best split at a
given node by selecting uniformly at random one of the 20 best
splits of node t. The authors empirically show in [Dietterich
and Kong, 1995; Dietterich, 2000a] that randomizing in this way
gives results that are slightly better than Bagging in low noise
settings. Experiments show however that when noise is impor-
tant, Bagging usually yield better results. From a bias-variance
point of view, this method virtually does not change bias but
increases variance due to randomization.

Amit et al. [1997]:
In the context of handwritten character recognition, where the
number p of input variables is typically very large, Amit et al.
[1997] propose a randomized variant of the tree induction algo-
rithm that consists in searching for the best split at each node
over a random subsample of the variables.
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Denoting K 6 p (also known as mtry or max_features) the num-
ber of variables effectively considered at each node, this variant
replaces Algorithm 3.3 with the following randomized alterna-
tive:

Algorithm 4.1. Find the best split s∗ that partitions Lt, among a
random subset of K 6 p input variables.

1: function FindBestSplitRandom(Lt, K)
2: ∆ = −∞
3: Draw K random indices jk from 1, . . . ,p
4: for k = 1, . . . ,K do
5: Find the best binary split s∗jk defined on Xjk
6: if ∆i(s∗jk , t) > ∆ then
7: ∆ = ∆i(s∗jk , t)
8: s∗ = s∗jk
9: end if

10: end for
11: return s∗

12: end function

When the output Y can be explained in several ways, this ran-
domized algorithm generates trees that are each structurally dif-
ferent, yet individually good. As a result, bias usually increases
only slightly, while the increased variance due to randomization
can be cancelled out through averaging. The optimal trade-off
between these quantities can otherwise be adjusted by tuning
the value of K. As K → 1, the larger the bias but the larger the
variance of the individual models and hence the more effective
the averaging process. Conversely, as K → p, the smaller the
bias but also the smaller the variance of the individual models
and therefore the less beneficial the ensemble.

Ho [1998]:
Inspired from the principles of Bagging [Breiman, 1994] and
random subsets of variables [Amit et al., 1997], Ho [1998] pro-
poses with the Random Subspace (RS) method to build a decision
forest whose trees are grown on random subsets of the input
variables – drawn once, prior to the construction of each tree
– rather than on all p variables. As empirically evaluated at
several occasions [Ho, 1998; Panov and Džeroski, 2007; Louppe
and Geurts, 2012], the Random Subspace method is a powerful
generic ensemble method that can achieve near state-of-the-art
performance on many problems. Again, the optimal trade-off
between the variance due to randomization and the increase of
bias can be controlled by tuning the size of the random subset.

Breiman [2001]:
In his seminal Random Forests (RF) paper, Breiman [2001] com-
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bines Bagging [Breiman, 1994] with random variable selection
at each node [Amit et al., 1997]. Injecting randomness simulta-
neously with both strategies yields one the most effective off-
the-shelf methods in machine learning, working surprisingly
well for almost any kind of problems. The author empirically
shows that Random Forests give results that are competitive
with boosting [Freund and Schapire, 1995] and arcing algorithms
[Breiman, 1996], which both are designed to reduce bias while
forests focus on variance reduction.

While the original principles are due to several authors (as dis-
cussed above), Breiman is often cited as the father of forests of
randomized trees. Parts of this recognition are certainly due to
the pioneer theoretical analysis that has always complemented
his empirical analysis of algorithms. In contrast with other au-
thors, another reason might also be his efficient software im-
plementation [Breiman, 2002] that was made freely available,
allowing users outside of the machine learning community to
quickly and easily apply Random Forests to their problems.

Cutler and Zhao [2001]:
With Perfect Random Tree Ensembles (PERT), Cutler and Zhao
[2001] propose to grow a forest of perfectly fit decision trees
in which both the (ordered) variable to split on and the dis-
cretization threshold are chosen at random. More specifically,
given a node t, the split variable Xj is drawn at random using
Algorithm 4.1 with K = 1 while the cut-point v is set midway
between two randomly drawn samples using the following pro-
cedure (instead of Algorithm 3.4):

Algorithm 4.2. Draw a random split on Xj that partitions Lt.
1: function FindRandomSplit-PERT(Lt, Xj)
2: Draw (x1,y1), (x2,y2) ∈ Lt such that y1 6= y2
3: Draw α uniformly at random from [0, 1]
4: v = αx1,j + (1−α)x2,j

5: return svj
6: end function

The induction of the tree proceeds using such random splits
until all nodes become pure or until it is no longer possible to
draw samples of different output values.

From a practical point of view, PERT is an easily coded and a
very efficient ensemble method since there is no impurity crite-
rion to evaluate when splitting the nodes of a tree. Regarding
accuracy, experimental comparisons in [Cutler and Zhao, 2001]
show that PERT is often nearly as good as Random Forests
[Breiman, 2001], while resulting however in random trees that
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are typically larger than decision trees grown with less ran-
domization. The simplicity of the method also allows for an
amenable theoretical analysis of forests of randomized trees, as
carried out in [Zhao, 2000].

Geurts et al. [2006a]:
As investigated in [Wehenkel, 1997; Geurts and Wehenkel, 2000],
the notoriously high variance of decision trees partly finds its
origins from the high dependence of the splits with the random
nature of the learning set. The authors empirically show that
the variance of the optimal cut-point v (in the case of ordered
input variables) may indeed be very high, even for large sample
sizes. In particular, Geurts [2002] shows that cut-point variance
appears to be responsible for a significant part of the generaliza-
tion error of decision trees. As a way to smoothen the decision
boundary, Geurts et al. [2006a] hence propose in Extremely Ran-
domized Trees (ETs) to combine random variable selection [Amit
et al., 1997] with random discretization thresholds. As a drop-
in replacement of Algorithm 3.4, the authors propose the fol-
lowing simplistic but effective procedure for drawing splits at
random:

Algorithm 4.3. Draw a random split on Xj that partitions Lt.
1: function FindRandomSplit-ETs(Lt, Xj)
2: minj = min({xi,j|(xi,yi) ∈ Lt})

3: maxj = max({xi,j|(xi,yi) ∈ Lt})

4: Draw v uniformly at random from [minj, maxj[
5: return svj
6: end function

With respect to decomposition 4.30 of variance, extremely ran-
domized trees can therefore be seen as a way to transfer cut-
point variance from the variance term due to the learning set to
the (reducible) variance term that is due to random effects.

In the special case where K = 1, Extremely Randomized Trees
reduce to Totally Randomized Trees, in which both a single vari-
able Xj and a discretization threshold v are drawn at random at
each node. As a result, the structure of such trees can be learned
in an unsupervised way, independently of the output variable
Y. In this setting, Totally Randomized Trees are very close to
Perfect Random Tree Ensembles [Cutler and Zhao, 2001] since
both draw Xj and v at random. These methods are however not
strictly equivalent since they do not draw the random discretiza-
tion thresholds v with respect to the same probability distribu-
tion.

Rodriguez et al. [2006]:
In a different direction, Rodriguez et al. [2006] propose in Ro-
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tation Forests to generate randomized decision trees based on
feature extraction. As in Bagging [Breiman, 1994], individual de-
cision trees are built on bootstrap replicates Lm of the learning
set L. To further enhance diversity (i.e., to further decorrelate
the predictions of the constituents of the ensemble), for each of
the M bootstrap replicates, input variables are randomly parti-
tioned into q subsets of pq variables, principal component anal-
ysis (PCA) is run separately on each subset, and a new set L̃m

of p extracted input variables is constructed by pooling all prin-
cipal components from the q projections. In this way, bootstrap
replicates Lm are each independently transformed linearly into
a new input space using q axis rotations. In this framework, de-
cision trees are particularly suited because they are sensitive to
changes in the input space and still can be very accurate. As
reported in [Rodriguez et al., 2006; Kuncheva and Rodríguez,
2007], Rotation Forests favorably compare with other tree-based
ensemble methods, yielding results that are often as good, some-
times better, than Random Forests [Breiman, 2001]. In terms of
complexity however, the computational overhead due to the q
axis rotations should not be overlooked when resources are lim-
ited.

4.3.2 Illustration

As a summary and illustrative example, let us consider a simulated
toy regression problem such that

Y =

5∑
j=1

Xj, (4.35)

where all input variables X1, . . . ,X5 are independent random Gaus-
sian variables of zero mean and unit variance. To simulate noise in
the data, 5 additional random Gaussian input variables X6, . . . ,X10,
all independent from Y, are further appended to the learning set.

Let us compare for this problem the bias-variance decomposition of
the expected generalization error of a Random Forest [Breiman, 2001]
(RF) and of Extremely Randomized Trees [Geurts et al., 2006a] (ETs).
For both methods, the error is estimated as derived from Theorem 4.3,
using 100 randomly drawn learning sets L of 50 samples, on which
ensembles of 10 trees are built. Their generalization error is estimated
on an independent test set of 1000 samples.

As the left plot in Figure 4.4 shows, the expected generalization
error additively decomposes into (squared) bias and variance terms.
For small values of K, random effects are strong, leading to high bias
and low variance. By contrast, for larger values of K, random effects
are less important, reducing bias but increasing variance. For both
methods, too small a value of K appears however to lead to a too
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Figure 4.4: (Left) Bias-variance decomposition of the generalization error
with respect to the hyper-parameter K. The total error is shown
by the plain lines. Bias and variance terms are respectively shown
by the dashed and dotted lines. (Right) Average correlation coef-
ficient ρ(x) over the predictions of two randomized trees grown
from the same learning set but with different random seeds.
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Figure 4.5: Decomposition of the variance term var(x) with respect to the
number M of trees in the ensemble.
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large increase of bias, for which averaging is not able to compensate.
For RF, the optimal trade-off is at K = 8, which indicates that bagging
and random variable selection are here complementary with regard
to the level of randomness injected into the trees. Indeed, using bag-
ging only (at K = 10) for randomizing the construction of the trees
yield results that are slightly worse than when both techniques are
combined. For ETs, the optimal trade-off is at K = 10, suggesting that
random thresholds v provide by themselves enough randomization
on this problem.

The right plot of Figure 4.4 illustrates the (averaged) correlation co-
efficient ρ(x) between the predictions of two randomized trees grown
on the same learning set. As expected, the smaller K, the stronger the
random effects, therefore the less correlated the predictions and the
more variance can be reduced from averaging. The plot also confirms
that ETs are inherently less correlated than trees built in RF, which
is not surprising given the fact that the former method randomizes
the choice of the discretization threshold while the latter does not.
In cases where such a randomization does not induce too large an
increase of bias, as in this problem, ETs are therefore expected to
yield better results than RF. (The choice of the optimal randomization
strategy is however highly dependent on the problem and no general
conclusion should be drawn from this toy regression problem.)

As confirmed by Figure 4.5 for RF, variance also additively decom-
poses into

var(x) = ρ(x)σ2L,θ(x) +
1−ρ(x)
M σ2L,θ(x). (4.36)

The first term is the variance due to the learning set L and remains
constant as the number M of trees increases. The second term is the
variance due to random effects and decreases as M increases. Of
particular interest is variance at M = 1, which corresponds to the
variance of a single decision tree. As the figure clearly shows, aver-
aging several decision trees into an ensemble allows to significantly
reduce this quantity. At the limit, when M → ∞, variance tends to
ρ(x)σ2L,θ(x), as shown by the dotted line and as expected from Theo-
rem 4.3.

4.4 properties and features

4.4.1 Out-of-bag estimates

An interesting feature of ensemble methods that construct models
on bootstrap samples, like Bagging or Random Forests, is the built-
in possibility of using the left-out samples L \ Lm to form estimates
of important statistics. In the case of generalization error, the out-of-
bag estimate at (xi,yi) consists in evaluating the prediction of the
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ensemble using only the individual models ϕLm whose bootstrap
samples Lm did not include (xi,yi). That is, in regression,

Êrr
OOB

(ψL) =
1

N

∑
(xi,yi)∈L

L(
1

M−i

M−i∑
l=1

ϕ
L
mkl

(xi),yi), (4.37)

where mk1 , . . . ,mkM−i
denote the indices of M−i the trees that have

been built from bootstrap replicates that do not include (xi,yi). For
classification, the out-of-bag estimate of the generalization error is
similar to Equation 4.37, except that the out-of-bag average prediction
is replaced with the class which is the most likely, as computed from
the out-of-bag class probability estimates.

Out-of-bag estimates provide accurate estimates of the generaliza-
tion error of the ensemble, often yielding statistics that are as good
or even more precise than K-fold cross-validation estimates [Wolpert
and Macready, 1999]. In practice, out-of-bag estimates also constitute
a computationally efficient alternative to K-fold cross-validation, re-
ducing to M the number of invocations of the learning algorithm,
instead of otherwise having to build K×M base models.

While out-of-bag estimates constitute an helpful tool, their bene-
fits should however be put in balance with the potential decrease of
accuracy that the use of bootstrap replicates may induce. As shown
experimentally in [Louppe and Geurts, 2012], bootstrapping is in fact
rarely crucial for random forests to obtain good accuracy. On the con-
trary, not using bootstrap samples usually yield better results.

4.4.2 Variable importances

In most machine learning tasks, the goal is not only to find the most
accurate model of the response but also to identify which of the in-
put variables are the most important to make the predictions, e.g., in
order to lead to a deeper understanding of the problem under study.

In this context, random forests offer several mechanisms for assess-
ing the importance of an input variable, and therefore enhance the
interpretability of the model. These are the object of Chapter 6, in
which we study variable importance measures and develop original
contributions to further improve their understanding.

4.4.3 Proximity measures

Another helpful built-in feature of tree-based ensemble methods is
the proximity measure [Breiman, 2002] between two sample points. For-
mally, the proximity between (x1,y1) and (x2,y2) is defined as the
number of times both samples reach the same leaf t within each de-
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Figure 4.6: Proximity plot for a 10-class handwritten digit classification task.

cision tree, normalized by the number of trees in the forest. That is,

proximity(x1, x2) =
1

M

M∑
m=1

∑
t∈ϕ̃L,θm

1(x1, x2 ∈ Xt) (4.38)

where ϕ̃L,θm denotes the set of terminal nodes in ϕL,θm . The idea
is that the proximity measure gives an indication of how close the
samples are in the eyes of the random forest [Hastie et al., 2005],
even if the data is high-dimensional or involves mixed input vari-
ables. When proximity is close to 1, samples propagate into the same
leaves and are therefore similar according to the forest. On the other
hand, when it is close to 0, samples reach different leaves, suggest-
ing that they are structurally different from each other. The proximity
measure depends on both the depth and the number of trees in the
forest. When trees are shallow, samples are more likely to end up in
the same leaves than when trees are grown more deeply, thereby im-
pacting on the spread of the measure. Likewise, the more trees in the
forest, the smoother the measure since the larger the number M+ 1

of values the proximity measure can take.
For exploratory purposes, the N×N proximity matrix P such that

Pij = proximity(xi, xj), (4.39)

can be used to visually represent how samples are close together with
respect to the random forest. Using 1−P as a dissimilarity matrix, the
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level of similarity between individual samples can be visualized e.g.,
by projecting them on a d-dimensional space (e.g., on a plane) such
that the distances between any pair of samples in that space corre-
spond as best as possible to the dissimilarities in 1− P. As an illustra-
tive example, Figure 4.6 represents the proximity matrix learned for a
10-class handwritten digit classification task, as projected on a plane
using Multidimensional Scaling [Kruskal, 1964]. Samples from a same
class form identifiable clusters, which suggests that they share similar
structure (since they end up in the same leaves). The figure also high-
lights classes for which the random forest makes errors. In this case,
digits 1 and 8 are the more dispersed, suggesting high within-class
variance, but also overlap the most with samples of other classes, in-
dicating that the random forest fails to identify the true class for these
samples.

Additionally, proximity measures can be used for identifying out-
liers within a learning set L. A sample x can be considered as an
outlier if its average proximity with respect to all other samples is
small, which indeed indicates that x is structurally different from the
other samples (since they do not end up in the same leaves). In the
same way, in classification, within-class outliers can be identified by
computing the average proximity of a sample with respect to all other
samples of the same class. Conversely, proximity measures can be
used for identifying class prototypes, by considering samples whose
proximity with all other samples of the same class is the largest.

An alternative formulation of proximity measures is to consider a
random forest as a mapping φ : X 7→ X′ which transforms a sample x
into the (one-hot-encoded) indices of the leaves it ends up in. That is,
x′t is 1 for all leaves t of the forest in which x falls in, and 0 for all the
others:

φ(x) =
(
1(x ∈ Xt1), . . . , 1(x ∈ XtL)

)
(4.40)

where t1, . . . , tL ∈ ψ̃ denote the leafs of all M trees in the forest
ψ. In this formalism, the proximity between x1 and x2 corresponds
to a kernel [Scholkopf and Smola, 2001], that can be defined as the
normalized dot product of the samples, as represented in X′:

proximity(x1, x2) =
1

M
φ(x1) ·φ(x2) (4.41)

Interestingly, φ provides a non-linear transformation to a sparse very
high-dimensional space, taking somehow into account the structure
of the problem. If two samples are structurally similar, then they will
end up in the same leafs and their representations in the projected
space will be close, even if they may in fact appear quite dissimilar in
the original space.

In close connection, [Geurts et al., 2006a] show that a regression
tree ϕ can be expressed as a kernel-based model by formulating the
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prediction ϕ(x) as a scalar product over the input space defined by
the normalized characteristic function φ′ of the leaf nodes. That is,

ϕ(x) =
∑

(xi,yi)∈L

yiKϕ(xi, x) (4.42)

where

Kϕ(xi, x) = φ′(xi) ·φ′(x), (4.43)

φ′(x) =
(1(x ∈ X1)√

N1
, . . . ,

1(x ∈ XtL)√
NtL

)
, (4.44)

and where t1, . . . , tL ∈ ϕ̃ denote the leafs of ϕ. Likewise, the for-
mulation can be extended to an ensemble ψ of M decision trees by
defining Kψ as the average kernel over Kϕm (for m = 1, . . . ,M).

From a more practical point of view, such forest-based transforms
φ and φ′ have proven to be helpful and efficient embeddings, e.g.,
when combined with linear methods or support vector machines [Moos-
mann et al., 2006; Marée et al., 2013]. In particular, they find useful
applications in computer vision for transforming the raw pixel input
space into a new feature space hopefully capturing structures and
patterns in images.

4.4.4 Missing data

Because of practical limitations, physical constraints or for privacy
reasons, real-world data are often imperfect, erroneous or incomplete.
In particular, most machine learning algorithms are often not appli-
cable on data containing missing values because they implicitly as-
sume an ideal scenario in which all values are known for all input
variables. Fortunately, random forests offer several mechanisms for
dealing with this issue.

Ternary decision trees.
The simplest strategy is to explicitly model missing values in the
structure of decision trees by considering ternary splits instead
of binary splits. That is, partition t into tL, tR and tM, such
that tL and tR are defined from a binary split svj : Xj 6 v, for all
node samples where the value of Xj is known, and such that tM
contain all node samples for which the value of Xj is missing.

Propagate in both child nodes
An alternative strategy is to propagate samples for which the
value of the split variable is missing into both the left and right
child nodes. Accordingly, samples going into both child nodes
should be re-weighted by half their sample weight (see Chap-
ter 5), so that they are not unfairly taken into account more
than the other samples.
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Imputation.
Finally, random forests also offer several mechanisms for imput-
ing missing values. A simple approach, due to [Breiman, 2002],
consists first in filling missing values with a rough and inac-
curate approximation (e.g., the median). Then build a random
forest on the completed data and update the missing values of
each sample by the weighted mean value over the samples that
are the closest (as defined by the proximity measure). The pro-
cedure is then repeated until convergence, typically after 4 to 6
iterations.

Alternatively, missing data imputation can be considered as a
supervised learning problem in itself, where the response vari-
able is the input variable for which values are missing. As such,
the MissForest algorithm [Stekhoven and Bühlmann, 2012] con-
sists in iteratively building a random forest on the observed
parts of the data in order to predict the missing values for a
given variable.

4.5 consistency

Despite their extensive use in practice, excellent performance and rel-
ative algorithmic simplicity, the mathematical mechanisms that drive
random forests are still not well understood. More specifically, the
fundamental theoretical question of the consistency (see definitions
2.8 and 2.9) of random forests, i.e., whether convergence towards an
optimal model is guaranteed provided an infinitely large learning
set, remains an open and difficult problem. In this section, we review
theoretical works that have investigated simplified versions of the al-
gorithm, for which the construction procedure is often made data-
independent, hence making the theoretical analysis typically more
tractable. With the hope that results obtained for these simplified
models will provide insights on the mathematical properties of the
actual algorithm, the long-term objective of this line of research is
usually to prove the consistency of the original Random Forest algo-
rithm [Breiman, 2001], hence bridging the gap between theory and
practice.

Breiman et al. [1984]:
Single decision trees are proved to be consistent, both in regres-
sion and classification.

Note that these results do not extend to the Random Forest al-
gorithm for the following reasons:

- In single decision trees, the number of samples in terminal
nodes is let to become large, while trees in random forests
are usually fully developed;
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- Single decision trees do not make use of bootstrap sam-
pling;

- The splitting strategy in single decision trees consists in se-
lecting the split that maximizes the Gini criterion. By con-
trast, in random forests, the splitting strategy is random-
ized.

Zhao [2000]:
One of the earliest works studying the consistency of ensem-
bles of randomized trees is due to Zhao [2000]. In classification,
the author conjectures that PERT is (weakly) consistent, but es-
tablishes its strong consistency (Theorem 4.4.2) provided the
construction of the trees stops early. More specifically, strong
consistency is guaranteed provided:

(a) Trees are grown infinitely deeply while forming leaves with
infinitely many node samples, hence making empirical class
proportions in terminal nodes converge towards their the-
oretical counterparts. This is guaranteed, e.g., by stopping
the construction when Nt < N

(N)
min , such that N(N)

min → 0

and N×N(N)
min → ∞ as N → ∞ (where N(N)

min is the value
of the Nmin parameter for a forest grown on a learning set
of size N);

(b) The posterior class probabilities induced by the ensemble
are all continuous in the input space X.

Given the close formulations of the methods, results from [Zhao,
2000] regarding PERT extend to Extremely Randomized Trees
provided the posterior class probabilities are continuous. In Ap-
pendix F of [Geurts et al., 2006a], Extremely Randomizes Trees
(for K = 1 and M→∞) are shown to be a continuous piecewise
multilinear function of its arguments, which should therefore
suffice to establish the strong consistency of the method when
trees are built totally at random.

Breiman [2004]:
In this work, consistency is studied for a simplified variant of
the Random Forest algorithm, assuming (i) no bootstrap sam-
pling, (ii) that variables are selected as split variables with prob-
ability p(m) (for m = 1, . . . ,p), (iii) that splits on relevant vari-
ables are set at the midpoint of the values of the selected vari-
able, (iv) that splits on irrelevant variables are set at random
points along the values of the selected variable and (v) that
trees are balanced. Under these assumptions, it can be shown
that this variant reduces to an (adaptive) nearest neighbor algo-
rithm [Lin and Jeon, 2002], for which (weak) consistency condi-
tions are met (both in regression and classification). Addition-
ally, this work studies the bias-variance decomposition of this
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simplified method and shows that the rate of convergence to-
wards the Bayes error only depends on the number r of relevant
variables, hence explaining why random forests work well even
with many noise variables.

Biau et al. [2008]:
In binary classification, Biau et al. [2008] proves that if the ran-
domized base models in an ensemble are consistent, then the
corresponding majority or soft voting ensembles are also consis-
tent. (This result was later expanded both for multi-class classi-
fication [Denil et al., 2013b] and regression [Denil et al., 2013a].)

From this proposition, the consistency of Purely Random Forests
[Breiman, 2000] is established. Let us assume that the input
space X is supported on [0, 1]p and that terminal nodes rep-
resent hyper rectangles of [0, 1]p, called cells, and forming to-
gether a partition of [0, 1]p. At each step, one of the current
terminal nodes t and one the p input variables are chosen uni-
formly at random. The selected node t is then split along the
chosen variable at a random location, along the length of the
chosen side in t. This procedure is repeated k > 1 times, which
amounts to developing trees in random order. In this setting,
and similarly to PERT, (strong) consistency of Purely Random
Forests is guaranteed whenever k(N) →∞ and k(N)

N → 0 asN→∞ (where k(N) is the value of k for a forest grown on learning
set of size N) – which is equivalent to letting the number of
points in terminal nodes grow to infinity.

In Purely Random Forests, let us remark that trees are built in
a data-independent manner, without even looking at the sam-
ples in L. In this same work, and assuming no bootstrap sam-
pling, the authors show that consistency is however also guaran-
teed when the position of the cut is chosen in a data-dependent
manner, by selecting a random gap between consecutive node
samples (ordered along the chosen variable) and then sampling
uniformly within the gap.

Biau [2012]:
In this work, the authors more closely approaches the consis-
tency of the actual Random Forest algorithm and prove the con-
sistency of the following variant.

Again, let us assume that the input space X is supported on
[0, 1]p and that terminal nodes represent hyper rectangles of
[0, 1]p, forming together a partition of the input space. At each
step, all current terminal nodes are independently split using
one of the p input variables Xj, drawn with probability p(N)

j ,
and using as threshold the mid-point of the chosen side in
t. This procedure is repeated dlog2 ke times, which amounts
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to developing trees in breadth-first order until depth dlog2 ke.
(Strong) Consistency is then guaranteed whenever p(N)

j k(N) →∞
(for j = 1, . . . ,p) and k(N)

N → 0 as N→∞.

In particular, by properly defining the probabilities pj, this re-
sult can be shown to include the situation where, at each node,
randomness is introduced by selecting at random a subset of K
variables and splitting along the one that maximizes some im-
purity criterion, like in Random Forest. (Note however that best
cut-points coincide with the mid-points only for some proba-
bility distributions.) Assuming no bootstrap sampling and pro-
vided that two independent datasets are used for evaluating the
goodness of the splits and fitting the prediction values at leafs,
consistency of the method is then also established.

Interestingly, and corroborating results of [Breiman, 2004], this
work also highlights the fact that performance of random forests
only depends on the number r of relevant variables, and not on
p, making the method robust to overfitting.

Denil et al. [2013a]:
Building upon [Biau, 2012], Denil et al. [2013a] narrowed the
gap between theory and practice by proving the consistency of
the following variant.

For each tree in the forest, the learning set is partitioned ran-
domly into structure points (used for determining splits) and
estimation points (used for fitting values at leafs). Again, let
us assume that the input space X is supported on [0, 1]p and
that terminal nodes represent hyper rectangles of [0, 1]p, form-
ing together a partition of the input space. At each step, current
terminal nodes are expanded by drawing at random min(1 +
Poisson(λ),p) variables and then looking for the cut-point that
maximizes the impurity criterion, as computed overm randomly
drawn structure points. The construction halts when no split
leading to child nodes with less than k node samples can be
found.

In regression, assuming not bootstrap sampling, (strong) con-
sistency of this variant is guaranteed whenever k(N) → ∞ and
k(N)

N → 0 as N → ∞ (where k(N) is the value of k for a forest
grown on learning set of size N).

Scornet et al. [2014]:
This work establishes the first consistency result for the origi-
nal Random Forest algorithm. In particular, (strong) consistency
is obtained in the context of regression additive models, as-
suming subsampling without replacement (instead of bootstrap
sampling). This work is the first result establishing consistency
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when (i) splits are chosen in a data-dependent manner and (ii)
leafs are not let to grow to an infinite number of node samples.

In conclusions, despite the difficulty of the mathematical analysis
of the method, these theoretical works provide together converging
arguments all confirming why random forests – including the Ran-
dom Forest algorithm but also Extremely Randomized Trees – appear
to work so well in practice.

Finally, let us complete this review by mentioning consistency re-
sults in the case of domain-specific adaptations of random forests,
including quantile regression [Meinshausen, 2006], survival analy-
sis [Ishwaran and Kogalur, 2010] and online forest construction [De-
nil et al., 2013b].
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C O M P L E X I T Y A N A LY S I S A N D I M P L E M E N TAT I O N

Outline

In this chapter, we study the computational efficiency of tree-based
ensemble methods. In sections 5.1 and 5.2, we derive and discuss the
time complexity of random forests, first for building them from data
and then for making predictions. In Section 5.3, we discuss technical
details that are critical for efficiently implementing random forests.
Finally, we conclude in Section 5.4 with benchmarks of the random
forest implementation developed within this work and compare our
solution with alternative implementations.

5.1 complexity of the induction procedure

The dominant objective of most machine learning methods is to find
models that maximize accuracy. For models of equivalent performance,
a secondary objective is usually to minimize complexity, both func-
tional, as studied in the previous chapters, and computational. With
regards to the later, a first and immediate aspect of computational
complexity in decision trees and random forests is the time complex-
ity for learning models, that is the number of operations required for
building models from data.

Given the exponential growth in the number of possible partitions
of N samples, we chose in Section 3.6 to restrict splitting rules to
binary splits defined on single variables. Not only this is sufficient for
reaching good accuracy (as discussed in the previous chapter), it also
allows for time complexity to effectively remain within reasonable
bounds.

Formally, let T(N) denotes the time complexity for building a de-
cision tree from a learning set L of N samples. From Algorithm 3.2,
T(N) corresponds to the number of operations required for splitting
a node of N samples and then for recursively building two sub-trees
respectively from NtL and NtR samples. Without loss of generality,
let us assume that learning samples all have distinct input values,
such that it is possible to build a fully developed decision tree where
each leaf contains exactly one sample. Under this assumption, deter-
mining time complexity therefore boils down to solve the recurrence
equationT(1) = c1

T(N) = C(N) + T(NtL) + T(NtR),
(5.1)

87
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where c1 is the constant cost for making a leaf node out of a sin-
gle sample and C(N) is the runtime complexity for finding a split s
and then partitioning the N node samples into tL and tR. In particu-
lar, this later operation requires at least to iterate over all N samples,
which sets a linear lower bound on the time complexity within a node,
i.e., C(N) = Ω(N). As for finding the split s, this can be achieved in
several ways, as outlined in the previous chapters for several random-
ized variants of the induction procedure. As we will see, not only this
has an impact on the accuracy of the resulting model, it also drives
the time complexity of the induction procedure.

Big O notations

Time complexity analyzes the asymptotic behavior of an algorithm
with respect to the size N of its input and its hyper-parameters. In
this way, big O notations are used to formally express an asymptotic
upper bound on the growth rate of the number f(N) of steps in the
algorithm. Formally, we write that

f(N) = O(g(N)) if ∃c > 0,N0 > 0, ∀N > N0, f(N) 6 cg(N) (5.2)

to express that f(N) is asymptotically upper bounded by g(N), up
to some negligible constant factor c. Similarly, big Ω notations are
used to express an asymptotic lower bound on the growth rate of the
number of steps in the algorithm. Formally, we write that

f(N) = Ω(g(N)) if ∃c > 0,N0 > 0,∀N > N0, cg(N) 6 f(N) (5.3)

to express that f(N) is asymptotically lower bounded by g(N). Conse-
quently, if f(N) is both O(g(N)) and Ω(g(N)) then f(N) is both lower
bounded and upper bounded asymptotically by g(N) (possibly for
different constants), which we write using big Θ notations:

f(N) = Θ(g(N)) if f(N) = O(g(N)) = Ω(g(N)). (5.4)

In the original CART induction procedure [Breiman et al., 1984] (Al-
gorithms 3.3 and 3.4), finding a split s requires, for each of the p vari-
ables Xj (for j = 1, . . . ,p), to sort the values xi,j of all N node samples
(for i = 1, . . . ,N) and then to iterate over these in order to find the best
threshold v. Assuming that the value of the impurity criterion can be
computed iteratively for consecutive thresholds, the most costly oper-
ation is sorting, whose time complexity is at worst O(N logN) using
an optimal algorithm. As a result, the overall within-node complex-
ity is C(N) = O(pN logN). In a randomized tree as built with the
Random Forest algorithm [Breiman, 2001] (RF, Algorithm 4.1), the
search of the best split s is carried out in the same way, but only on
K 6 p of the input variables, resulting in a within-node complexity
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C(N) = O(KN logN). In Extremely Randomized Trees [Geurts et al.,
2006a] (ETs, Algorithm 4.3), discretization thresholds are drawn at
random within the minimum and maximum node sample values of
Xj, making sort no longer necessary. As such, the within-node com-
plexity reduces to the time required for finding these lower and up-
per bounds, which can be done in linear time, hence C(N) = O(KN).
Finally, in Perfect Random Tree Ensembles [Cutler and Zhao, 2001]
(PERT, Algorithm 4.2), cut-points v are set midway between two ran-
domly drawn samples, which can be done in constant time, inde-
pendently of the number N of node samples. Yet, the within-node
complexity is lower bounded by the time required for partitioning
the node samples into tL and tR, hence C(N) = O(N).

Since both CART and PERT can respectively be considered as spe-
cial cases of RF and ETs with regards to time complexity (i.e., for
K = p in CART, for K = 1 in PERT), let us consider the overall com-
plexity T(N) when either C(N) = O(KN logN) or C(N) = O(KN)

(for K = 1, . . . ,p). To make our analysis easier, let us further assume
that it exists c2, c3 > 0 such that c2KN logN 6 C(N) 6 c3KN logN
for all N > 1 (resp. c2KN 6 C(N) 6 c3KN for all N > 1). Results
presented below extend however to the case where C(N) = Θ(KN)

(resp. Θ(KN logN)), at the price of a more complicated mathematical
analysis. Time complexity is studied in three cases:

Best case.
The induction procedure is the most efficient when node sam-
ples can always be partitioned into two balanced subsets of N2
samples.

Worst case.
By contrast, the induction procedure is the least efficient when
splits are unbalanced. In the worst case, this results in splits
that move a single sample in the first sub-tree and put all N− 1

others in the second sub-tree.

Average case.
The average case corresponds to the average time complexity, as
taken over all possible learning sets L (of a given size and for a
given distribution) and all random seeds θ. Since the analysis of
this case is hardly feasible without strong assumptions on the
structure of the problem, we consider instead the case where
the sizes of the possible partitions of a node are all equiprobable.
We believe this is a good enough approximation, that should at
least help us derive the order of magnitude of the complexity
(instead of deriving it exactly).

Since the induction algorithm looks for splits that most decrease im-
purity (in particular, as K → p), we assume that balanced partitions
of the nodes samples should be more likely than partitions that are
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unbalanced (such a claim is however highly data dependent). Under
this assumption, random forests should therefore approach the best
case rather than the average case (for which partitions are equally
likely). However, as randomization increases (e.g., as K → 1), splits
yield partitions that tend to be more equiprobable, hence approach-
ing the average case. As such, we believe the complexity for the true
average case should lie in-between the complexity of the best case
and the complexity of the average case as defined above. As for the
worst case, it should only arise in exceptional circumstances.

Let us mention that due to the end-cut preference of classical impu-
rity criteria, worst splits are in fact likely to be selected (see [Breiman
et al., 1984], Theorem 11.1) if none of the K selected variables are
informative with respect to the output. (Note that this effect is less
pronounced in ETs because thresholds are drawn at random rather
than being optimized locally, as in RF.) In the analysis carried below,
intermingling effects due to good splits at the top of trees and such
degenerated splits due to end-cut preference when input variables be-
come independent of the output are not explicitly taken into account.
Yet, the simplifying assumptions defining our average case appear
to constitute a good-enough approximation, as further confirmed in
empirical benchmarks in Section 5.4.

Master Theorem

Some of the results outlined in the remaining of this section make use
of the Master Theorem [Bentley et al., 1980; Goodrich and Tamassia,
2006], which is recalled below to be self-contained.

Theorem 5.1. Let consider the recurrence equationT(1) = c if n < d

T(n) = aT(nb ) + f(n) if n > d
(5.5)

where d > 1 is an integer constant, a > 0, c > 0 and b > 1 are real
constants, and f(n) is a function that is positive for n > d.

(a) If there is a small constant ε > 0, such that f(n) is O(nlogb a−ε),
then T(n) is Θ(nlogb a).

(b) If there is a constant k > 0, such that f(n) is Θ(nlogb a logk n), then
T(n) is Θ(nlogb a logk+1 n).

(c) If there are small constants ε > 0 and δ < 1, such that f(n) is
Ω(nlogb a+ε) and af(nb ) 6 δf(n), for n > d, then T(n) is Θ(f(n)).



5.1 complexity of the induction procedure 91

Theorem 5.2. For c2KN logN 6 C(N) 6 c3KN logN (for allN > 1), the
time complexity for building a decision tree in the best case isΘ(KN log2N).

Proof. Let us rewrite T(N) as KT ′(N) where, in the best case,T ′(1) = c′1
T ′(N) = C′(N) + 2T ′(N2 ),

(5.6)

with c′1 = c1
K and C′(N) =

C(N)
K . In this form, the second case of the

Master Theorem applies for f(N) = C′(N) = Θ(N logN), a = 2, b = 2

and k = 1. Accordingly, T ′(N) = Θ(N logk+1N) = Θ(N log2N) and
T(N) = Θ(KN log2N).

Theorem 5.3. For c2KN 6 C(N) 6 c3KN (for all N > 1), the time
complexity for building a decision tree in the best case is Θ(KN logN).

Proof. In the best case, T(N) = KT ′(N), whereT ′(1) = c′1
T ′(N) = C′(N) + 2T ′(N2 ).

(5.7)

Again, the second case of the Master Theorem applies, this time for
f(N) = C′(N) = Θ(N), a = 2, b = 2 and k = 0. Accordingly, T ′(N) =

Θ(N logk+1N) = Θ(N logN) and T(N) = Θ(KN logN).

Theorem 5.4. For c2KN logN 6 C(N) 6 c3KN logN (for all N > 1),
the time complexity for building a decision tree in the worst case is Ω(KN2)

and O(KN2 logN).

Proof. In the worst case, T(N) = KT ′(N), whereT ′(1) = c′1
T ′(N) = C′(N) + T ′(1) + T ′(N− 1).

(5.8)

Let us first consider an upper bound on T ′(N). By expanding the
recurrence, we have

T ′(N) 6 c3N logN+ c′1 + T
′(N− 1)

=

N∑
i=1

c′1 + c3i log i

= c′1N+

N∑
i=1

c3i log i

6 c′1N+ c3 logN
N∑
i=1

i

= c′1N+ c3 logN
N(N+ 1)

2
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= O(N2 logN). (5.9)

Similarly, a lower bound on T ′(N) can be derived in the following
way:

T ′(N) > c2N logN+ c′1 + T
′(N− 1)

=

N∑
i=1

c′1 + c2i log i

= c′1N+

N∑
i=1

c2i log i

> c′1N+ c2

N∑
i=2

i

= c′1N+ c2
N(N+ 1)

2
− c2

= Ω(N2). (5.10)

As such, T(N) = Ω(KN2) and O(KN2 logN) in the worst case.

Let us remark that the lower and upper bounds derived for T(N)

in Theorem 5.4 are not tight. Nevertheless, given the fact that

N∑
i=1

i log i = log(H(N)), (5.11)

where H(N) is the hyperfactorial function, complexity could be re-
expressed tightly as T(N) = Θ(K log(H(N))).

Theorem 5.5. For c2KN 6 C(N) 6 c3KN (for all N > 1), the time
complexity for building a decision tree in the worst case is Θ(KN2).

Proof. In the worst case, T(N) = KT ′(N), whereT ′(1) = c′1
T ′(N) = C′(N) + T ′(1) + T ′(N− 1).

(5.12)

By expanding the recurrence, we have

T ′(N) 6 c3N+ c′1 + T
′(N− 1)

= c′1 +

N∑
i=2

(c′1 + c3i)

= c′1N+
c3
2
(N2 + 3N− 4)

= O(N2). (5.13)

In the exact same way, T ′(N) can be lower bounded by c2N+ c′1 +

T ′(N− 1) and shown to be Ω(N2). As a result, T(N) = Θ(KN2) in the
worst case.
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Theorem 5.6. For c2KN logN 6 C(N) 6 c3KN logN (for all N >
1), the time complexity for building a decision tree in the average case is
Θ(KN log2N).

Proof. In the average case, T(N) = KT ′(N), whereT ′(1) = c′1
T ′(N) = C′(N) + 1

N−1

∑N−1
i=1 (T ′(i) + T ′(N− i)).

(5.14)

Let us first consider an upper bound on T ′(N) by assuming that
C ′(N) = c3N logN. By symmetry and by multiplying both sides of
the last equation by (N− 1), it comes

(N− 1)T ′(N) = (N− 1)(c3N logN) + 2

N−1∑
i=1

T ′(i). (5.15)

For N > 3, substituting N with N− 1 similarly yields

(N−2)T ′(N−1) = (N−2)(c3(N−1) log(N−1))+2

N−2∑
i=1

T ′(i). (5.16)

Subtracting Equation 5.16 from 5.15, it comes after simplifications and
division of both sides by N(N− 1):

T ′(N)

N
=
T ′(N− 1)

N− 1
+ c3

2

N
log(N− 1) + c3 log

N

N− 1
. (5.17)

Let us now introduce S(N) =
T ′(N)
N . From the last equation, it comes

S(N) = S(N− 1) + c3
2

N
log(N− 1) + c3 log

N

N− 1

= c′1 + c3

N∑
i=2

2

i
log(i− 1) + log

i

i− 1

= c′1 + c3 logN+ 2c3

N∑
i=2

1

i
log(i− 1)

6 c′1 + c3 logN+ 2c3 logN
N∑
i=2

1

i

= c′1 + c3 logN+ 2c3 logN(HN − 1)

= O(HN logN) (5.18)

where HN is the N-th harmonic number. Using

HN ≈ logN+ γ+
1

2N
+O(

1

N2
) (5.19)

as approximation (where γ is the Euler-Mascheroni constant), we
have

T ′(N) = O(NHN logN)



94 complexity analysis and implementation

= O(N(logN+ γ+
1

2N
+
1

N2
) logN)

= O(N log2N).

Given Theorem 5.2, we also know that T ′(N) cannot be faster than
Ω(N log2N), thereby setting a lower bound on the complexity of the
average case.

As a result, T(N) = Θ(KN log2N) in the average case.

Theorem 5.7. For c2KN 6 C(N) 6 c3KN (for all N > 1), the time
complexity for building a decision tree in the average case is Θ(KN logN).

Proof. In the average case, T(N) = KT ′(N), whereT ′(1) = c′1
T ′(N) = C′(N) + 1

N−1

∑N−1
i=1 T

′(i) + T ′(N− i).
(5.20)

Let us first consider an upper bound on T ′(N) by assuming that
C ′(N) = c3N. By symmetry and by multiplying both sides of the
last equation by (N− 1), it comes

(N− 1)T ′(N) = c3N(N− 1) + 2

N−1∑
i=1

T ′(i). (5.21)

For N > 3, substituting N with N− 1 similarly yields

(N− 2)T ′(N− 1) = c3(N− 1)(N− 2) + 2

N−2∑
i=1

T ′(i). (5.22)

Subtracting Equation 5.22 from 5.21, it comes after simplifications and
division of both sides by N(N− 1):

T ′(N)

N
=
T ′(N− 1)

N− 1
+
2c3
N

. (5.23)

Let us now introduce S(N) =
T ′(N)
N . From the last equation, it comes

S(N) = S(N− 1) +
2c3
N

= c′1 + 2c3

N∑
i=2

1

i

= O(2HN) (5.24)

where HN is the N-th harmonic number. Using

HN ≈ logN+ γ+
1

2N
+O(

1

N2
) (5.25)

as approximation (where γ is the Euler-Mascheroni constant), we
have

T ′(N) = O(2HNN)
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= O(2N logN+ 2Nγ+ 1+
2

N
)

= O(N logN). (5.26)

In the exact same way, when assuming that C ′(N) = c2N, T ′(N) can
be shown to be lower bounded by Ω(N logN). As a result, T(N) =

Θ(KN logN) in the average case.

From Theorems 5.2-5.7, the total time complexity for building an
ensemble of M randomized trees can finally be derived. As summa-
rized in Table 5.1, complexity remains within polynomial time for
all variants studied in this work. In the best case, complexity is linear
with the number of split variables considered at each node (i.e., O(K))
and linearithmic or quasilinear with the number of (unique) samples
effectively used to build each tree (i.e., O(N logN) or O(N log2N)). In
the very worst case however, this later dependency becomes quadratic
(i.e., O(N2) or O(N2 logN)), which might greatly affect performance
in the context of large datasets. Reassuringly, the analysis of the aver-
age case shows that pathological cases are not dominant and that, on
average, for all methods, complexity behaves as in the best case.

As expected, the complexity of Bagging [Breiman, 1994] is about
M times as large as the complexity of building a single decision tree.
Yet, by taking into account the fact that bagged decision trees are built
on bootstrap replicates Lm that contain about 63.2% of unique sam-
ples, complexity can be expressed with respect to Ñ = 0.632N instead
of N. From an implementation point of view, repeated occurrences
of the same input vector can indeed be accounted for using sample
weights for the evaluation of the impurity criterion, thereby simulat-
ing a learning set of N samples from Ñ unique samples while re-
ducing the effective size of the learning set. Assuming close constant
factors, building a single bagged decision tree is therefore asymptoti-
cally

lim
N→∞ N log2N

0.632N log2 0.632N
= 1.582 (5.27)

times faster than building a regular decision tree. The complexity of
RF is identical to Bagging, except that the dependency to p becomes
a dependency to K, resulting in an average speedup of pK . In other
words, not only choosing K 6 p improves accuracy, it also signifi-
cantly decreases the time required for building trees in a forest. In
ETs, due to the fact that samples are no longer required to be sorted
at each node, the dependency to N becomes linearithmic instead of
quasilinear. With respect to RF, speedup is asymptotically O(logN)

in the best and average cases. Finally, PERT shows to be the fastest
method of all, which is due to the fact that only a single split vari-
able is considered at each split. For K = 1 however, ETs and PERT
have identical time complexity. Note that the analysis presented here
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Best case Worst case Average case

CART Θ(pN log2N) O(pN2 logN) Θ(pN log2N)

Bagging Θ(MpÑ log2 Ñ) O(MpÑ2 log Ñ) Θ(MpÑ log2 Ñ)

RF Θ(MKÑ log2 Ñ) O(MKÑ2 log Ñ) Θ(MKÑ log2 Ñ)

ETs Θ(MKN logN) Θ(MKN2) Θ(MKN logN)

PERT Θ(MN logN) Θ(MN2) Θ(MN logN)

Table 5.1: Time complexity for building forests of M randomized trees. N
denotes the number of samples in L, p the number of input vari-
ables and K the number of variables randomly drawn at each node.
Ñ = 0.632N, due to the fact that bootstrap samples draw, on aver-
age, 63.2% of unique samples.

is only valid asymptotically. In practice, constant factors might lead
to different observed results, though they should not significantly de-
viate from our conclusions if algorithms are all implemented from a
common code-base.

5.2 complexity of the prediction procedure

A second facet of computational complexity in random forests is the
time required for making predictions. For a single test point, this rep-
resents the number of operations for traversing each of the M trees,
from the root to one of the leaves. As such, computational complexity
is directly related to the average depth of the leaves reached by the
test samples. Assuming that both the learning set and the test set are
drawn from the same probability distribution, the complexity analy-
sis of the prediction procedure therefore reduces to the analysis of
the average depth of the leaves induced by a learning set L.

As in Section 5.1, let us assume a fully developed decision tree,
where each leaf contains exactly one sample from L. Likewise let us
derive the average depth D(N) of the leaves in the best, worst and
average cases.

Theorem 5.8. In the best case, the average depth of the leaves is Θ(logN).

Proof. For a decision tree which is perfectly balanced, node samples
are recursively split into two subsets of Nt2 samples at each node,
which leads to the following recurrence equation in the best case:D(1) = 1

D(N) = 1+ 1
2D(N2 ) +

1
2D(N2 ) = 1+D(N2 ).

(5.28)

With this equation, the second case of the Master Theorem applies for
f(N) = 1, a = 1, b = 2 and k = 0. Accordingly,D(N) = Θ(logk+1N) =

Θ(logN).
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Theorem 5.9. In the worst case, the average depth of the leaves is Θ(N).

Proof. In the worst case, the recurrence equation of the average depth
of the leaves is:D(1) = 1

D(N) = 1+ 1
ND(1) + N−1

N D(N− 1).
(5.29)

Let us now introduce S(N) = ND(N). From the previous equation, it
comes

S(N) = N+ 1+ S(N− 1)

= 1+

N∑
i=2

(i+ 1)

=
N2

2
+
3N

2
− 1. (5.30)

Since D(N) =
S(N)
N , we have D(N) = 1

2(N− 2
N + 3) = Θ(N).

Theorem 5.10. In the average case, the average depth of the leaves isΘ(logN).

Proof. In the average case, the recurrence equation of the average
depth of the leaves is:D(1) = 1

D(N) = 1+ 1
N−1

∑N−1
i=1 ( iND(i) + N−i

N D(N− i)).
(5.31)

By symmetry and by multiplying both sides by N(N− 1), it comes

N(N− 1)D(N) = N(N− 1) + 2

N−1∑
i=1

iD(i). (5.32)

For N > 3, substituting N with N− 1 similarly yields

(N− 1)(N− 2)D(N− 1) = (N− 1)(N− 2) + 2

N−2∑
i=1

iD(i). (5.33)

Subtracting Equation 5.33 from 5.32, it comes after simplifications and
division of both sides by N(N− 1)

D(N) = D(N− 1) +
2

N

= 1+ 2

N∑
i=2

1

i

= 2HN − 1 (5.34)

where HN is the N-th harmonic number. Using

HN ≈ logN+ γ+
1

2N
+O(

1

N2
) (5.35)

as approximation (where γ is the Euler-Mascheroni constant), we
have D(N) = Θ(logN).



98 complexity analysis and implementation

From Theorems 5.8-5.10, the total time complexity for computing
predictions out of a forest of M trees is therefore Θ(M logN) in the
best case and Θ(MN) is the very worst case. In accordance with pre-
vious results, the analysis of the average case shows however that
pathological cases are not dominant and that, on average, complexity
behaves once again as in the best case.

Randomized trees are not equiprobable

When trees are built totally at random, that is when all sizes of par-
titions are equiprobable, the analysis of the average case shows that
the average depth of the leaves remains logarithmic with size of the
learning set. Assuming unique input values for all samples and con-
sidering the special case p = 1, the random construction of a decision
tree is in fact equivalent to the insertion in random order of N unique
keys into a binary search tree. As shown exactly in [Sedgewick and
Flajolet, 2013], the average depth of a binary search tree built from
equiprobable permutations of N unique keys is O(logN), which cor-
roborates our results. By contrast, if trees were drawn uniformly at
random from the set of all possible trees (i.e., in the case of Cata-
lan trees), then the average depth can be shown to be O(

√
N). The

fundamental difference is that binary search trees built from random
permutations are not all equiprobable. There may exist several permu-
tations mapping to the same binary search tree. In particular, short
trees are more likely to occur than degeneratedly deep trees. Accord-
ingly, decision trees, even built totally at random, are also not all
equiprobable. Because of the recursive construction procedure, deep
degenerated decision trees are less likely than shorter decision trees.

5.3 implementation

Implementing decision trees and random forests involves many is-
sues that are easily overlooked if not considered with care. In this
section, we describe the random forest implementation that has been
developed in this work and deployed within the Scikit-Learn machine
learning library [Pedregosa et al., 2011]. The first part of this section is
based on previous work published in [Buitinck et al., 2013].

5.3.1 Scikit-Learn

The Scikit-Learn library provides a comprehensive suite of machine
learning tools for Python. It extends this general-purpose program-
ming language with machine learning operations: learning algorithms,
preprocessing tools, model selection procedures and a composition
mechanism to produce complex machine learning work-flows. The
ambition of the library is to provide efficient implementations of well-
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established algorithms within a programming environment that is ac-
cessible to non-experts and reusable in various scientific areas. The
library is distributed under the simplified BSD license to encourage
its use in both academia and industry.

Scikit-Learn is designed to tie in with the set of numeric and sci-
entific packages centered around the NumPy [Oliphant, 2007] and
SciPy [Van der Walt et al., 2011] libraries. NumPy augments Python
with a contiguous numeric array datatype and fast array computing
primitives, while SciPy extends it further with common numerical
operations, either by implementing these in Python/NumPy or by
wrapping existing C/C++/Fortran code. The name “scikit” derives
from “SciPy toolkit” and is shared with scikit-image. IPython [Perez
and Granger, 2007] and Matplotlib [Hunter, 2007] complement SciPy
to provide a matlab-like working environment suited for scientific
use.

Since 2007, Scikit-Learn has been developed by more than a dozen
core developers, mostly researchers in fields ranging from neuroscience
to astrophysics. It also benefits from occasional contributors propos-
ing small bug-fixes or improvements. Development proceeds on GitHub1,
a platform which greatly facilitates this kind of collaboration. Be-
cause of the large number of developers, emphasis is put on keep-
ing the project maintainable. In particular, code must follow specific
quality guidelines, such as style consistency and unit-test coverage.
Documentation and examples are required for all features, and ma-
jor changes must pass code review by at least two other developers.
The popularity of the project can be gauged from various indicators
such as the hundreds of citations in scientific publications, successes
in various machine learning challenges (e.g., Kaggle), and statistics
derived from our repositories and mailing list. At the time of writ-
ing2, the project is watched by 3,445 people and forked 1,867 times
on GitHub; the mailing list receives more than 300 mails per month;
version control logs show more than 200 unique contributors to the
code-base and the online documentation receives 37,000 unique visi-
tors and 295,000 pageviews per month.

Our implementation guidelines emphasize writing efficient but read-
able code. In particular, we focus on making the code-base main-
tainable and understandable in order to favor external contributions.
Whenever practical, algorithms implemented in Scikit-Learn are writ-
ten in Python, using NumPy vector operations for numerical work.
This allows the code to remain concise, readable and efficient. For
critical algorithms that cannot be easily and efficiently expressed as
NumPy operations, we rely on Cython [Behnel et al., 2011] to achieve
competitive performance and scalability. Cython is a compiled pro-
gramming language that extends Python with static typing. It pro-

1 https://github.com/scikit-learn

2 July 2014.

https://github.com/scikit-learn
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duces efficient C extension modules that are importable from the
Python run-time system. Examples of Cython code in Scikit-Learn
are stochastic gradient descent for linear models, some clustering al-
gorithms, and decision trees.

5.3.1.1 Data

Machine learning revolves around data, so good data structures are
paramount to designing software for it. In most tasks, data is modeled
by a set of p numerical variables, so that a single sample is a vector
x ∈ Rp. A collection of such samples is naturally regarded as the
rows in a matrix X of size N× p. In the common case of supervised
learning (classification, regression), we have an additional vector y of
length N at training time and want an algorithm to produce such a y
for new data.

Scikit-Learn’s data representation is kept as close as possible to this
matrix formulation: datasets are encoded as two-dimensional NumPy
arrays or SciPy sparse matrices [Van der Walt et al., 2011], while target
vectors are flat arrays of numbers or strings. While these may seem
rather unsophisticated when compared to more object-oriented con-
structs, such as the ones used by Weka [Hall et al., 2009], they allow
us to rely on efficient NumPy and SciPy vector operations while keep-
ing the code close to the textbook. Given the pervasiveness of NumPy
and SciPy in many other scientific Python packages, many scientific
users of Python will already be familiar with these data structures,
and a collection of available data loading and conversion tools fa-
cilitate interoperability. For tasks where the inputs are text files or
semi-structured objects, we provide vectorizer objects that efficiently
convert such data to the NumPy or SciPy formats.

The public interface is oriented towards processing a batch of sam-
ples, rather than a single sample, in each API call. While classifica-
tion and regression algorithms can make predictions for single sam-
ples, Scikit-Learn objects are not optimized for this use case. (The
online learning algorithms in the library are intended to take mini-
batches.) Batch processing makes optimal use of NumPy and SciPy
by preventing the overhead inherent to Python function calls or due
to per-element dynamic type checking. Although this might seem to
be an artifact of the Python language, and therefore an implemen-
tation detail that leaks into the API, we argue that APIs should be
designed so as not to tie a library to a suboptimal implementation
strategy. Batch processing also enables fast implementations in lower-
level languages, where memory hierarchy effects and the possibility
of internal parallelization come into play.
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5.3.1.2 Estimators

The estimator interface is at the core of the library. It defines instanti-
ation mechanisms of objects and exposes a fit method for learning
a model from training data. All supervised and unsupervised learn-
ing algorithms (e.g., for classification, regression or clustering) are of-
fered as objects implementing this interface. Machine learning tasks
like feature extraction and selection are also provided as estimators.

Estimator initialization and actual learning are strictly separated,
in a way that is similar to partial function application: an estimator
is initialized from a set of named hyper-parameter values (e.g., the
number of trees in a forest) and can be considered a function that
maps these values to actual learning algorithms. The constructor does
not see any actual data. All it does is attach the given parameters to
the object. For the sake of model inspection, hyper-parameters are set
as public attributes, which is especially important in model selection
settings. Default hyper-parameter values are provided for all built-in
estimators. These defaults are set to be relevant in many common
situations in order to make estimators effective out-of-the-box.

Actual learning is performed by the fit method. This method is
called with training data (e.g., supplied as two arrays X_train and
y_train in supervised learning estimators). Its task is to run a learn-
ing algorithm and to determine model-specific parameters from the
training data and set these as attributes on the estimator object. As
a convention, the parameters learned by an estimator are exposed
as public attributes with names suffixed with a trailing underscore
(e.g., coef_ for the learned coefficients of a linear model), again to
facilitate model inspection. In the partial application view, fit is a
function from data to a model of that data. It always returns the esti-
mator object it was called on, which now serves as a model and can
be used to perform predictions or transformations of new data.

The choice to let a single object serve dual purpose as estimator and
model has been driven by usability and technical considerations. Hav-
ing two coupled instances (an estimator object used as a factory, and
a model object produced by the estimator) makes a library harder to
learn and use. From the developer point of view, decoupling estima-
tors from models would create parallel class hierarchies and increases
the overall maintenance burden. A good reason for decoupling would
be to make it possible to ship a model to a new environment where
the full library cannot be installed. However, our inspectable setup
where model parameters are documented public attributes and pre-
diction formulas follow standard textbooks, goes a long way in solv-
ing this problem.

To illustrate the initialize-fit sequence, let us consider a supervised
learning task using a single decision tree. Given the API defined
above, solving this problem is as simple as the following example.
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# Import the tree module

from sklearn.tree import DecisionTreeClassifier

# Instantiate and set hyper-parameters

clf = DecisionTreeClassifier(min_samples_split=5)

# Learn a model from data

clf.fit(X_train, y_train)

In this snippet, a DecisionTreeClassifier estimator is first initial-
ized by setting the min_samples_split hyper-parameter to 5 (See
Section 3.5). Upon calling fit, a model is learned from the train-
ing arrays X_train and y_train, and stored on the object for later
use. Since all estimators share the same interface, using a different
learning algorithm is as simple as replacing the constructor (the class
name). To build a random forest on the same data, one would sim-
ply replace DecisionTreeClassifier(min_samples_split=5) in the
snippet above by RandomForestClassifier().

In Scikit-Learn, classical learning algorithms are not the only ob-
jects to be implemented as estimators. For example, preprocessing
routines (e.g., scaling of features) or feature extraction techniques
(e.g., vectorization of text documents) also implement the estimator
interface. Even stateless processing steps, that do not require the fit

method to perform useful work, implement the estimator interface.
This design pattern is of prime importance for consistency, composi-
tion and model selection reasons, as further illustrated in [Buitinck
et al., 2013].

5.3.1.3 Predictors

The predictor interface extends the notion of an estimator by adding a
predict method that takes an array X_test and produces predictions
for X_test, based on the learned parameters of the estimator (we call
the input to predict “X_test” in order to emphasize that predict

generalizes to new data). In the case of supervised learning estima-
tors, this method returns the predicted labels or values computed by
the model:

# Make predictions on new data

y_pred = clf.predict(X_test)

Apart from predict, predictors may also implement methods that
quantify the confidence of predictions. In the case of linear models,
the decision_function method returns the distance of samples to the
separating hyperplane. Some predictors also provide a predict_proba

method which returns class probability estimates.
Finally, supervised predictors provide a score function to assess

their performance on a batch of input data. This method takes as
input arrays X_test and y_test and typically computes the coeffi-
cient of determination between y_test and predict(X_test) in re-
gression, or the accuracy in classification. The only requirement is
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that the score method return a value that quantifies the quality of its
predictions (the higher, the better). An unsupervised estimator may
also expose a score function to compute, for instance, data likelihood
under its model.

5.3.1.4 API for random forests

Scikit-Learn provides efficient implementations of decision trees and
random forests, all offered as objects implementing the estimator and
predictor interfaces presented above. Most of the hyper-parameters
described in this work are supported.

DecisionTreeClassifier, DecisionTreeRegressor:
Implement single decision trees [Breiman et al., 1984], as de-
scribed in Chapter 3.

BaggingClassifier, BaggingRegressor:
Implement Bagging [Breiman, 1994], Random Subspaces [Ho,
1998] and Ensembles of Random Patches [Louppe and Geurts,
2012], as described in Chapters 4 and 8.

RandomForestClassifier, RandomForestRegressor:
Implement Random Forest [Breiman, 2001], as described in Chap-
ter 4.

ExtraTreesClassifier, ExtraTreesRegressor:
Implement Extremely Randomized Trees [Geurts et al., 2006a],
as described in Chapter 4.

5.3.2 Internal data structures

Among all possible ways of representing a decision tree, one of the
simplest and most direct representations is to adopt an object-oriented
approach. In this paradigm, a decision tree is naturally represented
as a hierarchy of high-level objects, where each object corresponds to
a node of the tree and comprises attributes referencing its children
or storing its split and value. Such a representation would make for
a correct, intuitive and flexible implementation but may in fact not
be the most appropriate when aiming for high-performance. One of
the biggest issues indeed is that object-oriented programming usually
fragments complex and nested objects into non-contiguous memory
blocks, thereby requiring multiple levels of indirection for traversing
the structure. In particular, this design can easily impair computing
times in performance-critical applications, e.g., by not making it pos-
sible to leverage CPU cache or pre-fetching mechanisms. At the price
of less abstraction and flexibility, we adopt instead in this work a
compact low-level representation of decision trees, allowing us for
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a fine-grained and complete control over memory management and
CPU mechanisms.

Let t ∈ {0, . . . , T − 1} denote unique node identifiers and let t = 0

corresponds to the identifier of the root node. The data structure that
we propose for representing decision trees consists in using contigu-
ous arrays for simultaneously storing the content of all nodes, as de-
fined below:

left_child (array of T integers):
Store the node identifier left_child[t] ∈ {0, . . . , T − 1} of the
left child of node t.

right_child (array of T integers):
Store the node identifier right_child[t] ∈ {0, . . . , T − 1} of the
right child of node t.

feature (array of T integers):
Store the identifier feature[t] ∈ {1, . . . ,p} of the variable used
for splitting node t.

threshold (array of T reals):
Store the cut-off value threshold[t] ∈ R used for splitting
node t.

impurity (array of T reals):
Store the impurity i(t) at node t, as computed on the learning
set L.

n_samples (array of T integers or reals):
Store the (weighted) number n_samples[t] of learning samples
reaching node t.

value (array of T × J reals or T reals):
Store the class probability estimates (i.e., the number of samples
of each class) or the mean regression values, as computed from
the learning samples reaching node t.

As an example, Table 5.2 illustrates the array representation of the
decision tree shown in Figure 5.2, as built from the learning set L

of Figure 5.1. Internal nodes (t0, t2, t3 and t6) are nodes for which
the corresponding values in left_child, right_child, feature and
threshold are not empty, while leaves (t1, t4, t7 and t8) correspond
to nodes for which these values are not defined. In the case of classifi-
cation, the value array contains the number of samples of each class
for each node. From these, class probability estimates pL(Y = c|t)

can be computed by dividing value[t][c] by the number of sam-
ples n_samples[t] in t. In the case of regression, value[t] would
contain the average output value for the samples in t. Finally, let us
note that storing node impurities in the impurity array is not strictly
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Figure 5.1: Binary classification task.
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Figure 5.2: Decision tree learned
from Figure 5.1.

t 0 1 2 3 4 5 6 7 8

left_child 1 – 3 5 – – 7 – –

right_child 2 – 4 6 – – 8 – –

feature 2 – 2 1 – – 1 – –

threshold 0.303 – 0.696 0.296 – – 0.703 – –

impurity 0.273 0. 0.368 0.482 0.065 0.051 0.48 0.042 0.

n_samples 300 99 201 113 88 38 75 46 29

value 251/49 99/0 152/49 67/46 85/3 37/1 30/45 1/45 29/0

Table 5.2: Array representation of the decision tree in Figure 5.2.

necessary, since these values are only used during construction. Yet,
storing them can prove to be valuable, e.g., for later inspection of the
decision tree or for computing variable importances (see Chapter 6)
more readily.

By implementing the array representation as dynamic tables [Cor-
men et al., 2001], insertion of new nodes has an O(1) amortized
cost, while keeping memory allocations at a minimum and thereby
reducing the overhead that would otherwise occur using per-node
data structures. Maintaining the representation contiguously in mem-
ory also brings the benefits of leveraging CPU caches, which might
greatly improve performance when fast predictions are critical. Since
nodes are accessed successively and repeatedly at test time, storing
them in nearby memory locations is indeed highly recommended.
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5.3.3 Builders

The implementation of the induction procedure in Scikit-Learn re-
volves around three nested components:

(a) The first component is a Builder object whose role is to effec-
tively build the tree array representation presented above, by
recursively partitioning nodes using splits found by a Splitter

object.

(b) The second component is a Splitter object whose role is to
find splits on internal nodes.

(c) The third component is a Criterion object whose role is to eval-
uate the goodness of a split.

The most direct Builder implementation is the depth-first greedy
induction procedure as originally outlined in Algorithm 3.2. A critical
aspect of this algorithm is how to keep account of the the input sam-
ples (x,y) ∈ Lt that arrive at node t. A straightforward solution is to
store lists of indices of the input samples at node t. As pointed out
in [Criminisi and Shotton, 2013], building many such lists is however
inefficient because of repeated memory allocations and deallocations.
A better solution is to have instead all indices stored in a single static
array and to use in-place reordering operations when partitioning t.
More specifically, let assume that samples is the list of all indices
and that start and end are bounds such that samples[start:end]

contains the sample indices at the current node t. If t is split on
feature feature[t] and threshold threshold[t], then Lt can be par-
titioned into LtL and LtR by reorganizing samples[start:end] into
samples[start:pos] and samples[pos:end], such that all samples in
the first part are on the left side of the split while all samples in the
second part are on the right side of the split. The induction procedure
then proceeds by pushing the bounds start:pos and pos:end on the
stack S, as an efficient way to effectively represent LtL and LtR .

An alternative implementation of the Builder interface consists in
replacing the stack S in Algorithm 3.2 by a priority queue, hence
changing the order in which the nodes are split. In particular, if nodes
t are prioritized by weighted potential impurity decrease p(t)∆i(s∗, t)
(where s∗ is the best split on t), then the greedy induction procedure
switches from a depth-first construction of the tree to a best-first induc-
tion procedure. In this way, an additional stopping criterion can be de-
fined as the maximum number max_leaf_nodes of leaves in the tree.
If nodes are expanded in best-first order, then the resulting tree only
includes the most significant splits, thereby pre-pruning all (seem-
ingly) irrelevant branches without wasting computational resources.
Alternatives also include prioritizing nodes according to their impu-
rity i(t) or their size Nt.
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Likewise, the stack S in Algorithm 3.2 can be replaced by a deque
data structure, in which case the induction procedure switches to a
breadth-first construction of the tree. With some modifications, breadth-
first construction shows to be more efficient when it is expensive to
randomly access the data [Criminisi and Shotton, 2013], e.g., when
data are too big to fit into memory and must be streamed from disk.
Breadth-first induction also proves to be an efficient strategy when
combined with parallelism, e.g., for building a whole level of the de-
cision tree simultaneously using multiple cores [Liao et al., 2013].

5.3.4 Splitters

In Scikit-Learn, Splitter objects implement search procedures for
finding splits on internal nodes. In the case of decision trees, they
implement algorithms 3.3 and 3.4 for finding the best split over all
p input variables. In the case of randomized trees, they implement
the search procedure 4.1 over K 6 p randomly drawn input variables,
combined with either algorithm 3.4 or 4.3 to respectively obtain Ran-
dom Forests or Extremely Randomized Trees. Again, several aspects
of the algorithm should be considered with care to obtain an efficient
implementation:

Data access.
Looking for the best split on the input variable Xj and parti-
tioning Lt requires to repeatedly access over the node sample
values xi,j (i.e., over values in the j-th column if samples are
represented as a two dimensional array), which may comes at
a non negligible cost if data is not ordered properly. However,
due to CPU caching and pre-fetching effects, the closer the val-
ues in memory, usually the lower it takes to access them. In our
case, this can be exploited in two ways to minimize the cost of
data access:

- By storing the learning set L using column-major order
(i.e., Fortran array memory layout), hence storing the val-
ues xi,j of Xj (for all samples i = 1, . . . ,N) contiguously in
memory.

- By pre-fetching the node sample values xi,j (for i = 1, . . . ,Nt)
manually into a static and contiguous buffer, on which the
search procedure is then applied.

Sort algorithm.
In CART and Random Forests, finding the best split on Xj re-
quires to sort the sample indices samples[start:end] along
their respective values on Xj, i.e., such that

X[samples[start], j] 6 · · · 6 X[samples[start+i], j]



108 complexity analysis and implementation

6 · · · 6 X[samples[end-1], j],

for i = 0, . . . ,Nt − 1. As shown in Section 5.1, this operation
drives the complexity of the overall induction procedure and is
therefore critical in the implementation of the algorithm.

To guarantee the lowest time complexity in all cases, we rely on
Introsort [Musser, 1997] which combines Quicksort and Heap-
sort into a hybrid sorting algorithm. Basically, sorting in In-
trosort begins with Quicksort and then switches to Heapsort
when the depth of partitioning exceeds Θ(logN). As such, the
practical Θ(N logN) performance of Introsort is comparable to
the average performance of Quicksort, except that performance
in the worst case is bounded to Θ(N logN) due to Heapsort,
instead of Θ(N2) in the worst case for Quicksort. Addition-
ally, Quicksort is implemented using the median-of-three as
pivot [Bentley and McIlroy, 1993], hence yielding better parti-
tions and further improving performance.

In the context of the tree induction procedure, let us finally no-
tice that partitioning node samples Lt into subsets LtL and LtR
not only makes them purer in terms of the output variable Y,
it also indirectly makes node samples more and more identical
in terms of the values taken by the input variables. As we get
deeper into the tree, this property can be leveraged by imple-
menting Quicksort as a 3-way recursive partition [Bentley and
McIlroy, 1993], as illustrated in Figure 5.3. In this variant, ele-
ments that are identical to the pivot are all set at their final po-
sitions in a single recursive call, hence accelerating the sorting
procedure. If the number of distinct values is constant, 3-way
Quicksort can be shown [Sedgewick and Wayne, 2011] to re-
duce running times from O(N logN) to O(NH), where H is the
Shannon entropy defined on the frequencies of the values to be
sorted. As a consequence, in the case of many duplicates (i.e.,
when H = O(1)), C(N) = O(N) and using 3-way Quicksort for
sorting the sample indices in fact reduces the overall complexity
of Random Forests to the asymptotic complexity of Extremely
Randomized Trees (see Section 5.1).

samples

start end

l i r

< = >

Figure 5.3: 3-way partition in Quicksort. Once i=r, elements that are identi-
cal to the pivot are all set at their final positions samples[l:r],
in a single recursive call. The sub-arrays samples[start:l] and
samples[r:end] are then recursively sorted.
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Skipping locally constant input variables.
In the extreme case, recursively partitioning node samples might
result in input variables Xj to become locally constant at t. That
is, xj = x′j for all (x,y), (x′,y) ∈ Lt. In such a case, there is
no valid split on Xj and trying to find one at t, but also at
any of the descendant nodes, is a waste of computational re-
sources. Accordingly, Algorithm 4.1 can be extended to account
for variables that are known to be constant, thereby skipping
non-informative variables if we know in advance that no valid
split can be found. To stay as close as possible to the original al-
gorithm, note however that constant variables are still included
when drawing K variables at random.

Split approximations.
In Chapter 4, we showed that an increase of bias due to ran-
domization is beneficial as long as it sufficiently decorrelates
the predictions of the individual trees. Given this result, a le-
gitimate question is to wonder if finding the very best splits s∗j
really is imperative in the first place to achieve good accuracy in
random forests. As proved by the good results usually obtained
by Extremely Randomized Trees, even splits that are drawn at
random are in fact often sufficient to reach good (sometimes
even better) performance. More importantly, not only this yields
comparable accuracy, it is also more computationally efficient.
At midway between exact best splits (as in Algorithm 3.4) and
random splits (as in Algorithm 4.3), an intermediate and prag-
matic solution is therefore to consider approximations of the
best splits. The two most common strategies are based on sub-
sampling and binning:

- Let N0 denote an upper limit on the node sample size. If
Nt > N0, the subsampling approximation of the best split
s∗j at t on Xj consists in looking for the best split using
only N0 randomly drawn node samples from Lt, and all
node samples otherwise. The rationale behind this strategy
is that, in the first nodes of the tree, the best splits are often
so markedly superior to all other splits that this clear-cut
information also reflects in a subsample. For nodes further
down in the tree (i.e., for Nt 6 N0), splits are usually less
marked but then all node samples in Lt are used, hence
guaranteeing to find the same splits as in the original pro-
cedure. Historically, the subsampling strategy was first pro-
posed in [Breiman et al., 1984] in the context of single deci-
sion trees, for datasets too large to be held in memory.

- An alternative but close strategy is to consider only a sub-
set of the possible discretization thresholds v′k instead of
exhaustively evaluating all candidate splits. In binning, this
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is performed by grouping together node samples that are
close to each other into bins and then evaluating only the
thresholds in-between these groups. The simplest strategy
of all is to divide the value interval of Xj at t into D inter-
vals of equal length. Another strategy is to sort the node
samples along their respective values of Xj and to parti-
tion them into D subsets of equal size. More elaborate al-
gorithms, also known as attribute discretization procedures,
are reviewed in [Zighed and Rakotomalala, 2000].

Pre-sorting data.
As shown earlier, sorting node samples for each candidate split
significantly impacts the overall complexity of the induction
procedure. An alternative strategy is possible [Breiman, 2002]
and consists in presorting the samples for all p input variables
before the construction of the tree. More specifically, let i =

1, . . . , Ñ denote the original indices of the unique input samples
in Lm. For each input variable Xj (for j = 1, . . . ,p), the sorted
indices σj1, . . . ,σj

Ñ
, such that

x
σ
j
1,j 6 · · · 6 xσj

Ñ
,j, (5.36)

can be computed in O(pÑ log Ñ). Given these indices, finding
the best split at a node then simply amounts to iterate, in that
order, over the samples σj1, . . . ,σj

Ñ
(for all K of the split variables

Xj), which reduces complexity toO(KÑ) instead ofO(KÑ log Ñ).
Partitioning the node samples into tL and tR then requires to
partition all p lists of sorted indices into 2p sub-lists of ÑtL and
ÑtR sorted indices σj1, . . . ,σj

ÑtL
and σj1, . . . ,σj

ÑtR
, which can be

done in O(pÑ). In total, the within-node complexity is

C(Ñ) = O(KÑ+ pÑ) = O(pÑ). (5.37)

Using this alternative strategy, the time complexity of RF for the
best, the worst and the average cases is respectivelyO(MpÑ log Ñ),
O(MpÑ2) andO(MpÑ log Ñ), as derived from theorems 5.3, 5.5
and 5.7 for K = p. Neglecting constant factors, the ratio between
the two implementations is O( p

K log Ñ
), which might not neces-

sarily lead to faster building times depending on K and the size
of the problem. For this reason, pre-sorting is in fact not used
within the Scikit-Learn implementation of random forests.

5.3.5 Criteria

The last components of the implementation of decision trees in Scikit-
Learn are Criterion objects for evaluating the goodness of splits.
Supported criteria are "gini" and "entropy" in classification, and
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the reduction of variance "mse" in regression. All of them implement
the update mechanisms described in Section 3.6.3.1, such that the it-
erative evaluation of Nt − 1 splits on an ordered variable remains a
O(Nt) operation.

5.3.6 Parallelization

Scikit-Learn implementation of random forests supports parallelism
to distribute computations on multi-core architectures. The simple,
yet effective, approach that we implement is to consider the construc-
tion of a forest as an embarrassingly parallel problem, in which theM
decision trees are built concurrently and independently on multiple
processors. Assuming no overhead due to parallelization, the theoret-
ical speedup of this strategy is equal to the number Np of processors
used for building the forest. In practice however, this upper bound is
not always strictly reached due to the variance of the time required
for building randomized trees. It may indeed happen that building
trees take longer than building some others, thereby under-utilizing
computational resources since jobs may have finished sooner than
others.

More fine-grained approaches consist in building decision trees one
at time, but using multiple processors. In the node-based decomposition,
the construction of a tree is distributed by building multiple nodes
concurrently. In this case, workload can be divided between proces-
sors using a breadth-first induction procedure and assigning whole
sub-trees to develop once the waiting queue contains Np nodes. Once
again however, sub-trees may take longer to build than others, hence
under-utilizing computational resources if the resulting decision tree
is not balanced. To alleviate this issue, processors may be assigned
single nodes to develop (that is, one at a time) using a producer-
consumer scheme to balance workload in a fair way. Unfortunately,
this latter approach often proves to be dominated in practice by the
overhead due to task assignment and bookkeeping activities. Alter-
natively, the construction of a tree can also be distributed using an
attribute-based decomposition. In this case, the workload is divided by
parallelizing the search of the K best splits at a given node (see Algo-
rithm 4.1). For detailed reviews on the topic, see [Kufrin, 1997; Srivas-
tava et al., 2002].

Using similar or hybrid approaches, let us finally note that the
parallel induction of random forests extend to other distributed ar-
chitectures, including GPUs [Sharp, 2008; Liao et al., 2013], FPGA
[Narayanan et al., 2007] or clusters [Mitchell et al., 2011].
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5.4 benchmarks

5.4.1 Complexity on artificial data

In this section, we study the empirical complexity of random forests
on artificial data. Our goal is to investigate whether the theoretical
results that have been derived in Sections 5.1 and 5.2 hold true in
practice, even without our assumptions necessarily satisfied.

For our experiments on simulated data, we consider the Fried-
man #1 artificial regression problem [Friedman, 1991]. It consists in 10
independent input variables X1, . . . ,X10, each uniformly distributed
over [0, 1]. The output Y is a real-valued variable and is given by

Y = 10 sin(πX1X2) + 20(X3 − 0.48)2 + 10X4 + 5X5 + ε (5.38)

where ε is N(0, 1). We study the effects of the number M of trees in
the forest, the number N of input samples, the number p of input
variables (by adding new irrelevant variables), the number K of vari-
ables drawn at each node and the effects of using bootstrap replicates
Lm instead of L. Hyper-parameters are studied independently for
both (fully developed) Random Forests (RF) and Extremely Random-
ized Trees (ETs) built on N = 1000 learning samples of p = 10 input
variables, with M = 250 trees and K =

√
p set by default. Statistics

reported below are averages over 10 runs. Figures 5.4-5.8 all illus-
trate the effect of one the hyper-parameters with respect to the time
required for building a forest (on the left plots), the average depth
of the trees (in the middle plots) and the mean squared error of the
ensemble (on the right plots).

Figure 5.4 first demonstrates the effect of the number M of trees.
As expected, the time complexity of the induction procedure is O(M)

while the average depth of the leaves is constant with M, since the
later has no effect on the structure of the individual trees. The left
plot also confirms that ETs are faster to build than RF, even if trees in
ETs are on average one level deeper that trees in RFs, as shown in the
middle plot. Finally, the mean squared error of the model shows to
be inversely proportional to the number of trees in the forest, which
confirms our previous results on variance reduction from Chapter 4.

Figure 5.5 considers the effect of the number N of training samples.
As shown on the left plot, building times grow slightly faster than
linearly, which appears to confirm the respective O(N log2N) and
O(N logN) dependencies of RF and ETs with the size of the learning
set (as derived in Section 5.1). Similarly, the middle plot confirms that
the average depth of the leaves grows inO(logN) withN (as shown in
Section 5.2). As expected, the right plot also illustrates that the more
the data, the better the resulting model. Additionally, it shows that RF
and ETs tend towards the same error rate as N increases, even if RF
was strictly better on less data. This confirms once again that finding
the very best splits is not strictly necessary to achieve good results.
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Figure 5.4: Effect of the number M (= n_estimators) of trees on train-
ing time (left), average depth (middle) and mean squared error
(right). N = 1000, p = 10, K =

√
p.
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Figure 5.5: Effect of the size N (= n_train) of the learning set on train-
ing time (left), average depth (middle) and mean squared error
(right). M = 250, p = 10, K =

√
p.
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Figure 5.6: Effect of the number p (= n_features) of input variables on train-
ing time (left), average depth (middle) and mean squared error
(right). N = 1000, M = 250, K =

√
p.
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Figure 5.7: Effect of K (= max_features) in random variable selection on
training time (left), average depth (middle) and mean squared
error (right). N = 1000, M = 250, p = 10.
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Figure 5.8: Effect of bootstrap replicates on training time (left), average
depth (middle) and mean squared error (right). N = 1000,
M = 250, p = 10, K =

√
p.

Next, Figure 5.6 shows the effect of irrelevant and noisy variables.
The right plot first indicates that adding irrelevant variables deteri-
orates the accuracy of the forests. This is expected since the more
the irrelevant variables, the higher the probability of splitting on one
of them and therefore of fitting noise in the data. More importantly,
the left and middle plots show that RF is more affected than ETs by
the addition of noisy variables. This is actually a consequence of the
end-cut preference of the classical impurity criteria. When splitting
on noisy variables and looking for the best threshold, partitions of
the node samples are more likely to be unbalanced rather than the
opposite. This explains why on the middle plot the average depth of
RF eventually gets larger than the depth of ETs – which suffers less
from end-cut preference since thresholds are not optimized locally.

Figure 5.7 illustrates the effect of random variable selection. On the
left plot, building times grow as expected in O(K) with the number
K of variables randomly drawn at each node. The average depth of
the tree shows that increasing K slightly reduces the depth of the
trees, which is explained by the fact that better splits are selected as
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more variables are evaluated. Finally, the right plot again confirms
results from Chapter 4. Random perturbations negatively impact the
resulting model when they are too strong (at K = 1) but then become
beneficial as K increases. For RF, the optimal trade-off is at K = 5

while the lowest error can be achieved in ETs for K = 7.
Finally, Figure 5.8 studies the effect of using bootstrap replicates.

For RF, learning trees from learning sets Lm drawn with replacement
from L (bootstrap=True) is about 1.5 faster than building trees di-
rectly on L (bootstrap=False) , which is in accordance with our the-
oretical results from Section 5.1. The effect for ETs is less strong, but
still leads to a non-negligible speedup. The average depth for RF and
ETs is roughly 0.5 lower when using bootstrap replicates. Again, this
is expected since the average depth grows with O(logN) and that re-
ducing the effective size of the learning set to Ñ = 0.632N reduces
its logarithm by − log(0.632) = 0.662. Finally, the right plot shows
that using bootstrap replicates actually impairs performance on this
problem.

While not discussed here, further experiments carried out on other
artificial data, for both regression and classification, lead to similar
conclusions. They all corroborate the theoretical results presented ear-
lier.

5.4.2 Comparison with other implementations

Due to their apparent simplicity, random forests have been reimple-
mented at multiple occasions in various machine learning libraries
and programming languages. In this section, we compare the Scikit-
Learn implementation developed within this work with popular al-
ternatives available in other machine learning packages.

Table 5.3 summarizes the main open source implementations of
random forests along with some of their supported features. All im-
plement the original Random Forest algorithm [Breiman, 2001] and
therefore also provide an interface for Bagging [Breiman, 1994] (since
it corresponds to the special case K = p). Scikit-Learn, OpenCV and
OK3 also offer variants like Extremely Randomized Trees [Geurts
et al., 2006a] or Random Subspaces [Ho, 1998]. All support both clas-
sification and regression tasks, with the exceptions of Weka and H2O
which appear to only support classification. From a parameter point
of view, implementations mostly differ from each other in the impu-
rity and stopping criteria they support. The most common impurity
criterion is Gini (or, equivalently, MSE) but some packages, like Or-
ange, include alternative measures such as entropy, gain ratio or Re-
lief [Kira and Rendell, 1992]. The most common stopping criteria are
an upper bound on the depth of the trees (e.g., max_depth in Scikit-
Learn) and a minimum number of samples required for splitting a
node (e.g., nmin in OK3). Some packages also allow to set an upper
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Table 5.3: Popular libraries for random forests.
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limit on the number of nodes in the trees or to stop the construction
when a fixed accuracy is reached. Despite the embarrassing paral-
lelism, only Scikit-Learn, Weka and H2O make it possible to build
random forests using multiple cores. Most notably, H2O builds on
top of Hadoop to provide a fully distributed implementation of ran-
dom forests (i.e., on a cluster).

For performance reasons, implementations listed in Table 5.3 have
mostly been written in low-level programming languages like C, C++
or Java, but usually interface with higher level languages, like Python,
MATLAB or R, for convenience reasons. In the case of OpenCV for
example, the core implementation is written in C++ but can eas-
ily been called from Python through bindings shipped with the li-
brary. Let us finally note that Table 5.3 is by no means an exhaustive
list of all implementations of random forests. Domain-specific imple-
mentations (e.g., Random Jungle [Schwarz et al., 2010] for GWAS or
TMVA [Hoecker et al., 2007] in particle physics) and proprietary soft-
ware (e.g., Salford Systems, which owns the Random Forests trade-
mark) are not listed nor evaluated here.

In the experiments carried out below, we benchmark the Scikit-
Learn implementations of RF and ETs against all libraries listed in
Table 5.3. We do not compare against H2O since it requires a dedi-
cated cloud environment. Implementations are all benchmarked on
29 well-known and publicly available classification datasets that were
chosen a priori and independently of the results obtained. Overall,
these datasets cover a wide range of conditions (including both arti-
ficial and real data), with a sample size N ranging from 208 to 70000

and a number p of variables varying from 6 to 24496. Implementa-
tions are evaluated for (fully developed) Random Forests (RF) and
Extremely Randomized Trees (ETs) whenever available, using respec-
tively 75% and 25% of the original dataset as learning and test sets,
M = 250 trees and K =

√
p set by default. Results reported below

are averages over 10 runs, with the learning and test sets resampled
at each fold. Tables 5.4 and 5.5 respectively report the average time
required for building a random forest and the average time required
making predictions, on all 29 datasets and for all implementations.
Computing times are reported using the Scikit-Learn implementation
of RF as a baseline. Results in bold indicate that the implementation
is the fastest on the dataset. Remark that times are not reported on
cifar10 for R and Orange because these implementations failed at
building a single forest within 96 hours for CPU time.

With respect to RF, Table 5.4 shows that Scikit-Learn is the fastest
on average, far before all others. OK3 is the second fastest imple-
mentation (2.63× slower on average), Weka is third (2.92× slower),
OpenCV is fourth (12.37× slower), Orange is fifth (17.80× slower)
and the R implementation is last (30.73× slower). In particular, the R
implementation shows to be very ineffective on large datasets, when
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Figure 5.9: Average time required for building a forest on the mnist dataset
(left) and average time required for making predictions (right).

both N and p are moderately large (e.g., on mnist, as further illus-
trated in Figure 5.9). A possible explanation is that the R implemen-
tation uses pre-sorting (see Section 5.3.4), which makes complexity
linear with p rather than with K. Regarding Orange, results can be
explained by the fact that the implementation is purely written in
Python (i.e., an interpreted high-level programming language), while
all others are written in optimized low-level programming languages.
With respect to ETs, the Scikit-Learn implementation is again the
fastest, far before all others. More interestingly, the table also shows
that ETs are usually faster to build than RF, which confirms the theo-
retical results presented earlier. For the Scikit-Learn implementation,
ETs are indeed empirically 1

0.71 = 1.41× faster than RF on average.
Table 5.5 reports results regarding the average time required for

making predictions on the test set. Again, the Scikit-Learn implemen-
tation of RF is the fastest implementation on average. OpenCV is sec-
ond (2.07× slower on average), OK3 is third (3.71× slower), Weka
is fourth (4.31× slower), R is fifth (9.64× slower) and Orange is last
(19.82× slower). By contrast with fitting times, making predictions
from ETs is now slightly slower than RF, which is explained by the
fact that trees in ETs are on average deeper than in RF.

In conclusions, benchmarks show that the Scikit-Learn implemen-
tation is on average significantly faster than OpenCV, OK3, Weka,
R and Orange. While these results suffer from a selection bias (i.e.,
they depend on the 29 selected datasets), we believe that the general
conclusions extend to other datasets. More importantly, the careful
design and implementation of each and every component of random
forests, as discussed all throughout this work, eventually shows to be
highly rewarding in terms of computational performance.
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Table 5.4: Average time required for building a random forest, relative to
the Scikit-Learn implementation of the Random Forest algorithm
(first column). The lower, the better.
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Table 5.5: Average time required for making predictions, relative to the
Scikit-Learn implementation of the Random Forest algorithm
(first column). The lower, the better.
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U N D E R S TA N D I N G VA R I A B L E I M P O RTA N C E S

Outline

In this chapter, we study variable importance measures as computed
from forests of randomized trees. In Section 6.1, we first present how
random forests can be used to assess the importance of input vari-
ables. We then derive in Section 6.2 a characterization in asymptotic
conditions and show that variable importances derived from totally
randomized trees offer a three-level decomposition of the informa-
tion jointly contained in the input variables about the output. In Sec-
tion 6.3, we show that this characterization only depends on the rele-
vant variables and then discuss these ideas in Section 6.4 in the con-
text of variants closer to the Random Forest algorithm. Finally, we
illustrate these results on an artificial problem in Section 6.5. This
chapter is based on previous work published in [Louppe et al., 2013].

An important task in many scientific fields is the prediction of a re-
sponse variable based on a set of predictor variables. In many situa-
tions though, the aim is not only to make the most accurate predic-
tions of the response but also to identify which predictor variables are
the most important to make these predictions, e.g. in order to under-
stand the underlying process. Because of their applicability to a wide
range of problems and their capability to build accurate models and,
at the same time, to provide variable importance measures, random
forests have become a major data analysis tool used with success in
various scientific areas.

Despite their extensive use in applied research, only a couple of
works have studied the theoretical properties and statistical mecha-
nisms of these algorithms. Zhao [2000], Breiman [2004], Meinshausen
[2006], Lin and Jeon [2002] and Biau et al. [2008]; Biau [2012] investi-
gated simplified to very close variants of these algorithms and proved
the consistency of those variants. Little is known however regarding
the variable importances computed by random forests, and – as far as
we know – the work of Ishwaran [2007] is indeed the only theoretical
study of tree-based variable importance measures. In this chapter, we
aim at filling this gap and present a theoretical analysis of the Mean
Decrease Impurity importance derived from ensembles of random-
ized trees.
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6.1 variable importances

6.1.1 Importances in single decision trees

In the context of single decision trees, Breiman et al. [1984] first de-
fined the measure of importance of a variable Xj as

Imp(Xj) =
∑
t∈ϕ

∆I(s̃jt, t), (6.1)

where s̃jt is the best surrogate split for st, that is the closest split defined
on variable Xj that can mimic the actual split st defined at node t. The
use of surrogate splits was proposed to account for masking effects:
it may indeed happen that some variable Xj2 never occurs in any
split because it leads to splits that are slightly worse, and therefore
not selected, than those of some other variable Xj1 . However, if Xj1 is
removed and another tree is grown, Xj2 may now occur prominently
within the splits and the resulting tree may be nearly as good as the
original tree. In such a case, a relevant measure should detect the
importance of Xj2 . Accordingly, if Xj2 is being masked at t by Xj1 (i.e.,
if Xj1 is used to split t), but if s̃j2t is similar to st, but not quite as
good, then ∆I(s̃j2t , t) will be nearly as large as ∆I(st, t) and therefore
the proposed measure will indeed account for the importance of Xj2 .

6.1.2 Importances in forests

Thanks to randomization, masking effects are dampened within forests
of randomized trees. Even if Xj2 is being masked by Xj1 there is in-
deed still a chance for Xj2 to be chosen as a split if Xj1 is not selected
among the K variables chosen at random. Depending on the value K,
masking effects do not disappear entirely though. The use of boot-
strap samples also helps reduce masking effects, making Xj1 or Xj2
just slightly better than the other due to the variations in the bootstrap
samples.

For this reason, Breiman [2001, 2002] proposed to evaluate the im-
portance of a variable Xj for predicting Y by adding up the weighted
impurity decreases p(t)∆i(st, t) for all nodes t where Xj is used, av-
eraged over all trees ϕm (for m = 1, . . . ,M) in the forest:

Imp(Xj) =
1

M

M∑
m=1

∑
t∈ϕm

1(jt = j)
[
p(t)∆i(st, t)

]
, (6.2)

where p(t) is the proportion Nt
N of samples reaching t and where jt

denotes the identifier of the variable used for splitting node t. When
using the Gini index as impurity function, this measure is known
as the Gini importance or Mean Decrease Gini. However, since it can be
defined for any impurity measure i(t), we will refer to Equation 6.2 as
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the Mean Decrease Impurity importance (MDI), no matter the impurity
measure i(t). We will characterize and derive results for this measure
in the rest of this text.

In addition to MDI, Breiman [2001, 2002] also proposed to evaluate
the importance of a variable Xj by measuring the Mean Decrease Accu-
racy (MDA) or, equivalently, by measuring the Mean Increase Error, of
the forest when the values of Xj are randomly permuted in the out-
of-bag samples. For that reason, this latter measure is also known as
the permutation importance. Formally, in regression, the permutation
importance of Xj is given as:

Imp(Xj) = Eπj

{
1

N

∑
(x′i,yi)∈πj(L)

L(
1

M−i

M−i∑
l=1

ϕ
L
mkl

(x′i),yi)

}

↪→ −
1

N

∑
(xi,yi)∈L

L(
1

M−i

M−i∑
l=1

ϕ
L
mkl

(xi),yi) (6.3)

where πj(L) denotes a replicate of L in which in the values of Xj have
been randomly permuted, and where mk1 , . . . ,mkM−i

denote the in-
dices of the trees that have been built from bootstrap replicates that
do not include (xi,yi). For classification, the permutation importance
is derived similarly as in Equation 6.3, except that the out-of-bag av-
erage predictions are replaced with the class which is the most likely,
as computed from the out-of-bag class probability estimates. Its ratio-
nale is that randomly permuting the input variable Xj should break
its association with the response Y. Therefore, if Xj is in fact asso-
ciated to Y, permuting its values should also result in a substantial
increase of error, as here measured by the difference between the out-
of-bag estimates of the generalization error. That is, the larger the
increase of error, the more important the variable, and vice-versa.

Thanks to popular machine learning softwares [Breiman, 2002; Liaw
and Wiener, 2002; Pedregosa et al., 2011], both of these variable im-
portance measures have shown their practical utility in an increasing
number of experimental studies. Little is known however regarding
their inner workings. Strobl et al. [2007b] compare both MDI and
MDA and show experimentally that the former is biased towards
some predictor variables. As explained by White and Liu [1994] in
case of single decision trees, this bias stems from an unfair advan-
tage given by the usual impurity functions i(t) towards predictors
with a large number of values (see Section 7.2.2). Strobl et al. [2008]
later showed that MDA is biased as well, and that it overestimates the
importance of correlated variables – although this effect was not con-
firmed in a later experimental study by Genuer et al. [2010]. From a
theoretical point of view, Ishwaran [2007] provides a detailed theoret-
ical development of a simplified version of MDA, giving key insights
for the understanding of the actual MDA.
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6.2 theoretical study

6.2.1 Background

To be self-contained, we first recall several definitions from informa-
tion theory (see [Cover and Thomas, 2012], for further properties).

We suppose that we are given a probability space (Ω,E, P) and con-
sider random variables defined on it taking a finite number of possi-
ble values. We use upper case letters to denote such random variables
(e.g. X, Y,Z,W . . .) and calligraphic letters (e.g. X,Y,Z,W . . .) to de-
note their image sets (of finite cardinality), and lower case letters (e.g.
x,y, z,w . . .) to denote one of their possible values. For a (finite) set
of (finite) random variables X = {X1, . . . ,Xp}, we denote by PX(x) =

PX(x1, . . . , xp) the probability P({ω ∈ Ω | ∀j : 1, . . . ,p : Xj(ω) = xj}),
and by X = X1 × · · · ×Xp the set of joint configurations of these ran-
dom variables. Given two sets of random variables, X = {X1, . . . ,Xp}
and Y = {Y1, . . . , Yq}, we denote by PX|Y(x | y) = PX,Y(x, y)/PY(y) the
conditional density of X with respect to Y.1

With these notations, the joint (Shannon) entropy of a set of random
variables X = {X1, . . . ,Xp} is thus defined by

H(X) = −
∑
x∈X

PX(x) log2 PX(x), (6.4)

while the mean conditional entropy of a set of random variables X =

{X1, . . . ,Xp}, given the values of another set of random variables Y =

{Y1, . . . , Yq} is defined by

H(X | Y) = −
∑
x∈X

∑
y∈Y

PX,Y(x, y) log2 PX|Y(x | y). (6.5)

The mutual information among the set of random variables X =

{X1, . . . ,Xp} and the set of random variables Y = {Y1, . . . , Yq} is de-
fined by

I(X; Y) = −
∑
x∈X

∑
y∈Y

PX,Y(x, y) log2
PX(x)PY(y)
PX,Y(x, y)

(6.6)

= H(X) −H(X | Y)

= H(Y) −H(Y | X)

The mean conditional mutual information among the set of ran-
dom variables X = {X1, . . . ,Xp} and the set of random variables Y =

{Y1, . . . , Yq}, given the values of a third set of random variables Z =

{Z1, . . . ,Zr}, is defined by

I(X; Y | Z) = H(X | Z) −H(X | Y,Z) (6.7)

1 To avoid problems, we suppose that all probabilities are strictly positive, without
fundamental limitation.
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= H(Y | Z) −H(Y | X,Z)

= −
∑
x∈X

∑
y∈Y

∑
z∈Z

PX,Y,Z(x, y, z) log2
PX|Z(x | z)PY|Z(y | z)
PX,Y|Z(x, y | z)

We also recall the chaining rule

I(X,Z; Y |W) = I(X; Y |W) + I(Z; Y |W,X), (6.8)

and the symmetry of the (conditional) mutual information among
sets of random variables

I(X; Y | Z) = I(Y;X | Z). (6.9)

6.2.2 Asymptotic analysis

Let us now consider the MDI importance as defined by Equation 6.2,
and let us assume a set V = {X1, ...,Xp} of categorical input variables
and a categorical output Y. For the sake of simplicity we will use the
Shannon entropy as impurity measure, and focus on totally random-
ized trees; later on we will discuss other impurity measures and tree
construction algorithms.

Given a training sample L of N joint observations of X1, ...,Xp, Y
independently drawn from the joint distribution P(X1, ...,Xp, Y), let
us assume that we infer from it an infinitely large ensemble of totally
randomized and fully developed trees.

Definition 6.1. A totally randomized and fully developed tree is a
decision tree in which each node t is partitioned using a variable Xj picked
uniformly at random among those not yet used at the parent nodes of t,
where each node t is split into |Xj| sub-trees, i.e., one for each possible value
of Xj, and where the recursive construction process halts only when all p
variables have been used along the current branch.

In such a tree, leaves are all at the same depth p, and the set of
leaves of a fully developed tree is in bijection with the set X of all
possible joint configurations of the p input variables. For example, if
the input variables are all binary, the resulting tree will have exactly
2p leaves. As a result, totally randomized trees, as considered here,
are in fact closer to trees grown with ID3 [Quinlan, 1986] than trees
built from the CART procedure (as described throughout Chapters 3

and 4).

Theorem 6.1. The MDI importance of Xj ∈ V for Y as computed with an
infinite ensemble of fully developed totally randomized trees and an infinitely
large training sample is:

Imp(Xj) =
p−1∑
k=0

1

Ckp

1

p− k

∑
B∈Pk(V−j)

I(Xj; Y|B), (6.10)
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where V−j denotes the subset V \ {Xj}, Pk(V−j) is the set of subsets
of V−j of cardinality k, and I(Xj; Y|B) is the conditional mutual infor-
mation of Xj and Y given the variables in B.

Proof. By expanding ∆i(s, t) = i(t) − pLi(tL) − pRi(tR) into Equa-
tion 6.2 and using the entropy H(Y|t) = −

∑
j p(j|t) log2(p(j|t)) as

impurity measure i(t), Equation 6.2 can be rewritten in terms of mu-
tual information:

Imp(Xj) =
1

M

M∑
m=1

∑
t∈ϕm

1(jt = j)p(t)I(Y;Xj|t) (6.11)

As the size N of the training sample grows to infinity, p(t) be-
comes the (exact) probability (according to P(X1, . . . ,Xp, Y)) that an
object reaches node t, i.e., a probability P(B(t) = b(t)) where B(t) =
(Xi1 , ...,Xik) is the subset of k variables tested in the branch from
the root node to the parent of t and b(t) is the vector of values of
these variables. As the the number M of totally randomized trees
also grows to infinity, the importance of a variable Xj can then be
written:

Imp(Xj) =
∑
B⊆V−j

∑
b∈Xi1×...×Xik

α(B,b,Xj,p)P(B = b)I(Y;Xj|B = b),

(6.12)

where b is a set of values for the variables in B and α(B,b,Xj,p) is
the probability that a node t (at depth k) in a totally randomized tree
tests the variable Xj and is such that B(t) = B and b(t) = b.

Let us compute α(B,b,Xj,p). First, let us consider the probability
that a node t tests the variable Xj and is such that the branch leading
to t follows a path defined, in that particular order, by all k variables
Xi1 , ...,Xik ∈ B and their corresponding values in b. The probability
of that branch is the probability of picking (uniformly at random) Xi1
at the root node times the probability of testing, in that order, the
remaining Xi2 , ...,Xik variables in the sub-tree corresponding to the
value xi1 of Xi1 defined in b. Note that, by construction, it is certain
that this particular sub-tree exists since the root node is split into |Xi1 |

sub-trees. Then, the probability of testing Xj at the end of this branch
is the probability of picking Xj among the remaining p− k variables.
By recursion, we thus have:

1

p

1

p− 1
...

1

p− k+ 1

1

p− k
=

(p− k)!
p!

1

p− k
(6.13)

Since the order along which the variables appear in the branch is
of no importance, α(B,b,Xj,p) actually includes all k! equiprobable
ways of building a branch composed of the variables and values in B
and b. Then, since a tree may at most contain a single such branch,
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whatever the order of the tests, the probabilities may be added up
and it comes:

α(B,b,Xj,p) = k!
(p− k)!
p!

1

p− k
=

1

Ckp

1

p− k
(6.14)

From the above expression, it appears that α(B,b,Xj,p) depends
only on the size k of B and on the number p of variables. As such, by
grouping in the previous equation of Imp(Xj) conditioning variable
subsets B according to their sizes and using the definition of condi-
tional mutual information, α can be factored out, hence leading to the
form foretold by Theorem 6.1:

Imp(Xj) =
p−1∑
k=0

1

Ckp

1

p− k

∑
B∈Pk(V−j)

I(Xj; Y|B). (6.15)

Theorem 6.2. For any ensemble of fully developed trees in asymptotic learn-
ing sample size conditions (e.g., in the same conditions as those of Theo-
rem 6.1), we have that

p∑
j=1

Imp(Xj) = I(X1, . . . ,Xp; Y). (6.16)

Proof. For any tree ϕ, we have that the sum of all importances es-
timated by using an infinitely large sample L (or equivalently, by
assuming perfect knowledge of the joint distribution P(X1, ...,Xp, Y))
is equal to H(Y) −

∑
t∈ϕ̃ p(t)H(Y|b(t)), where ϕ̃ denotes the set of

all leaves of ϕ, and where b(t) denotes the joint configuration of all
input variables leading to leaf t. This is true because the impurities
of all test nodes intervening in the computation of the variable impor-
tances, except the impurity H(Y) at the root node of the tree, cancel
each other when summing up the importances.

Since, when the tree is fully developed,
∑
t∈ϕ̃ p(t)H(Y|b(t)) is ob-

viously equal to the mean conditional entropy H(Y|X1, . . . ,Xp) of Y
given all input variables, this implies that for any fully developed tree
we have that the sum of variable importances is equal to I(X1, . . . ,Xp; Y),
and so this relation also holds when averaging over an infinite ensem-
ble of totally randomized trees. Note that, for the same reasons as in
the proof of Theorem 6.1, this result holds in asymptotic conditions
only, i.e., when p(t) becomes the exact probability P(B(t) = b(t)).

Together, theorems 6.1 and 6.2 show that variable importances de-
rived from totally randomized trees in asymptotic conditions provide
a three-level decomposition of the information I(X1, . . . ,Xp; Y) con-
tained in the set of input variables about the output variable. The first
level is a decomposition among input variables (see Equation 6.16 of
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Theorem 6.2), the second level is a decomposition along the degrees
k of interaction terms of a variable with the other ones (see the outer
sum in Equation 6.10 of Theorem 6.1), and the third level is a decom-
position along the combinations B of interaction terms of fixed size k
of possible interacting variables (see the inner sum in Equation 6.10).

We observe that the decomposition includes, for each variable, each
and every interaction term of each and every degree weighted in a
fashion resulting only from the combinatorics of possible interaction
terms. In particular, since all I(Xj; Y|B) terms are at most equal to
H(Y), the prior entropy of Y, the p terms of the outer sum of Equa-
tion 6.10 are each upper bounded by

1

Ckp

1

p− k

∑
B∈Pk(V−j)

H(Y) =
1

Ckp

1

p− k
Ckp−1H(Y) =

1

p
H(Y). (6.17)

As such, the second level decomposition resulting from totally ran-
domized trees makes the p sub-importance terms

1

Ckp

1

p− k

∑
B∈Pk(V−j)

I(Xj; Y|B) (6.18)

to equally contribute (at most) to the total importance, even though
they each include a combinatorially different number of terms.

6.3 relevance of variables

Following Kohavi and John [1997], let us define relevant and irrele-
vant variable as follows:

Definition 6.2. A variable Xj is relevant to Y with respect to V if there
exists at least one subset B ⊆ V (possibly empty) such that I(Xj; Y|B) > 0.

Definition 6.3. A variable Xi is irrelevant to Y with respect to V if, for
all B ⊆ V , I(Xi; Y|B) = 0.

Remark that if Xi is irrelevant to Y with respect to V , then by defi-
nition it is also irrelevant to Y with respect to any subset of V . How-
ever, if Xj is relevant to Y with respect to V , then it is not necessarily
relevant to Y with respect to all subsets of V . Among the relevant
variables, we also distinguish the marginally relevant ones, for which
I(Xj; Y) > 0, the strongly relevant ones, for which I(Xj; Y|V−j) > 0,
and the weakly relevant variables, which are relevant but not strongly
relevant.

Theorem 6.3. Xi ∈ V is irrelevant to Y with respect to V if and only if
its infinite sample size importance as computed with an infinite ensemble of
fully developed totally randomized trees built on V for Y is 0.
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Proof. The proof directly results from the definition of irrelevance. If
Xi is irrelevant with respect to V , then I(Xi; Y|B) is zero for all B ⊆
V−i ⊂ V and Equation 6.10 reduces to 0. Also, since I(Xi; Y|B) is non-
negative for any B, Imp(Xi) is zero if and only if all its I(Xi; Y|B) terms
are zero. Since Imp(Xi) includes all I(Xi; Y|B) terms for B ⊆ V−i,
and since all of them are therefore null if Imp(Xi) = 0, Xi is thus,
by definition, irrelevant with respect to V−i. Xi is then also trivially
irrelevant with respect to V = V−i ∪ {Xi} since I(Xi; Y|B∪ {Xi}) = 0 for
any B.

Lemma 6.4. Let Xi /∈ V be an irrelevant variable for Y with respect to V .
The infinite sample size importance of Xj ∈ V as computed with an infinite
ensemble of fully developed totally randomized trees built on V for Y is the
same as the importance derived when using V ∪ {Xi} to build the ensemble
of trees for Y.

Proof. Let Xi /∈ V be an irrelevant variable with respect to V . For
Xj ∈ V , B ⊆ V−j, using the chain rules of mutual information, we
have:

I(Xj,Xi; Y|B) = I(Xj; Y|B) + I(Xi; Y|B∪ {Xj}) (6.19)

= I(Xi; Y|B) + I(Xj; Y|B∪ {Xi}) (6.20)

If Xi is irrelevant with respect to V , i.e., such that I(Xi; Y|B) = 0 for all
B ⊆ V , then I(Xi; Y|B∪ {Xj}) and I(Xi; Y|B) both equal 0, leading to

I(Xj; Y|B∪ {Xi}) = I(Xj; Y|B) (6.21)

Then, from Theorem 6.1, the importance of Xj as computed with
an infinite ensemble of totally randomized trees built on V ∪ {Xi} can
be simplified to:

Imp(Xj) =
p−1+1∑
k=0

1

Ckp+1

1

p+ 1− k

∑
B∈Pk(V−j∪{Xi})

I(Xj; Y|B)

=

p∑
k=0

1

Ckp+1

1

p+ 1− k

 ∑
B∈Pk(V−j)

I(Xj; Y|B) +
∑

B∈Pk−1(V−j)

I(Xj; Y|B∪ {Xi})


=

p−1∑
k=0

1

Ckp+1

1

p+ 1− k

∑
B∈Pk(V−j)

I(Xj; Y|B)+

↪→
p∑
k=1

1

Ckp+1

1

p+ 1− k

∑
B∈Pk−1(V−j)

I(Xj; Y|B)

=

p−1∑
k=0

1

Ckp+1

1

p+ 1− k

∑
B∈Pk(V−j)

I(Xj; Y|B)+

↪→
p−1∑
k ′=0

1

Ck
′+1
p+1

1

p+ 1− k ′ − 1

∑
B∈Pk ′(V−j)

I(Xj; Y|B)
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=

p−1∑
k=0

[
1

Ckp+1

1

p+ 1− k
+

1

Ck+1p+1

1

p− k

] ∑
B∈Pk(V−j)

I(Xj; Y|B)

=

p−1∑
k=0

1

Ckp

1

p− k

∑
B∈Pk(V−j)

I(Xj; Y|B) (6.22)

The last line above exactly corresponds to the importance of Xj as
computed with an infinite ensemble of totally randomized trees built
on V , which proves Lemma 6.4.

Theorem 6.5. Let VR ⊆ V be the subset of all variables in V that are
relevant to Y with respect to V . The infinite sample size importance of any
variable Xj ∈ VR as computed with an infinite ensemble of fully developed
totally randomized trees built on VR for Y is the same as its importance
computed in the same conditions by using all variables in V . That is:

Imp(Xj) =
p−1∑
k=0

1

Ckp

1

p− k

∑
B∈Pk(V−j)

I(Xj; Y|B)

=

r−1∑
l=0

1

Clr

1

r− l

∑
B∈Pl(V−j

R )

I(Xj; Y|B) (6.23)

where r is the number of relevant variables in VR.

Proof. Let us assume that VR contains r 6 p relevant variables. If an
infinite ensemble of totally randomized trees were to be built directly
on those r variables then, from Theorem 6.1, the importance of a rel-
evant variable Xj would be:

Imp(Xj) =
r−1∑
l=0

1

Clr

1

r− l

∑
B∈Pl(V−m

R )

I(Xj; Y|B) (6.24)

Let Xi ∈ V \ VR be one of the p− r irrelevant variables in V with
respect to V . Since Xi is also irrelevant with respect to VR, using
Lemma 6.4, the importance of Xj when the ensemble is built on VR ∪
{Xi} is the same as the one computed on VR only (i.e., as computed
by the equation above). Using the same argument, adding a second
irrelevant variable Xi ′ with respect to V – and therefore also with
respect to VR ∪ {Xi} – and building an ensemble of totally randomized
trees on VR ∪ {Xi} ∪ {Xi ′} will yield importances that are the same as
those computed on VR ∪ {Xi}, which are themselves the same as those
computed by an ensemble built on VR. By induction, adding all p− r
irrelevant variables has therefore no effect on the importance of Xj,
which means that:

Imp(Xj) =
p−1∑
k=0

1

Ckp

1

p− k

∑
B∈Pk(V−j)

I(Xj; Y|B)
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=

r−1∑
l=0

1

Clr

1

r− l

∑
B∈Pl(V−m

R )

I(Xj; Y|B) (6.25)

Theorems 6.3 and 6.5 show that the importances computed with an
ensemble of totally randomized trees depends only on the relevant
variables. Irrelevant variables have a zero importance and do not af-
fect the importance of relevant variables. Practically, we believe that
such properties are desirable conditions for a sound criterion assess-
ing the importance of a variable. Indeed, noise should not be credited
of any importance and should not make any other variable more (or
less) important.

Intuitively, the independence with respect to irrelevant variables
can be partly attributed to the fact that splitting at t on some irrel-
evant variable Xi should only dillute the local importance p(t)∆i(t)
of a relevant variable Xj into the children tL and tR, but not affect
the total sum. For instance, if Xj was to be used at t, then the local
importance would be proportional to p(t). By contrast, if Xi was to
be used at t and Xj at tL and tR, then the sum of the local impor-
tances for Xj would be proportional to p(tL) + p(tR) = p(t), which
does not change anything. Similarly, one can recursively invoke the
same argument if Xj was to be used deeper in tL or tR.

A second reason comes from the fact that local importances are
collected only in nodes t where Xj is used. By contrast, if local impor-
tances were summed over all nodes (e.g., using surrogate splits), then
it would necessarily depend on the total number of nodes in a tree,
which itself directly depends on p – that is, not on r.

Finally, it is also worth noting that this result is consistent with the
work of Biau [2012], who proved that rate of convergence of forests
of randomized trees also only depends on the relevant variables.

6.4 variable importances in random forest variants

In this section, we consider and discuss variable importances as com-
puted with other types of ensembles of randomized trees. We first
show how our results extend to any other impurity measure, and
then analyze importances computed by depth-pruned ensemble of
randomized trees and those computed by randomized trees built on
random subspaces of fixed size. Finally, we discuss the case of non-
totally randomized trees.

6.4.1 Generalization to other impurity measures

Although our characterization in sections 6.1 and 6.3 uses Shannon
entropy as the impurity measure, theorems 6.1, 6.3 and 6.5 hold for
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other impurity measures, simply substituting conditional mutual in-
formation for conditional impurity reduction in the different formu-
las and in the definition of irrelevant variables. In particular, our re-
sults thus hold for the Gini index in classification and can be extended
to regression problems using variance as the impurity measure.

Let us consider a generic impurity measure i(Y|t) and, by mim-
icking the notation used for conditional mutual information, let us
denote by G(Y;Xj|t) the impurity decrease for a split on Xj at node t:

G(Y;Xj|t) = i(Y|t) −
∑
x∈Xj

p(tx)i(Y|tx), (6.26)

where tx denotes the successor node of t corresponding to value x of
Xj. The importance score associated to a variable Xj (see Equation 6.2)
is then rewritten:

Imp(Xj) =
1

M

M∑
m=1

∑
t∈ϕm

1(jt = j)p(t)G(Y;Xj|t). (6.27)

As explained in the proof of Theorem 6.1, conditioning over a node
t is equivalent to conditioning over an event of the form B(t) = b(t),
where B(t) and b(t) denote respectively the set of variables tested in
the branch from the root to t and their values in this branch. When
the learning sample size N grows to infinity, this yields the following
population based impurity decrease at node t:

G(Y;Xj|B(t) = b(t)) (6.28)

= i(Y|B(t) = b(t)) −
∑
x∈Xj

P(Xj = x|B(t) = b(t))i(Y|B(t) = b(t),Xj = x)

Again by analogy with conditional entropy and mutual information2,
let us define i(Y|B) and G(Y;Xj|B) for some subset of variables B ⊆ V
as follows:

i(Y|B) =
∑
b

P(B = b)i(Y|B = b) (6.29)

G(Y;Xj|B) =
∑
b

P(B = b)G(Y;Xj|B = b) (6.30)

= i(Y|B) − i(Y|B,Xj)

where the sums run over all possible combinations b of values for the
variables in B.

With these notations, the proof of Theorem 6.1 can be easily adapted
to lead to the following generalization of Equation 6.10:

Imp(Xj) =
p−1∑
k=0

1

Ckp

1

p− k

∑
B∈Pk(V−j)

G(Y;Xj|B). (6.31)

2 Note however that G(Y;Xj|B) does not share all properties of conditional mutual
information as for example G(Xj; Y|B) might not be equal to G(Y;Xj|B) or even be
defined, depending on the impurity measure and the nature of the output Y.
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Note that this generalization is valid without any further specific con-
straints on the impurity measure i(Y|t).

Let us now define as irrelevant to Y with respect to V a variable Xi
for which, for all B ⊆ V , G(Y;Xi|B) = 0 (i.e. a variable that neither
affects impurity whatever the conditioning). From this definition, one
can deduce the following property of an irrelevant variable Xi (for all
B ⊆ V and Xj ∈ V):

G(Y;Xj|B∪ {Xi}) = G(Y;Xj|B).

Indeed, by a simple application of previous definitions, we have:

G(Y;Xj|B) −G(Y;Xj|B∪ {Xi})
= i(Y|B) − i(Y|B∪ {Xj}) − i(Y|B∪ {Xi}) + i(Y|B∪ {Xi,Xj})
= i(Y|B) − i(Y|B∪ {Xi}) − i(Y|B∪ {Xj}) + i(Y|B∪ {Xi,Xj})
= G(Y;Xi|B) −G(Y;Xi|B∪ {Xj})
= 0, (6.32)

where the last step is a consequence of the irrelevance of Xi.
Using this property, the proofs of Lemma 6.4 and Theorem 6.5 can

be straightforwardly adapted, showing that, in the general case also,
the MDI importance of a variable is invariant with respect to the
removal or the addition of irrelevant variables.

Given the general definition of irrelevance, all irrelevant variables
also get zero MDI importance but, without further constraints on
the impurity measure i, there is no guarantee that all relevant vari-
ables (defined as all variables that are not irrelevant) will get a non
zero importance. This property, and in consequence theorem 6.3, will
be however satisfied as soon as the impurity measure is such that
G(Y;Xj|B) > 0 for all Xj ∈ V and for all B ⊆ V .

Previous developments show that all results presented in this chap-
ter remain valid for any impurity measure leading to non negative
impurity decreases, provided that the definition of variable irrele-
vance is adapted to this impurity measure. The choice of a specific
impurity measure should thus be guided by the meaning one wants
to associate to irrelevance.

Measuring impurity with Shannon entropy, i.e., taking i(Y|t) =

H(Y|t) and i(Y|B = b) = H(Y|B = b), one gets back all previous
results. Given the properties of conditional mutual information, irrel-
evance for this impurity measure strictly coincides with conditional
independence: a variable Xi is irrelevant to Y with respect to V if and
only if Xi ⊥ Y|B for all B ⊆ V .

A common alternative to Shannon entropy for growing classifica-
tion trees is Gini index, which, in the finite and infinite sample cases,
is written:

i(Y|t) = −
∑
j

p(j|t)(1− p(j|t)) (6.33)
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i(Y|B = b) = −
∑
j

P(Y = j|B = b)(1− P(Y = j|B = b)). (6.34)

Like the Shannon entropy, this measure leads to non negative im-
purity decreases and the corresponding notion of irrelevance is also
directly related to conditional independence.

The most common impurity measure for regression is variance,
which, in the finite and infinite sample cases, is written:

i(Y|t) =
1

Nt

∑
i∈t

(yi −
1

Nt

∑
i∈t

yi)
2 (6.35)

i(Y|B = b) = EY|B=b{(Y − EY|B=b{Y})
2}. (6.36)

Variance can only decrease as a consequence of a split and there-
fore, Theorem 6.3 is also valid for this impurity measure, meaning
that only irrelevant variables will get a zero variance reduction. Note
however that with this impurity measure, irrelevance is not directly
related to conditional independence, as some variable Xi can be irrel-
evant in the sense of our definition and still affects the distribution of
output values.

6.4.2 Pruning and random subspaces

In sections 6.1 and 6.3, we considered totally randomized trees that
were fully developed, i.e. until all p variables were used within each
branch. When totally randomized trees are developed only up to
some smaller depth q 6 p, we show in Proposition 6.6 that the vari-
able importances as computed by these trees is limited to the q first
terms of Equation 6.10. We then show in Proposition 6.7 that these
latter importances are actually the same as when each tree of the en-
semble is fully developed over a random subspace [Ho, 1998] of q
variables drawn prior to its construction.

Proposition 6.6. The importance of Xj ∈ V for Y as computed with an
infinite ensemble of pruned totally randomized trees built up to depth q 6 p
and an infinitely large training sample is:

Imp(Xj) =
q−1∑
k=0

1

Ckp

1

p− k

∑
B∈Pk(V−j)

I(Xj; Y|B) (6.37)

Proof. The proof of Theorem 6.1 can be directly adapted to prove
Proposition 6.6. If the recursive procedure is stopped at depth q, then
it means that B(t) may include up to q− 1 variables, which is strictly
equivalent to summing from k = 0 to q− 1 in the outer sum of Equa-
tion 6.10.

Proposition 6.7. The importance of Xj ∈ V for Y as computed with an
infinite ensemble of pruned totally randomized trees built up to depth q 6 p
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and an infinitely large training sample is identical to the importance as com-
puted for Y with an infinite ensemble of fully developed totally randomized
trees built on random subspaces of q variables drawn from V .

Proof. Let us define a random subspace of size q as a random subset
VS ⊆ V such that |VS| = q. By replacing p with q in Equation 6.10

(since each tree is built on q variables) and adjusting by the probabil-
ity

C
q−k−1
p−k−1

C
q
p

of having selected Xj and the k variables in the branch when drawing
VS prior to the construction of the tree, it comes:

Imp(Xj) =
q−1∑
k=0

C
q−k−1
p−k−1

C
q
p

1

Ckq

1

q− k

∑
B∈Pk(V−j)

I(Xj; Y|B) (6.38)

The multiplicative factor in the outer sum can then be simplified as
follows:

C
q−k−1
p−k−1

C
q
p

1

Ckq

1

q− k
=

(p−k−1)!
(p−k)!(q−k−1)!

p!
(p−q)!q!

1

Ckq

1

q− k

=
(p− k− 1)!q!
(q− k− 1)!p!

1

Ckq

1

q− k

=
q(q− 1)...(q− k)
p(p− 1)...(p− k)

1

Ckq

1

q− k

=
q(q− 1)...(q− k)
p(p− 1)...(p− k)

k!(q− k)!
q!

1

q− k

=
1

p(p− 1)...(p− k)
k!(q− k)!
(q− k− 1)!

1

q− k

=
k!

p(p− 1)...(p− k)

=
k!(p− k)!

p!
1

p− k

=
1

Ckp

1

p− k

(6.39)

which yields the same importance as in Proposition 6.6 and proves
the proposition.

As long as q > r (where r denotes the number of relevant variables
in V), it can easily be shown that all relevant variables will still obtain
a strictly positive importance, which will however differ in general
from the importances computed by fully grown totally randomized
trees built over all variables. Also, each irrelevant variable of course
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keeps an importance equal to zero, which means that, in asymptotic
conditions, these pruning and random subspace methods would still
allow us identify the relevant variables, as long as we have a good
upper bound q on r.

6.4.3 Non-totally randomized trees

In our analysis in the previous sections, trees are built totally at ran-
dom and hence do not directly relate to those built in Random For-
est [Breiman, 2001] or in Extremely Randomized Trees [Geurts et al.,
2006a]. To better understand the importances as computed by those
algorithms, let us consider a close variant of totally randomized trees:
at each node t, let us instead draw uniformly at random 1 6 K 6 p

variables and let us choose the one that maximizes ∆i(t). As previ-
ously, t is split into as many subtrees as the cardinality of the cho-
sen variable. Asymptotically, for binary variables, this variant exactly
matches Random Forests and Extremely Randomized Trees. For vari-
ables with a larger cardinality, the correspondence no longer exactly
holds but the trees still closely relate. Notice that, for K = 1, this pro-
cedure amounts to building ensembles of totally randomized trees
as defined before, while, for K = p, it amounts to building classical
single trees in a deterministic way.

First, the importance of Xj ∈ V as computed with an infinite ensem-
ble of such randomized trees is not the same as Equation 6.10. For
K > 1, masking effects indeed appear: at t, some variables are never
selected because there always is some other variable for which ∆i(t)
is larger. Such effects tend to pull the best variables at the top of the
trees and to push the others at the leaves. As a result, the importance
of a variable no longer decomposes into a sum including all I(Xj; Y|B)
terms. The importance of the best variables decomposes into a sum
of their mutual information alone or conditioned only with the best
others – but not conditioned with all variables since they no longer
ever appear at the bottom of trees. By contrast, the importance of the
least promising variables now decomposes into a sum of their mutual
information conditioned only with all variables – but not alone or con-
ditioned with a couple of others since they no longer ever appear at
the top of trees. In other words, because of the guided structure of
the trees, the importance of Xj now takes into account only some of
the conditioning sets B, which may over- or underestimate its overall
relevance.

To make things clearer, let us consider a simple example. Let X1
perfectly explains Y and let X2 be a slightly noisy copy of X1 (i.e.,
I(X1; Y) ≈ I(X2; Y), I(X1; Y|X2) = ε and I(X2; Y|X1) = 0). Using totally



6.5 illustration 139

randomized trees, the importances of X1 and X2 are nearly equal –
the importance of X1 being slightly higher than the importance of X2:

Imp(X1) =
1

2
I(X1; Y) +

1

2
I(X1; Y|X2) =

1

2
I(X1; Y) +

ε

2
(6.40)

Imp(X2) =
1

2
I(X2; Y) +

1

2
I(X2; Y|X1) =

1

2
I(X2; Y) + 0 (6.41)

In non-totally randomized trees, for K = 2, X1 is always selected
at the root node and X2 is always used in its children. Also, since
X1 perfectly explains Y, all its children are pure and the reduction
of entropy when splitting on X2 is null. As a result, ImpK=2(X1) =

I(X1; Y) and ImpK=2(X2) = I(X2; Y|X1) = 0. Masking effects are here
clearly visible: the true importance of X2 is masked by X1 as if X2
were irrelevant, while it is only a bit less informative than X1.

As a direct consequence of the example above, for K > 1, it is no
longer true that a variable is irrelevant if and only if its importance
is zero. In the same way, it can also be shown that the importances
become dependent on the number of irrelevant variables. Let us in-
deed consider the following counter-example: let us add in the pre-
vious example an irrelevant variable Xi with respect to {X1,X2} and
let us keep K = 2. The probability of selecting X2 at the root node
now becomes positive, which means that ImpK=2(X2) now includes
I(X2; Y) > 0 and is therefore strictly larger than the importance com-
puted before. For K fixed, adding irrelevant variables dampens mask-
ing effects, which thereby makes importances indirectly dependent
on the number of irrelevant variables.

In conclusion, the importances as computed with totally random-
ized trees exhibit properties that do not possess, by extension, neither
Random Forests nor Extremely Randomized Trees. With totally ran-
domized trees, the importance of Xj only depends on the relevant
variables and is 0 if and only if Xj is irrelevant. As we have shown,
it may no longer be the case for K > 1. Asymptotically, the use of
totally randomized trees for assessing the importance of a variable
may therefore be more appropriate. In a finite setting (i.e., a limited
number of samples and a limited number of trees), guiding the choice
of the splitting variables remains however a sound strategy. In such a
case, I(Xj; Y|B) cannot be measured neither for all Xj nor for all B. It
is therefore pragmatic to promote those that look the most promising,
even if the resulting importances may be biased.

6.5 illustration

In this section, we consider the digit recognition problem of [Breiman
et al., 1984] for illustrating variable importances as computed with
totally randomized trees. We verify that they match with our theo-
retical developments and that they decompose as foretold. We also
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X1

X2 X3

X4

X5 X6

X7

Figure 6.1: 7-segment display

compare these importances with those computed by an ensemble of
non-totally randomized trees, as discussed in section 6.4.3.

Let us consider a seven-segment indicator displaying numerals us-
ing horizontal and vertical lights in on-off combinations, as illustrated
in Figure 6.1. Let Y be a random variable taking its value in {0, 1, ..., 9}
with equal probability and let X1, ...,X7 be binary variables whose
values are each determined univocally given the corresponding value
of Y in Table 6.1.

Since Table 6.1 perfectly defines the data distribution, and given
the small dimensionality of the problem, it is practicable to directly
apply Equation 6.10 to compute variable importances. To verify our
theoretical developments, we then compare in Table 6.2 variable im-
portances as computed by Equation 6.10 and those yielded by an en-
semble of 10000 totally randomized trees (K = 1). Note that given the
known structure of the problem, building trees on a sample of finite
size that perfectly follows the data distribution amounts to building
them on a sample of infinite size. At best, trees can thus be built on
a 10-sample dataset, containing exactly one sample for each of the
equiprobable outcomes of Y. As the table illustrates, the importances
yielded by totally randomized trees match those computed by Equa-
tion 6.10, which confirms Theorem 6.1. Small differences stem from
the fact that a finite number of trees were built in our simulations,
but those discrepancies should disappear as the size of the ensemble
grows towards infinity. It also shows that importances indeed add
up to I(X1, ...X7; Y), which confirms Theorem 6.2. Regarding the ac-
tual importances, they indicate that X5 is stronger than all others,
followed – in that order – by X2, X4 and X3 which also show large
importances. X1, X7 and X6 appear to be the less informative. The ta-
ble also reports importances for increasing values of K. As discussed
before, we see that a large value of K yields importances that can be
either overestimated (e.g., at K = 7, the importances of X2 and X5 are
larger than at K = 1) or underestimated due to masking effects (e.g.,
at K = 7, the importances of X1, X3, X4 and X6 are smaller than at
K = 1, as if they were less important). As Figure 6.2 illustrates, it can
also be observed that masking effects may even induce changes in the
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y x1 x2 x3 x4 x5 x6 x7

0 1 1 1 0 1 1 1

1 0 0 1 0 0 1 0

2 1 0 1 1 1 0 1

3 1 0 1 1 0 1 1

4 0 1 1 1 0 1 0

5 1 1 0 1 0 1 1

6 1 1 0 1 1 1 1

7 1 0 1 0 0 1 0

8 1 1 1 1 1 1 1

9 1 1 1 1 0 1 1

Table 6.1: Values of Y,X1, ...,X7

variable rankings (e.g., compare the rankings at K = 1 and at K = 7),
which thus confirms that importances are differently affected.

To better understand why a variable is important, it is also insight-
ful to look at its decomposition into its p sub-importances terms, as
shown in Figure 6.3. Each row in the plots of the figure corresponds
to one the p variables X1, . . . ,X7 and each column to a size k of con-
ditioning sets. As such, the value at row j and column k corresponds
the importance of Xj when conditioned with k other variables (e.g.,
to the term 1

Ckp

1
p−k

∑
B∈Pk(V−j) I(Xj; Y|B) in Equation 6.10 in the case

of totally randomized trees). In the left plot, for K = 1, the figure first
illustrates how importances yielded by totally randomized trees de-
composes along the degrees k of interactions terms. We can observe
that they each equally contribute (at most) the total importance of a
variable. The plot also illustrates why X5 is important: it is informa-
tive either alone or conditioned with any combination of the other
variables (all of its terms are significantly larger than 0). By contrast,
it also clearly shows why X6 is not important: neither alone nor com-
bined with others X6 seems to be very informative (all of its terms are
close to 0). More interestingly, this figure also highlights redundan-
cies: X7 is informative alone or conditioned with a couple of others
(the first terms are significantly larger than 0), but becomes uninfor-
mative when conditioned with many others (the last terms are closer
to 0). The right plot, for K = 7, illustrates the decomposition of im-
portances when variables are chosen in a deterministic way. The first
thing to notice is masking effects. Some of the I(Xj; Y|B) terms are
indeed clearly never encountered and their contribution is therefore
reduced to 0 in the total importance. For instance, for k = 0, the sub-
importances of X2 and X5 are positive, while all others are null, which
means that only those two variables are ever selected at the root node,
hence masking the others. As a consequence, this also means that the
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Eqn. 6.10 K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7

X1 0.412 0.414 0.362 0.327 0.309 0.304 0.305 0.306

X2 0.581 0.583 0.663 0.715 0.757 0.787 0.801 0.799

X3 0.531 0.532 0.512 0.496 0.489 0.483 0.475 0.475

X4 0.542 0.543 0.525 0.484 0.445 0.414 0.409 0.412

X5 0.656 0.658 0.731 0.778 0.810 0.827 0.831 0.835

X6 0.225 0.221 0.140 0.126 0.122 0.122 0.121 0.120

X7 0.372 0.368 0.385 0.392 0.387 0.382 0.375 0.372∑
3.321 3.321 3.321 3.321 3.321 3.321 3.321 3.321

Table 6.2: Variable importances as computed with an ensemble of random-
ized trees, for increasing values of K. Importances at K = 1 fol-
low their theoretical values, as predicted by Equation 6.10 in The-
orem 6.1. However, as K increases, importances diverge due to
masking effects. In accordance with Theorem 6.2, their sum is also
always equal to I(X1, . . . ,X7; Y) = H(Y) = log2(10) = 3.321 since
inputs allow to perfectly predict the output.
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Figure 6.2: Variable importances as computed with an ensemble of random-
ized trees, for increasing values of K. Importances at K = 1 follow
their theoretical values, as predicted by Equation 6.10 in Theo-
rem 6.1. However, as K increases, importances diverge due to
masking effects.
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Figure 6.3: Decomposition of variable importances along the degrees k of
interactions of one variable with the other ones. At K = 1, all
I(Xj; Y|B) are accounted for in the total importance, while at
K = 7 only some of them are taken into account due to mask-
ing effects.

importances of the remaining variables are biased and that they actu-
ally only account of their relevance when conditioned to X2 or X5, but
not of their relevance in other contexts. At k = 0, masking effects also
amplify the contribution of I(X2; Y) (resp. I(X5; Y)) since X2 (resp. X5)
appears more frequently at the root node than in totally randomized
trees. In addition, because nodes become pure before reaching depth
p, conditioning sets of size k > 4 are never actually encountered,
which means that we can no longer know whether variables are still
informative when conditioned to many others. All in all, this figure
thus indeed confirms that importances as computed with non-totally
randomized trees take into account only some of the conditioning
sets B, hence biasing the measured importances.

6.6 conclusions

In this chapter, we made a first step towards understanding vari-
able importances as computed with a forest of randomized trees.
In particular, we derived a theoretical characterization of the Mean
Decrease Impurity importances as computed by totally randomized
trees in asymptotic conditions. We showed that they offer a three-
level decomposition of the information jointly provided by all input
variables about the output (Section 6.2). We then demonstrated (Sec-
tion 6.3) that MDI importances as computed by totally randomized
trees exhibit desirable properties for assessing the relevance of a vari-
able: it is equal to zero if and only if the variable is irrelevant and
it depends only on the relevant variables. We discussed the case of
Random Forests and Extremely Randomized Trees (Section 6.4) and
finally illustrated our developments on an artificial but insightful ex-
ample (Section 6.5).
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There remain several limitations to our framework that we would
like address in the future. First, our results should be adapted to bi-
nary splits as used within an actual Random Forest-like algorithm. In
this setting, any node t is split in only two subsets, which means that
any variable may then appear one or several times within a branch,
and thus should make variable importances now dependent on the
cardinalities of the input variables. In the same direction, our frame-
work should also be extended to the case of continuous variables. Fi-
nally, results presented in this work are valid in an asymptotic setting
only. An important direction of future work includes the characteri-
zation of the distribution of variable importances in a finite setting.



7
F U RT H E R I N S I G H T S F R O M I M P O RTA N C E S

Outline

In this chapter, we build upon results from Chapter 6 to further
study variable importances as computed from random forests. In Sec-
tion 7.1, we first examine importances for variables that are redun-
dant. In Section 7.2, we revisit variable importances in the context
of binary decision trees and ordered variables. In this framework, we
highlight various sources of bias that may concurrently happen when
importances are computed from actual random forests. Finally, we
present in Section 7.3 some successful applications of variable impor-
tance measures.

Caution. The work presented in this chapter is exploratory. Conclusions
should be considered with a grain of salt, until further empirical verifications.

7.1 redundant variables

In most machine learning problems, it is typical for input variables
to be correlated, at least to some extent, and to share common bits
of information. In image classification for instance, pixels are usually
highly correlated and individually represent nearly the same infor-
mation as their neighbors. In that sense, variables are often partially
redundant, i.e., some of the variables may share some of the same infor-
mation about the output variable Y. In the extreme case, redundancy
is total or complete, with some of the variables redundantly conveying
exactly the same information with respect to the output variable Y. In
this section, we study redundancy in random forests and show that
it may have a significant effect on both the accuracy of the ensemble
and variable importance measures.

As a guiding example for our discussion, let us consider a set of
input variables and let us discuss the effect of adding redundant vari-
ables on the structure of randomized trees. Intuitively, two variables
Xi and Xj are redundant if one can perfectly explains the other and
vice-versa. Formally, we define redundancy as follows:

Definition 7.1. Two variables Xi,Xj are totally redundant if no additional
information is required for describing Xi given Xj and vice-versa. I.e., if

H(Xi|Xj) = H(Xj|Xi) = 0. (7.1)

In particular, a variable Xj and its copy, denoted X′j, are totally re-
dundant. With respect to random forests, adding copies of variables

145
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(e.g., duplicating Xj, hence resulting in a new set of p+ 1 input vari-
ables) has no effect when the selection of the split is deterministic
(e.g., in RF for K set to the maximum value). No matter the number of
totally redundant variables, the best split that is selected is always the
same, even if the same splits need to be recomputed multiple times
due to redundancy. When the choice of the best split is stochastic how-
ever (e.g., for K strictly smaller than the total number of variables),
adding multiple copies of a variable Xj results in splits that may be
biased towards this variable (or one of its copies), which in turn may
have a significant effect on the resulting accuracy of the ensemble. For
a fixed value of K, it is indeed not difficult to see that adding copies
of Xj increases the probability of Xj, or of one of its copies, to be in
the random subset of K input variables on which to look for splits.
As a corollary, it therefore also simultaneously decreases the proba-
bility of any of the others to be selected, hence biasing the structure
of the generated decision trees. Note that the resulting net effect on
accuracy depends on the nature of duplicated variable. If Xj is very
informative with respect to the input, then favoring splits on Xj by
adding copies may result in an increase of accuracy. By contrast, if Xj
is irrelevant, then adding copies increases the risk of overfitting.

With respect to variable importances, the effect of adding redun-
dant variables can be derived both qualitatively and quantitatively
using results from Chapter 6. From Theorem 6.5, we already know
that adding irrelevant variables does not change the resulting vari-
able importances. Adding copies of a relevant variable however, has
an effect on both the importance of the duplicated variable and on the
importance of the remaining variables. As in the previous chapter, let
us assume a set V = {X1, ...,Xp} of categorical input variables and a
categorical output Y, for which we derive MDI importances, as com-
puted from totally randomized and fully developed trees built on an
infinitely large dataset.

Lemma 7.1. Let Xi and Xj be totally redundant variables. For any condi-
tioning set B,

I(Xi; Y|B,Xj) = I(Xj; Y|B,Xi) = 0 (7.2)

I(Xi; Y|B) = I(Xj; Y|B). (7.3)

Proof. By symmetry of the mutual information, it comes

I(Xi;Xj) = H(Xi) −H(Xi|Xj)

= H(Xj) −H(Xj|Xi), (7.4)

which implies that H(Xi) = H(Xj) since H(Xi|Xj) = H(Xj|Xi) = 0 if
Xi and Xj are totally redundant. Since 0 6 H(Xi|Xj,B) 6 H(Xi|Xj)

and H(Xi|Xj) = 0, we also have H(Xi|Xj,B) = 0 for any condition-
ing set B. Likewise, H(Xj|Xi,B) = 0. By reusing the same argument
for I(Xi;Xj|B) (instead of I(Xi;Xj)), equality therefore extends to any
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conditioning set B, giving H(Xi|B) = H(Xj|B). From these, it follows
that,

I(Xi; Y|B,Xj) = H(Xi|B,Xj) −H(Xi|B,Xj, Y) = 0− 0, (7.5)

I(Xj; Y|B,Xi) = H(Xj|B,Xi) −H(Xj|B,Xi, Y) = 0− 0, (7.6)

which proves Equation 7.2. We also have

I(Xi; Y|B) = H(Xi|B) −H(Xi|B, Y) (7.7)

= H(Xj|B) −H(Xj|B, Y) (7.8)

= I(Xj; Y|B), (7.9)

which proves Equation 7.3.

Proposition 7.2. Let Xj ∈ V be a relevant variable with respect to Y and
V and let X′j /∈ V be a totally redundant variable with respect to Xj. The
infinite sample size importance of Xj as computed with an infinite ensemble
of fully developed totally randomized trees built on V ∪ {X′j} is

Imp(Xj) =
p−1∑
k=0

p− k

p+ 1

1

Ckp

1

p− k

∑
B∈Pk(V−j)

I(Xj; Y|B) (7.10)

Proof. From Theorem 6.1, the variable importance of Xj is

Imp(Xj) =
p−1+1∑
k=0

1

Ckp+1

1

p+ 1− k

∑
B∈Pk(V−j∪{X′j})

I(Xj; Y|B)

=

p−1∑
k=0

1

Ckp+1

1

p+ 1− k

∑
B∈Pk(V−j)

I(Xj; Y|B)

=

p−1∑
k=0

p− k

p+ 1

1

Ckp

1

p− k

∑
B∈Pk(V−j)

I(Xj; Y|B), (7.11)

since from Lemma 7.1, I(Xj; Y|B∪X′j) = 0 for all B ∈ P(V−j).

Lemma 7.3. Let Xi and Xj be totally redundant variables. For any condi-
tioning set B and for any variable Xl,

I(Xl; Y|B,Xi) = I(Xl; Y|B,Xj) = I(Xl; Y|B,Xi,Xj) (7.12)

Proof. From the chaining rule of the mutual information, we have

I(Xi,Xj,Xl; Y|B) = I(Xl; Y|B) + I(Xi,Xj; Y|B,Xl)

= I(Xl; Y|B) + I(Xi; Y|B,Xl) + I(Xi; Y|B,Xj,Xl)

= I(Xl; Y|B) + I(Xi; Y|B,Xl) (Lemma 7.1)

= I(Xi,Xl; Y|B)

= I(Xi; Y|B) + I(Xl; Y|B,Xi). (7.13)
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By symmetry,

I(Xi,Xj,Xl; Y|B) = I(Xj; Y|B) + I(Xl; Y|B,Xj), (7.14)

which proves that I(Xl; Y|B,Xi) = I(Xl; Y|B,Xj), by combining both
equations and using the fact that I(Xi; Y|B) = I(Xj; Y|B) (Lemma 7.1).

From the chaining rule, we also have

I(Xi,Xj,Xl; Y|B) = I(Xi,Xj; Y|B) + I(Xl; Y|B,Xi,Xj)

= I(Xi; Y|B) + I(Xj; Y|B,Xi) + I(Xl; Y|B,Xi,Xj)

= I(Xi; Y|B) + I(Xl; Y|B,Xi,Xj). (7.15)

By combining this last equation with Equation 7.13, we finally have
I(Xl; Y|B,Xi) = I(Xl; Y|B,Xi,Xj), which proves Lemma 7.3.

Proposition 7.4. Let Xj ∈ V be a relevant variable with respect to Y and
V and let X′j /∈ V be a totally redundant variable with respect to Xj. The
infinite sample size importance of Xl ∈ V−j as computed with an infinite
ensemble of fully developed totally randomized trees built on V ∪ {X′j} is

Imp(Xl) =
p−2∑
k=0

p− k

p+ 1

1

Ckp

1

p− k

∑
B∈Pk(V−l\Xj)

I(Xl; Y|B)+ (7.16)

↪→
p−2∑
k=0

[
2∑
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Ck
′
2

Ck+k
′

p+1

1

p+ 1− (k+ k ′)

] ∑
B∈Pk(V−l\Xj)

I(Xl; Y|B∪Xj).

Proof. From Lemma 7.3, conditioning by either Xj, X′j or by both vari-
ables yield terms I(Xl; Y|B,Xj), I(Xl; Y|B,X′j) and I(Xl; Y|B,Xj,X′j) that
are all equal. From Theorem 6.1, the variable importance of Xl can
therefore be rewritten as follows:

Imp(Xl) =
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k=0
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↪→
p−2∑
k=0

[
2∑

k ′=1

Ck
′
2

Ck+k
′

p+1

1

p+ 1− (k+ k ′)

] ∑
B∈Pk(V−l\Xj)

I(Xl; Y|B∪Xj).

Proposition 7.2 shows that the importance of Xj decreases when
a redundant variable X′j is added to the set of input variables, since
all mutual information terms are multiplied by a factor p−kp+1 < 1. In-
tuitively, this result is in fact expected since the same information is
then conveyed within two variables (i.e., in Xj and its copy X′j). It also
shows that the terms in the total importance are not all modified in
the same way. The weight of the terms corresponding to small condi-
tioning sets remains nearly unchanged (i.e., for a large number p of
variables and small values of k, p−kp+1 is close to 1), while the weight of
the terms of large conditioning sets is greatly impacted (i.e., for large
values of k, p−kp+1 tends to 0).

As shown by Proposition 7.4, the effect of adding a redundant vari-
able X′j on the importance of the other variables Xl (for l 6= j) is
twofold. The first part of Equation 7.16 shows that the weight of all
terms that do not include Xj (or its copy) strictly decreases by a factor
p−k
p+1 . The second part of Equation 7.16 shows that the the weight of all
terms that include Xj (or its copy) increases, since several equivalent
conditioning sets (i.e., B∪ {Xj}, B∪ {Xj}′ and B∪ {Xj,X′j}) can now ap-
pear within the branches of a tree. Like for Proposition 7.2, impurity
terms are not all modified in the same way and changes depend on
the size k of the conditioning set B. Overall, the net effect on the total
importance of Xl is therefore a compromise between these opposing
changes. If the weighted sum of the I(Xl; Y|B,Xj) terms is small with
respect to the sum of the terms that do not include Xj (or its copy),
then the decrease effect dominates and the importance of Xl should
be smaller. By contrast, if the I(Xl; Y|B,Xj) terms are larger, then the
increase effect dominates and the resulting importance is larger. As
shown later in Figure 7.2, redundant variables therefore increase the
importance of all variables that interact with the duplicated variable.

Propositions 7.2 and 7.4 can be extended to the case where Nc
redundant variables Xcj (for c = 1, . . . ,Nc) are added to the input
variables instead of one, leading to the general Proposition 7.5. From
this result, the same qualitative conclusions can be drawn, except that
the decrease or increase effects discussed above are even stronger as
more redundant variables are added.

Proposition 7.5. Let Xj ∈ V be a relevant variable with respect to Y and
V and let Xcj /∈ V (for c = 1, . . . ,Nc) be Nc totally redundant variables
with respect to Xj. The infinite sample size importances of Xj and Xl ∈ V
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as computed with an infinite ensemble of fully developed totally randomized
trees built on V ∪ {X1j , . . . ,XNcj } are

Imp(Xj) =
p−1∑
k=0

[
Ckp(p− k)

Ckp+Nc(p+Nc − k)

]
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]
1
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1
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1
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I(Xl; Y|B∪Xj).

Proof. Omitted here, but Proposition 7.5 can be proved by generaliz-
ing for Nc the proofs of Propositions 7.2 and 7.4.

Finally, let us note that Propositions 7.2, 7.4 and 7.5 are in fact valid
as soon as variables Xi and Xj satisfy conditions of Lemma 7.1, even
if they are not totally redundant. Accordingly, we call two variables
satisfying these conditions totally redundant with respect to the output Y.

As an illustrative example, let us reconsider the LED classification
problem from Section 6.5, for which X5 was found to be the most
important variable. As shown in Figure 7.1, adding variables that are
redundant with X5 makes its importance decrease, as predicted by
our theoretical result from Propositions 7.2 and 7.5. When 5 or more
copies of X5 are added, the importance of X5 is the smallest of all, as
if X5 had become less informative. Similarly, we observe that the im-
portance of the other variables remains about the same or slightly de-
creases, as if they all had become a bit less informative. With regards
to our previous results in Propositions 7.4 and 7.5, this indicates that
the importance due to the I(Xl; Y|B) terms prevails from the impor-
tance due to the I(Xl; Y|B,Xc5) terms. As a matter of fact, this example
highlights a fundamental property of variable importances as com-
puted in a random forest: importance measures are computed not only
with respect to the output Y, but also with respect to all the other input
variables that define the problem. In particular, a variable which is not
important is not necessarily uninformative, as the example illustrates.
A variable may be considered as less important because the infor-
mation it conveys is also redundantly conveyed and diluted in other
variables, and not necessarily because it has no information about the
output.

As a second example, Figure 7.2 illustrates redundancy effects for
a XOR classification problem defined on two variables X1 and X2.
Again, the importance of the duplicated variable X1 decreases as re-
dundant variables are added, which confirms our results from Propo-
sitions 7.2 and 7.5. More interestingly, we now observe that the impor-
tance of the other variable, X2, increases as copies of X1 are added.
For this problem, the I(X2; Y|B,Xc1) terms are prevalent with respect to
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Figure 7.1: Adding copies of X5 on the LED classification task. The more
redundant variables are added, the lesser the importance of X5.
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Figure 7.2: Adding copies of X1 on a XOR classification task. The more re-
dundant variables are added, the lesser the importance of X1,
but the larger the importance of X2.
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the I(X2; Y|B) terms (which is in fact unique and equal to 0), thereby
artificially increasing the overall importance of X2 as redundancy aug-
ments, as expected from Propositions 7.4 and 7.5.

Overall, results presented in this section call for caution when inter-
preting variable importance scores. Due to redundancy effects – either
total, as studied here, or partial as it would often arise in practice –
it may happen that the total importance of a given variable is either
misleadingly low or deceptively high because the same information is
spread within several redundant variables and therefore taken into ac-
count several times within the total importances. As such, we advise
to complement the interpretation with a systematic decomposition of
variable importance scores, e.g., as previously done in Figure 6.3, in
order to better understand why a variable is in fact important and to
possibly detect redundancy.

7.2 bias in variable importances

In this section, we study sources of bias in variable importances and
show that variable selection (as previously discussed in Section 6.4.3)
is not the only cause of bias. In practice, complementary forces due
to masking effects, impurity misestimations and the structure of the
trees make variable importances deviate from the theoretical results
found in asymptotic conditions for totally randomized trees.

7.2.1 Bias due to masking effects

As shown in the previous chapters, the guided selection of the split
variable (i.e., for K > 1) is necessary for balancing bias and variance
in randomized decision trees and to produce accurate ensembles. In
particular, we studied that decision trees built with too much ran-
domization usually lead to an increase of bias (with respect to the
generalization error) which cannot be compensated by a reciprocal
decrease of variance, making it necessary to adjust the value of K to
find the appropriate trade-off. By contrast, we also showed in Sec-
tion 6.4.3 that when variable selection is not totally random (i.e., as
soon as K > 1), masking effects induce a bias with respect to vari-
able importances, since it forces some of the branches to never be
built, and therefore some of the conditioning sets B ∈ P(V) to never
be taken into account. As a consequence, random forests whose pa-
rameter K has been tuned to maximize accuracy may yield variable
importances that are biased (either over- or underestimated). More
specifically, it can be shown (see Section 6.4.3) that a relevant vari-
able may be null with regards to its importance, thereby making it
indistinguishable from irrelevant variables, and that the importance
of relevant variables becomes dependent on the number of irrelevant
variables.
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X1 ∼ N(0, 1)

X2 ∼ M(2)

X3 ∼ M(4)

X4 ∼ M(10)

X5 ∼ M(20)

null case Y ∼ B(0.5)

power case Y|X2 = 0 ∼ B(0.5− relevance)

Y|X2 = 1 ∼ B(0.5+ relevance)

Table 7.1: Input variables are independent random variables as defined from
the table. N(0, 1) is the standard normal distribution. M(k) is the
multinomial distribution with values in {0, . . . ,k − 1} and equal
probabilities. B(p) is the binomial distribution. In the null case, Y
is independent from X1, . . . ,X5. In the power case, Y depends on
the value X2 while other input variables remain irrelevant.

7.2.2 Bias due to empirical impurity estimations

The analysis of variable importances carried out so far has consid-
ered asymptotic conditions for which the true node impurity i(t)

is assumed to be known. In practice however, due to the finite size
of the learning set, impurity measurements suffer from an empirical
misestimation bias. In this section, we study this effect in the con-
text of heterogeneous variables1, with respect to their scale or their
number of categories, and show that the misestimation of node im-
purity is directly proportional to the cardinality of the split variable
and inversely proportional to the number Nt of samples used for the
evaluation. As a result, impurity reductions become overestimated as
we go deeper in the tree and/or as the number of values of the vari-
able is large. In consequence, variable importances also suffer from
bias, making variables of higher cardinality wrongly appear as more
important.

To guide our discussion, let us revisit the simulation studies from
[Strobl et al., 2007b] which consider a binary output variable Y and
five input variables X1, . . . ,X5, as defined in Table 7.1.

Let us first analyze the case where Y is independent from X1, . . . ,X5,
i.e., such that none of the input variables are informative with respect
to the output. For a randomly sampled dataset L of N = 120 samples,
Figure 7.3 plots variable importances for different kinds of random
forests. TRT corresponds to totally randomized trees, as defined in
Section 6.2, RF corresponds to standard Random Forest with boot-
strap sampling and ETs corresponds to Extremely Randomized Trees.

1 As an example, in the case of meteorological problems, variables often comprise
mixed environmental measurements of different nature and scale, like speed of
wind, temperature, humidity, pressure, rainfall or solar radiation.
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Figure 7.3: Variable importances for Y independent of X1, . . . ,X5. (N = 120,
M = 500)

Both RF and ETs use binary splits while TRT rely on multiway ex-
haustive splits2. In asymptotic conditions, we proved in Theorem 6.3
that the importance of irrelevant variables is strictly equal to 0. For a
finite value of N however, this result does not hold, as Figure 7.3 in-
deed confirms. In contrast with what would be expected, we observe
that the importance of none of the variables is in fact nowhere close to
0. In light of Theorem 6.2 however, this result is not that surprising: as
long as decision trees can be fully developed, the sum of variable im-
portances is equal to the (empirically estimated) mutual information
between X1, . . . ,Xp and the output Y, which is itself upper bounded
by the (empirically estimated) entropy H(Y) of the output variable.
In this case, H(Y) = log2(2) = 1, which indeed corresponds to the
sum of variable importances for all methods compared in the figure.
More importantly, we also observe that the larger the cardinality of
the variable (i.e., the larger its number of unique values), the larger
its importance. For example, the importance of X1 (for which sam-
ples all have unique values) or of X5 (which counts up to 40 unique
values) appears nearly 3 times larger as the importance of X2 (which
is binary).

In their study, Strobl et al. [2007b] argue that this bias is due to vari-
able selection: variables with more potential cut-points are more likely to
produce a good criterion value by chance, as in a multiple testing situation.
As a result, variables of higher cardinality are more likely to be cho-
sen for splitting than those of lower cardinality. While this bias has

2 Thereby creating as many branches as the number of values of the split variable,
even if this variable is continuous and count unique values only.
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been known for long in decision trees [Kononenko, 1995; Kim and
Loh, 2001; Hothorn et al., 2006], we argue that it is not the primary
cause for the bias observed here. Indeed, this argument does not di-
rectly explain why similar trends are also observed when no variable
selection is performed (e.g., for TRT or for K = 1) nor why it similarly
happens when cut-points are chosen at random, independently of the
cardinality of the variable (e.g., in ETs).

For multiway splits like in TRT, bias in variable importances can be
traced to the misestimations of the mutual information terms

∆i(s, t) ≈ I(Xj; Y|t) (7.17)

due to the finite size Nt of the node samples. As shown in [Goebel
et al., 2005], when Xj and Y are independent random variables (i.e.,
when Xj is irrelevant), the distribution of finite sample size estimates
of their mutual information follows approximately a gamma distribu-
tion

Î(Xj; Y) ∼ Γ
(1
2
(|Xj|− 1)(|Y|− 1),

1

Nt log 2

)
(7.18)

whose mean is linearly proportional to the cardinalities |Xj| and |Y| of
Xj and Y and inversely proportional to Nt, that is

E{̂I(Xj; Y)} =
(|Xj|− 1)(|Y|− 1)

2Nt log 2
. (7.19)

As a result, estimates get larger as Xj counts many unique values,
and become even larger as nodes are deep in the tree (since Nt gets
smaller). Consequently, the weighted mean of all such estimated im-
purity terms I(Xj; Y|t), for all nodes t where Xj is the split variable,
and resulting in the total importance Imp(Xj), is also linearly depen-
dent on the cardinality of Xj. For TRT, this result explains why vari-
ables of high cardinality in Figure 7.3 appear as more important than
those of lower cardinality. Intuitively, the closer the number of unique
values with respect to the total number of samples, the larger the im-
purity decrease when splitting exhaustively on this variable. In the
extreme case, when values for Xj are all unique, splitting on the vari-
able perfectly memorizes the values of Y, resulting in child nodes that
are all pure, therefore maximizing the estimated mutual information.
As such, this explains why X1, whose values are all unique, appears
as the most important variable.

For binary splits (i.e., for RF and ETs) the mutual information I(Xj; Y|t)
is not directly estimated at each node. Rather, in the case of ordered
variables, ∆i(s, t) corresponds to an estimate of the mutual informa-
tion I(Xj 6 v; Y|t) of the binary split Xj 6 v. Under the simplifying
assumption that binary splits on the same variable are all directly
consecutive in the decision tree, it is easy to see that binary trees are
equivalent to multiway trees [Knuth, 1968], as illustrated in Figure 7.4.
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Xj ≤ 1 Xj > 1

Xj ≤ 0 Xj > 0

Xj = 0
Xj = 1

Xj = 2

Figure 7.4: Consecutive binary splits on the same variable are equivalent to
direct multiway splits.

Using an argument similar to the proof of Theorem 6.2, intermedi-
ate impurity terms between the first split and the last of those splits
cancel each other when summing up the importances, which finally
amounts to collect an actual estimate of I(Xj; Y|t) from the sequence
of binary splits. For the same reasons as before, variables of high
cardinality are therefore biased in the same way. (As we will study
in Section 7.2.3, this consecutiveness assumption does not hold in
practice, making the importances from binary decision trees strictly
different from those of multiway decision trees. Yet, the qualitative
conclusions are still valid since variables of high cardinality can be
reused far more often than variables of low cardinality, before all pos-
sible splits are exhausted.)

In both situations, the origin of the problem stems from the fact
that node impurity is misestimated when the size Nt of the node
samples is too small. To a large extent, the issue is aggravated by the
fact that trees are fully developed by default, making impurity terms
collected near the leaves usually unreliable. As a precaution, a safe
and effective solution for the bias problem therefore simply consists
in collecting impurity terms only for those nodes where the impurity
estimates can be considered as reliable. Equivalently, the construc-
tion of the tree can also be stopped early, when impurity estimates
become unreliable, e.g., by limiting the depth of the tree, controlling
for the minimum number of samples in internal nodes or using any
of the other stopping criteria defined in Section 3.5. Among all alter-
natives, conditional inference trees [Hothorn et al., 2006] and earlier
methods [Quinlan, 1986; Wehenkel, 1998] make use of statistical tests
for assessing the independence of Xj and Y at a pre-specified level of
confidence α. If the null hypothesis cannot be rejected, then recursive
partitioning halts. In particular, variable importances collected from
conditional inference trees were shown experimentally by Strobl et al.
[2007b] not to suffer from bias. The authors argue that it is due to the
unbiased variable selection mechanisms also implemented in condi-
tional inference trees. By contrast, we argue that the absence of bias
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in importances from such trees is mostly due to the early stopping
criterion, and not to variable selection. Although variable selection
plays an important and exacerbating role, it is not the true cause
of the observed bias. Indeed, since the impurity reduction of vari-
ables of high cardinality is overestimated, searching for a split among
K > 1 randomly drawn variables increases their probability of be-
ing selected when compared to others of lower cardinality, therefore
masking and reducing the importances of these latter variables. Yet,
bias stems from the fact that impurity reductions are misestimated in
the first place.

As an illustrative example, Figure 7.5 reconsiders the simulation
study of Table 7.1, when varying both the maximum depth of the
trees (from max_depth = 1 to 9) and the relevance of X2 with respect
to Y. Let us first consider ETs built with no variable selection (K = 1),
as shown in four top plots of the figure. For the null case, when
relevance = 0, limiting the depth of the trees correctly fixes the bias
that was observed before. For shallow trees, the importances before
normalization of all five input variables are close to 0, as expected
from irrelevant variables. The normalized importances, as shown in
the figure, are also all close to 1

p = 0.2, confirming that no variable
is detected as more relevant than the others. However, when the
depth of the decision trees increases, importances deviate and bias
proportional to the cardinality of the variables appears as discussed
before. When X2 is a relevant variable (i.e., for relevance > 0), its
importance is expected to be strictly positive and at least as large as
the importances of the irrelevant variables. For relevance = 0.1 and
max_depth=1, the importance of X2 appears nearly 6 times larger than
the importances of the other variables, confirming that X2 is correctly
identified as a relevant variable. For deeper trees however, noise dom-
inates and the importance of the irrelevant variables is larger due to
misestimations of the impurity terms. As relevance increases, X2 can
more clearly be identified as a relevant variable. In particular, the
more relevant X2, that is the stronger the signal, the deeper trees can
be built until X2 is made unrecognizable from the irrelevant variables.

By comparison, the four bottom plots of Figure 7.5 illustrate vari-
able importances for RF built with variable selection (K = 5). Again,
we observe that limiting the depth of the trees helps reduce the mis-
estimation bias. However, the supplementary effect due variable se-
lection is also clearly visible: variables of larger cardinality appear as
significantly more important than the other variables. Consequently,
this makes the detection of X2 as a relevant variable more difficult
when trees are grown deeper. When comparing the relative impor-
tance of X2 for a given depth and relevance, we indeed observe that
X2 consistently appears as less important in RF than in ETs. It is only
for very shallow trees (max_depth=1 or 2) and high relevance that X2
is identified with higher confidence than in ETs.
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Figure 7.5: Variable importances of X1, . . . ,X5 when varying both the max-
imum depth of the trees and the degree of relevance of X2. Im-
portance scores are normalized by the sum of importances. (Top)
ETs with no variable selection, K = 1, N = 120, M = 500. (Bot-
tom) Random Forest with variable selection, K = 5, N = 120,
M = 500.
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In conclusion, evaluating impurity on small samples lead to over-
estimations of the mutual information, resulting in biased variable
importances. In particular, the higher the cardinality of the variable,
the larger the misestimations. To minimize this effect, caution should
be taken by only considering impurity terms that were computed
from a large enough sample. This can be guaranteed, e.g., by stopping
the construction of the tree early or making leaves grow more slowly
than the size N of the learning set. Additionally, we have also shown
that variable selection may increase the bias due to over-estimations.
In this case, a simple remedy consists in not using variable selection
when assessing the relevance of variables. Finally, let us also note the
connection with Propositions 6.6 and 6.7: as long as trees are built to
a maximum depth which is larger than the number r of relevant vari-
ables, early stopping the construction of the trees does not prevent us
from detecting the relevant variables.

7.2.3 Bias due to binary trees and threshold selection

Previous developments from Chapter 6 studied variable importances
for fully developed totally randomized trees and multiway exhaus-
tive splits. In practice however, random forests usually rely on binary
splits rather than on multiway splits. In terms of impurity, this results
in additional and distinct information terms that were not previously
accounted for, because i) a same variable can be reused several times
along the same branch and ii) binary splits discretize the information
contained in a variable, making variable importances dependent on
the split threshold selection strategy. In lack of a rigorous theoretical
framework, we give in this section preliminary insights on variable
importances for binary decision trees, hopefully shedding some light
on their interpretation.

As a simplistic but illustrative example, let us consider a toy clas-
sification problem composed of a ternary input variable X1 and of
a binary input variable X2, both of them being ordered. Let us fur-
ther assume that input samples are uniformly drawn from Table 7.2,
which defines the output as Y = X1 < 1 and X2 as a copy of Y. With
respect to Y, both variables are as informative and one would expect
their importances to be the same. With totally randomized trees and
exhaustive splits, two equiprobable decision trees can be built, as rep-
resented in Figure 7.6. In both of them, splitting either on X1 or on
X2 at the root node results in child nodes that are pure, hence halting
the construction process. As expected, the measured variable impor-
tances are the same:

Imp(X1) =
1

2
I(X1; Y) =

1

2
H(Y) = 0.459,

Imp(X2) =
1

2
I(X2; Y) =

1

2
H(Y) = 0.459.
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y x1 x2

0 0 0

1 1 1

1 2 1

Table 7.2: Toy problem. All 3 possible samples are equiprobable.

X1 = 0
X1 = 1

X1 = 2 X2 = 0 X2 = 1

Figure 7.6: Totally randomized trees built from Table 7.2. Both decision trees
are equiprobable. The resulting variable importances indicate
that both X1 and X2 are as important.

X1 ≤ 1 X1 > 1

X1 ≤ 0 X1 > 0

X1 ≤ 1 X1 > 1

X2 = 0 X2 = 1

X1 ≤ 0 X1 > 0 X2 = 0 X2 = 1

Figure 7.7: Extremely randomized trees (K = 1) built from Table 7.2. From
left to right, top to bottom, decision trees are respectively gen-
erated with probability 1

8 , 18 , 14 and 1
2 . The resulting variable

importances indicate that X2 is now more important than X1.
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By contrast, using binary splits and ETs (for K = 1) results in 4
different decision trees, as represented in Figure 7.7. When splitting
on X1 at the root node, two binary splits are now possible with equal
probability: tL = X1 6 0, tR = X1 > 0 or tL = X1 6 1, tR = X1 > 1. In
the former case, the resulting child nodes are pure, hence halting the
construction process. In the latter case, the right child (corresponding
to X1 > 1) is pure, while the left child is not. For this node, recursive
partitioning proceeds and a second binary split can be made either
on X1 or on X2. Overall, the measured variable importances in these
binary trees, in asymptotic conditions, are

Imp(X1) =
2

8
I(X1 6 1; Y) +

1

8
P(X1 6 1)I(X1 6 0; Y|X1 6 1) +

1

4
I(X1 6 0; Y)

= 0.375

Imp(X2) =
1

2
I(X2; Y) +

1

8
P(X1 6 1)I(X2; Y|X1 6 1)

= 0.541,

which makes them strictly different from the importances collected
from multiway totally randomized trees. In particular, due to the bi-
narization of the split variables, importances now account for condi-
tioning sets that may include several values of a same variable. For
instance, the importance of X2 includes I(X2; Y|X1 6 1), which mea-
sures the mutual information between X2 and Y when X1 is either
equal to 0 or 1. With multiway exhaustive splits, these conditioning
sets are not considered because branches correspond to single values
only. Similarly, importances also account for binarized mutual infor-
mation terms such as I(X1 6 1; Y). Again, these are not evaluated in
totally randomized trees because of the multiway splits.

Accordingly, threshold selection in binary splits has a dominant
effect on variable importances since it controls how the original vari-
ables are binarized. In ETs, all intermediate thresholds v are possible,
resulting in a combinatorial number of additional impurity terms
I(Xj 6 v; Y|·) and I(·; Y|Xj 6 v, ·). In RF, only the best threshold is
selected locally at each node, resulting in fewer additional impurity
terms I(Xj < v∗; Y|·) and I(·; Y|Xj < v∗, ·) (and masking all others).

As a last example, Figure 7.8 illustrates variable importances for X1
and X2 when increasing the cardinality L = |X1| of X1 on the previ-
ous toy problem. That is, let us redefine the output as Y = X1 <

L
2 ,

for X1 = {0, . . . ,L− 1}, while keeping X2 as a binary variable defined
as a copy of Y. Assuming that all input samples are equiprobable,
the importances yielded by totally randomized trees with multiway
splits remain the same as before. For ETs however, increasing L in-
duces even more new impurity terms that are now accounted for in
the importances. As the figure shows, increasing the cardinality of
X1 makes its importance decrease, but also simultaneously makes
the importance of X2 increase. Indeed, splitting on X2 always yield
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Figure 7.8: Variable importances of X1 and X2 when increasing the cardinal-
ity of X1.

child nodes that are pure, which is unlikely to be the case when split-
ting randomly on X1. For RF, only the best thresholds are selected,
yielding in this case child nodes that are always pure, as for totally
randomized trees. As such, their importances respectively appear as
equal as the figure confirms.

Overall, these additional effects due to binary splits make variable
importances computed from classical random forests very difficult to
interpret and understand, as soon as data include many variables of
different number of categories. While they can still be used to iden-
tify the most relevant variables, caution should be taken when inter-
preting the amplitude of importances. As our last example illustrates,
they may be misleadingly low or high because of combinatorial ef-
fects, solely due to the possible ways variables are binarized through
the implemented threshold selection mechanisms.

Encoding L-ary variables into binary variables

Partitioning node samples with binary splits on L-ary input variables
is equivalent to individually transforming each input variable Xj into
a set of Lj− 1 binary input variables {Xlj |l = 1, . . . ,Lj− 1}, each encod-
ing for one the possible splits, and then partitioning node samples
using of one these new variables. If we consider the binarized learn-
ing set L′, for which all p the input variables have been transformed
into

∑
j(Lj − 1) binary variables, then our theoretical framework for

totally randomized trees and exhaustive splits can be applied and
Theorem 6.1 could possibly be adapted. The only difference lies in
the way binary variables are drawn at random: instead of splitting
randomly on one of the

∑
j(Lj − 1) variables, first, one of the p origi-

nal variables is drawn uniformly at random; second, one of its Lj − 1
binary variables is selected for splitting the current node. In this set-
ting, the importance of Xj therefore amounts to the sum of impor-
tances

∑
l Imp(Xlj) of its binary variables.
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7.3 applications

In spite of the various concurrent effects discussed earlier, variable
importance measures have been used with success in a wide range
of scientific applications. While they have proven to be a good proxy
for assessing the relevance of input variables, providing helpful in-
sights, too often variable importances are used as a black-box metric,
hence under-exploiting the information they offer. As such, examples
presented in this section all demonstrate that any progress towards a
better theoretical understanding of variable importances may help to
further advance a wide range of research domains.

7.3.1 Feature selection

Within the past 10 or 20 years, typical machine learning problems
have grown from a few tens of input variables to domains explor-
ing hundreds of thousands of variables, often comprising noisy, ir-
relevant or redundant predictors, mixing both numerical and cate-
gorical variables and involving complex interaction effects. In this
context, the feature selection problem consists in identifying a sub-
set of the original input variables that are useful for building a good
model [Guyon and Elisseeff, 2003; Liu and Yu, 2005]. The advantages
and benefits of reducing the dimensionality of the problem include:
speeding up machine learning algorithms, reducing measurement
and storage requirements, improving the accuracy of the models or
facilitating data visualization and understanding.

Because of the properties of random forests (good prediction per-
formance, robustness to noisy variables, support of numerical and cat-
egorical variables and ability to model complex interactions), variable
importances often provide an effective solution for the feature selec-
tion problem. The most straightforward solution consists in ranking
variables according to their importance scores and to only keep the
most important ones. Depending on the objective, the best subset of
variables can be identified in several ways:

- When the goal is simply to reduce dimensionality because of
speed and storage requirements, the simplest solution is to keep
only those variables whose importances Imp(Xj) is greater than
some manually defined threshold α.

- If the goal is to improve accuracy, a good subset of variables can
typically be found by tuning the threshold α so as to minimize
some user-defined criterion (e.g., the zero-one loss in classifica-
tion or the squared error loss in regression) for the model built
on the subset {Xj|Imp(Xj) > α}.

At the price of more computational efforts, even better per-
formance can usually be reached by embedding variable im-
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portances into a dedicated iterative feature selection procedure,
such as those described in [Guyon et al., 2002; Tuv et al., 2009].

- In some other applications, the objective is to identify variables
that are relevant, in order to better understand the underlying
relations with the output Y. In asymptotic conditions, this could
be done by discarding all variables whose importances is null,
as shown by Theorem 6.5. In a finite setting however, bias due
to masking effects or impurity misestimations (as previously
discussed in Section 7.2) makes it more difficult to identify vari-
ables that are truly relevant since their importances might ap-
pear to be lower than those of irrelevant variables. Yet, several
options are available for controlling and limiting false positives,
such as stopping the construction process when impurity esti-
mations become statistically unreliable (Section 7.2.2), compar-
ing the importances of the original input variables to artificial
contrasts [Tuv et al., 2006] or robustly controlling the condi-
tional error rate through permutation tests [Huynh-Thu et al.,
2012].

7.3.2 Biomarker identification

With the rise of -omics data, random forests have become one of the
most popular tools in life sciences, providing practitioners with both
high-prediction accuracy and helpful insights about the importances
of variables. In many cases, variable importance measures (either
MDI or the permutation importance) is exploited to better under-
stand complex interaction effects between the inputs and the out-
put. Examples of successful applications include the identification of
disease-associated SNPs in genome-wide association studies [Lunetta
et al., 2004; Meng et al., 2009; Botta et al., 2014], the discovery of im-
portant genes and pathways from micro-array gene-expression data
[Pang et al., 2006; Chang et al., 2008] or the identification of factors
for predicting protein-protein interactions [Qi et al., 2006]. These ex-
amples are not isolated and tens of further studies based on random
forests could in fact be cited from the fields of genomics, metabolomics,
proteomics or transcriptomics. Some of them are reviewed in [Geurts
et al., 2009; Touw et al., 2013; Boulesteix et al., 2012].

In light of our study and discussion of variable importances, rec-
ommendations for biomarker identification depend on the exact ob-
jective of the application. If the goal is to identify all relevant vari-
ables, then totally randomized trees with multiway splits should be
preferred. They indeed constitute the only method for which variable
importances are unbiased, taking into account all possible interaction
terms in a fair and exhaustive way. The only caveat is that a (very)
large number of trees may be required before variable importances
converge, making them computationally intensive to compute, even
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Figure 7.9: Gene regulatory network in Staphylococcus aureus. Image from
[Marbach et al., 2012].

if the full randomization of the induction procedure actually make
individual decision trees to be quite fast to generate. By contrast, if
the objective is only to identify a subset of good predictors for pre-
dicting the output (hence possibly omitting relevant but redundant
variables), then non-totally randomized trees (e.g., standard RF or
ETs) with K chosen to maximize accuracy should be preferred. Even if
some informative variables may be masked because of variable selec-
tion, a good subset of input variables should still be identifiable from
importance scores. From a computational point of view, convergence
should also be faster, making this approach more appealing when
resources are limited. In all cases, impurity misestimations should
be controlled by stopping the construction process early or collect-
ing importances only for those nodes where impurity reductions can
be considered as reliable. Finally, whenever practical, variable impor-
tances should also be decomposed in order to better understand why
some variables appear as more important than others. In particular,
studying the decomposition might help identify redundancy effects.

7.3.3 Network inference

Given a set of input variables V = {X1, . . . ,Xp}, the network inference
problem consists in the identification of conditional dependencies be-
tween variables. In genomics for example, regulatory network infer-
ence consists in the identification of interactions between genes or
transcription factors on the basis of their expression level, in order
to reconstruct a global network of interactions (as illustrated in Fig-
ure 7.9 for Staphylococcus aureus).

As proposed in the GENIE3 method [Huynh-Thu et al., 2010], the
network inference problem can be solved generically by remarking
that it can decomposed into p independent supervised learning prob-
lems. Formally, for each input variable Xj (for j = 1, . . . ,p), GENIE3

considers the supervised sub-problem consisting in the prediction of
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the target variable Xj from the remaining p− 1 variables V−j. Using
random forests for solving each of these p problems, variable im-
portances can be derived and used as an indication of the (directed)
putative link between the predictor variables Xi (for i 6= j) and the
target Xj. Intuitively, the larger the importance, the more likely the
conditional dependency with Xj. Once all p problems are solved, pu-
tative links are aggregated over all p variables to provide a ranking
of interactions from which the network can finally be reconstructed.

Again, our previous theoretical analysis calls for caution when
plugging variable importances into network inference procedures. In-
deed, since the goal is to retrieve all direct interactions, importances
might in fact not be as appropriate as desired since they also account
for indirect or combined effects. In this case, a good heuristic is to
intentionally induce masking effects (i.e., by setting K > 1) in order
to recover only the strongest (and assumingly direct) interactions. Al-
ternatively, a promising strategy might be to directly look for strongly
relevant variables, that is for variables Xi such that I(Xi;Xj|B) > 0

for all B. In both cases, impurity misestimations effects should be
mitigated by using an adequate stopping criterion. When input vari-
ables are of different scale of measurements or vary in the number
of categories, care should finally be taken when aggregating variable
importances into a single ranking of interactions. As shown by Theo-
rem 6.2, variable importances are in this case upper bounded by the
entropy H(Xj) of the target variable, which may greatly varies from
one target to another. As such, variable importances are not directly
comparable and should preferably be normalized (e.g., by H(Xj)) be-
fore their aggregation.
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Outline

In this chapter, we consider supervised learning under the assump-
tion that the available memory is small compared to the size of the
dataset. This general framework is relevant in the context of big data,
distributed databases and embedded systems. In Section 8.1, we pro-
pose a very simple, yet effective, ensemble framework that builds
each individual model of the ensemble from a random patch of data
obtained by drawing random subsets of both samples and input vari-
ables from the whole dataset. In sections 8.2 and 8.3, we carry out an
extensive and systematic evaluation of this method on 29 datasets, us-
ing decision trees as base models. With respect to popular ensemble
methods, these experiments show that the proposed method provides
on par performance in terms of accuracy while simultaneously low-
ering the memory needs, and attains significantly better performance
when memory is severely constrained. We conclude and discuss fu-
ture work directions in Section 8.4. This chapter is based on previous
work published in [Louppe and Geurts, 2012].

Within the past few years, big data has become a popular trend
among many scientific fields. In life sciences, computer vision, In-
ternet search or finance, to cite a few, quantities of data have grown
so large that it is increasingly difficult to process, analyze or visualize.
In many cases, single computers are no longer fit for big data and dis-
tributed environments need to be considered to handle it. Although
research is very active in this area, machine learning is no exception
to this new paradigm. Much still needs to be done and methods and
algorithms have to be reinvented to take this constraint into account.

In this context, we consider supervised learning problems for which
the dataset is so large that it cannot be loaded into memory. Breiman
[1999] proposed the Pasting method to tackle this problem by learn-
ing an ensemble of models individually built on random subsets of
the training examples, hence alleviating the memory requirements
since the base models would be built on only small parts of the
whole dataset. Earlier, Ho [1998] proposed to learn an ensemble of
models individually built on random subspaces, i.e., on random sub-
sets of the input variables (or features). While the first motivation of
the Random Subspace method was to increase the diversity within
the models of the ensemble, it can actually also be seen as way to
reduce the memory requirements of building individual models. In
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this work, we propose to combine and leverage both approaches at
the same time: learn an ensemble of models on random patches, i.e., on
random subsets of the samples and of the input variables. Through an
extensive empirical study, we show that this approach (1) improves
or preserves comparable accuracy with respect to other ensemble ap-
proaches which build base models on the whole dataset while (2)
drastically lowering the memory requirements and hence allowing
an equivalent reduction of the global computing time. In other words,
this analysis shows that there is usually no need to build individual
models on the whole dataset. For the same accuracy, models can be
learned independently on small portions of the data, within signifi-
cantly lower computational requirements.

8.1 random patches

The Random Patches algorithm proposed in this work (further re-
ferred to as RP) is a wrapper ensemble method that can be described
in the following terms. Let R(αs,αf,L) be the set of all random
patches of size αsN × αfp than can be drawn from the dataset L,
where N (resp., p) is the number of samples in L (resp., the number
of input variables in L) and where αs ∈ [0, 1] (resp. αf) is an hyper-
parameter that controls the number of samples in a patch (resp., the
number of variables). That is, R(αs,αf,L) is the set of all possible sub-
sets containing αsN samples (among N) with αfp variables (among
p). The method then works as follows:

Algorithm 8.1. Random Patches algorithm.
1: for m = 1, . . . ,M do
2: Draw a patch r ∼ U(R(αs,αf,L)) uniformly at random
3: Build a model on the selected patch r
4: end for
5: Aggregate the predictions of the M models in an ensemble

While the RP algorithm can exploit any kind of base estimators,
we consider in this work only tree-based estimators. In particular, we
evaluate the RP algorithm using standard classification trees (as de-
scribed in Chapter 3) and (single) extremely randomized trees [Geurts
et al., 2006a]. Unless stated otherwise, trees are unpruned and grown
using Gini index as impurity criterion for node splitting. The parame-
ter K of extremely randomized trees within RP is set to its maximum
value K = αfp (i.e., corresponding to no further random selection of
variables).

The first benefit of RP is that it generalizes both the Pasting Rvotes
(P) method [Breiman, 1999] (and its extensions [Chawla et al., 2004;
Basilico et al., 2011]) and the Random Subspace (RS) algorithm [Ho,
1998]. Both are indeed merely particular cases of RP: setting αs = 1.0
yields RS while setting αf = 1.0 yields P. As such, it is expected that
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when both hyper-parameters αs and αf are tuned simultaneously, RP
should be at least as good as the best of the two methods, provided
there is no overfitting associated with this tuning.

When the base estimators are standard decision trees (resp., ex-
tremely randomized trees with K = αfp), interesting parallels can
also be drawn between RP and the RF algorithm (resp., ET). For
αs = 1.0, the value of αfp is indeed nearly equivalent to the number
K of features randomly considered when splitting a node. A major
difference remains though. In RP, the subset of features is selected
globally once and for all, prior to the construction of each tree. By
contrast, in RF (resp., in ET) subsets of features are drawn locally at
each node. Clearly, the former approach already appears to be more
attractive when dealing with large databases. Non-selected features
indeed do not need to be considered at all, hence lowering the mem-
ory requirements for building a single tree. Another interesting paral-
lel can be made when bootstrap samples are used like in RF: it nearly
amounts to set αs = 0.632, i.e. the average proportion of unique sam-
ples in a bootstrap sample. Differences are that in a bootstrap sample,
the number of unique training samples varies from one to another
(while it would be fixed to 0.632N in RP), and that samples are not
all equally weighted.

In addition, RP also closely relates to the SubBag algorithm which
combines Bagging and RS for constructing ensembles. Using N boot-
strapped samples (i.e., nearly equivalent to αs = 0.632) and setting
αf = 0.75, Panov and Džeroski [2007] showed that SubBag has com-
parable performance to that of RF. An added advantage of SubBag,
and hence of RP, is that it is applicable to any base estimator without
the need to randomize the latter.

8.2 on accuracy

Our validation of the RP algorithm is carried out in two steps. In this
section, we first investigate how RP compares with other popular tree-
based ensemble methods in terms of accuracy. In the next section, we
then focus on its memory requirements for achieving optimal accu-
racy and its capability to handle strong memory constraints, again in
comparison with other ensemble methods.

Considering accuracy only, our main objective is to investigate whe-
ther the additional degrees of freedom brought by αs and αf signif-
icantly improve, or degrade, the performance of RP. At first glance,
one might indeed think that since the base estimators are (intention-
ally) built on parts of the data, the accuracy of the ensemble will be
lower than if they were all built on the whole set. Additionally, our
goal is also to see whether sampling features once globally, instead of
locally at each node, impairs performance, as this is the main differ-
ence between RP and state-of-the-art methods such as RF or ET.
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8.2.1 Protocol

We compare our method with P and RS, as well as with RF and ET.
For RP, P and RS, two variants have been considered, one using stan-
dard decision trees (suffixed below with ’-DT’) as base estimators,
and the other using extremely randomized trees (suffixed below with
’-ET’) as base estimators. Overall, 8 methods are compared: RP-DT,
RP-ET, P-DT, P-ET, RS-DT, RS-ET, RF and ET.

We evaluate the accuracy of the methods on an extensive list of both
artificial and real classification problems. For each dataset, three ran-
dom partitions were drawn: the first and larger (50% of the original
dataset) to be used as the training set, the second (25%) as valida-
tion set and the third (25%) as test set. For all methods, the hyper-
parameters αs and αf were tuned on the validation set with a grid-
search procedure, using the grid {0.01, 0.1, ..., 0.9, 1.0} for both αs
and αf. All other hyper-parameters were set to default values. In RF
and ET, the number K of features randomly selected at each node
was tuned using the grid αfp. For all ensembles, 250 fully developed
trees were generated and the generalization accuracy was estimated
on the test set. Unless otherwise mentioned, for all methods and for
all datasets, that procedure was repeated 50 times, using the same 50

random partitions between all methods, and all scores reported below
are averages over those 50 runs. All algorithms and experiments have
been implemented in Python, using Scikit-Learn [Pedregosa et al.,
2011] as base framework.

8.2.2 Small datasets

Before diving into heavily computational experiments, we first wanted
to validate our approach on small to medium datasets. To that end,
experiments were carried out on a sample of 16 well-known and pub-
licly available datasets (see Table 8.1) from the UCI machine learning
repository [Frank and Asuncion, 2010], all chosen a priori and inde-
pendently of the results obtained. Overall, these datasets cover a wide
range of conditions, with the sample sizes ranging from 208 to 20000

and the number of features varying from 6 to 168. Detailed average
performances of the 8 methods for all 16 datasets using the protocol
described above are reported in Table 8.2. Below, we analyze general
trends by performing various statistical tests.

Following recommendations in [Demsar, 2006], we first performed
a Friedman test that rejected the hypothesis that all algorithms are
equivalent at a significance level α = 0.05. We then proceeded with
a post-hoc Nemenyi test for a pairwise comparison of the average
ranks of all 8 methods. According to this test, the performance of two
classifiers is significantly different (at α = 0.05) if their average ranks
differ by at least the critical difference CD = 2.6249 (See [Demsar,
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Dataset N p

diabetes 768 8

dig44 18000 16

ionosphere 351 34

pendigits 10992 16

letter 20000 16

liver 345 6

musk2 6598 168

ring-norm 10000 20

satellite 6435 36

segment 2310 19

sonar 208 60

spambase 4601 57

two-norm 9999 20

vehicle 1692 18

vowel 990 10

waveform 5000 21

Table 8.1: Small datasets.
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Figure 8.1: Average ranks of all methods on small datasets.

2006] for further details). The diagram of Figure 8.1 summarizes these
comparisons. The top line in the diagram is the axis along which
the average rank Rm of each method m is plotted, from the highest
ranks (worst methods) on the left to the lowest ranks (best methods)
on the right. Groups of methods that are not statistically different
from each other are connected. The critical difference CD is shown
above the graph. To further support these rank comparisons, we also
compare the 50 accuracy values obtained over each dataset split for
each pair of methods by using a paired t-test (with α = 0.01). The
results of these comparisons are summarized in Table 8.3 in terms
of “Win-Draw-Loss” statuses of all pairs of methods; the three values
at the intersection of row i and column j of this table respectively
indicate on how many datasets method i is significantly better/not
significantly different/significantly worse than method j.
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Validation RF ET P-DT P-ET RS-DT RS-ET RP-DT RP-ET

diabetes 77.12 (6) 77.25 (5) 77.67 (4) 78.01 (3) 75.11 (8) 76.77 (7) 78.82 (2) 79.07 (1)

dig44 94.99 (7) 95.78 (1) 91.86 (8) 95.46 (4) 95.07 (6) 95.69 (3) 95.13 (5) 95.72 (2)

ionosphere 94.40 (6) 95.15 (3) 93.86 (8) 94.75 (5) 94.11 (7) 94.90 (4) 95.20 (2) 95.36 (1)

pendigits 98.94 (7) 99.33 (1) 98.09 (8) 99.28 (4) 99.02 (6) 99.31 (3) 99.07 (5) 99.32 (2)

letter 95.36 (7) 96.38 (1) 92.72 (8) 95.87 (4) 95.68 (6) 96.08 (3) 95.74 (5) 96.10 (2)

liver 72.37 (5) 71.90 (6) 72.55 (4) 72.88 (3) 68.06 (8) 70.88 (7) 74.53 (1) 74.37 (2)

musk2 97.18 (7) 97.73 (1) 96.89 (8) 97.60 (4) 97.58 (6) 97.72 (3) 97.60 (5) 97.73 (2)

ring-norm 97.44 (6) 98.10 (5) 96.41 (8) 97.28 (7) 98.25 (4) 98.41 (3) 98.50 (2) 98.54 (1)

satellite 90.97 (7) 91.56 (1) 90.01 (8) 91.40 (5) 91.31 (6) 91.50 (3) 91.41 (4) 91.54 (2)

segment 97.46 (6) 98.17 (2) 96.78 (8) 98.10 (4) 97.33 (7) 98.14 (3) 97.52 (5) 98.21 (1)

sonar 82.92 (7) 86.92 (3) 80.03 (8) 84.73 (5) 83.07 (6) 87.07 (2) 85.42 (4) 88.15 (1)

spambase 94.80 (7) 95.36 (3) 93.69 (8) 95.01 (6) 95.01 (5) 95.50 (2) 95.11 (4) 95.57 (1)

two-norm 97.54 (6) 97.77 (2) 97.52 (7) 97.59 (5) 97.46 (8) 97.63 (4) 97.76 (3) 97.82 (1)

vehicle 88.67 (5) 88.68 (4) 88.26 (8) 88.74 (3) 88.41 (7) 88.60 (6) 89.22 (1) 89.21 (2)

vowel 92.04 (5) 95.12 (1) 85.19 (8) 93.49 (4) 89.76 (7) 94.34 (3) 91.10 (6) 94.48 (2)

waveform 85.45 (6) 85.96 (2) 84.89 (8) 85.68 (5) 84.91 (7) 85.69 (4) 85.85 (3) 86.21 (1)

Average rank 6.25 2.5625 7.4375 4.4375 6.5 3.75 3.5626 1.5

Test RF ET P-DT P-ET RS-DT RS-ET RP-DT RP-ET

diabetes 75.62 (4) 75.38 (5) 75.67 (3) 76.34 (1) 73.03 (8) 74.63 (7) 75.32 (6) 75.82 (2)

dig44 94.96 (6) 95.67 (1) 91.79 (8) 95.39 (4) 94.98 (5) 95.58 (2) 94.95 (7) 95.55 (3)

ionosphere 92.20 (6) 93.22 (1) 92.09 (7) 92.40 (4) 92.02 (8) 93.22 (2) 92.34 (5) 92.68 (3)

pendigits 98.84 (7) 99.23 (1) 97.97 (8) 99.21 (3) 98.95 (5) 99.21 (2) 98.93 (6) 99.20 (4)

letter 95.27 (7) 96.29 (1) 92.57 (8) 95.89 (4) 95.61 (5) 96.03 (2) 95.61 (6) 95.99 (3)

liver 69.95 (3) 68.22 (6) 70.43 (1) 69.58 (5) 63.17 (8) 67.35 (7) 70.20 (2) 69.67 (4)

musk2 97.08 (7) 97.61 (1) 96.69 (8) 97.54 (4) 97.47 (5) 97.58 (2) 97.42 (6) 97.56 (3)

ring-norm 97.48 (6) 98.07 (5) 96.42 (8) 97.25 (7) 98.16 (4) 98.31 (1) 98.22 (3) 98.30 (2)

satellite 90.67 (7) 91.22 (2) 89.66 (8) 91.20 (3) 91.15 (5) 91.28 (1) 91.04 (6) 91.20 (4)

segment 97.02 (5) 97.93 (1) 96.44 (8) 97.86 (3) 96.86 (7) 97.90 (2) 96.88 (6) 97.84 (4)

sonar 79.53 (5) 82.76 (1) 75.15 (8) 80.07 (4) 78.50 (6) 82.19 (2) 78.26 (7) 81.92 (3)

spambase 94.76 (7) 95.17 (3) 93.51 (8) 94.84 (5) 94.88 (4) 95.22 (2) 94.80 (6) 95.22 (1)

two-norm 97.22 (7) 97.50 (1) 97.26 (6) 97.29 (4) 97.20 (8) 97.33 (2) 97.33 (3) 97.28 (5)

vehicle 87.47 (7) 87.85 (3) 87.01 (8) 87.98 (2) 87.50 (6) 87.68 (5) 87.73 (4) 88.08 (1)

vowel 91.51 (5) 93.95 (1) 84.17 (8) 92.93 (4) 89.51 (7) 93.60 (2) 89.89 (6) 93.09 (3)

waveform 85.23 (5) 85.77 (1) 84.68 (8) 85.40 (3) 84.74 (7) 85.38 (4) 85.16 (6) 85.56 (2)

Average rank 5.875 2.125 7.0625 3.75 6.125 2.8125 5.3125 2.9375

Table 8.2: Accuracy on small datasets (in %).



8.2 on accuracy 175

RF ET P-DT P-ET RS-DT RS-ET RP-DT RP-ET

RF — 1/2/13 12/4/0 1/7/8 4/7/5 2/2/12 1/10/5 0/4/12

ET 13/2/1 — 14/1/1 10/5/1 13/3/0 4/11/1 12/2/2 5/10/1

P-DT 0/4/12 1/1/14 — 0/4/12 2/3/11 2/1/13 0/4/12 0/4/12

P-ET 8/7/1 1/5/10 12/4/0 — 9/6/1 2/6/8 9/6/1 0/11/5

RS-DT 5/7/4 0/3/13 11/3/2 1/6/9 — 0/2/14 1/11/4 0/4/12

RS-ET 12/2/2 1/11/4 13/1/2 8/6/2 14/2/0 — 11/4/1 1/13/2

RP-DT 5/10/1 2/2/12 12/4/0 1/6/9 4/11/1 1/4/11 — 0/6/10

RP-ET 12/4/0 1/10/5 12/4/0 5/11/0 12/4/0 2/13/1 10/6/0 —

Table 8.3: Pairwise t-test comparisons on small datasets.

Since all methods are variants of ensembles of decision trees, av-
erage accuracies are not strikingly different from one method to an-
other (see Table 1 of the supplementary materials). Yet, significant
trends appear when looking at Figure 8.1 and Table 8.3. First, all ET-
based methods are ranked before DT-based methods, including the
popular Random Forest algorithm. Overall, the original ET algorithm
is ranked first (RET = 2.125), then come RS-ET and RP-ET at close
positions (RRS−ET = 2.8125 and RRP−ET = 2.9375) while P-ET is a bit
behind (RP−ET = 3.75). According to Figure 8.1, only ET is ranked
significantly higher than all DT-based method but looking at Table
8.3, the worse ET-based variant (P-ET) is still 9 times significantly
better (w.r.t. the 50 runs over each set) and only 1 time significantly
worse than the best DT-based variant (RP-DT). The separation be-
tween these two families of algorithm thus appears quite significant.
This observation clearly suggests that using random split thresholds,
instead of optimized ones like in decision trees, pays off in terms of
generalization.

Among ET-based methods, RP-ET is better than P-ET but it is su-
perseded by ET and RS-ET in terms of average rank. Since RS-ET is
a particular case of RP-ET, this suggests that we are slightly overfit-
ting when tuning the additional parameter αs. And indeed RP-ET is
better ranked than RS-ET in average on the validation set (results not
shown). Table 8.3 however indicates otherwise and makes RP-ET ap-
pear as slightly better than RS-ET (2/13/1). Regarding ET over RP-ET,
the better performance of the former (5/10/1) is probably due to the
fact that in ET subsets of features are redrawn locally at each node
when building trees and not once and for all prior to their construc-
tion. This gives less chances to generate improper trees because of
a bad initial choice of features and thus leads to a lower bias and a
better accuracy.

Among DT-based methods, RP-DT now comes first (mean rank
of 5.3125), then RF (RRF = 5.875), RS-DT (RRS−DT = 6.125) and
then P-DT in last (RP−DT = 7.0625). RP is only significantly worse
than another DT-based variant on 1 dataset. The extra-randomization
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brought by the random choices of both samples and features seems to
be beneficial with decision trees that do not benefit from the random-
ization of discretization thresholds. The fact that RF samples features
locally does not appear here anymore as an advantage over RP (RF
is significantly worse on 5 problems and better on only one), proba-
bly because the decrease of bias that it provides does not exceed the
increase of variance with respect to global feature selection.

8.2.3 Larger datasets

While the former experiments revealed promising results, it is fair to
ask whether the conclusions that have been drawn would hold on
and generalize to larger problems, for example when dealing with a
few relevant features buried into hundreds or thousands of not im-
portant features (e.g., in genomic data), or when dealing with many
correlated features (e.g., in images). To investigate this question, a sec-
ond bench of experiments was carried out on 13 larger datasets (see
Table 8.4). All but madelon are real data. In terms of dimensions,
these datasets are far bigger, ranging from a few hundreds of samples
and thousands of features, to thousands of samples but hundreds of
features. As such, the complexity of the problems is expected to be
greater. We adopted the exact same protocol as for smaller datasets.
However, to lower computing times, for datasets marked with ∗, the
methods were run using 100 trees instead of 250 and the minimum
number of samples required in an internal node was set to 10 in order
to control complexity. Detailed results are provided in Table 8.5 and
are summarized in Figure 8.2 and Table 8.6, respectively in terms of
average rank (the critical difference at α = 0.05 is now 2.9120) and
Win/Draw/Loss statuses obtained with paired t-tests. A Friedman
test (at α = 0.05) still indicates that some methods are significantly
different from the others.

As it may be observed from Figure 8.2, the average ranks of the
methods are closer to each other than in the previous experiments,
now ranging from 2.38 to 6.61, while they were previously ranging
from 2.12 to 7. Methods are more connected by critical difference bars.
This suggests that overall they behave more similarly to each other
than before. General trends are nevertheless comparable to what we
observed earlier. ET-based methods still seem to be the front-runners.
From Figure 8.2, RS-ET, ET and RP-ET are in the top 4, while P-DT,
RF and RP-DT remain in the second half of the ranking. Surprisingly
however, RS-DT now comes right after RS-ET and ET and just be-
fore RP-ET whereas it ranked penultimate on the smaller datasets. Ta-
ble 8.6 however suggests that RS-DT performs actually a little worse
against RP-ET (1/10/2). All in all, it thus still seems beneficial to ran-
domize split thresholds on the larger datasets.
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Dataset N p

cifar10* 60000 3072

mnist3vs8 13966 784

mnist4vs9 13782 784

mnist* 70000 784

isolet 7797 617

arcene 900 10000

breast2 295 24496

madelon 4400 500

marti0 500 1024

reged0 500 999

secom 1567 591

tis 13375 927

sido0* 12678 4932

Table 8.4: Large datasets.

Comparing ET-based variants, ET is no longer the best method on
average, but RS-ET is (with 4/9/0 for RS-ET versus ET). This sug-
gests than on larger datasets, picking features globally at random
prior to the construction of the trees is as good, or even beat picking
them locally at each node. Due to the quantitatively larger number
of samples in a patch, and also to the larger number of redundant
features expected in some large datasets (e.g., in cifar10 or mnist),
it is indeed less likely to build improper trees with strong biases. As
a result, variance can be further decreased by sampling globally. In
support of this claim, on a few problems such as arcene, breast2,
or madelon that contain many irrelevant features, ET remains the
best method. In that case, it is indeed more likely to sample globally
improper random patches, and hence to build improper trees. The
average rank of RP-ET suggests that it performs worse than RS-ET
and thus that there is some potential overfitting when tuning αs in
addition to αf. This difference is however not confirmed in Table 8.6
where the accuracies of these two methods are shown to be never
significantly different (0/13/0). RP-ET is also on a perfect par with
ET (1/11/1). Among DT-based variants, RP-DT, which was the best
performer on small datasets, is still ranked above RF and P-DT, but it
is now ranked below RS-DT with a win/draw/loss of 0/11/2. This is
again due to some overfitting.

While less conclusive than before, the results on larger datasets are
consistent with what we observed earlier. In particular, they indicate
that the Random Patches method (with ET) remains competitive with
the best performers.
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Validation RF ET P-DT P-ET RS-DT RS-ET RP-DT RP-ET

cifar10 45.16 (6) 46.17 (1) 44.92 (7) 44.88 (8) 45.83 (5) 46.09 (3) 45.89 (4) 46.13 (2)

mnist3v8 98.42 (7) 98.77 (5) 97.63 (8) 98.57 (6) 98.79 (4) 98.86 (2) 98.81 (3) 98.87 (1)

mnist4v9 98.47 (7) 98.82 (3) 97.39 (8) 98.47 (6) 98.77 (5) 98.89 (2) 98.80 (4) 98.91 (1)

mnist 96.14 (7) 96.56 (3) 94.35 (8) 96.19 (6) 96.52 (5) 96.57 (2) 96.53 (4) 96.57 (1)

isolet 93.96 (7) 95.07 (3) 90.90 (8) 94.23 (6) 94.38 (5) 95.15 (2) 94.47 (4) 95.20 (1)

arcene 73.84 (7) 77.76 (3) 73.76 (8) 75.12 (6) 76.40 (5) 77.60 (4) 79.44 (2) 80.00 (1)

breast2 69.64 (6) 69.91 (4) 70.54 (3) 69.83 (5) 69.59 (7) 69.54 (8) 72.59 (1) 71.62 (2)

madelon 76.12 (8) 81.41 (1) 78.48 (7) 81.06 (5) 80.68 (6) 81.29 (3) 81.18 (4) 81.36 (2)

marti 87.66 (8) 87.92 (6) 88.08 (4) 88.09 (3) 87.77 (7) 88.00 (5) 88.19 (2) 88.20 (1)

reged 98.00 (6) 98.46 (2) 97.08 (8) 98.24 (5) 98.00 (7) 98.41 (3) 98.40 (4) 98.57 (1)

secom 93.37 (5) 93.36 (6) 93.34 (8) 93.42 (2) 93.35 (7) 93.40 (4) 93.41 (3) 93.45 (1)

tis 91.81 (5) 91.53 (7) 91.59 (6) 91.50 (8) 92.04 (3) 91.97 (4) 92.26 (1) 92.06 (2)

sido 97.46 (5) 97.44 (6) 97.36 (8) 97.36 (7) 97.47 (3) 97.46 (4) 97.52 (1) 97.52 (2)

Avg. rank 6.4615 3.8461 7.0 5.6153 5.3076 3.5384 2.8461 1.3846

Test RF ET P-DT P-ET RS-DT RS-ET RP-DT RP-ET

cifar10 44.87 (7) 45.95 (2) 44.75 (8) 44.95 (6) 45.86 (4) 46.02 (1) 45.74 (5) 45.93 (3)

mnist3v8 98.31 (7) 98.64 (5) 97.47 (8) 98.48 (6) 98.70 (2) 98.71 (1) 98.68 (4) 98.68 (3)

mnist4v9 98.33 (6) 98.68 (2) 97.16 (8) 98.32 (7) 98.59 (4) 98.69 (1) 98.59 (5) 98.67 (3)

mnist 96.10 (7) 96.47 (3) 94.30 (8) 96.18 (6) 96.47 (4) 96.49 (1) 96.46 (5) 96.48 (2)

isolet 93.87 (7) 94.95 (1) 90.71 (8) 94.15 (6) 94.33 (4) 94.94 (2) 94.29 (5) 94.88 (3)

arcene 71.04 (4) 72.56 (1) 66.16 (8) 68.56 (7) 71.52 (3) 72.24 (2) 69.44 (6) 70.00 (5)

breast2 65.86 (6) 66.16 (1) 65.54 (8) 65.59 (7) 66.13 (2) 65.91 (5) 65.94 (4) 66.08 (3)

madelon 75.33 (8) 80.83 (1) 77.86 (7) 80.78 (2) 80.06 (6) 80.59 (3) 80.06 (5) 80.42 (4)

marti 87.74 (8) 87.85 (6) 88.24 (1) 88.17 (2) 87.82 (7) 88.06 (4) 88.08 (3) 88.01 (5)

reged 97.60 (5) 98.20 (1) 96.40 (8) 97.92 (3) 97.39 (6) 98.00 (2) 97.32 (7) 97.82 (4)

secom 93.30 (7) 93.22 (8) 93.38 (1) 93.30 (6) 93.37 (2) 93.31 (4) 93.33 (3) 93.31 (5)

tis 91.68 (5) 91.42 (7) 91.49 (6) 91.40 (8) 92.05 (1) 91.91 (3) 92.05 (2) 91.90 (4)

sido 97.33 (4) 97.33 (3) 97.26 (7) 97.26 (8) 97.35 (1) 97.34 (2) 97.33 (5) 97.32 (6)

Avg. rank 6.2307 3.1538 6.6153 5.6923 3.5384 2.3846 4.5384 3.8461

Table 8.5: Accuracy on larger datasets (in %).
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RF ET P-DT P-ET RS-DT RS-ET RP-DT RP-ET

RF — 1/5/7 8/3/2 2/6/5 0/6/7 0/5/8 0/6/7 0/6/7

ET 7/5/1 — 9/2/2 7/6/0 3/7/3 0/9/4 5/6/2 1/11/1

P-DT 2/3/8 2/2/9 — 1/5/7 0/3/10 0/3/10 1/3/9 0/4/9

P-ET 5/6/2 0/6/7 7/5/1 — 0/6/7 0/5/8 2/5/6 1/5/7

RS-DT 7/6/0 3/7/3 10/3/0 7/6/0 — 1/8/4 2/11/0 1/10/2

RS-ET 8/5/0 4/9/0 10/3/0 8/5/0 4/8/1 — 4/8/1 0/13/0

RP-DT 7/6/0 2/6/5 9/3/1 6/5/2 0/11/2 1/8/4 — 1/9/3

RP-ET 7/6/0 1/11/1 9/4/0 7/5/1 2/10/1 0/13/0 3/9/1 —

Table 8.6: Pairwise t-test comparisons on larger datasets.

8.2.4 Conclusions

Overall, this extensive experimental study reveals many interesting
results. The first and foremost result is that ensembles of randomized
trees nearly always beat ensembles of standard decision trees. As off-
the-shelf methods, we advocate that ensembles of such trees should
be preferred to ensembles of decision trees. In particular, these results
show that the well-known Random Forest algorithm does not com-
pete with the best performers. Far more important to our concern
though, this study validates our RP approach. Building ensembles
(of ET) on random patches of data is competitive in terms of accu-
racy. Overall, there is no strong statistical evidence that the method
performs less well, but there is also no conclusive evidence that it sig-
nificantly improves performance. Yet, results show that RP is often as
good as the very best methods. Regarding the shape of the random
patches, the strategy behind Pasting (i.e., αs free and αf = 1.0) proved
to be (very) ineffective on many datasets while the Random Subspace
algorithm (i.e., αs = 1.0 and αf free) always ranked among the very
best performers. On average, RS indeed came in second on the small
datasets and in first on the larger datasets, which tends to indicate
that sampling features is crucial in terms of accuracy. As for patches
of freely adjustable size (i.e., using RP), they showed to be slightly
sensitive to overfitting but proved to remain closely competitive with
the very best methods. In addition, these results also suggest that sam-
pling features globally, once and for all, prior to the construction of
a (randomized) decision tree, does not actually impair performance.
For instance, RS-ET or RP-ET are indeed not strongly worse, nor bet-
ter, than ET, in which candidates features are re-sampled locally at
each node.

8.3 on memory

Section 8.2 reveals that building an ensemble of base estimators on
random patches, instead of the whole data, is a competitive strategy.
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In the context of big data, that is when the size of the dataset is far
bigger than the available memory, this suggests that using random
parts of the data of the appropriate size to build each base estimator
would likely result in an ensemble which is actually as good as if the
whole data could have been loaded and used.

Formally, we assume a general framework where the number of
data units that can be loaded at once into memory is constrained to
be lower than a given threshold µmax. Not considering on-line algo-
rithms within the scope of this study, µmax can hence be viewed as the
total units of data allowed to be used to build a single base estimator.
In the context of our sampling methods, the amount of memory re-
quired for a patch is given by (αsN)(αfp) and thus constraining mem-
ory by µmax is equivalent to constraining the relative patch size αsαf
to be lower than µ ′max = µmax/(Np). While simplistic1, this framework
has the advantage of clearly addressing one of the main difficulties
behind big data, that is the lack of fast memory. Yet, it is also relevant
in other contexts, for example when data is costly to access (e.g., on
remote locations) or when algorithms are run on embedded systems
with strong memory constraints.

In Section 8.3.1, we first study the effects of αs and αf on the ac-
curacy of the resulting ensemble and show that it is problem and
base estimator dependent. Second, we show that the memory require-
ments, i.e., the relative size αsαf of the random patches, can often be
drastically reduced without significantly degrading the performance
of the ensemble (Section 8.3.2). Third, because the sensitivity of the
ensemble to αs and αf is problem and base estimator specific, we
show that under very strong memory constraints adjusting both pa-
rameters at the same time, as RP does, is no longer merely as good
but actually significantly better than other ensemble methods (Section
8.3.3).

8.3.1 Sensitivity to αs and αf

Let us first consider and analyze the triplets

{(αs,αf, AccL(αs,αf))|∀αs,αf} (8.1)

for various problems, where AccL(αs,αf) is the average test accuracy
of an ensemble built on random patches of size αsαf (using the same
protocol as previously) on the dataset L.

As Figure 8.3 illustrates for six datasets, the surfaces defined by
these points vary significantly from one problem to another. We ob-
served four main trends. In Figures 8.3a, and 8.3b (resp., 8.3c), accu-
racy increases with αs (resp., αf) while adjusting αf (resp., αs) has
no or limited impact. In Figure 8.3d, the best strategy is to increase
both αs and αf. Finally, in Figures 8.3e and 8.3f, the surface features

1 e.g., the quantity of memory used by the estimator itself is not taken into account.
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Figure 8.3: Learning surfaces.

plateaus, which means that beyond some threshold, increasing αs or
αf does not yield any significant improvement. Interestingly, in most
of the cases, the optimum corresponds to a value αsαf much smaller
than 1.

The choice of the base estimators does not have a strong impact
on the aspect of the curves (compare the 1

st and 3
rd rows of sub-

figures in Figure 8.3 with those in the 2
nd and 4

th rows). The only
difference is the decrease of the accuracy of RP-DT when αs and αf
grow towards 1.0. Indeed, since the only source of randomization in
RP-DT is patch selection, it yields in this case ensembles of identical
trees and therefore amounts to building a single tree on the whole
dataset. By contrast, because of the extra-randomization of the split
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thresholds in ET, there is typically no drop of accuracy for RP-ET
when αs and αf grow to 1.0.

Overall, this analysis suggests that not only the best pair αsαf de-
pends on the problem, but also that the sensitivity of the ensemble to
changes to the size of a random patch is both problem and base esti-
mator specific. As a result, these observations advocate for a method
that could favor αs, αf or both, and do so appropriately given the
base estimator.

8.3.2 Memory reduction, without significant loss

We proceed to study in this section the actual size of the random
patches when the values of αs and αf are tuned using an independent
validation set. Our results are summarized in Figure 8.4a. Each ellipse
corresponds to one of the 29 datasets of our benchmark, whose center
is located at (αs,αf) (i.e., the average parameter values over the 50

runs) and whose semi-axes correspond to the standard deviations
of αs and αf. Any point in the plot corresponds to a pair (αs,αf)
and thus to a relative consumption µ ′ = αsαf of memory. To ease
readability, level curves are plotted for µ ′ = 0.01, 0.1, ..., 0.9. In the
right part of the figure, the histogram counts the number of datasets
such that αs ·αf falls in the corresponding level set.

Figure 8.4a corroborates our previous discussion. On some datasets,
it is better to favor αs while on some other increasing αf is a better
strategy. The various sizes of the ellipses also confirm that the sensi-
tivity to variations of αs and αf is indeed problem-specific. The figure
also clearly highlights the fact that, even under no memory constraint,
the optimal patches rarely consume the whole memory. A majority of
ellipses indeed lie below the level set µ ′ = 0.5 and only a couple of
them are above µ ′ = 0.75. With respect to ET or RF for which the
base estimators are all built on the whole dataset, this means that en-
sembles of patches are not only as competitive but also less memory
greedy. In addition, the figure also points out the difference between
RP-ET and RP-DT as discussed in the previous section. To ensure
diversity, RP-DT is constrained to use smaller patches than RP-ET,
hence explaining why the ellipses in red are on average below those
in blue. While RP-DT proved to be a bit less competitive in terms of
accuracy, this indicates on the other hand that RP-DT may actually be
more interesting from a memory consumption point of view.

In Section 8.3.1, we observed plateaus or very gentle slopes around
the optimal pair (αs,αf). From a memory point of view, this suggests
that the random patches are likely to be reducible without actually
degrading the accuracy of the resulting ensemble. Put otherwise, our
interest is to find the smallest size αsαf such that the accuracy of the
resulting ensemble is not significantly worse than an ensemble built
without such constraint. To that end, we study the extent at which the
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Figure 8.4: Optimal sizes of the random patches on our benchmark.

constraint αsαf < µ ′max can be strengthened without any significant
drop in accuracy. If µ ′max can be reduced significantly then it would
indeed mean that even when only small parts of the data are actually
used to build single base estimators, competitive performance can
still be achieved.

Figure 8.4b summarizes our results. For all datasets, µ ′max was set
to the lowest value such that it cannot be statistically detected that
the average accuracy of the resulting ensemble is different from the
average accuracy of an ensemble built with no memory constraint
(at α = 0.05). With regard to Figure 8.4a, the shift of most ellipses to
lower memory level sets confirm our first intuition. In many cases, the
size of the random patches can indeed be reduced, often drastically,
without significant decrease of accuracy. For more than half of the
datasets, memory can indeed be decreased to µ ′ = 0.1 or µ ′ = 0.2. In
other words, building trees on small parts of the data (i.e., 10% or 20%
of the original dataset) is, for more than half of the datasets, enough to
reach competitive accuracy. Also, the sensitivity to αs and αf is now
even more patent. Some ensembles use very few samples (αs < 0.1)
but with many features, while other uses many samples with few fea-
tures (αf < 0.1). Again, from a memory point of view, RP-DT appears
to be more interesting than RP-ET. The memory reduction is larger,
as the histogram indicates. Optimized splits in the decision trees may
indeed lead to a better exploitation of the data, hence to a potentially
larger reduction of memory. In conclusion, while not detecting sig-
nificant differences in accuracy does not allow to conclude that the
performances are truly similar, these figures at least illustrate that
memory requirements can be drastically reduced without apparent
loss in accuracy.
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8.3.3 Memory reduction, with loss

The previous section has shown that the memory consumption can
be reduced up to some threshold µ ′max with no significant loss in
accuracy. In this section we now look at the accuracy of the resulting
ensemble when µ ′max is further decreased. We argue that with severe
constraints, and because datasets have all a different sensitivity, it is
even more crucial to better exploit data and thus to find the right
trade-off between both αs and αf, as only RP can.

To illustrate our point, Figure 8.5 compares for 6 representative
datasets the accuracy of the methods with respect to the memory
constraint αsαf < µ ′max. A plain line indicates that the generalization
error of the best resulting ensemble under memory constraint µ ′max is
significantly (at α = 0.05) worse on the test sets than when there is
no constraint (i.e., µ ′max = 1). A dotted line indicates that on average,
on the test set, the ensemble is not significantly less accurate.

As the figure shows, when µ ′max is low, RP-based ensembles often
achieve the best accuracy. Only on arcene (Figure 8.5a), RS seems to
be a better strategy, suggesting some overfitting in setting αs in RP.
On all 5 other example datasets, RP is equivalent or better than RS
and P for low values of µ ′max, with the largest gaps appearing on iso-
let (Figure 8.5e) and mnist3vs8 (Figure 8.5f). As already observed in
the previous section, although RP-DT is not the best strategy when
memory is unconstrained, its curve dominates the curve of RP-ET
for small values of µ ′max in Figures 8.5b, 8.5c, and 8.5d. Because split
thresholds are not randomized in RP-DT, this method is more resis-
tant than RP-ET to the strong randomization induced by a very low
µ ′max threshold.

For comparison, Figure 8.5 also features the learning curves of both
ET and RF (with K optimized on the validation set), in which the
trees have all been built on the same training sample of µ ′maxN in-
stances, with all features. These results are representative of the use of
a straightforward sub-sampling of the instances to handle the mem-
ory constraint. On all datasets, this setting yields very poor perfor-
mance when µ ′max is low. Building base estimators on re-sampled ran-
dom patches thus brings a clear advantage to RP, RS and P and hence
confirms the conclusions of Basilico et al. [2011] who showed that us-
ing more data indeed produces more accurate models than learning
from a single sub-sample. This latter experiment furthermore shows
that the good performances of RP cannot be trivially attributed to the
fact that our datasets contain so many instances that only process-
ing a sub-sample of them would be enough. On most problems, the
slopes of the learning curves of RF and ET indeed suggest that con-
vergence has not yet been reached on these datasets. Yet, important
improvement are gained by sub-sampling random patches. Contrary
to intuition, it also does not appear that the bigger the datasets, the
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lower µ ′max can be reduced without loss of accuracy. Indeed, we found
no conclusive correlation between the size Np of the dataset and the
minimum value of µ ′max to reach good performance2. Overall, these
results thus indicate that building an ensemble on random patches is
not only a good strategy when data is abundant and redundant but
also that it works even for scarce datasets with limited information
regarding the problem.

8.3.4 Conclusions

We have shown in this section that the memory requirements of sam-
pling based ensembles are intrinsically low. Better, we have shown
that they can often be drastically decreased without significant loss
in accuracy. When the size of the dataset is far bigger than the avail-
able memory, we have also demonstrated that sampling data along
both samples and features, as RP does, not only competes with other
ensemble algorithms but also significantly improves the accuracy of
the resulting ensemble. It also brings a significant improvement over
a straightforward sub-sampling of the instances.

8.4 overall conclusions

The main contribution of this work is to explore a new framework for
supervised learning in the context of very strong memory constraints
or, equivalently, very large datasets. To address such problems, we
proposed the Random Patches ensemble method that builds each in-
dividual model of the ensemble from a random patch of the dataset
obtained by drawing random subsets of both samples and features
from the whole dataset. Through extensive experiments with tree-
based estimators, we have shown that this strategy works as well
as other popular randomization schemes in terms of accuracy (Sec-
tion 8.2), at the same time reduces very significantly the memory re-
quirements to build each individual model (Section 8.3.2), and, given
its flexibility, attains significantly better accuracy than other methods
when memory is severely constrained (Section 8.3.3). Since all mod-
els are built independently of each other, the approach is furthermore
trivial to parallelize. All in all, we believe that the paradigm of our
method highlights a very promising direction of research to address
supervised learning on big data.

There remain several open questions and limitations to our ap-
proach that we would like to address in the future. First, this study
motivates our interest in experimenting with truly large-scale prob-
lems (of giga-scale and higher). Since RP already appears advanta-
geous for small to medium datasets, the potential benefits on very
large-scale data indeed look very promising.

2 Spearman’s rank correlation coefficient is -0.0354 (p− value = 0.8550).
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Second, the conclusions drawn in sections 8.2 and 8.3 are all based
on the optimal values of the parameters αs and αf tuned through
an exhaustive grid search on the validation set. Our analysis did not
account for the memory and time required for tuning these two pa-
rameters. In practice, hyper-parameter tuning can not be avoided as
we have shown that the optimal trade-off between αf and αs was
problem dependent. It would therefore be interesting to design an ef-
ficient strategy to automatically find and adjust the values of αs and
αf, taking into account the global memory constraint. Our simplis-
tic framework also only accounts for the memory required to store
the training set in memory and not for the total memory required to
actually build the ensemble.

We have only explored uniform sampling of patches of fixed size
in our experiments. In the context of the Pasting approach, Breiman
proposed an iterative instance weighting scheme that proved to be
more efficient than uniform sampling [Breiman, 1999]. It would be in-
teresting to extend this approach when sampling both instances and
features. Yet, parallelization would not be trivial anymore, although
probably still possible in the line of the work in [Chawla et al., 2004].

Finally, our analysis of RP is mostly empirical. In the future, we
would like to strengthen these results with a more theoretical anal-
ysis. A starting point could be the work in [Zinkevich et al., 2010]
that studies a scheme similar to the Pasting method applied to linear
models trained through parallel stochastic gradient descent. The ex-
tension of this work to non parametric tree-based estimators does not
appear trivial however, since these latter are not well characterized
theoretically. In retrospect, latest results [Scornet et al., 2014] regard-
ing the consistency of random forests could certainly also be used
to motivate the use of random subsets of samples. Similarly, theoret-
ical results from Chapter 6 (Section 6.4.2) also indicate that the use
of random subsets of features does not systematically degrade perfor-
mance.





9
C O N C L U S I O N S

By and large, machine learning remains an open field of research for
which many questions are still left unanswered, even regarding well-
established methods. In this dissertation, we have revisited decision
trees and random forests, consistently calling into question each and
every part of these algorithms, in order to shed new light on their
learning capabilities, inner workings and interpretability.

In Part i of this work, we laid out the decision trees and random
forests methodology in the context of classification and regression
tasks. Our treatment first considered the induction of individual deci-
sion trees and put them into a unified and composable framework. In
particular, our analysis reviewed assignment rules, stopping criteria
and splitting rules, theoretically motivating their design and purpose
whenever possible. We then proceeded with a systematic study of
randomized ensemble methods within the bias-variance framework.
We established that variance depends on the correlation between in-
dividual tree predictions, thereby showing why randomization acts
as a mechanism for reducing the generalization error of an ensem-
ble. Random forest and its variants were then presented within the
framework previously introduced, and their properties and features
discussed and reviewed. Our contributions followed with an original
time and space complexity analysis of random forests, hence show-
ing their good computational performance and scalability to larger
problems. Finally, the first part of this work concluded with an in-
depth discussion of implementation details of random forests, high-
lighting and discussing considerations that are critical, yet easily over-
looked, for guaranteeing good computational performance. While not
directly apparent within this manuscript, this discussion also under-
lined our contributions in terms of software, within the open source
Sckit-Learn library. As open science and reproducibility concerns are
gaining momentum, we indeed believe that good quality software
should be an integrative part, acknowledged for its own value and
impact, of any modern scientific research activity.

Part ii of this dissertation analyzed and discussed the interpretabil-
ity of random forests in the eyes of variable importance measures.
The core of our contributions rests in the theoretical characterization
of the Mean Decrease of Impurity variable importance measure, from
which we have then proved and derived some of its properties in the
case of multiway totally randomized trees and in asymptotic condi-
tions. In particular, we have shown that variable importances offer a
three-level decomposition of the information jointly provided by the
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input variables about the output, accounting for all possible interac-
tion terms in a fair and exhaustive way. More interestingly, we have
also shown that variable importances only depend on relevant vari-
ables and that the importance of irrelevant variables is strictly equal
to zero, thereby making importances a sound and appropriate crite-
rion for assessing the usefulness of variables. In consequence of this
work, our analysis then demonstrated that variable importances as
computed from non-totally randomized trees (e.g., standard Random
Forest or Extremely Randomized Trees) suffer from a combination of
defects, due to masking effects, misestimations of node impurity or
due to the binary structure of decision trees. Overall, we believe that
our analysis should bring helpful insights in a wide range of appli-
cations, by shedding new light on variable importances. In particular,
we advise to complement their interpretation and analysis with a sys-
tematic decomposition of their terms, in order to better understand
why variables are (or are not) important.

This preliminary work unveils various directions of future work,
both from a theoretical and practical point of view. To our belief, the
most interesting theoretical open question would be the characteriza-
tion of the distribution of variable importances in the finite setting.
Such a characterization would indeed allow to more reliably distin-
guish irrelevant variables (whose importances are positive in the fi-
nite case) from relevant variables. Another interesting direction of
future work would be to derive a proper characterization of variable
importances in the case of binary trees – even if we believe, as pointed
out earlier, that variable importances derived from such ensembles
may in fact not be as appropriate as desired. From a more practical
point of view, this study also calls for a re-analysis of previous empir-
ical studies. We indeed believe that variable importances along with
their decomposition should yield new insights in many cases, pro-
viding a better understanding of the interactions between the input
variables and the output, but also between the input variables them-
selves. Again, we recommend multiway totally randomized trees to
mitigate sources of bias as much as possible.

Finally, Part iii addressed limitations of random forests in the con-
text of large datasets. Through extensive experiments, we have shown
that subsampling either samples, features or both simultaneously pro-
vides on par performance while lowering at the same time the mem-
ory requirements. Overall this paradigm highlights an intriguing prac-
tical fact: there is often no need to build single models over im-
mensely large datasets. Good performance can often more simply be
achieved by building models on small random parts of the data and
then combining them all in an ensemble, thereby avoiding all practi-
cal and computational burdens of making large data fit into memory.
Again, this work raises interesting questions of further work. From
a theoretical point of view, one would be to identify the statistical
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properties in the learning problem that are necessary for guarantee-
ing subsampling strategies to work. In particular, in which cases is
it better to subsample examples rather than features? From a more
practical point of view, other directions of research also include the
study of smarter sampling strategies or the empirical verification that
conclusions extend to non tree-based methods.

Overall, this thesis calls for a permanent re-assessment of machine
learning methods and algorithms. It is only through a better under-
standing of their mechanisms that algorithms will advance in a con-
sistent and reliable way. Always seek for the what and why. In conclu-
sion, machine learning should not be considered as a black-box tool,
but as a methodology, with a rational thought process that is entirely
dependent on the problem we are trying to solve.
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ŷ∗t The optimal value labelling node t . . . . . . . . . . . . . . . 32

y The output values (y1, . . . ,yN) . . . . . . . . . . . . . . . . . . . 10

Y The output or response variable Y . . . . . . . . . . . . . . . . . 9

Y The domain or space of variable Y . . . . . . . . . . . . . . . . .9





B
R E F E R E N C E S

J. Adamo. Fuzzy decision trees. Fuzzy sets and systems, 4(3):207–219,
1980. (Cited on page 39.)

Y. Amit, D. Geman, and K. Wilder. Joint induction of shape features
and tree classifiers. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 19(11):1300–1305, 1997. (Cited on pages 70, 71, 72,
and 73.)

I. Arel, D. Rose, and T. Karnowski. Deep machine learning-a new
frontier in artificial intelligence research [research frontier]. Com-
putational Intelligence Magazine, IEEE, 5(4):13–18, 2010. (Cited on
page 23.)

S. Arlot and A. Celisse. A survey of cross-validation procedures for
model selection. Statistics Surveys, 4:40–79, 2010. (Cited on page 13.)

J. Basilico, M. Munson, T. Kolda, K. Dixon, and W. Kegelmeyer.
Comet: A recipe for learning and using large ensembles on massive
data. In Data Mining (ICDM), 2011 IEEE 11th International Conference
on, pages 41–50. IEEE, 2011. (Cited on pages 170 and 184.)

S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and
K. Smith. Cython: the best of both worlds. CiSE, 13(2):31–39, 2011.
(Cited on page 99.)

Y. Bengio, A. Courville, and P. Vincent. Representation learning: A
review and new perspectives. 2013. (Cited on page 23.)

J. L. Bentley and M. D. McIlroy. Engineering a sort function. Software:
Practice and Experience, 23(11):1249–1265, 1993. (Cited on page 108.)

J. L. Bentley, D. Haken, and J. B. Saxe. A general method for solving
divide-and-conquer recurrences. ACM SIGACT News, 12(3):36–44,
1980. (Cited on page 90.)

J. Bergstra and Y. Bengio. Random search for hyper-parameter opti-
mization. The Journal of Machine Learning Research, 13:281–305, 2012.
(Cited on page 17.)

G. Biau. Analysis of a random forests model. The Journal of Machine
Learning Research, 98888:1063–1095, 2012. (Cited on pages 83, 84,
123, and 133.)

199



200

G. Biau, L. Devroye, and G. Lugosi. Consistency of random forests
and other averaging classifiers. The Journal of Machine Learning Re-
search, 9:2015–2033, 2008. (Cited on pages 83 and 123.)

C. Bishop and N. Nasrabadi. Pattern recognition and machine learning,
volume 1. springer New York, 2006. (Cited on page 21.)

H. Blockeel, L. De Raedt, and J. Ramon. Top-down induction of clus-
tering trees. arXiv preprint cs/0011032, 2000. (Cited on page 52.)

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Occam’s
razor. Information processing letters, 24(6):377–380, 1987. (Cited on
page 30.)

B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for
optimal margin classifiers. In Proceedings of the fifth annual workshop
on Computational learning theory, pages 144–152. ACM, 1992. (Cited
on page 22.)

V. Botta. A walk into random forests: adaptation and application to
genome-wide association studies. 2013. (Cited on page 39.)

V. Botta, G. Louppe, P. Geurts, and L. Wehenkel. Exploiting snp corre-
lations within random forest for genome-wide association studies.
PloS one, 9(4):e93379, 2014. (Cited on pages 4 and 164.)

L. Bottou and O. Bousquet. The tradeoffs of large-scale learning. Op-
timization for Machine Learning, page 351, 2011. (Cited on page 16.)

A.-L. Boulesteix, S. Janitza, J. Kruppa, and I. R. König. Overview of
random forest methodology and practical guidance with empha-
sis on computational biology and bioinformatics. Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery, 2(6):493–507,
2012. (Cited on page 164.)

G. Bradski and A. Kaehler. Learning OpenCV: Computer vision with the
OpenCV library. O’Reilly Media, Inc., 2008. (Cited on page 116.)

L. Breiman. Parsimonious binary classification trees. Preliminary
report. Santa Monica, Calif.: Technology Service Corporation, 1978a.
(Cited on page 25.)

L. Breiman. Description of chlorine tree development and use. Techni-
cal report, Technical Report, Technology Service Corporation, Santa
Monica, CA, 1978b. (Cited on page 25.)

L. Breiman. Bagging predictors. 1994. (Cited on pages 63, 69, 71, 72,
74, 95, 103, and 115.)

L. Breiman. Bias, variance, and arcing classifiers. 1996. (Cited on
pages 59 and 72.)



201

L. Breiman. Pasting small votes for classification in large databases
and on-line. Machine Learning, 36(1-2):85–103, 1999. (Cited on
pages 169, 170, and 187.)

L. Breiman. Some infinity theory for predictor ensembles. Technical
report, Technical Report 579, Statistics Dept. UCB, 2000. (Cited on
page 83.)

L. Breiman. Random Forests. Machine learning, 45(1):5–32, 2001.
(Cited on pages 2, 69, 71, 72, 74, 81, 88, 103, 115, 124, 125, and 138.)

L. Breiman. Manual on setting up, using, and understanding random
forests v3. 1. Statistics Department University of California Berkeley,
CA, USA, 2002. (Cited on pages 72, 77, 81, 110, 124, and 125.)

L. Breiman. Consistency for a simple model of random forests. Tech-
nical report, UC Berkeley, 2004. (Cited on pages 82, 84, and 123.)

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification
and regression trees. 1984. (Cited on pages 2, 13, 25, 28, 29, 30, 37, 42,
46, 51, 81, 88, 90, 103, 109, 124, and 139.)

A. E. Bryson. Applied optimal control: optimization, estimation and control.
CRC Press, 1975. (Cited on page 23.)

L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller,
O. Grisel, V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, et al.
API design for machine learning software: experiences from the
scikit-learn project. arXiv preprint arXiv:1309.0238, 2013. (Cited on
pages 4, 11, 98, and 102.)

J. S. Chang, R.-F. Yeh, J. K. Wiencke, J. L. Wiemels, I. Smirnov, A. R.
Pico, T. Tihan, J. Patoka, R. Miike, J. D. Sison, et al. Pathway
analysis of single-nucleotide polymorphisms potentially associated
with glioblastoma multiforme susceptibility using random forests.
Cancer Epidemiology Biomarkers & Prevention, 17(6):1368–1373, 2008.
(Cited on page 164.)

S. Chatrchyan, V. Khachatryan, A. Sirunyan, A. Tumasyan, W. Adam,
E. Aguilo, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan, et al. Obser-
vation of a new boson at a mass of 125 GeV with the CMS experi-
ment at the LHC. Physics Letters B, 2012. (Cited on page 2.)

N. V. Chawla, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer. Learn-
ing ensembles from bites: A scalable and accurate approach. J.
Mach. Learn. Res., 5:421–451, Dec. 2004. ISSN 1532-4435. (Cited
on pages 170 and 187.)

T. H. Cormen, C. E. Leiserson, et al. Introduction to algorithms, vol-
ume 2. 2001. (Cited on page 105.)



202

C. Cortes and V. Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995. (Cited on page 22.)

T. Cover and P. Hart. Nearest neighbor pattern classification. Infor-
mation Theory, IEEE Transactions on, 13(1):21–27, 1967. (Cited on
page 24.)

T. M. Cover and J. A. Thomas. Elements of information theory. Wiley-
interscience, 2012. (Cited on page 126.)

A. Criminisi and J. Shotton. Decision Forests for Computer Vision and
Medical Image Analysis. Springer, 2013. (Cited on pages 2, 39, 106,
and 107.)

A. Cutler and G. Zhao. Pert-perfect random tree ensembles. Comput-
ing Science and Statistics, 33:490–497, 2001. (Cited on pages 72, 73,
and 89.)

R. L. De Mántaras. A distance-based attribute selection measure for
decision tree induction. Machine learning, 6(1):81–92, 1991. (Cited
on page 46.)

J. Demsar. Statistical comparisons of classifiers over multiple data
sets. The Journal of Machine Learning Research, 7:1–30, 2006. (Cited
on page 172.)

J. Demšar, T. Curk, A. Erjavec, Črt Gorup, T. Hočevar, M. Miluti-
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