Pitch fluctuations in accurate and inaccurate singers: Are they the same?

Pauline Larrouy-Maestri & Peter Q Pfordresher

Singing voice

What we know

Complexity of the signal

(e.g. Larrouy-Maestri et al., 2014; Sundberg, 2013)

 Parameters contributing to the beauty of the voice

(Ekholm et al., 1998; Garnier et al., 2007; Rothman et al., 1990)

 Pitch fluctuation (vibrato) associated with quality for Western operatic voices

(Larrouy-Maestri et al., in press)

Occasional singers

What we know

Not « operatic » but pitch fluctuations

Evaluation of melodic accuracy based on median or mean FO of stable portion of tones

(e.g. Berkowska & Dalla Bella, 2013; Dalla Bella, Giguère, & Peretz, 2007, 2009; Hutchins & Peretz, 2012; Hutchins, Larrouy-Maestri, & Peretz, in press; Larrouy-Maestri et al., 2013; Larrouy-Maestri & Morsomme, 2014; Pfordresher & Brown, 2007, 2009; Pfordresher et al., 2010; Pfordresher & Mantell, 2014)

Difference between accurate and inaccurate singers regarding deviation from the target

Several possible causes

(e.g. Hutchins et al., in press; Hutchins & Peretz, 2012; Pfordresher & Brown, 2009; Pfordresher & Mantell, 2014)

Occasional singers

What we don't know □ Which pitch fluctuations ?

Depends on the quality of the singer ?

Occasional singers

What are we doing?

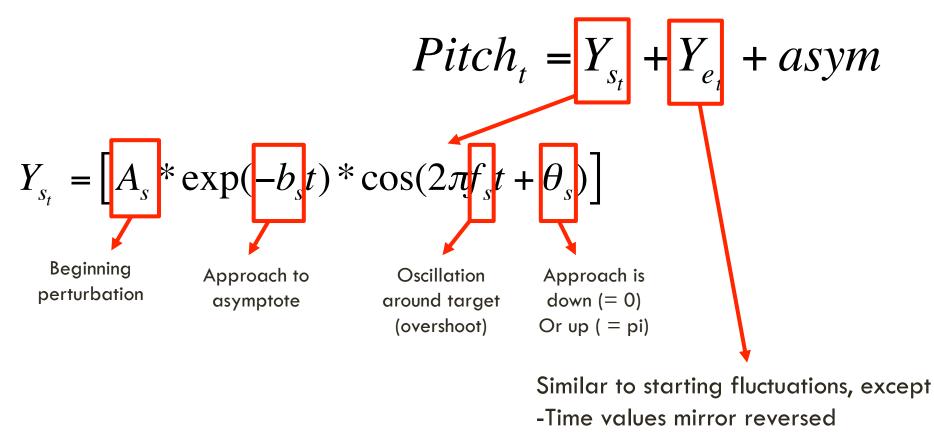
□ Which pitch fluctuations ?

Model describing pitch fluctuations

Depends on the quality of the singer ?

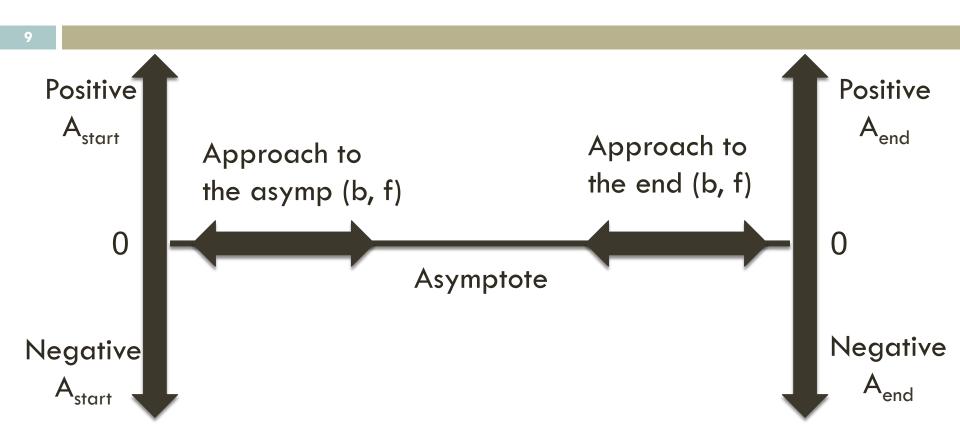
Comparison accurate/inaccurate singers

Description of pitch fluctuations


Descriptive model of pitch fluctuation

- Modification of the temporal adaptation model of Large, Fink & Kelso (2002)
 - Goal: evaluating adaptation to changes in pitch space
- Designed to get relevant summary statistics for pitch fluctuations
 - Not based on physiology of phonation

Pitch at time t Comes from "start" fluctuations and "end" fluctuations influencing an *asym*ptote


$$Pitch_t = Y_{s_t} + Y_{e_t} + asym$$

Descriptive model of pitch fluctuation

-New and adjusted parameters

Descriptive model of pitch fluctuation

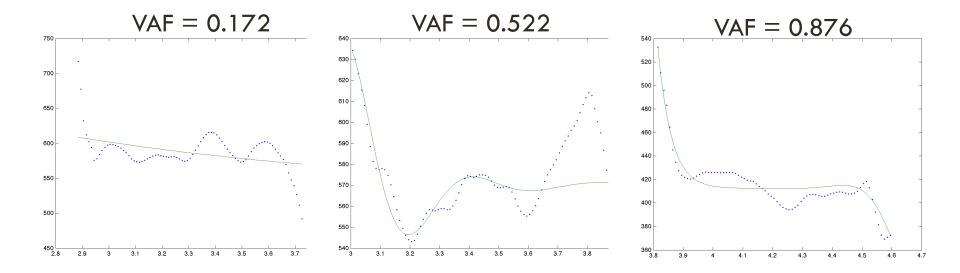
Description of pitch fluctuation in accurate singers ?
 Difference between accurate/inaccurate singers ?

Database

Pfordresher & Mantell (2014)

- Melodic sequences imitation (Pfordresher & Brown, 2007)
 - Using the first 5 notes of C-major scale
 - Adatpted to the gender of the participant
 - Presented at a slow rate (1s per tone)
- Several conditions
 - Accurate singers as a model
 - Inaccurate singers as a model
 - Self-imitation
- Categorization of the singers according to their global deviation from the target to imitate (limit: 50 cents)

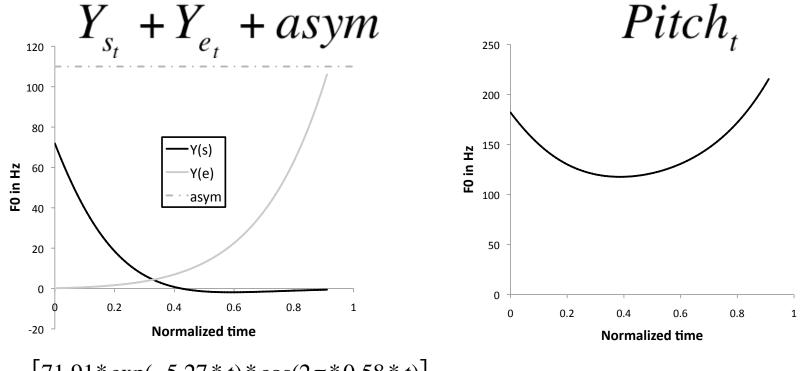
Present study


- 12 "inaccurate" and 17 "accurate" singers
- Imitation of accurate singers
- Melodies of 4 notes
- 1854 tones (already segmented) to analyse

Model

□ Goodness of fit: VAF (>25%)

Not different depending on the quality of the singer (p = .82)



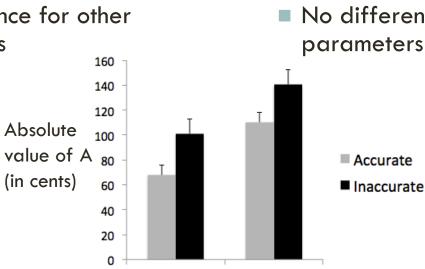
Accurate singers

Scoop at the start: up (49.5%) or down (50.5%)

 \Box Scoop at the end: majority down (81.3%)

$$Y_{s_t} = [71.91 * \exp(-5.27 * t) * \cos(2\pi * 0.58 * t)]$$

$$Y_{e_t} = [106.07 * \exp(-4.55 * t) * \cos(2\pi * -0.26 * t)]$$


$$asym = 110$$

Comparing accurate/inaccurate singers

Start

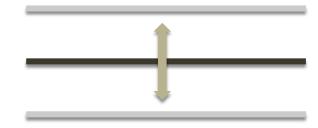
- No difference regarding the direction (up or down)
- Greater scoop for inaccurate singers

No difference for other parameters

End

Start

End

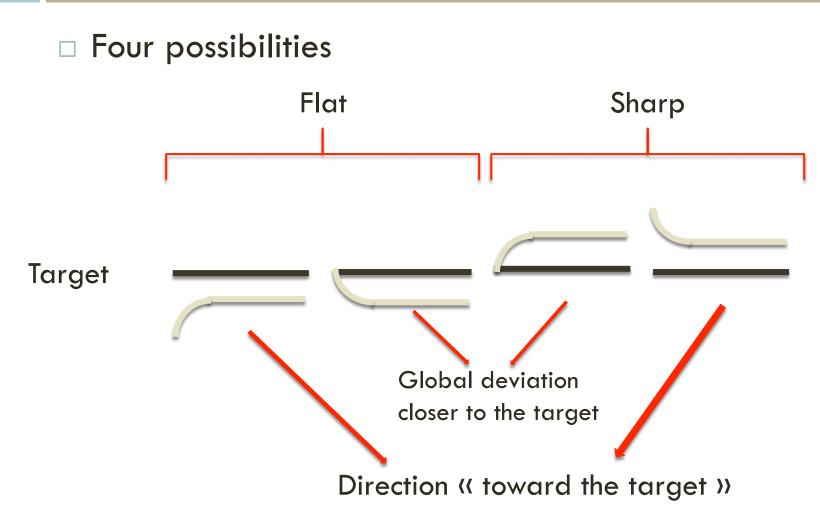

- No difference regarding the direction (up or down)
- Greater scoop for inaccurate singers

No difference for other parameters

Comparison for each condition

Global deviation

Sharp of flat

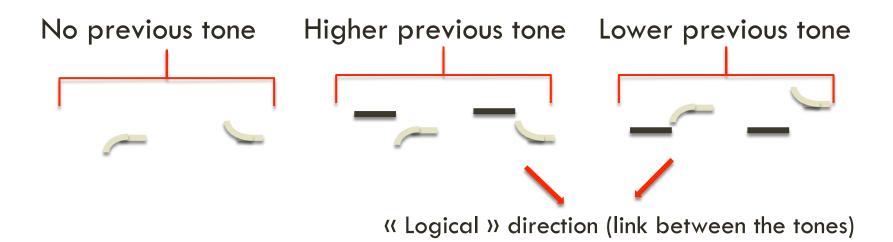


Melodic context

- No previous tone
- Higher previous tone
- Lower previous tone

Start and global deviation

Start and global deviation


16

% of trials				
Accurate	7	5	39	50
Inaccurate	9	7	43	41
p-value	ns	ns	ns	ns
Mean (SE) abs value of A				
Accurate	111.4 (20.90)	86.1 <i>5</i> (16.34)	71.38 (5.36)	56.49 (6.08)
Inaccurate	108.3 (10.20)	103.3 (27.88)	103.6 (12.59)	69.30 (11.27)
p-value	ns	ns	.014	ns

June 2014

Start and melodic context

□ Six possibilities

Start and melodic context

18

	<u>~</u>	J	~			J
% of trials						
Accurate	66	34	48	52	33	67
Inaccurate	64	36	47	53	50	50
p-value	ns	ns	ns	ns	ns	ns
Mean (SE) abs value of A						
Accurate	118.71 (12.24)	86.44 (11.05)	60.92 (7.62)	49.85 (8.25)	48.81 (5.24)	57.63 (6.35)
Inaccurate	163.05 (21.13)	88.87 (23.10)	79.46 (8.74)	78.08 (14.19)	85.69 (13.42)	61.12 (7.49)
p-value	.063	ns	ns	.078	.008	ns

Conclusions

Acoustical description of vocal tones

Modeling voices of occasional singers

□ Profile of inaccurate singers

No difference with accurate singers regarding direction of scoops Difference for amplitude of scoops at the start

 \rightarrow An indicator of singing ability in addition to the pitch deviation? Depends on the condition

- Scoop up
- Going closer to the target
- Logical condition regarding the context
- ightarrow Fine motor control deficit or preconceived plan not precise enough

Perceivers' judgment of pitch accuracy influenced by these fluctuations?

Pitch fluctuations in accurate and inaccurate singers: Are they the same?

Undergrad assistance from UB

Malak Sharif

Pc Michael Wright

Université de Liège

Paul Kovacs

grant BCS-1259694

Pitch fluctuations in accurate and inaccurate singers: Are they the same?

Thank you!

