
Numerical Methods in Geotechnical Engineering – Hicks, Brinkgreve & Rohe (Eds)
© 2014 Taylor & Francis Group, London, 978-1-138-00146-6

Implicit implementation of the Prevost model
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ABSTRACT: The Prevost model for cohesionless soils (Prevost 1985) is currently used for the modelling of
their cyclic behaviour, especially in earthquake engineering (Zerfa and Loret 2003) and (Yang and Elgamal
2008). It’s made of conical yield surfaces that allow for plastic deformations in both loading and unloading. Its
non-associated volumetric flow rule can roughly take into account pore pressure build-up and cyclic mobility.

The method of implementation of a constitutive law is a crucial issue (Montáns and Caminero 2007) and
(Mira et al. 2009). On one hand the accuracy of the solution must be ensured, especially when a large number
of cycles are considered. But on the other hand, the cost of the computation must be minimized which implies
step size as large as possible.

In this paper, an implicit implementation of the Prevost model is proposed. The plastic flow rule is computed
through a trapezoidal rule, at the time step n + 1/2, in order to increase the accuracy.An iterative process has to be
solved, due to the implicit formulation.The Jacobianmatrix of the internal Newton-Raphson process is computed
analytically to enhance efficiency. The algorithm is implemented in the finite element code LAGAMINE that
carries out fully-coupled analysis. Simulations of triaxial tests are compared with “exact” solution.

1 INTRODUCTION

The Prevost’s model for cohesionless soils is adapted
to the modelling of their cyclic behaviour, (Prevost
1985), (Yang and Elgamal 2008) and (Zerfa and Loret
2003). It’s able to capture plasticity effects in both load-
ing and unloading, pore water pressure generation and
cyclic mobility as well.

Method of implementation of a constitutive law is a
crucial issue since it influences its accuracy (Montáns
and Caminero 2007), (Mira et al. 2009) and (Ortiz and
Popov 1985). A reliable model is of main importance
especially when considering a great number of cycles.
Moreover, a greater accuracy allows longer time steps
and cpu time savings.

In this paper a closest point projection algorithm
for integrating the constitutive law is presented. It’s
based on an implicit Prager hardening rule proposed
by (Montáns 2001). A system of non-linear equations
has to be solved at each integration point to update
the stress state. The compliance tensor is computed
numerically.

The subroutine is implemented in the finite ele-
ment code LAGAMINE that allows for running fully-
coupled simulations. “Exact” results are obtained
through an explicit integration of the constitutive equa-
tions on Matlab. Comparisons between implicit solu-
tions and exact results is carried out in order to assess
the accuracy and the robustness of the algorithm.

2 EQUATIONS OF THE PREVOST MODEL

2.1 Definitions

The sign convention of soil mechanics is adopted:
compressive stresses and strains are positive. The
Macauley brackets 〈〉 are defined according to

The symbol “:” indicates a dot product between two
tensors (in bold characters). For example, if σ is the
effective (Cauchy) stress tensor, the product σ : σ =
σij · σij in index notation. The identity tensor is written
δ, then the mean effective stress is defined as p= 1/3 ·
σ : δ. The deviatoric stress tensor and the invariant of
deviatoric stresses are defined through

2.2 Constitutive equations

The Prevost model lies within the framework of
elasto-plasticity. Constitutive equations are written in
incremental form. The equation (3) links the effective
stress rate σ̇ to the elastic deformation rate ε̇ − ε̇p
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where E is the fourth-order tensor of elastic coeffi-
cients, ε̇ is the total deformation rate and ε̇p is the
plastic deformation rate defined through

P is a symmetric second-order tensor defining a
non-associated plastic potential. The plastic loading
function, 1γ , is a scalar that depicts the variation of
plastic deformation and is defined in (5)

where Q is a second-order tensor defining the unit
outer normal to the yield surface and H′ the plastic
modulus associated to this surface.

2.3 Yield functions

The model is made of conical nested yield surfaces
in principal stress space (Prevost 1985). Their apex is
fixed at the origin of axes but could be translated on
the hydrostatic axis to take cohesion into account if
necessary. The i-th surface is the locus of the stress
states that verify

where αi is a kinematic deviatoric tensor defining the
coordinates of the yield surface centre in deviatoric
space and Mi is a material parameter denoting the
aperture of the cone. A normal to the yield surface
is computed through

A unit-norm normal tensor is then computed and can
be decomposed into deviatoric and volumetric parts as

2.4 Plastic flow rule

The plastic potential P = P′ + P′′ · δ is decomposed
into its deviatoric part which is associative

and its volumetric part which is non-associative

The material parameter η̄ takes into account the phase
transformation line defined by Ishihara (Ishihara et al.
1975). This parameter rules the volumetric behaviour
and separates the p-q plane into two zones. Stress
ratios (η) lower than η̄ indicate a plastic contrac-
tive behaviour whilst the other zone depicts a dilative
plastic behaviour.

2.5 Hardening rule

The hardening rule of the surfaces is purely kine-
matic. During loading, the active surface moves up to
come into contact with the next one. The relationship
between plastic function and kinematic hardening is
determined through the consistency condition (Prevost
1985) and leads to

where µ is a tensor defining the direction of transla-
tion of the active surface in the deviatoric space. At
this step, any direction of translation could be used
depending on the strategy used to integrate the consti-
tutive law (explicit or implicit). The only requirement
is that any surface has to be at most tangential to the
next one, at the end of a given step. Overlapping of
the surfaces is then avoided. In this paper, an implicit
integration is adopted.

3 IMPLICIT IMPLEMENTATION

3.1 Plastic flow rule

The plastic potential is computed as follows through a
generalized trapezoidal rule,

where n stands for the previous converged step and
n+ 1 is the next step to be computed.Avalue ofα equal
to one corresponds to a fully implicit integrationwhilst
α equal to zero corresponds to explicit. In order to
improve accuracy of the integration (Ortiz and Popov
1985), α value of 1/2 is adopted.

3.2 Hardening vs. yield surface

A conceptual difference exists between continuous
and discrete implicit formulation. In the Prevost’s
algorithm the elastic region lies within the active sur-
face. Therefore, each time a new surface is activated,
elastic region changes in size, and the outermost sur-
face drives the algorithm. This topic is addressed in
(Caminero and Montáns 2006) and a solution is to
distinguish between yield and hardening surfaces.

In the proposed algorithm, yield surface is the inner-
most one and size of the elastic zone keeps constant.
Other surfaces are hardening ones that only influence
plastic deformation through plastic moduli. Hence the
algorithm is driven by the innermost surface.
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3.3 Implicit scheme

The implicit discrete scheme is based on the classical
plasticity theory based on the return-mapping algo-
rithm, i.e. backward Euler, (Simo and Hughes 1998).
Combining equations (3), (4) and (5) leads to

which is rewritten using the concept of elastic
predictor σ tr = σn + E : ε̇

This equation is decomposed into its deviatoric (15)
and volumetric (16) parts

The consistency condition (6) must be enforced at
the end of the step (n + 1) if plastic loading occurs
(1γn+1 > 0).A discrete counterpart of this equation is
written as follows

where

is the outer normal to the yield surface computed
at mid-step. The Prager’s rule drives the kinematical
hardening of the yield surface

where H∗
1,n+1 is computed according to (11)

1γ1
n+1 is the plastic multiplicator associated to the

yield surface and Q′
n+1/2 = ‖Q′

n+1/2‖ · n̂n+1/2.

If the yield surface doesn’t overlap any hardening
surface, then 1γn+1 = 1γ1

n+1. A solution that satisfies
(15), (16), (17) and (19) has to be found. However, if
other surfaces are overlapped, Prager’s rule cannot be
used alone. Classical Mroz rule currently employed
requires an explicit partitioning of the step, which
is avoided here. The implicit Prager translation rule
proposed in (Montáns 2001) is adopted instead.

Figure 1. Step 2: elastic predictor (str), new position of yield
surface (α1

n+1), normal to the yield surface (n̂n+1/2), direction

of hardening of surface nb. 2 (m̂2
n+1), new position of surface

nb. 2 (α2
n+1).

The position of each activated surface is computed
from the final (at step n + 1) position of the yield
surface. Let “a” be the outermost activated surface,
such that

For any hardened surface 1< i ≤ a, the hardening
direction is computed recursively from the position
of surface i − 1 (see in Figure 1).

Hence the update of the final position of the surface
“i” is defined to avoid overlapping

This procedure is easily implemented in a consti-
tutive integration subroutine (see Algorithm 1, after
(Montáns 2001)). Each component of the consistency
parameter associated with hardening surface “i” is
computed through

where 〈Q′
n+1/2 : µ̂

i
n+1〉 allows for convexity of the

function 1γ(1ε) in every condition (Montáns and
Caminero 2007), enforces that only hardening in the
direction n̂n+1/2 is taken into account and

The consistency parameter is finally computed as the
sum of each component
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Algorithm 1 Computation of 1γn+1

1: α1
n+1 = α1

n +
1γa

n+1

pn+1

· H ∗
a,n+1 · n̂n+1/2

2: i= 1 ; TEST= 1 ; ᾱ ← α1
n+1

3: while TEST >0 do
4: i= i+ 1

5: TEST = ‖ᾱ − αi
n‖ − M i + M i+1

6: if TEST> 0 then

7: µ̂
i
n+1 =

ᾱ − αi
n

‖ᾱ − αi
n‖

8: ᾱ ← ᾱ + (M i−1 − M i) · µ̂
i
n+1

9: 1γ i
n+1 = pn+1 ·

‖ᾱ − αi
n+1‖

H̄ i
·
〈

Q′
n+1/2 : µ̂

i
n+1

〉

10: end if
11: endwhile

3.4 Algorithm for constitutive integration

The purpose of the algorithm is to compute final stress
state σn+1 and consistent tangent operator Cn+1 for a
given increment of deformations 1ε, where Cn+1 is
computed by perturbations

A closest-point projection algorithm is adopted,
(Simo and Hughes 1998). The implicit formulation
entails a Newton-Raphson process to compute itera-
tively σn+1. Two basic variables are chosen to describe
the final stress state: 1γ1

n+1 and pn+1. In order to gain
computation time, Jacobian matrix of the local itera-
tive process is computed analytically. For that purpose,
two new unknowns are added: ‖Q′

n+1/2‖ and H∗
1,n+1

inspired by (Mira et al. 2009). Four corresponding
residuals are defined at step n+ 1 through

4 RESULTS

When dealing with numerical modelling, concepts
of verification, validation, efficiency and robustness

Table 1. Material parameters: initial position of the surfaces
(α = α11 − α33), aperture of the surfaces (M), plastic moduli
associated (H′), shear modulus (G), bulk modulus (K), slope
of the phase transformation line (η̄).

Surf. Nb. 1 2 3 4 5
α [–] 0.100 0.050 0.100 0.175 0.260
M [–] 0.080 0.150 0.300 0.425 0.640
H′ [MPa] 150 100 30 10 2

Surf. Nb. 6 7 8 9
α [–] 0.2250 0.220 0.155 0.140
M [–] 0.775 0.920 1.045 1.140
H′ [MPa] 1 0.4 0.15 0.01

G [MPa] 40
K [MPa] 66.7

η̄ 0.8

are of main importance (Brinkgreve 2013). Validation
ensures that mathematical model is able to repro-
duce reality. This step is out of the scope of this
paper but interested reader should be referred to
(Yang and Elgamal 2008), (Zerfa and Loret 2003) and
(Cerfontaine et al. 2013).

Main results presented in this paper concern veri-
fication of the implicit algorithm, i.e. verifying that
algorithm implemented corresponds to continuous
mathematical model. Equations of the model are
strongly simplified for triaxial tests and an explicit
integration of these is carried out in Matlab for
very small step sizes. Three examples of stress paths
are provided here: monotonic drained, monotonic
undrained and cyclic undrained triaxial tests.

4.1 Material parameters

Material parameters are obtained for a 60% rela-
tive density Nevada Sand, (Arulmoli et al. 1992).
Calibration is carried out using simplified equations
for triaxial tests (Cerfontaine et al. 2013) and final
parameters are carried out in Table 1.

4.2 Drained monotonic triaxial test

Results for the drained triaxial tests are given in Fig-
ures 2 and 3. Implicit computed solution matches
pretty well the exact solution even for large step sizes
up to 0.5 %. The internal Newton-Raphson process
has most of the time a quadratic rate of convergence,
thanks to analytical computation of derivatives and
sufficiently accurate initial guess of the solution (Mira
et al. 2009).

However, it’s worth noting that internal Newton-
Raphson process may encounter convergence diffi-
culties for large time steps. Actually, elastic predictor
is very huge and initial guesses might be not close
enough to the true solution. Then time step has to be
reduced (see in Figure 2).
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Figure 2. Comparison between implicit algorithm (mark-
ers) and explicit computation (continuous for compression
or dashed for extension) of a drained monotonic triaxial test
for three initial confining pressures (50–150–250 kPa).

Figure 3. Comparison between implicit algorithm (mark-
ers) and explicit computation (continuous for compression
or dashed for extension) of a drained monotonic triaxial test
for three initial confining pressures (50–150–250 kPa). Zoom
on the εv − εy curve.

Figure 4. Comparison between implicit algorithm (mark-
ers) and explicit computation (continuous for compression
or dashed for extension) of an undrained monotonic triaxial
test for three initial confining pressures (50–150–250 kPa).

4.3 Undrained monotonic triaxial test

Stress paths in the p-q plane for undrained triaxial
testsmight be very different in compression and exten-
sion. In the former case, the stress path is pretty well
reproduced (see in Figure 4).

Figure 5. Comparison between implicit algorithm (mark-
ers) and explicit computation (dashed) of an undrained
monotonic triaxial test in extension for three initial con-
fining pressures (50–150–250). Filled markers in stand for
computation with sub-integration.

Figure 6. Comparison between implicit algorithm (mark-
ers) and explicit computation (dashed) of an undrained
monotonic triaxial test in extension for three initial con-
fining pressures (50–150–250 kPa). Filled markers stand for
computation with sub-integration.

In the latter one, instabilities and an “elbow” can
appear. Even if the stress path seems to be more or
less reproduced, the plot of pore water pressure clearly
shows that the implicit curve diverges (see in Figure
5). The origin lies in the Figure 6. During the unsta-
ble phase of the loading (decreasing |q| and weak
p, the soil encounters a very strong variation of η

over a small deformation increment. Due to the strong
non-linearity of the volumetric plastic potential, P′′,
the evolution of p is badly approximated and solu-
tion diverges. The only possibility to overcome this
drawback is to reduce the step size or to subintegrate,
(Sloan 1987).The implicit curves with sub-integration
are given in Figures 5 and 6.

4.4 Undrained cyclic triaxial test

Implicit model is able to reproduce cyclic loading of
soil (Figures 7 and 8). This loading implies stress
reversal as well as increasing pore water pressure.
These behaviours are well-reproduced but the price
to pay is a small enough stime step to well capture the
decreasing mean effective stress.
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Figure 7. Comparison between implicit algorithm (mark-
ers) and explicit computation (continuous) of an undrained
cyclic triaxial test.

Figure 8. Comparison between implicit algorithm (mark-
ers) and explicit computation (continuous) of an undrained
cyclic triaxial test.

5 CONCLUSIONS

An implicit implementation of the Prevost’s model in
the finite element code LAGAMINE was presented in
this paper. The integration of the constitutive law is
based on a closest-point projection algorithm. Direc-
tion of plastic return is computed at the time step
n + 1/2 in order to improve accuracy of the algo-
rithm. Due to the implicit strategy, a four-unknown
localNewton-Raphson procedure has to be performed.

Three different types of tests are used to compare an
“exact” solution to implicit algorithm. Results match
pretty well exact solution even if some non conver-
gence of the code has been sometimes observed. The
most critical problem occurs for undrained extension
tests in the nearly liquefied zone.This drawback could
be easily overcame by use of subintegration.
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