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P(A|B) =
P(B|A)P(A)

P(B)

Thomas Bayes
1702 (London, England) — 1761 (Tunbridge Wells, Kent, England)
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An introductory example

I Can you decide which silhouettes are those of humans ?

I Try to write an algorithm to solve this problem !
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An introductory example

Observation

Most of the tasks related to video scene interpretation are
complex. A human expert can easily take the right decision, but
usually without being able to explain how he does it.

Solution

Machine learning techniques are indispensable in computer science.
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Notations

Let us denote :

I o an object (i.e. a sample) to be classified

I −→x (o) the information about o (a vector of attributes)

I ci a class (“human silhouettes”, “non-human silhouettes”, etc.)

I ŷ (o) the class of o estimated by the classifier

I y (o) the ground-truth class of o

I P [·] a probability (∈ R ∩ (0, 1))

I ρ (·) a pdf (ρ (x) ≥ 0 ∀x ,
´ +∞
−∞ ρ (x) dx = 1)

To shorten expressions, let us denote the probability density
function of the objects belonging to class ci by

ρi
(−→x (o)

)
= ρ

(−→x (o) |y (o) = ci
)

(1)

and the priors (that is the proportion of objects belonging to a
given class) as

pi = P [y (o) = ci ] (2)
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Bayes’ classifier in case of a continuous attribute space I

Bayes’ classifier minimizes the error rate, when the samples to
classify are assumed independent, by predicting the most probable
class :

ŷ (o) = arg max
ci

(
P
[
y (o) = ci |−→x (o)

])
(3)

Using Bayes’ rule is not straightforward since

P
[
y (o) = ci |−→x (o)

]
=

P [y (o) = ci ]

=0︷ ︸︸ ︷
P
[−→x (o) |y (o) = ci

]
P
[−→x (o)

]︸ ︷︷ ︸
=0

Let us consider a small neighborhood ε around −→x (o) in the
attribute space.

P
[
y (o) = ci |−→x (o)

]
= lim

Vε→0
P
[
y (o) = ci |−→x (o) ∈ ε

]
(4)

9 / 73



Bayes’ classifier in case of a continuous attribute space II

We have

P
[−→x (o) ∈ ε ∧ y (o) = ci

]
= P [y (o) = ci ] P

[−→x (o) ∈ ε|y (o) = ci
]

= pi

ˆ
−→x (o)∈ε

ρi (x) dx

' pi ρi
(−→x (o)

)
Vε (5)

where Vε denotes the volume of ε. We also have

P
[−→x (o) ∈ ε

]
'

∑
ci

pi ρi
(−→x (o)

)
Vε

= Vε
∑
ci

pi ρi
(−→x (o)

)
= Vε ρ?

(−→x (o)
)

(6)

where ρ? (·) =
∑

ci
pi ρi (·) denotes the overall probability density

function.
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Bayes’ classifier in case of a continuous attribute space III

Using Bayes’ rule, we have

P
[
y (o) = ci |−→x (o) ∈ ε

]
=

P
[−→x (o) ∈ ε ∧ y (o) = ci

]
P
[−→x (o) ∈ ε

]
' pi ρi

(−→x (o)
)
Vε

Vε ρ?
(−→x (o)

)
=

pi ρi
(−→x (o)

)
ρ?
(−→x (o)

) (7)

and therefore,

P
[
y (o) = ci |−→x (o)

]
= lim

Vε→0
P
[
y (o) = ci |−→x (o) ∈ ε

]
= lim

Vε→0

pi ρi
(−→x (o)

)
ρ?
(−→x (o)

)
=

pi ρi
(−→x (o)

)
ρ?
(−→x (o)

) (8)
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Bayes’ classifier in case of a continuous attribute space IV

In summary, Bayes’ classifier computes

ŷ (o) = arg max
ci

(
P
[
y (o) = ci |−→x (o)

])
where [4]

P
[
y (o) = ci |−→x (o)

]
=

pi ρi
(−→x (o)

)
ρ?
(−→x (o)

)
As ρ?

(−→x (o)
)

depends only on −→x (o) (and not on ci ),

ŷ (o) = arg max
ci

(
pi ρi

(−→x (o)
))

(9)

The intrinsic difficulty of a classifier is that it is very difficult to
estimate ρi (·) from a learning set because the space is not densely
sampled.
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An example in a 1D attribute space (P [y = A] = 0.50)
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The class overlapping

There is some class overlapping when the supports of the
probability density functions underlying the various classes are not
mutually exclusive sets.

When there is no class overlapping, estimating correctly the
probability density functions is not a matter of concern for the
machine learning algorithm ; only their supports matter. Moreover,
the classifier is insensitive to the priors (when > 0).

Taking the priors into account is most often important in case of
class overlapping. But is some case, the classifier can still be
insensitive to the priors when the range of expected priors is
restricted (see example on the next slides).
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An example in a 1D attribute space (P [y = A] = 0.00)
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An example in a 1D attribute space (P [y = A] = 0.05)
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An example in a 1D attribute space (P [y = A] = 0.10)
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An example in a 1D attribute space (P [y = A] = 0.15)

B

?

A

0 0.2 0.4 0.6 0.8 1m
o

s
t 

p
ro

b
a

b
le

 c
la

s
s

attribute x

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
 [

 A
 |
 x

 ]

attribute x

0
0.5

1
1.5

2
2.5

3
3.5

0 0.2 0.4 0.6 0.8 1

P
. 

D
. 

F
.

attribute x

class A
class B

19 / 73



An example in a 1D attribute space (P [y = A] = 0.20)
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An example in a 1D attribute space (P [y = A] = 0.25)
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An example in a 1D attribute space (P [y = A] = 0.30)
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An example in a 1D attribute space (P [y = A] = 0.35)
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An example in a 1D attribute space (P [y = A] = 0.40)
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An example in a 1D attribute space (P [y = A] = 0.45)
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An example in a 1D attribute space (P [y = A] = 0.50)
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An example in a 1D attribute space (P [y = A] = 0.55)
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An example in a 1D attribute space (P [y = A] = 0.60)
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An example in a 1D attribute space (P [y = A] = 0.65)
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An example in a 1D attribute space (P [y = A] = 0.70)
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An example in a 1D attribute space (P [y = A] = 0.75)

B

?

A

0 0.2 0.4 0.6 0.8 1m
o

s
t 

p
ro

b
a

b
le

 c
la

s
s

attribute x

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
 [

 A
 |
 x

 ]

attribute x

0
0.5

1
1.5

2
2.5

3
3.5

0 0.2 0.4 0.6 0.8 1

P
. 

D
. 

F
.

attribute x

class A
class B

31 / 73



An example in a 1D attribute space (P [y = A] = 0.80)
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An example in a 1D attribute space (P [y = A] = 0.85)
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An example in a 1D attribute space (P [y = A] = 0.90)
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An example in a 1D attribute space (P [y = A] = 0.95)
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An example in a 1D attribute space (P [y = A] = 1.00)
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The balance of the learning set

We have seen that Bayes’ classifier computes

ŷ (o) = arg max
ci

(
P
[
y (o) = ci |−→x (o)

])
= arg max

ci

(
pi ρi

(−→x (o)
))

Therefore, a machine learning algorithm approximating Bayes’
classifier needs to estimate the priors and the probability density
functions (pdfs) from the learning set, either implicitly or explicitly.

I Intuitively, in order to correctly learn the pdfs, we need more
samples drawn from the pdfs with complicated shapes than
from the ones that are smooth.

I In order to estimate correctly the priors, the proportions of
learning samples from the various classes need to reflect the
priors.

These two aims can be contradictory. But we can focus on the first
one, and compensate for the second one (if 2 classes) !
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The case of the two-classes classifier I

I Let us consider the two classes c− and c+.

I Let nLS− be the amount of samples ∈ c− in the learning set.

I Let nLS+ be the amount of samples ∈ c+ in the learning set.

Since P
[
y (o) = c−|−→x (o)

]
+ P

[
y (o) = c+|−→x (o)

]
= 1, we can

only focus of P
[
y (o) = c+|−→x (o)

]
. We would like to compute

P
[
y (o) = c+|−→x (o)

]
=

p+ ρ+
(−→x (o)

)
p+ ρ+

(−→x (o)
)

+ p− ρ−
(−→x (o)

) (10)

but, when
nLS−

nLS− +nLS+
6= p− ⇔

nLS+

nLS− +nLS+
6= p+, the machine learning

algorithm computes

z
(−→x (o)

)
=

nLS+

nLS− +nLS+
ρ+
(−→x (o)

)
nLS+

nLS− +nLS+
ρ+
(−→x (o)

)
+

nLS−
nLS− +nLS+

ρ−
(−→x (o)

) (11)

Can we get P
[
y (o) = c+|−→x (o)

]
back from z

(−→x (o)
)

? Yes !
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The case of the two-classes classifier II

z
(−→x (o)

)
=

nLS+

nLS− +nLS+
ρ+
(−→x (o)

)
nLS+

nLS− +nLS+
ρ+
(−→x (o)

)
+

nLS−
nLS− +nLS+

ρ−
(−→x (o)

)
=

1

1 +
nLS−
nLS+

ρ−(−→x (o))
ρ+(−→x (o))

P
[
y (o) = c+|−→x (o)

]
=

p+ ρ+
(−→x (o)

)
p+ ρ+

(−→x (o)
)

+ p− ρ−
(−→x (o)

)
=

1

1 + p−
p+

ρ−(−→x (o))
ρ+(−→x (o))

So we can compute

z
(−→x (o)

)
7−→ ρ−

(−→x (o)
)

ρ+
(−→x (o)

) 7−→ P
[
y (o) = c+|−→x (o)

]
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The case of the two-classes classifier III

z
(−→x (o)

)
=

1

1 +
nLS−
nLS+

ρ−(−→x (o))
ρ+(−→x (o))

⇐⇒ ρ−
(−→x (o)

)
ρ+
(−→x (o)

) =
nLS+

nLS−

1− z
(−→x (o)

)
z
(−→x (o)

)
P
[
y (o) = c+|−→x (o)

]
=

1

1 + p−
p+

ρ−(−→x (o))
ρ+(−→x (o))

=
1

1 +
p− nLS+ (1−z(−→x (o)))

p+ nLS− z(−→x (o))

=
p+ nLS− z

(−→x (o)
)

p− nLS+ +
(
p+ nLS− − p− nLS+

)
z
(−→x (o)

)
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The case of the two-classes classifier IV

Generalizing a result presented in [4], we have

P
[
y (o) = c+|−→x (o)

]
=

p+ nLS− z
(−→x (o)

)
p− nLS+ +

(
p+ nLS− − p− nLS+

)
z
(−→x (o)

)
(12)
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The 3 kinds of priors

There are 3 different kinds of priors :
I the priors in the context of use of the classifier : p−, p+

I the priors in the learning set (LS) :
nLS−

nLS− +nLS+
,

nLS+

nLS− +nLS+

I the priors in the test set (TS) :
nTS−

nTS− +nTS+
,

nTS+

nTS− +nTS+

The goal is to be able to predict the performance of the classifier
in the target context, even when the 3 kinds of priors are different.

The ROC (receiver operating characteristic) and PR
(precision-recall) evaluation spaces are insensitive to the priors in
LS (the explanation follows on the next slides).

The PR space depends on the priors in TS (because the precision
does). The ROC space does not depend on the priors in TS
(because of the focus on the true positive and true negative rates).
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The classifier does not depend on the priors in LS I

P
[
y (o) = c+|−→x (o)

]
< t

⇐⇒ 1

1 + p−
p+

ρ−(−→x (o))
ρ+(−→x (o))

< t

⇐⇒ ρ−
(−→x (o)

)
ρ+
(−→x (o)

) >
p+

p−

(
1

t
− 1

)
⇐⇒ 1

1 +
nLS−
nLS+

ρ−(−→x (o))
ρ+(−→x (o))

<
1

1 +
nLS−
nLS+

p+

p−

(
1
t − 1

)
⇐⇒ z

(−→x (o)
)

<
1

1 +
nLS−
nLS+

p+

p−

(
1
t − 1

)
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The classifier does not depend on the priors in LS II

P
[
y (o) = c+|−→x (o)

]
< t ⇐⇒ z

(−→x (o)
)
< t ′ (13)

t ′ =
p− n

LS
+ t

p+ nLS− +
(
p− nLS+ − p+ nLS−

)
t

(14)

t =
p+ nLS− t ′

p− nLS+ +
(
p+ nLS− − p− nLS+

)
t ′

(15)

For a binary Bayes’ classifier, the priors in the learning set (LS) do
not matter. We can simulate any prior in LS by tuning the decision
threshold. Therefore, the shape of the performance curves in the
ROC or precision-recall spaces does not depend on the priors in LS.

P
[
y (o) = c+|−→x (o)

]
<

1

2
⇐⇒ z

(−→x (o)
)
<

p− n
LS
+

p+ nLS− + p− nLS+
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Experiment

I we assume the prediction given by the ExtRaTrees about the
class of an object o depends only on the learning samples
located in a neighborhood around −→x (o)

I ↪→ we focus on small parts of the attribute space and assume
the pdfs are uniform in first approximation in these parts

I our experiment is for a 2D attribute space
I we consider only the case where the trees are fully developed
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Results obtained with 1 tree in the forest

We observe the proportion Π+
(−→x (o)

)
of trees voting for the class

c+. As it is a random variable (we can draw many learning sets
from the same pdfs), we plot its standard deviation and mean
depending on the total amount of learning samples in the
neighborhood around −→x (o) and the proportion of positive learning
samples in this neighborhood.
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Results obtained with 10 trees in the forest

We observe the proportion Π+
(−→x (o)

)
of trees voting for the class

c+. As it is a random variable (we can draw many learning sets
from the same pdfs), we plot its standard deviation and mean
depending on the total amount of learning samples in the
neighborhood around −→x (o) and the proportion of positive learning
samples in this neighborhood.
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Results obtained with 100 trees in the forest

We observe the proportion Π+
(−→x (o)

)
of trees voting for the class

c+. As it is a random variable (we can draw many learning sets
from the same pdfs), we plot its standard deviation and mean
depending on the total amount of learning samples in the
neighborhood around −→x (o) and the proportion of positive learning
samples in this neighborhood.
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Results obtained with 1000 trees in the forest

We observe the proportion Π+
(−→x (o)

)
of trees voting for the class

c+. As it is a random variable (we can draw many learning sets
from the same pdfs), we plot its standard deviation and mean
depending on the total amount of learning samples in the
neighborhood around −→x (o) and the proportion of positive learning
samples in this neighborhood.
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Summary of the results I

We observe the proportion Π+
(−→x (o)

)
of trees voting for the class

c+. As it is a random variable (we can draw many learning sets
from the same pdfs), we plot its standard deviation and mean
depending on the total amount of learning samples in the
neighborhood around −→x (o) and the proportion of positive learning
samples in this neighborhood.
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Summary of the results II

The expected value of Π+
(−→x (o)

)
is the proportion of positive

learning samples in a neighborhood around −→x (o).
If other regions of the attribute space are populated into the

learning set, this proportion is not
nLS+

nLS− +nLS+
anymore. It is

µ
{

Π+
(−→x (o)

)}
= lim

Vε→0

nLS+

´
x∈ε ρ+ (x) dx

nLS−
´
x∈ε ρ− (x) dx + nLS+

´
x∈ε ρ+ (x) dx

' lim
Vε→0

nLS+

(
Vε ρ+

(−→x (o)
))

nLS−
(
Vε ρ−

(−→x (o)
))

+ nLS+

(
Vε ρ+

(−→x (o)
))

=
nLS+ ρ+

(−→x (o)
)

nLS− ρ−
(−→x (o)

)
+ nLS+ ρ+

(−→x (o)
) = z

(−→x (o)
)

The ExtRaTrees behave like a slightly biased Bayes’ classifier, with
a high variance (it converges towards a minimum @ 100 trees).
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Detecting human silhouettes for video-surveillance I

BGS [2], connected components, silhouettes classification [1, 3] :

Silhouettes may present huge defects :
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Detecting human silhouettes for video-surveillance II

For robustness against defects, silhouettes are analyzed by parts
(overlapping maximal axis-aligned rectangles). We discriminate
between the classes “part of a human silhouette” (c+) and the “part
of a non-human silhouette” (c−) [1, 6].
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The accuracy and the ROC space I

I Let t denote the decision threshold.

I The accuracy is Q (t) = p− TNR (t) + p+ TPR (t).

I Minimizing the error rate (Bayes) ⇔ maximizing the accuracy.

accuracy
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ŷ (o) =
(
P
[
y (o) = c+|−→x (o)

]
< 0.5

)
? c− : c+

T
P

R
(t)

TNR(t)

p+ =
nLS+

nLS− +nLS
+

= 1
3

0

1
prior of the

positive class

error rate

57 / 73



The accuracy and the ROC space II

I Let t denote the decision threshold.

I The accuracy is Q (t) = p− TNR (t) + p+ TPR (t).

I Minimizing the error rate (Bayes) ⇔ maximizing the accuracy.
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Results with p+ = 0.1

“part of a non-human silhouette” / “part of a human silhouette” :
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Results with p+ = 0.2

“part of a non-human silhouette” / “part of a human silhouette” :
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Results with p+ = 0.3

“part of a non-human silhouette” / “part of a human silhouette” :
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Results with p+ = 0.4

“part of a non-human silhouette” / “part of a human silhouette” :
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Results with p+ = 0.5

“part of a non-human silhouette” / “part of a human silhouette” :
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(
z
(−→x (o)

)
< 1

2

)
? c− : c+

63 / 73



Results with p+ = 0.6

“part of a non-human silhouette” / “part of a human silhouette” :
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Results with p+ = 0.7

“part of a non-human silhouette” / “part of a human silhouette” :
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Results with p+ = 0.8

“part of a non-human silhouette” / “part of a human silhouette” :
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Results with p+ = 0.9

“part of a non-human silhouette” / “part of a human silhouette” :
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Conclusion

I In practice, the ExtRaTrees can be considered as an
approximation of Bayes’ classifier.

I With Bayes’ classifier, when choosing the priors to populate
the learning set, we can focus on the relative complexity of the
underlying probability density functions (most often leading to
balanced datasets). But we have to adapt the decision
threshold ; the optimal one can be determined theoretically.

I It follows that we have a way to tackle problems in which the
priors in the context of use of the classifier are unknown at
learning time or change continuously. This is a kind of
on-the-fly domain adaptation.

I In this presentation, we have assumed that, for each class, the
pdfs in the source domain and in the target domain are
identical. That is a more challenging domain adaptation
problem. Please read [5] for solution to that problem !
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