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Abstract 
The recent developments in molecular biology have made available thousands of 

genetic markers, allowing livestock genotyping at a reasonable cost and the subsequent 
development of genomic prediction. The single-step procedure, a unified approach of 
genomic prediction, requires inversion of two matrices gathering additive relationships 
between genotyped animals: the genomic relationship matrix (G) and a part of the 
additive relationship matrix (A22). The inverse of A22 may also be interesting for other 
applications. Matrix inverse can be constructed successively by, first, computing, for each 
animal, the vector containing contributions of other animals to its relationship and, 
secondly, adding the product of each vector of contributions by itself to a zeroed matrix. 
The objectives of this thesis were (1) to propose algorithms to compute or to approximate 
the vector of contributions and (2) to test the numerical efficiency of these algorithms 
(computing speed, memory use and, if needed, approximation accuracy). Computing 
contributions covered two points: (1) finding or approximating which contributions are 
different from zero, and (2) computing the value of contributions considered as non-zero. 
In the first approach, we considered that animals closely related have non-zero 
contributions and approximated their values by linear regression. This approach was 
extended in a recursive way. In the second approach, we empirically determined the set of 
non-zero contributions by a heuristic algorithm of pedigree exploration (only for the case 
of A22). Values were then computed either by linear regression, or using the already 
computed inverse. We also tested an approximation strategy: limiting the number of 
extracted generations of non-genotyped ancestors to reduce pedigree complexity. In a 
third approach, we followed the same heuristic algorithm as before but restricted the 
pedigree exploration to find out which animals have a non-zero contribution. Their values 
were approximated by linear regression. The presentation of the different approaches is 
followed by a general discussion in which the approaches are compared. It was found that 
the best compromise between speed, memory and approximation accuracy was achieved 
by the last approach for the case of A22. Use of this last approach simplified computations 
and therefore made predictions more feasible. However, for the case of G, no sufficient 
approximations could be reach in a reasonable time. Perspectives of other uses of 
algorithms developed and of future researches were drawn, as well as practical 
perspectives for animal breeding. 
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Résumé 
De récents développements en biologie moléculaire ont rendu disponibles des 

milliers de marqueurs génétiques, permettant de génotyper les animaux de rentes à un 
coût modéré et, conséquemment, le développement de la prédiction génomique. La 
procédure « single-step », une approche unifiée de prédiction génomique, requiert 
l’inversion de deux matrices rassemblant les parentés additives entre animaux génotypés : 
la matrice de parenté génomique (G) et une partie de la matrice de parenté additive (A22). 
L’inverse de A22 peut également être intéressante pour d’autres applications. L’inverse 
d’une matrice peut être construite successivement : premièrement, en calculant, pour 
chaque animal, le vecteur qui contient les contributions des autres animaux aux parentés 
de celui-ci et, deuxièmement, en ajoutant le produit de chaque vecteur de contributions 
par lui-même à une matrice nulle. Les objectifs de cette thèse sont (1) de proposer des 
algorithmes pour construire ou approximer le vecteur des contributions et (2) de tester 
l’efficience numérique de ces algorithmes (temps de calcul, usage de mémoire et, si 
nécessaire, précision de l’approximation). Calculer les contributions recouvre deux 
aspects : (1) trouver ou approximer quelles sont les contributions non-nulles, et (2) 
calculer les contributions considérées comme non-nulles. Dans la première approche, 
nous considérons que les animaux fortement apparentés ont des contributions non nulles 
et approximons leur valeur par régression linéaire. Cette approche est étendue dans une 
implémentation récursive. Dans la seconde approche, nous déterminons empiriquement 
l’ensemble de contributions non-nulles par un algorithme heuristique d’exploration du 
pedigree (seulement pour le cas de A22). Les valeurs sont alors calculés soit par régression 
linéaire on en utilisant l’inverse déjà calculé à ce point. Nous testons aussi une stratégie 
d’approximation : limiter le nombre de générations extraites d’ancêtres non-génotypés 
pour réduire la complexité du pedigree. Dans une troisième approche, nous suivons le 
même algorithme heuristique qu’avant mais restreignons l’exploration du pedigree pour 
trouver quels animaux ont une contribution non-nulle. Leur valeur est approximée par 
régression linéaire. La présentation des différentes approches est suivie par une discussion 
générale dans laquelle les approches sont comparées. Il a été montré que le meilleur 
compromis entre consommation de temps et de mémoire et justesse de l’approximation 
était réalisé par la dernière approche dans le cas de A22. Utiliser cette dernière approche 
simplifie les calculs et donc rend les prédictions plus faisables. Cependant, pour le cas de 
G, aucune approximation suffisante n’a pu être atteinte en un temps raisonnable. Des 
perspectives d’autres utilisations des algorithmes et de futures recherches sont esquissées, 
aussi bien que des perspectives pratiques pour l’amélioration animale.  





   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

« Spirou, viens voir la nouvelle idée de Fantasio pour 
le bal costumé... C’est original, mais si on danse?...» 
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Context 

How to make the best estimation of the part of a performance that is transmitted to 

the next generation? This question is the central issue of animal breeding. Addressing this 

question enables to decide if the recorded trait can support selection. If well, best animals 

are chosen in order to improve the next generation for that particular trait. 

Throughout history of genetic evaluations, main advances in animal breeding can 

be understood as the product of collaborative exchanges between availability of data 

(pedigrees, phenotypic records, and genomic information), technological advances in 

computer sciences and methodological developments in applied mathematics. 

First of all, the recording of animal ancestry through the creation of pedigrees, 

recorded by an official herd-book society, allowed great advances in the availability of 

data for genetic evaluation. The first herd-books were published for Shorthorn cattle in 

1822 and Hereford cattle in 1846 (Whetham, 1979), whereas cattle societies were 

established a few decades later (e.g. 1875 for Shorthorn, 1876 for Hereford). At that time, 

cattle breeders, as well as other animal breeders, were mainly concerned by increasing 

production yields. In the USA and several other countries, the first dairy herd 

improvement associations were established in the early years of the 20th century in USA. 

Official recording schemes rapidly increased the number of available data for animal 

breeders. 

Applied genetics focused on the proper use of this growing amount of data. 

Availability of recorded pedigree opened the door to the analysis of the genetic structure 

of these records (Pearl, 1917; Fisher, 1918; Wright, 1922). The variance structure of the 

genetic effects was derived from the genetic structure of the population and the first 

robust method of genetic evaluation (Selection Index) was released by Hazel in 1943, 

followed by the Best Linear Unbiased Prediction (Henderson, 1953; Henderson, 1973). 

This last method is the starting point of most of all current genetic evaluations. 

However, two decades passed before the method was implemented as the “animal model”. 

Why? Because of two main constraints: (1) the unavailability of computers with sufficient 

resources to implement the model and (2) the inversion of the additive relationship matrix 

(A), which has a cubical cost with classic inversion algorithms. The first constraint was 

overcome by technological development in computer science. “(…) [In 1954], most of the 

principles of BLUP were already available, but computing facilities were totally 
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inadequate to utilize the method”, Henderson (1973) said. The second constraint became 

obsolete through the discovery of an algorithm that allows a direct computation of the 

inverse of A with a linear complexity (Henderson, 1976). 

The “New Frontier” in animal breeding was crossed in the late 1980’s: the use of 

molecular data in genetic evaluations. Molecular data were first used for detection of 

quantitative trait-loci (QTL) and subsequently integrated in genetic evaluations (e.g. 

Fernando and Grossman, 1989; Goddard, 1992; van Arendonk et al., 1994). The recent 

availability of dense genotypes (on thousands of bi-allelic single nucleotide 

polymorphisms) enabled a second way of integration of molecular information, called 

“genomic prediction”. It was developed by Meuwissen et al. (2001) as a genome-wide 

strategy that avoids issues linked to detection and use of significant QTL. As explained by 

VanRaden (2007), the aim was no longer to attempt tracking individual QTL, but to 

integrate whole genome marker data directly into genetic merit contributions. In its initial 

implementation (GBLUP), genomic prediction is done in multiple steps (e.g. as detailed 

in VanRaden, 2008). 

However, genomic prediction is quite demanding in need of computer power and 

methodological developments. The initial multi-steps methodology was recently 

transformed into a single-step approach (ssGBLUP; Misztal et al., 2009; Christensen and 

Lund, 2010), which unifies the use of the three main sources of information (pedigrees, 

genotypes and phenotypes). The core of this method is to replace the additive relationship 

matrix A, as used in a regular animal model, by a genomically-enhanced matrix H 

(Legarra et al., 2009; also presented in Bömcke et al., 2010), whose inverse has a very 

simple formulation. Nevertheless, computation of the inverse of H requires inversion of 

two relationship matrices between genotyped animals: the genomic relationship matrix 

(G) and a part of the additive relationship matrix (A22 ). 

Their inversion is currently achieved using classic inversion algorithms, with cubic 

complexity. Even though parallel computing allowed computing time gains (Aguilar et 

al., 2011), the development of approximation methods becomes more and more relevant 

as the number of genotyped animals increases: VanRaden et al. (2013) reported more than 

160,000 genotyped animals and Hickey (2013) highlights this decreasing cost of 

genotyping, coupled to the increase of imputation methods, should bring millions of 

genotyped animals within five years (from the year of his publication). 
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Objectives 

Our central question is the following: is it possible to achieve inversion of G and 

A22  between genotyped animals without a cubical complexity? 

Answering this question is covered by two mains objectives, which are to: 

1. Propose algorithms and/or strategies to compute the inverse of these 

relationship matrices or to approximate their inverse; 

2. Assess if computing time gains can be achieved with the proposed 

algorithms and, in case of approximation of the inverse, to assess if the 

approximation does not impact the use of the matrix in further 

computations. 

The originality of the thesis lies in the way we address the central question: can we 

take advantage of the prior knowledge of the genetic structure of the population to reduce 

computations required by inversion of these two matrices? In that sense, this thesis aims 

to solve numerical problems by the help of genetic knowledge. 

Implications of the doctoral research in current animal 
breeding 

The main advantage of genomic prediction is to increase reliability of estimated 

breeding values (EBV) at a lower age (actually, as soon as DNA can be sampled); for 

instance, Calus et al. (2008) presented clear advantages of genomic selection, even at low 

marker densities. 

The present dissertation was carried out in the frame of a project for Luxembourg 

dairy breeders (see below: Thesis framework). The Luxembourg dairy cattle population is 

a small-sized population (less than 40,000 cows currently in production). Predominant 

breed is Holstein, some being Red-Holsteins, upgraded from Friesian and Red-White 

cattle (Hammami, 2009) essentially since the 1970s. In Luxembourg, pedigree recording 

has been effective for decades and more than 90% of the total dairy cattle are under a milk 

recording system. Genomic prediction, and particularly the single-step procedure, is 

advantageous for small-sized populations, as the amount of information brought by 

genotypes is important in comparison to the amount of information brought by other 

sources (pedigrees, phenotypes). The ssGBLUP is also well adapted for novel traits with 
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limited recording. Luxembourg is one of the few places worldwide where the fine milk 

composition (fatty acids content) is routinely recorded so far. As for other novel traits, 

genetic evaluation of milk composition traits may be less reliable due to the lack of 

evaluation history. Additional information brought by genotypes helps to fill this gap. 

The methods outlined in this doctoral dissertation are dedicated to genetic 

evaluation systems, including those using a large number of genotypes. However, even if 

less fitted to its population, they can be applied to the specific case of Luxembourg. These 

methods were designed to speed up the routine genetic evaluations using genomic 

information. 

Thesis outline 

This doctoral thesis consists in a compilation of peer-reviewed articles that address 

the two main objectives in a coherent sequence of 4 chapters (Chapter II to V), a general 

discussion (Chapter VI) and perspectives and conclusions (Chapter VII).  

Proposing algorithms for inversion of G and A22  presumes to define the operation 

of inversion and the features of these two matrices. These are the two first points 

addressed in Chapter II. In addition, Chapter II includes a literature review of the main 

computational techniques related to the use of relationship matrices in animal breeding. 

This review ends with the definition of a general framework for inversion of relationship 

matrices: relationship matrices can be inverted by using the prior knowledge of the 

population structure to set up the dependencies between the different levels of any genetic 

effect. In the case of G and A22 , where each level of the genetic effect features a 

genotyped animal, setting up the contributions for any genotyped animal covers two 

aspects: (1) to determine which animals (later denoted as contributors) contribute to this 

animal, and (2) to compute the value of their contributions. 

In Chapter III, a first algorithm is proposed to determine contributors of an animal: 

the close-family approach. This algorithm can be used in a recursive manner, allowing the 

proposal of a second algorithm: the recursive close-family approach. In both cases, an 

approximation of contributions is computed using ordinary least squares. Those two 

algorithms are applied to the case of G and A22 . Use of the close-family approach is not 

time-expensive but not suited for the case of G. Use of the recursive close-family 

approach is prohibitive in terms of computing time, albeit well suited for both matrices. In 
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addition, for the case of A22 , results show that, even if the number of contributions to 

compute is large, a majority of these contributions are close to 0. Focusing on the 

determination of these contributions would be helpful to address the main question of this 

thesis. 

Therefore, the research focuses on A22  in the upcoming chapters. The core of 

Chapter IV is the proposal of a heuristic algorithm that exhaustively searches the pedigree 

to find contributors of each genotyped animal. Computations of contributions are then 

restricted to these contributors, as other animals do not contribute. Moreover, in Chapter 

IV, a strategy is proposed to reduce the number of contributors, namely to extract 

pedigree of genotyped animals only on few generations. Results show that inversion and 

approximations are very fair; however, computations still have a cubical complexity with 

the order of the matrix. This complexity could be avoided if the relation between the 

number of contributors and the matrix order would be broken or, at least, tempered. 

Consequently, a restricted search for contributors is proposed in Chapter V. This 

algorithm – actually, a restricted version of the core algorithm of Chapter IV – allows fair 

and close to sparse approximations of the inverse of A22 . Results show that 

approximations have a limited impact on the further use of the inverse of A22 . 

Eventually, Chapter VI is a general discussion that starts by a comparative study 

of the different algorithms proposed for A22  and those proposed for G. For each 

algorithm, an implementation is proposed and tests are ran on the same computer in order 

to compare time and memory efficiencies and, if required, quality of approximation. 

Future perspectives of research and use of the proposed algorithms are discussed and 

general conclusions are drawn in the last chapter (Chapter VII). 

A reminder of the thesis outline takes place in front of every chapter. In addition, 

Chapters II to V are followed by a summary of the main results outlined in the chapter 

and essential to follow the strategy of research. Also, other communications related to the 

topic of the chapter are listed at the end of the chapter, if applicable. 



  GENERAL INTRODUCTION 

   7 

Thesis framework 

The thesis research was initiated by October 2009 and supported by an “Aide à la 

Formation-Recherche” (AFR) grant issued by the Fonds National de la Recherche 

Luxembourg (FNR), under the project name “NextGenGES”. 

The initial objectives of this project were the following: (1) methodological 

contribution to the development of the next generation genomic prediction methods, and 

(2) application of these methods to milk composition traits. Different constraints that 

appeared during the project forced a shift in the thesis objectives. These constraints were: 

(1) the unfitness between the purpose of methodological developments (drawing solutions 

for large matrices) and the size of the dairy cattle population from Luxembourg; (2) the 

unavailability of genotypes in Luxembourg; and (3) the increasing relevance of the 

methodological issues that appeared during the research. 

Under the terms of this grant, the research was part of a public-private partnership 

between the cattle society from Luxembourg CONVIS s.c. and the host institution of this 

doctoral thesis, Gembloux Agro-Bio Tech, part of the University of Liège (Gembloux, 

Belgium). The major part of the doctoral research was done at Gembloux Agro-Bio Tech, 

under the supervision of Prof. N. Gengler, on pedigree data provided by CONVIS s.c., 

where a certain time of work was also spent. In addition, a third institution was involved 

in the project, the Animal and Dairy Science Department of the University of Georgia 

(Athens, GA, USA), where the training on computational techniques in animal breeding 

and the first methodological researches were carried out under the co-supervision of Dr. I. 

Misztal.  

This grant initially covered three years, it was then renewed for a fourth year in 

October 2012 and it eventually ended in September 2013. For the remaining period of 

doctoral research (October 2013 to May 2014), the work done for this thesis contributed 

to the project “DairySNP” done by Gembloux Agro-Bio Tech and the Walloon Breeding 

Association (“Association Wallonne de l’Elevage”, AWE) and supported by the Ministry 

of Agriculture of the Walloon Region of Belgium. 

Alongside to the thesis, a doctoral formation was successfully completed. The 

doctoral formation included, among others, the following main aspects: attendance to 

classes in animal breeding and genetics and big data management, active participation to 

international congresses, teaching assistance of the quantitative genetics class taught in 
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Gembloux by Prof. N. Gengler and publication of research outputs in peer-reviewed 

journals. 
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In genetic evaluations, relationship matrices establish the 
covariance structure of the genetic effect; each type of genetic 
effect (additive, dominance…) has its own type of relationship. 
Mixed model equations integrate the inverse of the relationship 
matrix of a certain type of genetic effect in order to obtain 
solutions for that type of effect. Therefore, computing the inverse 
of a relationship matrix without having to set up the matrix itself 
is of great interest in order to ease evaluations. In the third 
section of this chapter, the main algorithms to directly compute 
inverses of relationship matrices are reviewed. Beforehand, in the 
first and second sections, the operation of inversion and the 
features of the two matrices of interest ( A22  and G) are 
introduced. 
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Matrix inversion 

A square matrix A of order n is invertible if a matrix B of same order exists such 

as their product returns the identity matrix of same order: AB = I = BA . B is called the 

inverse matrix of A and is denoted by A!1 .  

Matrix A is invertible if the determinant of A is different from zero. The 

determinant can be computed from the values of elements in A. Moreover, the 

determinant of a product of matrices is the product of the determinant of each matrix. 

Different methods allow computing the inverse of a matrix. These methods can be 

categorized into direct and iterative methods. 

Direct methods require high accuracy in calculation to obtain proper solutions 

whereas iterative methods compensate round-off errors by a process of successive 

refinement (Rajagopalan, 1996). The most commonly implemented method is a direct 

one: the Gauss-Jordan method. This method applies a sequence of transformations of 

rows and columns on the original matrix and an identity matrix in order to convert the 

original matrix into an identity matrix. The inverse is then stored in the second matrix. 

The Cholesky factorization of symmetric matrix (A =L !L ; Cholesky, 1910) can be used 

to compute its inverse by computing the inverse of L and multiplying it by its transpose. 

Another direct method is the Sherman-Morrison algorithm (Sherman and Morrison, 

1950). This algorithm performs inversion in a line-wise manner: a zeroed matrix is 

updated, at each row, by the product of a vector of same length as the order of the matrix 

by its transpose. This vector is computed from the result of the previous inverse and the 

corresponding column in the original matrix. Sherman-Morrison algorithm is equivalent 

to the blockwise inversion algorithm (Banachiewicz, 1937) in which the Schur 

complement would be scalar. 

Iterative methods work by successively improving approximations until a 

numerical convergence is reach. Speed of convergence is, however, dependent on the 

initial approximation. Among others, pre-conjugate gradient and bi-conjugate gradient 

stabilized methods are worth citing.  
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Additive and genomic relationship matrices between 
genotyped animals 

If some animals are genotyped in a population, one can split this population 

between genotyped and non-genotyped animals. Such a basic splitting of the original 

population into two groups is feasible for any feature, e.g. splitting between recorded and 

non-recorded animals, between sexes or between breeds. 

From a partition between genotyped and non-genotyped animals, two additive 

relationship matrices may be computed. The first one, A22 , is the part of the additive 

relationship matrix that gathers relationships between genotyped animals. The second one, 

G, is a matrix of similarities between genotyped animals computed using genomic 

information. In a certain sense, G can be also be interpreted as part of a larger matrix: this 

larger matrix would be of the same size as A, only possible, however, if genomic 

information was available for all animals in population. 

Additive relationship matrix between genotyped animals 
Additive relationships coefficients are relationship measurements based on the 

knowledge of potential co-ancestries between two animals. Setting up such relationship 

coefficients requires having genealogical information, often streamlined in a table of 

triplets animal-sire-dam. Such table, as well as any triplet it contains, is called “pedigree”. 

The additive relationship coefficients are due to Wright (1922) and have a range in 

0,2[ [ : two unrelated animals have a relationship coefficient of 0 and two clones would 

have a relationship coefficient of 2. Since rules to set up A treat two clones as two full-

sibs (Emik and Terrill, 1949), a relationship coefficient of 2 is not reachable. 

The relationship coefficient of an animal with itself is defined as 1 plus the 

inbreeding coefficient of that animal. The inbreeding coefficient (F) is the half of the 

relationship coefficient between the two parents. 

Matrix A is symmetric and positive-definite. Non-singularity of A can be proved 

using the rules to compute the diagonal elements (Quaas, 1976) of its Cholesky 

factorization (see Henderson, 1976) and using the definition of additive relationship 

coefficients. For an animal with both parents known, the diagonal element of the 

Cholesky factorization is 0.5! 0.25(FS +FD( ) , where FS  and FD  are respectively 
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inbreeding coefficients of the sire and the dam of that animal. Inbreeding coefficients are 

the half of relationship coefficients and therefore have a range from 0 to 1 excluded. 

Consequently, the diagonal element of the Cholesky factorization is always positive, 

allowing existence of that factorization and non-singularity of the matrix. Inversion of A 

is detailed further in this chapter. 

Matrix A22  is any part of A gathering relationship coefficients between animals 

chosen among all animals in population. In our case, this group is the group of genotyped 

animals. Matrix A22  has therefore the same structure and properties as A. The quickest 

and simplest way to compute A22  is the method of Colleau (2002). This method is 

derived from the inverted Cholesky factorization of A and it computes the additive 

relationship coefficients of an animal with the rest of the population by a double reading 

of an age-ordered pedigree. Applying the method for all genotyped animals and retaining 

only relationships with genotyped animals achieves computation of A22 . 

Genomic relationship matrix 
Genomic relationship coefficients are relationship measurements based on 

similarities between individuals revealed by molecular markers. 

Nejati-Javaremi et al. (1997) were the first to outline a method to derive the allelic 

relationship TA between two individuals x and y at a given locus l: they averaged the 

identity between the two alleles of an individual at this locus and both alleles of another 

individual at the same locus. The measure is repeated for all L available marker loci and 

averaged, returning the total allelic identity between the two individuals (equation II.1). 

TAxy =
TAl

l=1

L

!
L

  (II.1) 

This method was, among others, implemented by Bömcke and Gengler (2009), 

using 16 microsatellites markers with at least 4 alleles, in order to derive a combined 

pedigree-genomic additive relationship. 

The development of genome sequencing methods made hundreds of thousands of 

single nucleotide polymorphisms (SNP) available, opening the path to genomic selection 

(Meuwissen et al., 2001; Goddard and Hayes, 2007). Among the large number of SNP 

widely spread over the genome, bi-allelic markers are chosen to create assays of several 
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thousands of SNPs (3,000, 10,000 or 50,000 on the most used beadchips). This 

availability considerably increased the accuracy of the relationship measurement, as well 

as its simplicity because SNPs are bi-allelic. Using bi-allelic genotypes (-1 and 1 for both 

homozygotes; 0 for heterozygote) in equation (II.1), one can define a matrix of total 

allelic relationship as in equation (II.2), where Z0  is a matrix containing, in row, bi-allelic 

genotypes and, in column, m SNPs. 

TA = Z0 !Z0 +m
m

 (II.2) 

However, at a given locus, if an allele is less frequent than the other one, two 

individuals carrying this allele are more likely to be related than two animals carrying the 

frequent allele. In other words, common alleles are less informative than rare alleles to 

compute relationships. Thus, taking allelic frequencies into account matters. 

VanRaden (2007) proposed a genomic relationship matrix (equation II.3) 

structurally similar to that derived (equation II.2) from Nejati-Javaremi et al. (1997), but 

that accounts for allelic frequency in both the genomic incidence matrix (Z) and the 

scaling factor (d). 

G =
Z !Z
d

 (II.3) 

Matrix Z is obtained by subtraction of P from Z0 . Each row of P contains the 

allelic frequencies of all alleles expressed as a difference from 0.5 and multiplied by 2, so 

that the i-th column of P is 2 fi ! 0.5( ) , where fi  is the minor allelic frequency of the i-th 

SNP. As explain in VanRaden (2008), subtracting P from Z0  gives more credit to rare 

alleles than to common alleles. The scaling factor d is equal to 2 fi (1! fi )"  and, 

according to VanRaden (2008), makes G analogous to A22 . This analogy has to be 

tempered for two reasons. Firstly, tuning is required to make both diagonal and off-

diagonals values compatible with A22  (see Forni, 2011). Secondly, matrix A22  measures 

identity-by-descent (IBD) between animals whereas matrix G measures identity-by-state 

(IBS) between animals. IBS can be imputed either to co-ancestry or to randomly 

occurring mutations. Recent proposals create G-IBD matrices by tracing the gene flows 

through pedigrees (Villanueva et al., 2005) or using haplotypes (Hayes et al., 2009). 
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Matrix G (equation II.3) is positive semi-definite (VanRaden, 2007) but can be 

singular if two clones are genotyped, or if identical genotypes are found for two different 

animals because the number of SNPs is small. In such case, the pairs of rows and columns 

corresponding to these animals are the same. Also, matrix G can be singular if the total 

number of alleles is less than the number of genotyped individuals. Using a combined G 

made of a high proportion of G and a low proportion of A22  could circumvent 

singularity. 

Even though, in this study, G is used as defined in equation (II.3) and made 

compatible with A22  using methods by Forni (2011), other genomic relationship matrices 

are worth citing (Leutenegger et al., 2003; Amin et al., 2007; Gianola and van Kaam, 

2008). 

Techniques for inversion of relationship matrices 

 

[FROM: P. Faux and N. Gengler. 2014. A review of inversion techniques related to 

the used of relationship matrices in animal breeding. Biotechnologie, Agronomie, 

Sociétés et Environnement, (in press)] 

 

Abstract 
In animal breeding, prediction of genetic effects is usually obtained through the 

use of mixed models. For any of these genetic effects, mixed models require the inversion 

of the covariance matrix associated to that effect, which is equal to the associated 

relationship matrix times the associated component of the genetic variance. Given the size 

of many genetic evaluation systems, computing the inverses of these relationship matrices 

is not trivial. In this review, we aim to cover computational techniques that ease inversion 

of relationship matrices used in animal breeding for prediction of the following different 

types of genetic effects: additive effect, gametic effect, effect due to presence of marked 

quantitative trait loci, dominance effect and different epistasis effects. Construction rules 

and inversion algorithms are detailed for each relationship matrix. In the final discussion, 

we draw up a common theoretical frame to most of the reviewed techniques. Two 

computational constraints come out of this theoretical frame: setting up the matrix of 
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dependencies between levels of the effect and setting up some parts (diagonal or block-

diagonal elements) of the relationship matrix to be inverted. 

Keywords: animal breeding, quantitative genetics, breeding value. 

Introduction 
A simple model (equation II.4; see Kempthorne, 1955) describes a given 

phenotype (P) as the sum of the genotype (G) and the environment (E) of a particular 

animal. 

P = G + E  (II.4) 

Based on equation (II.4), variations among phenotypic observations are therefore 

explained by genetic and environmental variations and by a potential interaction between 

genotype and environment. Genetic improvement of animals requires accurate estimation 

of the genetic variance component in order to predict the genetic values of animals. The 

structure of this variance component is based on knowledge of the biological processes 

involved in Mendelian inheritance. 

In nearly all domestic species, animals have a diploid genome (with the exception 

of honey bees, where males are haploid). Then, during the production of gametes, a 

haploid copy of the diploid genome of the original animal (sire or dam) is made. 

However, haploid copies are produced from potentially different parts of the homologous 

chromosomes, following the process of recombination due to crossing-over. Thus, for any 

locus, a gamete carries a single copy of one of the two alleles carried by the parental 

genome. Both gametes eventually merge to create a new animal. 

By the process described before, every new animal has a specific and unique 

genetic makeup. Genetic covariances among different animals arise because they have 

inherited similar alleles and allele combinations. Based on these covariances, associations 

among these animals can be defined as ratios between covariances and variances 

associated to a given genetic effect. Whether the interactions between alleles of the same 

locus (intra-locus interaction) and between loci (inter-loci interaction) are null or not, 

several types of genetic effects can be distinguished. In our study, we will cover and detail 

the following genetic effects: additive, gametic, effect due to marked QTL, dominance 

and the different types of epistasis effects.  



CHAPTER II 

18 

When fitting a linear model with generalized least squares, use of the inverted 

covariance structure among observations allows obtaining Best Linear Unbiased 

Estimators. Prediction of genetic effects is usually obtained through the use of mixed 

models (Henderson, 1953; Henderson, 1973). These models are equivalent to models 

fitted using generalized least squares and, for every random effect, the inverse of the 

associated covariance structure is also needed. 

Due to huge size of regular genetic evaluations, there is a substantial interest in 

computational techniques that make efficient use of covariance matrices in terms of 

computing time and memory requirements. Thus, our main objective is to review and 

explain in detail algorithms for inversion of relationships matrices useful in animal 

breeding. Completion of this objective involved the definition of the relationships 

between levels of the concerned genetic effect and the computation of the related matrices 

for each type of genetic effect listed above (additive, gametic, marked QTL effects, 

dominance and epistasis). Finally, we outline a general framework of inversion of 

relationship matrices in the final discussion. 

It must be noted that the case of genomic relationship matrices has been willingly 

discarded in this study because no algorithm that directly sets up their inverses has been 

developed so far. The genomic relationships are made available by the use of dense 

marker chips (over than tens of thousands of markers) and give an accurate estimation of 

the observed relationship between two animals. For their computation, please refer to the 

work of VanRaden (2008), for additive genomic relationship matrix, and Su et al. (2012) 

for non-additive genomic relationship matrix. 

Additive relationship matrix 
Definition of the additive relationship 
If interactions between alleles are considered null, the genetic (co)variance is said 

to be “additive”. Based on previous work by Pearl (Pearl, 1917a; Pearl, 1917b), Wright 

(1922) defined an additive relationship coefficient as the additive correlation between two 

animals i and j (equation II.5). 

rij =
Cov i, j[ ]

Var i[ ] !Var j[ ]
=

aij
aii !ajj

  (II.5) 
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The rij  coefficient is a correlation coefficient; it ranges from 0 to 1. The non-

scaled coefficient of Wright, noted aij , is the additive genetic relationship coefficient and, 

from (II.5), is defined as equal to rij aii !ajj . This coefficient is also often referred as the 

“numerator relationship” coefficient (due to its position in equation II.5). We will denote 

it as the “additive relationship coefficient” and the kind of relationship that it refers to as 

an “additive relationship” in our study. The matrix containing all these additive 

relationship coefficients will be denoted by A and called “additive relationship matrix”. 

Computation of the additive relationship matrix 
Complete computation of the additive relationship matrix 
The path coefficient method (Wright, 1922) enables the computation of the 

additive relationship between two animals. The process requires identification of all 

nearest ancestors shared between those two animals and counting of the number of 

generation steps between them. The path coefficient method can be automated and 

extended to computation of relationship coefficients in the whole population. The tabular 

method (Emik and Terrill, 1949; Henderson, 1976) performs the computation of additive 

relationship coefficients in a recursive manner. For a given animal, the relationship 

coefficients of this animal with all older animals are computed in a row by adding one 

half of the relationship coefficients in the rows of its parents. A prior step is required: 

organization of pedigree records in a sorted by generation list of triplets animal-sire-dam 

(Emik and Terrill, 1949; Mugnier et al., 1966). On a population of n animals, a square 

matrix of order n is created. 

This algorithm has a complexity that is proportional to n2, because, at each of the n 

loops it achieves, a linear combination of a vector of maximum length n is performed. 

Storage requirements follow the same trend and may quickly become prohibitive. 

 Partial computation of the additive relationship matrix 
For this reason, and also because only a section of the additive relationship matrix 

may be of interest in large populations, algorithms that permit a partial computation of the 

additive relationship matrix have been developed. 

Algorithms corresponding to two specific parts of the A matrix should be 

mentioned. The first one is an algorithm that computes the relationship coefficients of a 

particular animal with the rest of the population (e.g. Colleau, 2002). The second one is an 
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algorithm that computes the diagonal elements of A, which reveals inbreeding coefficients 

(e.g. algorithms of Quaas, 1976; Meuwissen and Luo, 1992; Sargolzaei et al., 2005). The 

interest of these coefficients will be highlighted in the next sections. 

Computation of the inverse of the additive relationship matrix 
Matrix A is non-singular except in the presence of genetically identical animals 

(GIA; full-twins or clones). In such situations, contributions of Kennedy and Schaeffer 

(1989) and Oikawa and Yasuda (2009) are relevant. 

In situations without GIAs, Henderson (1976) has proposed rules that allow 

computing the inverse of A without having to compute A explicitly. These rules are based 

on the simplicity of structure of matrices involved in the factorization of A: A =TD !T . 

According to Henderson (1976), matrix T can be computed recursively (equation II.6): 

the vector corresponding to the i-th row of T, from column 1 to (i-1), is equal to one half 

of corresponding parental vectors (say s and d). Diagonal value is 1 and upper triangular 

part is 0. 

T(i) =

T(i!1) 0 0

p(i)" T(i!1) 1 !
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Inverting the factorization of A and using it to compute the inverse of A (as 

(T!1 ")D!1T!1 ) does not require T, but the inverse of T. This latter has a very simple 

structure that comes by inversion of a triangular matrix (equation II.7). 

T(i)
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!1 0 0
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(
(
(
(

  (II.7) 

The matrix D is diagonal: element Dii  is equal to 1!.25 " A pp
#p$%i

& , where !i  

denotes the set of known parents (either 0, 1 or 2 parents known) of animal i. A correct 

computation of D requires to know the diagonal elements of A. Algorithms for 

computation of inbreeding coefficients mentioned in section “Computation of the additive 

relationship matrix” here above are of great interest. Among those, the algorithm by 
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Quaas (1976) is noteworthy as it is the first one to compute these elements for the 

particular purpose of the computation of the inverse of A.  

Once matrix D has been computed, Henderson (1976) proposed a simple 

algorithm to set up the inverse (Algorithm II.1). The algorithm summarizes the product 

(T!1 ")D!1T!1  to n updates of a n-by-n matrix that was initially set to zero. Each update is a 

square block matrix of order 1 plus the number of known parents. This principle was 

demonstrated in Tier and Sölkner (1993) and van Arendonk et al. (1994). 

Algorithm II.1. Direct computation of the inverse of the additive relationship matrix (A). 

initialize B =D!1  and A!1 = B , two matrices of order n  

for i = 1 to n, do 

 if any parent, say p, of the i-th animal is known,   

  then add !.5Bii  to elements A pi
!1  and Aip

!1  and .25Bii  to element A pp
!1  

 if both parents, say p and q, of the i-th animal are known, 

  then add .25Bii  to elements A pq
!1  and Aqp

!1  

The advantages of this algorithm are its low complexity (O(n)) and the low 

amount of memory required to store the very sparse output (A!1 ). 

Gametic relationship matrix 
Definition and uses of gametic relationships 
In some situations, it may be interesting to express the additive genetic value of an 

individual in terms of the separate gametic contributions of each of their two parents 

(Schaeffer et al., 1989; Kennedy et al., 1988). Prediction of additive gametic values 

instead of additive genetic values allows reducing the size of the system to solve: the 

number of genetic effects is equal to the number of parents, necessarily lower than the 

total number of animals in the population. The covariance matrix used for random genetic 

(gametic) effects is called the “gametic relationship matrix” and denoted hereafter as Ga . 

Quaas and Pollak (1980) have developed such a model, known as reduced animal model. 

This model also shows how each ancestor affects the genetic value of the individual. 

Gibson et al. (1988) have proposed a gametic model in which only one parental gamete 

expresses the genetic effect (autosomally inherited) of an individual. Others uses are: 
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analysis of haploid-diploids species such as the honey bee (Smith and Allaire, 1985) and 

analysis of gametic imprinting effects (Gibson et al., 1988; Schaeffer et al., 1989). 

Eventually, the usefulness of the gametic relationship matrix in computation of the 

dominance relationship matrix has been shown by Schaeffer et al. (1989). The derivation 

of A from the gametic relationship matrix has been described by Smith and Allaire (1985) 

and showed by Jamrozik and Schaeffer (1991). Matrix A is obtained by 1
2
KG !K , where 

K = I! 1 1"
#

$
%  (Tier and Sölkner, 1993; van Arendonk et al., 1994). 

Computation of the gametic relationship matrix 
Smith (1984) proposed an algorithm to compute Ga  that is inspired by the tabular 

method. For diploids species, the size of the matrix will be N = 2n , where n is the number 

of animals in population. Each animal has thus two rows/columns that correspond to both 

parental gametes. Construction rules are simply deduced from the tabular method: if the 

parent p is known, then the row elements below diagonal are equal to the half of the sum 

of corresponding elements in both lines of parent p; else if the parent p is unknown, these 

elements are null. The corresponding column is obtained by transposition. 

Inversion of the gametic relationship matrix 
Matrix Ga  is non-singular within the same restriction as for matrix A (no clones). 

The following algorithm (Algorithm II.2) was developed by Schaeffer et al. (1989) 

based on direct computation of the inverse of A. Animals are supposed to be ordered 

chronologically. For each animal, the first and second gametes are respectively due to the 

sire and dam. Computation of the diagonal elements is similar to that of Quaas (1976). 

Algorithm II.2. Direct computation of the inverse of the gametic relationship matrix (Ga ) 

due to Schaeffer et al. (1989). 

initialize a matrix Ga
!1  of order N and three vectors u, v and d of length N 

for k = 1 to N, do 

 set d(k) = v(k) = 1!u(k)  

 for i = k + 1 to N, do  
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  if the k-th gamete precedes any parental gamete, say p, of the i-th gamete,  

   then add .5v(p)  to v(i)  

  else set v(i)  equal to 0 

   add the square of v(i)  to u(i)  

 set c equal to the square of the inverse of d(k)  and Ga
!1(k,k)  equal to c 

 if parental gametes, say p and m, of the k-th gamete are known, then  

  add !.5c  to Ga
!1(p,k) , Ga

!1(m,k) , Ga
!1(k, p)  and Ga

!1(k,m)  

  add .25c  to Ga
!1(p, p) , Ga

!1(p,m) , Ga
!1(m, p)  and Ga

!1(m,m)  

Covariance matrices for marked QTL effects 
Definition of marked QTL covariance 
Development of genetic engineering techniques leads to identify loci involved in 

determinism of quantitative traits (QTL) and to assist selection by use of markers linked 

to these QTL (Marked QTL, MQTL; Soller and Beckmann, 1983; Smith and Simpson, 

1986). The following model (Fernando and Grossman, 1989) integrates effects of a 

causative QTL into BLUP. 

yi = xi!"+ vi
p + vi

m +ui + ei  (II.8) 

In equation (II.8), a phenotypic value yi  is decomposed in environmental 

contributions !xi" , random additive genetic contributions: a contribution of the paternally 

inherited allele of a marked QTL ( vi
p ), a contribution of the maternally inherited allele of 

the same marked QTL ( vi
m ) and a residual additive contribution due to QTLs unlinked to 

the marker (ui ), and a random error contribution ( ei ). Solving this mixed model requires 

the covariance matrix of the vi  values (called “MQTL matrix” and denoted as G 

hereafter), which is computed using both pedigree relationships and marker information. 

Computation of the MQTL matrix 
Fernando and Grossman (1989) have developed the “MQTL relationship” in a 

similar manner as the additive relationship. While this latter is based on the probability 

that alleles at a same locus for each animal are IBD, MQTL relationship is based on the 

conditional probability of the same event given information on a marker closely linked to 
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the MQTL. This conditional probability is affected by the recombination rate r between 

the marker locus and the marked QTL (outlined and developed similarly in Chevalet et 

al., 1984): given that an animal inherited the paternal marker allele of its sire, the 

probability that he also inherited the paternal QTL allele of its sire is (1-r) whereas the 

probability that he inherited the maternal QTL allele of its sire is r. The MQTL 

relationship between two animals i and j, for both paternal and maternal alleles ( gi, j
p  and 

gi, j
m ), can thereby be computed recursively from the MQTL relationships between s, sire 

of i, and j ( gs, j
p  and gs, j

m ) and d, dam of i, and j ( gd, j
p  and gd, j

m ), given marker inheritance: 

- if i inherits from its sire its paternal marker allele: gi, j
p = (1! r) " gs, j

p + r " gs, j
m ; 

- if i inherits from its sire its maternal marker allele: gi, j
p = (1! r) " gs, j

m + r " gs, j
p ; 

- if i inherits from its dam its paternal marker allele: gi, j
m = (1! r) " gd, j

p + r " gd, j
m ; 

- if i inherits from its dam its maternal marker allele: gi, j
m = (1! r) " gd, j

m + r " gd, j
p . 

If no information on marker inheritance is available, then both paternal and 

maternal alleles have equal probability of being inherited and r is equal to 0.5. In such a 

case, the MQTL relationship is the corresponding gametic relationship. Matrix G has thus 

the same size as matrix Ga  and, for computation purposes, is ordered in the same manner 

(parents before offspring; paternal allele before maternal allele). The computation goes 

through use of the recursive rules here above in a tabular method. van Arendonk et al. 

(1994) showed the recursion rule in matrix notation: 

G(i) =
G(i!1) G(i!1)qi

qi"G(i!1) 1

#

$

%
%
%

&

'

(
(
(

, (II.6) 

where G(i!1)  is the MQTL matrix for gametes 1 to i-1 and qi  is a vector that has 

two non-zeros entries: (1! r)  to the position of the parental gamete whose allele was 

inherited and r to the position of the other parental gamete. An algorithm by Wang et al. 

(1995) also follows an identical tabular method but processes animal by animal (thus, 2 

lines/rows at a time) instead of gamete by gamete. The tabular method for constructing G 

is therefore: 
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G(i) =
G(i!1) G(i!1)Qi

Qi
"G(i!1) Ci

#

$

%
%
%

&

'

(
(
(

, 

where Ci  is a 2-by-2 matrix with 1 on the diagonal and the inbreeding coefficient 

of animal i elsewhere and Qi  is a 2-by-(i-1) matrix with maximum 8 non-zeros elements, 

in all 4 columns corresponding to the 2 parental gametes. These elements are filled with 

the probability of descent for each offspring QTL allele from any parental QTL allele. It is 

worth noting that this algorithm accommodates situations where paternal or maternal 

origin of alleles cannot be determined. 

A very similar algorithm was developed by Goddard (1992) for the covariance 

matrix between effects of potential QTL surrounded by two marker loci. In this algorithm, 

the relative position p of the QTL to the marker loci is used instead of the recombination 

rate of Fernando and Grossman (1989). Tracing inheritance of chromosome segments 

instead of marker loci enhances accuracy of the model. For genetic evaluation systems 

including many ancestors without marker information, Hoeschele (1993) showed that 

QTL effects were needed only for genotyped animals and common ancestors of these 

animals. Elimination of these equations led to a substantial reduction of the order of the 

covariance matrix. Such an algorithm that accounts for non-genotyped parents is also 

presented in Wang et al. (1995). 

Direct computation of the inverse of the MQTL matrix 
The algorithm of Fernando and Grossman (1989) follows the same approach as 

Henderson (1976) and Quaas (1976). Using a definition similar to that of their tabular 

method, they relate both effects of paternal and maternal MQTL ( vi
p  and vi

m ) to their 

parental MQTL ( vs
p , vs

m , vdp  and vd
m ) effects in a simple linear model (equations II.10). In 

this model, coefficients !  allocate r  or (1! r)  accordingly with the inheritance turned up 

by marker information and !i
p  and !i

m  residual effects, whose covariance matrix G!  is 

shown to be diagonal. 

vi
p =!i,s

p " vs
p +!i,s

m " vs
p +#i

p

vi
m =!i,d

p " vd
p +!i,d

m " vd
p +#i

m

$
%
&

'&
 (II.10) 
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Assuming that inbreeding coefficients are available, the algorithm proceeds 

through the pedigree and fills in the inverse of the MQTL matrix (initialized to a null 

matrix of order N) in three steps: 

(1) compute the diagonal element d of G!  as 2!i,s
p !i,s

m (1"Fs )  for a paternal 

gamete or as 2!i,d
p !i,d

m (1"Fd )  for a maternal gamete; 

(2) set up a vector q equal to !"i,s
p !"i,s

m 1#
$%

&
'(
)
 for a paternal gamete or 

equal to !"i,d
p !"i,d

m 1#
$%

&
'(
)
 for a maternal gamete; 

(3) add the product d !q q  to the inverse matrix to positions corresponding to 

each of its parental gamete and the current gamete itself. 

The algorithm by van Arendonk et al. (1994) is equivalent to the previous one and 

is outlined under the form of the successive blockwise inversion of Tier and Sölkner 

(1993). It requires thus the computation of all MQTL relationships of the population. 

Equivalently, the algorithm of Wang et al. (1995) for direct computation of the inverse of 

the MQTL relationship matrix processes the two gametes of an animal at a time, as shown 

in equation (II.10) where Di =Ci ! "QiG(i!1)Qi  is the Schur complement of G(i!1) . 

G(i)
!1 =

G(i!1)
!1 0
0 0

"

#
$
$

%

&
'
'
+

!Qi

I2

"

#
$
$

%

&
'
'
Di

!1 !Qi
( I2

"

#
$

%

&
'  (II.10) 

Efforts in reducing computational costs of this algorithm have been outlined 

(Abdel-Azim and Freeman, 2001; Tuchscherer et al., 2004; Matsuda and Iwaisaki, 2002). 

The computing cost reduction performed by Sargolzaei et al. (2006), applying the indirect 

method of Colleau (2002) to the MQTL matrix, is also of great interest. 

Computation and inversion of a covariance matrix for an animal model 
accounting for MQTL relationships 
The closeness between gametic and MQTL relationship matrices has already been 

mentioned. Also, it has been mentioned that the additive genetic relationship matrix A 

could be retrieved from the gametic relationship matrix using an incidence matrix K (see 

section “Definition and use of the gametic relationships”). Similarly, it is worth noting 

that a modified A (noted hereafter AM ) could be obtained from the MQTL matrix (van 
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Arendonk et al., 1994) as 1
2
KG !K . Computation of the inverse is made successively in a 

similar manner as for G (see previous section). However, vectors qi  have non-trivial 

values. Their computation is therefore made using a construction of AM  similar to 

equation (II.9) for G. An analogous equation would express the i-th above diagonal 

column vector of AM  (AM ,i ) as AM ,i = AM ,(i!1)qi . Therefore, vectors qi  are obtained by 

the product qi = AM ,(i!1)
!1 AM ,i . This product can be interpreted as a linear regression of the 

relationships between the (i-1) first animals on their relationships with the i-th animal. 

Dominance relationship matrix 
Definition of dominance 
Dominance is defined by Fisher (1918) as the portion of the partitioned phenotypic 

variance that results from allelic interactions at the same locus. A dominance effect is the 

genetic effect carried on by a given allelic combination. When two animals share common 

ancestors, it becomes therefore likely that they carry an identical allelic combination. A 

dominance relationship coefficient scales this likelihood. Among others (epistasis effects), 

dominance is the non-additive genetic effect that is the more relevant in domestic species 

evaluation (Gengler et al., 1998). 

Dominance relationship coefficient dij  between animals i (having parents s and d) 

and j (having parents p and m) can be obtained from the additive relationship coefficients 

by the formula (Henderson, 1985): dij = .25(aspadm + asmadp ) . The matrix containing all 

dominance relationship coefficients is denoted by D and is called the dominance 

relationship matrix. 

Computation of the dominance relationship matrix 
Using formula above, D is computed using A. Also, a general recursion formula to 

compute D has been outlined in Smith and Mäki-Tanila (1990). Note that both A and D 

can easily be derived from the gametic relationship matrix (see section “Definition and 

use of the gametic relationships”). 

Computation of the inverse of the dominance relationship matrix 
Because dominance is inherited through pairs of parents, two full-sibs have the 

same rows and columns in D and therefore D is not of full rank. To overcome this 

singularity, Hoeschele and VanRaden (1991) partitioned the dominance effects into sire X 
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dam subclass effects (and a within-subclass deviation due to Mendelian sampling). They 

developed an inversion algorithm that sets up the inverse of the covariance matrix (noted 

F) of sire X dam subclass effects. The individual dominance effects are then related to 

these subclass effects. A recursive rule exists to compute the subclass effects (f). If S and 

D denote the sire and dam of an animal, SS and DS, the parents of its sire, SD and DD, the 

parents of its dam, the S-D subclass effect ( fS,D ) is obtained by: 

fS,D = .5 fS,SD + fS,DD + fD,SS + fD,DS( )!.25 fSS,SD + fSS,DD + fDS,SD + fDS,DD( )+ e , (II.11) 

where e is a segregation residual. Their method includes in three steps: 

(1) identification of all filled sire X dam subclasses (among 8 potential 

subclasses in equation II.11) that provide relationship ties; 

(2) direct computation of the inverse of F (see Algorithm II.3); 

(3) computation of the inverse of D using an incidence matrix that relates 

dominance effects to subclass effects. 

Algorithm II.3. Computation of inverse of F, matrix of n filled subclasses. 

for i = 1 to n, do  

set up bi , a row vector of length k, containing the coefficient f as in equation 

II.11, that corresponds to each of the k parental subclasses identified for subclass i 

set up the relationship matrix Fi  of order k, containing the relationship 

coefficients between the k parental subclasses  

compute rii  (variance coefficient for subclass i) as (1!bi"Fibi )
!1  

compute the contribution of subclass i to the inverse of F as 

rii
!1 1 bi"
#

$
%
& 1 bi"
#

$
%  and add it to F!1  at the proper positions 
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Epistasis Matrices 
Definition of epistasis 
Epistasis is a term that refers to interactions between loci (Bateson, 1909; Sinnot et 

al., 1950). Epistasis interactions used in animal breeding are (Cockerham, 1952; 

Cockerham, 1954): 

- the effect of a particular allele of a first locus on a particular allele of the 

second locus, additive by additive interaction (AXA); 

- the effect of a particular allele of a first locus on a particular allelic 

combination at the second locus (additive by dominance interaction, 

AXD), or; 

- the effect of a particular allelic combination at a first locus on a particular 

allelic combination at the second locus (dominance by dominance 

interaction, DXD). 

Other epistasis matrix can also be cited (additive by additive by additive, additive 

by additive by dominance, and so on; see Henderson, 1985). 

Computation and inversion of the additive by additive relationship matrix 
The AXA relationship matrix, denoted by AA  hereafter, can be formed rapidly by 

forming A using the tabular method and squaring each element (VanRaden and 

Hoeschele, 1991; Cockerham, 1954; Henderson, 1985; Kempthorne, 1955). 

Chang et al. (1989) have developed a direct computation of the inverse of AA  

constructed using only sire and maternal grand-sire information. Their algorithm fills in 

the inverse matrix through a quick reading of the pedigree. However, the subclass effect 

sire X dam is included in the Mendelian sampling effect. VanRaden and Hoeschele (1991) 

have solved this drawback by setting up an algorithm that accounts for all subclass effects 

as for dominance (see equation II.11). The relationships between AXA effects (u) are 

modelled by the linear relation u = Pu+Pbub +m , in which P and Pb  are incidence 

matrices, ub  is the vector AXA effects of unknown ancestors and ancestors combinations 

and m, the vector of AXA Mendelian sampling effects. After manipulations, the inverse 

of U, covariance matrix of u divided by the AXA variance component, can be expressed 

as (I! "P )R!1(I!P) , where R is the covariance matrix of Pbub +m  divided by the AXA 
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variance component. An algorithm – similar to that for dominance, see Algorithm II.3 - is 

proposed to compute the inverse of U. This algorithm proceeds as follows. 

(1) Identification of all AXA subclass effects, written in an expanded list. 

These subclasses include all animals and parental combinations that 

provide relationship ties. Therefore, the size of the AXA effects covariance 

matrix (U) may be several times the number of animal; this increased size 

is nonetheless offset by the resulting sparseness of its inverse. 

(2) Forward reading of the expanded list created at step (1). For each 

individual in this list, coefficients pertaining to the individual and its sire, 

dam and sire-dam subclass effect are added to U!1 ; for each sire-dam 

subclass, coefficients pertaining to that subclass and its ancestor subclasses 

are added to U!1 . For both individual and sire-dam subclass, values and 

number of coefficients vary depending on the number of known sources. 

In an inbred population, the effects of sire, dam and sire-dam subclass are 

correlated and the values of coefficients are affected by inbreeding. 

Computation and inversion of other epistasis matrices 
Others fore-mentioned epistasis matrices are computed similarly as the AXA 

matrix, by a Hadamard product of dominance and/or additive genetic matrices. 

Their inversion may be performed by classical inversion algorithms (Henderson, 

1985; Palucci et al., 2007). A general methodological frame to solve a model including 

any epistasis effect (also, dominance effect) without inversion of the relationship matrix 

of this effect has been presented by Schaeffer (2003). This method computes solutions of 

the desired effects as a selection index from the additive genetic solutions and iteratively 

corrects the observations for these desired effects and computes additive genetic solutions 

until convergence is reached. 

Discussion and conclusions on inversion technique for relationship 
matrices 
A general framework for inversion of variance-covariance matrices of genetic 

effects may be drafted through the different kinds of genetic effects described and their 

associated relationship matrices. 
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The variance-covariance matrix of a genetic effect vector v is usually defined as 

the product (equation II.13) of a relationship matrix, say W, and the genetic variance 

component associated to this effect, say !v
2 . 

Var(v) =W !"v
2  (II.13) 

The vector v is modelled by a linear model: v = Bv+ e , where B is an incidence 

matrix that gathers dependencies between elements of v and e is a term accounting for a 

residue due to the particular element itself (or, undue to dependencies between elements 

of v). It has to be noted that elements of v must be ordered such that any element only 

depends of elements preceding him; that is matrix B must be lower triangular. Removing 

recursion of this model returns v = (I!B)!1 "e . Variance of v can thereby be expressed in 

terms of variance of the residual term e (equation II.14). 

Var(v) = I!B( )!1 "Var(e) " I! #B( )!1  (II.14) 

The covariance among residual terms is usually null, because these terms refer to 

the own specificity of the effect (individual, gamete or subclass). Consequently, the 

variance-covariance matrix of e is the product of a diagonal matrix, say D, by !v
2 . 

Thereby, equating equations (II.13) and (II.14), it comes out that the relationship matrix 

associated to any of these described genetic effects can be expressed as 

W = I!B( )!1 "D " I! #B( )!1 , and a general expression of its inverse is: 

W!1 = I! "B( ) #D!1 # I!B( )  (II.15) 

It is worth noting that this expression is the inverse of the root-free Cholesky 

factorization of W, for which the lower triangular factor is I!B( )!1 . It has been proposed 

(Henderson, 1976) and shown (Tier and Sölkner, 1993) that setting up the inverse of W 

using formula in (II.15) sums up to adding the contributions of a list of numbered levels 

of effect (individuals, gametes, subclass effects) to a null matrix. This successive addition 

can be achieved for x levels at a time. Usually, x is equal to 1 but may be greater than 1 in 

some situations (Wang et al., 1995; Sargolzaei et al., 2006; Smith and Mäki-Tanila, 

1990). If we assume the following partitions for the relationship matrix W after i 

additions of x levels (W(i) ) and the corresponding matrix B: 
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W(i) =
W11 !W21

W21 W22

"

#
$
$

%

&
'
'
 and B(i) =

B11 0
B21 B22

!

"
#
#

$

%
&
&
, 

then the i-th addition of x levels to the inverse returns the matrix W(i)
!1 : 

W(i)
!1 =

W11
!1 0
0 0

"

#
$
$

%

&
'
'
+

! (B21
I(x )

"

#

$
$

%

&

'
'
W22 !B21 (W21[ ]!1 !B21 I(x )

"
#$

%
&' . (II.16) 

The computational step in equation (II.16) requires to know sub-matrices W22 , 

W21  and B21 . 

Therefore, we conclude by defining a computationally efficient algorithm for 

inversion of a genetic relationship matrix, on the basis of equation (II.16), as an algorithm 

that provides means to set up these sub-matrices (W22 , W21  and B21 ) at a reduced 

computational cost. 

Setting up B21  often requires no computation because the dependency coefficients 

between levels of effects in v are a priori known (e.g. additive and gametic relationships). 

In some cases, e.g. MQTL matrices, few computations are required to set up these 

coefficients. Also, as shown by van Arendonk et al. (1994), these coefficients can be 

obtained by partitioned matrix theory. The original model of dependencies between levels 

in v can also be simplified by adding sub-levels, what enables to set up B21  more readily 

(Hoeschele and VanRaden, 1991; VanRaden and Hoeschele, 1991). 

Setting up W22  and W21  is either implicit (e.g. gametic relationships and additive 

and dominance relationships of non inbred populations have all diagonal elements equal 

to 1), either requires explicit computation of the relationship matrix (e.g. MQTL 

matrices). In this second case (e.g. additive and dominance relationships of inbred 

populations and derived epistasis matrices), computation efficiency can be greatly 

enhanced using algorithms of partial computation of A (e.g. Quaas, 1976; Colleau, 2002). 
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BRIEF SUMMARY OF CHAPTER II 

• The inverse of the additive genetic relationship matrix (A) may be 

computed using an algorithm that successively updates a zeroed matrix. 

This algorithm has a linear complexity with the order of the matrix 

(number of animals in population). 

• Inverses of most of the other genetic relationship matrices follows the 

same strategy: (1) definition of the levels of the genetic effect, (2) for each 

level, direct computations of dependencies with levels preceding the 

current one, and (3) for each level, successive update of a zeroed matrix 

with the vector of contributions. This strategy features a general 

framework for inversion of relationship matrices. 

• We propose to assess the use of the same framework for computation 

and/or approximation of the inverse of G and A22 . As each level of the 

genetic effect features a genotyped animal in these specific cases, the aim 

will be to determinate (or approximate the determination) of the 

dependencies of this animal with other genotyped animals. It covers two 

aspects: (1) to determine which genotyped animal (later denoted as 

contributor) contributes to the current animal, and (2) to compute the value 

of its contribution. 

 



 

 

 

Chapter III 

 

 

 

THE CLOSE-
FAMILY 

APPROACH 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[FROM: P. Faux, N. Gengler and I. Misztal. 2012. A recursive algorithm for 

decomposition and creation of the inverse of the genomic relationships matrix. 

Journal of Dairy Science, 95: 6093-6102] 

In the previous chapter, a framework was proposed for inversion 
of relationship matrices. This framework dictates to determine 
dependencies between genotyped animals. In this chapter, we 
propose to implement the framework to G and A22  using two 
algorithms to approximate the determination of contributors. 
In the first algorithm, contributors of an animal are its close-
related genotyped animals. 
In the second algorithm, contributors are firstly found for the 
initial matrix. Then, a residual matrix is computed and the same 
approach is applied to obtain an approximation of the inverse of 
that residual matrix. The process is then recursively applied until 
convergence. 
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Abstract 
Some genomic evaluation models require creation and inversion of a genomic 

relationship matrix (G). As the number of genotyped animals increases, G becomes larger 

and thus requires more time for inversion. A single-step genomic evaluation also requires 

inversion of the part of the pedigree relationship matrix for genotyped animals (A22 ). A 

strategy was developed to provide an approximation of the inverse of G ( !G!1) that may 

also be applied to the inverse of A22  ( !A22
!1 ). The algorithm was based on direct inversion 

of the pedigree relationship matrix (A), which involves a recursion for each animal and its 

parents. Decomposition of G was similar to that for A except that more relatives were 

involved for each animal. The !G!1 was computed as the matrix product (T!1 ")D!1T!1, 

where T−1 and D−1 are inverses of the triangular and diagonal matrices T and D, 

respectively. The weights for each relative were determined by variables of regression of 

the genomic relationships among all genotyped animals older than a given animal on the 

genomic relationships for that animal. The resulting estimators were used to create T−1. 

Then, T!1G(T!1 ")  resulted in a new matrix that is close to diagonal and also needs to be 

inverted. The inverse of that matrix was approximated with the same decomposition as for 

approximation of the inverse of G ( !G!1), and the procedure was repeated in successive 

rounds of recursion until a matrix was obtained that was close enough to diagonal to be 

inverted element by element. Two applications of the approximation algorithm were 

tested in a single-step genomic evaluation of US Holstein final score, and correlation 

coefficients between estimated breeding values based on either real or approximated G−1 

were compared. Approximations came closer to G−1 as the number of recursion rounds 

increased. Approximations were even more accurate and faster for A22 . Time-saving 

strategies are needed to reduce the computing time required for the algorithm. 

Keywords: genomic selection, relationship matrix, matrix inversion, algorithm 

INTRODUCTION 

Meuwissen et al. (2001) proposed a method to predict breeding values that 

includes molecular information from dense marker panel that cover the whole genome. 

This method, called genomic prediction, relies on the assumption that markers are 

expected to be in linkage disequilibrium with potential Quantitative trait loci (QTL). 

Among different methods proposed to implement genomic prediction, VanRaden (2007) 
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suggested that a genomic relationship matrix (G) could be computed based on molecular 

knowledge of alleles shared between individuals and that mixed models using such a 

matrix instead of a pedigree-based matrix (A) could predict genetic effects more 

accurately than those using A. The main structural difference between A and G is that 

individuals assumed to be unrelated based on pedigree almost always share fractions of 

their genomes. Therefore, G is expected to be dense, whereas A may be sparse, and use of 

G in genomic BLUP (GBLUP) consequently requires inversion of a dense matrix. 

Legarra et al. (2009) developed a method that includes pedigree, phenotypic, and 

genomic information in one step, which was also shown by Christensen and Lund (2010) 

and mentioned by Bömcke et al. (2011). That method requires inversion of G as well as 

inversion of the part of A that represents pedigree-based relationships among genotyped 

animals (A22 ). Although A may be sparse and able to be inverted using the rules of 

Henderson (1976) and Quaas (1976), A22  is expected to be less sparse and cannot be 

inverted using those rules, because it contains relationships from a non-genotyped 

ancestor. The G and A22  matrices can be created and inverted by standard procedures 

such as those in the program PREGSF90 (Aguilar et al., 2011) by using a package of 

linear algebra kernels (Basic Linear Algebra Subprograms; Lawson et al., 1979) that are 

able to multiply matrices efficiently. Using PREGSF90, Aguilar et al. (2011) showed that 

creation and inversion of A22  and G for 30,000 animals with 40,000 SNP required 

approximately 3 hr. However, their computations increase cubically with the number of 

animals and are unsuitable for very large numbers of genotypes.  

The inverse of A (A−1) can be calculated quickly and with minimum storage, 

because it is based on a recursion formula involving only 3 individuals: an animal and its 

parents. For direct inversion of G, genomically enhanced EBV (GEBV) of a genotyped 

animal is assumed to be dependent on all other genotyped animals. The first objective of 

this study was to develop and evaluate a recursion formula for the inverse of G (G−1) that 

includes only a fraction of genotyped animals. The second objective was to determine 

whether such a formula is also suitable for creation of the inverse of A22  ( 1
22
−A ). 



CHAPTER III 

40 

Material and Methods 

Approximation of Inverse of G and A22 
State of the art 
Development of approximations will be based on root-free Cholesky factorization. 

If the genomic relationship matrix G is a symmetric positive definite matrix, then G is 

invertible and may be factorized as LLG ʹ′= . The decomposition of its inverse is thus 
11)( −− ʹ′LL , what is equal, if DTL = , to the following root-free Cholesky factorization of 

1−G : 

1111 )( −−−− ʹ′= TDTG  (III.1) 

We will focus hereafter on approximating the inverse of the root-free Cholesky 

factor (T!1 ) rather than the root-free Cholesky factor itself (T ). 

Even if less popular than approximations of the Cholesky factor, sparse 

approximations of the inverse of the Cholesky factor of a nonsingular coefficient matrix, 

for instance, M, are frequently used for computation of preconditioners for conjugate 

gradient calculations of linear systems involving M. In a comparative study, Benzi and 

Tuma (1999) identify two main approaches of computing such sparse approximations. In 

the first approach – to which our algorithm belongs –, the sparse approximation of the 

inverse of the Cholesky factor is directly computed from M. Information about triangular 

factors of M is not required. Among others in the same approach, a method, by Kolotilina 

and Yeremin (1993) might be noticed that computes a factorized sparse approximate 

inverse (FSAI) by minimizing the Frobenius norm I!PQA F
, where P is the sparse 

approximation of QA
!1  and QA  is the Cholesky factor of a symmetric M, between the 

approximate and the real triangular factor. In contrast, the second approach gathers 

methods that require an incomplete factorization of M and that will use this incomplete 

factorization to obtain a sparse approximation of the inverse of the Cholesky factor. 

Nevertheless, our aim is not to use a sparse approximation of factors of the inverse for 

preconditioning, but well for approximating the inverse of the matrix. 
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Algorithm for Approximation of Inverse of Cholesky factor 

Based on equation (III.1), we propose an approximation ( 1~ −G ) of G!1 , expressed 

as 

!G!1 = ! "T !D!1 !T,  (III.2) 

where !T  is an approximation of T!1  and !D!1  is an approximation of the inverse 

of D. 

The method that we developed to create a sparse !T  will be illustrated through an 

example pedigree (Figure 1) for 4 animals (s, d, j, and i). Animals s and d are parents of i, 

and animal j represents any other animal older than i and related to i through ancestors of 

s and d. Additional ancestors that explain the relationships among j, s, and d are omitted. 

For the example pedigree, assume that genomic relationships (g) among animals are 

1.13 0.04 0.17 0.58
0.04 1.02 0.32 0.47
0.17 0.32 0.98 0.22
0.58 0.47 0.22 1.09

ss sd sj si

ds dd dj di

js jd jj ji

is id ij ii

g g g g
g g g g
g g g g
g g g g

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

 

 

Figure 1 Pedigree relationships between 4 animals s, d, j, and i, where s and d 
are parents of i and j is any animal older than i and related to both s and d 
through ancestors. 

Genomic relationships stretch across the whole pedigree, potentially across breeds. 

Therefore we will introduce the concept of close family where “close-family” of any 

animal i (!i ) may be defined by a genomic relationship threshold p as  

{ }( ), .i ijj i g p∀ < Ω = ≥  (III.3) 
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Note that, due to the condition on j, the close-family is restricted to animals older 

than i. In the current example, we have defined p as equal to 0.15. 

The algorithm will fill in !T  as follows, for any animal i in pedigree:  

i. select all animals in the close-family of i, i.e. animals j as defined by 

expression (III.3) ; 

ii. perform the regression of relationships between those animals on 

relationships that they share with animal i; 

iii. fill in positions in !T  that correspond to animals selected in !i  with the 

opposite of solutions and set diagonal element of !T  to 1. 

For the example mentioned before, we run here the algorithm for the last animal in 

pedigree, i: 

i. !i = s,d, j{ } , because all animals in pedigree have a genomic relationship 

with i greater than p=0.15; 

ii. the regression to be performed is, here also, illustrated by the example:  

gss gsd gsj
gds gdd gdj
gjs gjd gjj

!

"

#
#
#
#

$

%

&
&
&
&

'(+ ) =

gsi
gdi
gdi

!

"

#
#
#
#

$

%

&
&
&
&

*
1.13 0.04 0.17
0.04 1.02 0.32
0.17 0.32 0.98

!

"

#
#
#

$

%

&
&
&
'(+ ) =

0.58
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!
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#

$

%

&
&
&

, (III.4) 

where β  is a regression coefficients vector and ε , a vector of errors of estimation; 

by ordinary least-squares, solutions β̂  of this regression are 

0.50 0.44 !0.01"
#

$
%
&  and estimation errors are 0 0 > !0.01"

#
$
%
&  ; 

iii. !T  is filled in with opposite of these solutions and its diagonal elements are set to 

1, which gives for the example the final !T : 

!T =

1 0 0 0
0 1 0 0

!0.14 !0.31 1 0
!0.50 !0.44 0.01 1

"

#

$
$
$
$

%

&

'
'
'
'
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As one can see, !T  is filled-in only in positions where the corresponding values in 

the lower triangular part of G are greater than p. This threshold was here fixed to 0.15. 

This threshold allows to control the sparsity of !T . This sparse approximation has to be 

compared with the matrix that it aims to approximate (see equation III.1), which actually 

is, by complete Cholesky factorization and inversion of the triangular factor: 

T!1 =

1 0 0 0
!0.04 1 0 0
!0.14 !0.31 1 0
!0.50 !0.44 0.01 1

"

#

$
$
$
$

%

&

'
'
'
'

 

The next step is now to compute D (see equation III.1) and to approximate its 

inverse ( !D!1). 

Recursive Formula and Approximation of D-1 
A quick rearrangement of equation (III.1) gives: 

D = T!1G(T!1 ")  (III.5) 

Replacing T-1 by its approximation !T  in the formula here above allows computing 

a D that is no longer diagonal, but close to diagonal. For the current example, D would be: 

D =

1.13 0.04 0 0
0.04 1.02 0 0
0 0 0.86 0
0 0 0 0.59

!

"

#
#
#
#

$

%

&
&
&
&

.  

Thus, D approaches becoming a diagonal matrix. Nevertheless, D has to be 

inverted or its inverse approximated ( !D!1). If D is almost a diagonal matrix, then 

inversion of only its diagonal elements may be a good approximation of its inverse. 

However, if D is not close enough to being diagonal, the algorithm given above can also 

be used to approximate D!1  instead of G!1 . 

Therefore by its recursive use, the algorithm leads to the following !D!1 in round n. 

Similar to approximation in equation (III.2),  

!Dn!1
!1 = ! "Tn !Dn

!1 !Tn.  (III.6) 
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equation (III.6) involves choice of the new parameter p, construction of the new 

matrix !Tn , and computation of the new matrix !Dn = !Tn !Dn!1
! "Tn.  

After t rounds of recursion, when the off-diagonal elements of !Dn  are considered 

to be small enough, 

!Gt
!1 = "!T1 "!T2 (...) "!Tt#$ %&

!Dt
!1 !Tt (...) !T2 !T1#$ %&,  (III.7) 

where !Dt
!1  is the matrix formed by the inverse of the diagonal elements of !Dt . If 

!Tf = !Tt (...) !T2 !T1!" #$, then equation (III.7) becomes 

.~~~~
f

1
tf

1
t TDTG −− ʹ′=  (III.8) 

Link with Inversion of A 
The pedigree-based relationship matrix (A) contains relationships (a) that are 

obtained iteratively with the rule: 

aij = 0.5asj + 0.5adj ,  (III.9) 

where i and j are 2 animals (with j older than i) and s and d are the parents of i. 

Therefore, aij  represents the pedigree-based relationship between i and j; asj , the 

relationship between s and j; and adj , the relationship between d and j. 

For the example pedigree (Figure 1), the additive relationships among the 4 

animals s, d, j and i may be: 
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Applying the algorithm of construction of !T  to the case of A, with the same 

threshold p (p=0.15), leads, for the fourth animal (i), to the regression in (III.10). 

asi
adi
aji

!

"

#
#
#
#

$

%

&
&
&
&

=

ass asd asj
ads add adj
ajs ajd ajj

!

"

#
#
#
#

$

%

&
&
&
&

'+ ()
0.50
0.50
0.25

!

"

#
#
#

$

%

&
&
&
=

1.00 0.00 0.20
0.00 1.00 0.30
0.20 0.30 1.00

!

"

#
#
#

$

%

&
&
&
'+ ( ,   (III.10) 



  THE CLOSE-FAMILY APPROACH 

   45 

which, due to the iterative rule of computation of pedigree-based relationships (see 

equation III.9), has trivial solutions. Whatever j is, solutions will always be 

!s = 0.5, !d = 0.5, ! j = 0 , i.e. always zeros for all animals except for parents, for which 

solution are 0.5. Filling in !T  with opposite of these solutions is actually what Henderson 

(1976) proposed in his decomposition of A!1 , used for direct computation of A!1 : 

A!1 = (TA
!1 ")DA

!1TA
!1.  (III.11) 

The equivalence is easily shown when replacing unknowns by their trivial 

solutions (0.5) in equation (III.9): 
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and rearranging this last equation, which gives: 

!0.50 !0.50 0 1"
#

$
%

ass ads ajs
asd add ajd
asj adj ajj
asi adi aji

"

#

&
&
&
&
&
&

$

%

'
'
'
'
'
'

= (' = 0 0 0"
#

$
%.   (III.13) 

The product in equation (III.12) is the product !TA  restricted to line i of !T  and 

columns s, d, and j of A. As constructed here above, !T  is thus always equal to the highly 

sparse TA
!1  of equation (III.11). Furthermore, errors of estimation are always zero 

(equation III.13) and, in respect to equation (III.3), they correspond to off-diagonals of D, 

which ensures D to always be diagonal, and thus easily inverted. 

What our algorithm performs on G is thus inspired by what is done in the direct 

computation of A!1 , but extended, in our case, to all animals closely-related to a given 

animal, rather than only to his parents.  

Applications of Algorithm  
Two computing bottlenecks occur: construction of each !T  and matrix 

multiplications. In both cases, the number of estimates (k) for each line of !T (i.e., the 

value chosen for p) is critical. A lower p results in longer time for ordinary least square 
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estimation and a less sparse !T. Consequently, 2 different applications of the algorithm 

were examined. For the first application, k was defined by p. For the second application, k 

was predefined. Numbers of additional relatives were equal for each recursion round. 

Therefore, computation time was nearly the same for each creation of !T  for both 

applications. Details on the two applications are in the Appendix. 

Tests of Algorithm  
Computation of G and A22 
The genomic relationship matrix was here computed as (VanRaden,2008): 

G =
Z !Z

2 pi(1" pi)
i=1

m
#

,  where Z is a matrix of n rows (n = number of genotyped animals) and 

m columns (m = total number of markers) that contains genotypes centered around the 

frequency pi of the second allele at locus i. As discussed by Forni et al. (2011), matrix 

compatibility can be obtained by using observed allelic frequency (rather than fixed allelic 

frequency) and rescaling the genomic relationship matrix so that the mean for diagonal 

elements is 1; that is, on the same scale as diagonal elements of A22 . In addition, off-

diagonal elements of G were also scaled to be comparable with off-diagonal elements of 

A22 . All computations were performed using PREGSF90, which also created A22  using 

algorithm by Colleau (2002). 

Phenotypic records, Pedigree and Genotypes 
The algorithm was tested using data for the official May 2009 US Holstein genetic 

evaluation for final score, which were provided by Holstein Association USA Inc. 

(Brattleboro, VT). A total of 10,553,183 final score records from 6,296,878 cows were 

available as well as 9,120,198 pedigree records. A total of 6,931 bulls had been genotyped 

using the BovineSNP50 BeadChip (Illumina, San Diego, CA). After removal of 

uninformative and low-quality SNP, 38,416 SNP were used to estimate genomic 

relationship coefficients. For computational ease, a reduced sample of 1,718 genotypes 

was used. That sample included the 800 youngest genotyped animals and all their 

genotyped ancestors. 

Evaluations were calculated with an animal model that included fixed effects for 

management group (herd-year-classifier), age group by classification year, and lactation 

stage by classification year as described by Tsuruta et al. (2004). Variance components 
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were those used for national evaluation of final score. Heritability was equal to 0.35 and 

repeatability was equal to 0.67. Evaluations were calculated using approximations of G−1 

and 1
22
−A  from both applications of the algorithm. 

Tests on Approximations 
Quality of approximation of G−1 was tested by mean square difference (MSD) 

between G−1 and !G!1 calculated as a weighted sum of square differences (n denotes here 

the size of the matrix): 

MSD = (Gij
!1

j=1

n

"
i=1

n

" ! !Gij
!1)2

#

$
%
%

&

'
(
(
/n2.  

Moreover, the degree of sparsity of !Tf  that may be returned after any number of 

rounds of recursion was measured as the percentage of elements that equaled zero in the 

lower off-diagonal part of the matrix. Because multiplications of !Tf  provide the inverse 

approximation, a high percentage of elements in !Tf  equal to zero (i.e., a high degree of 

sparsity) should result in rapid computational time for the algorithm. Corresponding MSD 

and percentage of elements of !Tf  that equalled zero were also calculated for A22
!1  and its 

approximation ( !A22
!1 ). 

Even if differences between G−1 and !G!1 exists, they might not be relevant for 

genomic predictions. Therefore, each !G!1  was used in the single-step procedure of 

Misztal et al. (2009) to compute approximated GEBV for final score including 

phenotypic, pedigree, and genomic information for 1,718 genotyped animals. Linear 

regressions of GEBV computed using approximated inverse of G on GEBV computed 

with real G−1 were estimated. Correlations between both sets of GEBV (computed using 

either real or approximated inverse) and standard deviations of GEBV computed using 

approximated inverse were also estimated. 



CHAPTER III 

48 

Results and Discussion 

Approximation of the inverse of G 

The MSD and the percentage of elements of the lower triangular part of !Tf  that 

equalled zero are shown in Table 1 for the first application of the algorithm (five rounds 

of recursion with a smaller p at each round) and in Table 2 for the second application of 

the algorithm (eight rounds of recursion with a maximum k of 50 for all rounds). 

Table 1 Mean square differences (MSD) between real and approximated 
inverses of the genomic relationship matrix (G−1) and percentages of elements 
that equaled zero (t0) in the lower part (excluding diagonals) of a triangular matrix 
used in approximating G−1 for 5 rounds of recursion of an approximation 
algorithm that defines the number of estimates for each line of the triangular 
matrix by the genomic relationship threshold (p) for 1,718 genotyped US 
Holsteins evaluated for final score in May 2009.  

Recursion round p MSD1 t0 (%) 
1 0.210 66.53 × 10−4 92.35 
2 0.017 34.87 × 10−4 10.78 
3 0.009 16.81 × 10−4 2.28 
4 0.005 5.97 × 10−4 0.86 
5 0.003 1.82 × 10−4 0.49 

1Mean Square Difference (MSD) 

As for any approximation, MSD between G-1 and !G!1 was always higher than 

MSD between G−1 and 1
22
−A  (81.49 × 10−4), which suggests that any !G!1  would be 

intermediate to 1
22
−A  and G−1. With more rounds of recursion, !G!1 became closer to G−1, 

whereas !Tf  became denser. The close relationships among the Holstein bulls may partly 

explain the loss of sparsity. A population that included different breeds (or even different 

lines within breed) would be expected to have different results. However, in such multi-

breed situation, our method could have an additional advantage, because animals from 

different breeds would not be closely-related (i.e. they would share genomic relationships 

lower than the threshold p), and would therefore generate an inverted matrix that separates 

breeds. 

Estimation of GEBV with Approximate G-1 

Slopes of linear regression of GEBV obtained using approximated inverse of G 

(denoted hereafter as “approximated GEBV”) on GEBV obtained using real inverse of G 

(denoted hereafter as “real GEBV”), correlation coefficients between both sets of GEBV 
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and standard deviations of approximated GEBV are in Table 3 for the first algorithm 

application and in Table 4 for the second application. Regardless of the algorithm 

application or the rounds of recursions, all slopes were higher than that for linear 

regression of EBV calculated without genomic information (hereafter denoted as 

“traditional EBV”) on real GEBV (0.59). 

Table 2 Mean square differences (MSD) between real and approximated 
inverses of the genomic relationship matrix (G−1) and percentages of elements 
that equaled zero (t0) in the lower part (excluding diagonals) of a triangular matrix 
used in approximating G−1 for 8 rounds of recursion of an approximation 
algorithm that defines the maximum number of estimates to be 50 for all rounds 
for 1,718 genotyped US Holsteins evaluated for final score in May 2009. 

Recursion round MSD1 t0 (%) 
1 80.12 × 10−4 94.27 
2 53.02 × 10−4 30.73 
3 40.16 × 10−4 11.07 
4 32.04 × 10−4 6.48 
5 26.14 × 10−4 4.43 
6 21.59 × 10−4 3.26 
7 18.16 × 10−4 2.50 
8 15.37 × 10−4 1.99 

1Mean Square Difference (MSD) 

All correlation coefficients were also larger than the correlation coefficient 

between traditional EBV and real GEBV (0.76). The standard deviations of all 

approximated GEBV ranged between the standard deviation of traditional EBV (10.69) 

and the standard deviation of real GEBV (13.77). The first application of the algorithm 

needed only three rounds to achieve results similar to those obtained after seven rounds of 

the second application. For both applications, a very similar relationship was observed 

between sparsity of the approximated G−1 and the correlation between GEBV: a 

decreasing sparsity in the factorization of G-1 leads to more similar GEBV. A strong 

increase in correlation between approximated and real GEBV was also observed in the 

first rounds of recursion for both applications, indicating that an important part of the 

genomic relationships was recovered. 
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Table 3 Slopes of linear regression of GEBV based on approximated genomic 
relationship matrix (approximated GEBV) from 5 rounds of recursion of an 
approximation algorithm that defines the number of estimates for each line of the 
triangular matrix by the genomic relationship threshold (p) on GEBV based on the 
actual genomic relationship matrix (real GEBV), coefficient of correlation (r) 
between approximated and real GEBV and standard deviations of approximated 
GEBV (s) for 1,718 genotyped US Holsteins evaluated for final score in May 
2009.  

Recursion 
round 

p Slope r s 

1 0.210 0.68 0.79 11.81 
2 0.017 0.86 0.91 13.04 
3 0.009 0.92 0.97 13.54 
4 0.005 0.97 0.99 13.54 
5 0.003 0.99 > 0.99 13.66 

Table 4 Slopes of linear regression of GEBV based on approximated genomic 
relationship matrix (approximated GEBV) from 8 rounds of recursion of an 
approximation algorithm that defines the maximum number of estimates to be 50 
for all rounds on GEBV based on the actual genomic relationship matrix (real 
GEBV), coefficient of correlation (r) between approximated and real GEBV and 
standard deviations of approximated GEBV (s) for 1,718 genotyped US Holsteins 
evaluated for final score in May 2009. 

Recursion 
round 

Slope r s 

1 0.75 0.77 13.39 
2 0.84 0.87 13.36 
3 0.87 0.90 13.30 
4 0.89 0.93 13.23 
5 0.92 0.95 13.41 
6 0.94 0.96 13.47 
7 0.95 0.97 13.55 
8 0.96 0.98 13.59 

Approximation of the inverse of A22 

All !A22
!1  were calculated with the same sequence of thresholds p used in the first 

application of the algorithm to calculate !G!1 (Table 1) and the same value of k as in the 

second application (Table 2) for !G!1. For each application, after the same number of 

recursion rounds, MSD were smaller for !A22
!1  than for !G!1, and !Tf  were much sparser 

(Table 5 for the first algorithm application and Table 6 for the second application). 

Furthermore, the non-zero elements of !Tf  tended to have a higher proportion of small 
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elements (<0.01) when calculating !A22
!1  compared with !G!1  (Figure 2 for the first 

algorithm application and Figure 3 for the second application). Computational 

enhancement by removal of the smallest coefficients should thus be possible for 

calculating !A22
!1 . The results suggest that the algorithm is suitable for inversion of A22 . 

Table 5 Mean square differences (MSD) between real and approximated 
inverses of the part of the pedigree-based relationship matrix that represents 
relationships among genotyped animals ( 1

22
−A ) and percentages of elements that 

equaled zero (t0) in the lower part (excluding diagonals) of a triangular matrix 
used in approximating 1

22
−A  for 5 rounds of recursion of an approximation 

algorithm that defines the number of estimates for each line of the triangular 
matrix by the genomic relationship threshold (p) for US Holsteins evaluated for 
final score in May 2009.  

Recursion round p MSD1 t0 (%) 
1 0.210 2.11 × 10−4 92.70 
2 0.017 1.01 × 10−4 88.32 
3 0.009 0.79 × 10−4 85.20 
4 0.005 0.52 × 10−4 81.88 
5 0.003 0.30 × 10−4 79.39 

1Mean Square Difference (MSD) 

Table 6 Mean square differences (MSD) between real and approximated 
inverses of the part of the pedigree-based relationship matrix that represents 
relationships among genotyped animals ( 1

22
−A ) and percentages of elements that 

equaled zero (t0) in the lower part (excluding diagonals) of a triangular matrix 
used in approximating 1

22
−A  for 8 rounds of recursion of an approximation 

algorithm that defines the maximum number of estimates to be 50 for all rounds 
for US Holsteins evaluated for final score in May 2009.  

Recursion round MSD1 t0 (%) 
1 11.23 × 10−4 94.49 
2 4.83 × 10−4 76.88 
3 0.63 × 10−4 71.46 
4 0.14 × 10−4 70.46 
5 0.05 × 10−4 69.80 
6 0.02 × 10−4 68.98 
7 0.01 × 10−4 67.91 
8 <0.01 × 10−4 66.74 

1Mean Square Difference (MSD) 
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Figure 2 Distribution of off-diagonal elements in the lower part (excluding 
diagonals) of a triangular matrix used in five rounds of recursion of an 
algorithm that defines the number of estimates for each line of the triangular 
matrix by the genomic relationship threshold for US Holsteins evaluated for final 
score in May 2009 for approximation of the inverse of the genomic relationship 
matrix (G−1) and the part of the pedigree-based relationship matrix that represents 
relationships among genotyped animals ( 1

22
−A ); number of elements denoted as × between 

10−1 and 1, ▲ between 10−2 and 10−1,  between 10−3 and 10−2,  between 10−4 and 10−3 (element 
numbers of <10−4 were considered to equal zero). 

 

Figure 3 Distribution of off-diagonal elements in the lower part (excluding 
diagonals) of a triangular matrix used in eight rounds of recursion of an 
algorithm that defines the maximum number of estimates for each line of the 
triangular matrix to be 50 for all rounds for US Holsteins evaluated for final score 
in May 2009 for approximation of the inverse of the genomic relationship matrix 
(G−1) and the part of the pedigree-based relationship matrix that represents 
relationships among genotyped animals ( 1

22
−A ); number of elements denoted as × between 

10−1 and 1, ▲ between 10−2 and 10−1,  between 10−3 and 10−2,  between 10−4 and 10−3 (element 
numbers of <10−4 were considered to equal zero). 
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Possible Improvements 
The algorithm described provides a new insight on inversion of G. Each round of 

recursion returns an approximation that is better than the previous one, with convergence 

achieved in a few rounds. Consequently, the main issue for the proposed algorithm is the 

computing time. Presently, no efforts were made to study optimization, but reduction of 

computing time could be achieved in three ways. First, matrix computations could be 

optimized, e.g., as in Aguilar et al. (2011). Unfortunately, this algorithm would still have 

a cubic cost. Selecting animals on the basis of pedigree and creating genomic 

relationships only when required by this selection might avoid complete creation of G, 

and thus storage in RAM of the complete G. For the next rounds, elements of D would be 

kept in memory only if they exceed the next threshold p. Second, the number of animals 

selected for ordinary least squares could be decreased without compromising 

approximation accuracy. Hayes et al. (2009) stated that the gain in accuracy by including 

different breeds in the same relationship matrix is low or close to zero. Also, Muir (2007) 

found by simulation that genomic predictive ability strongly decays with generations 

under strong selection (compared with random selection). That finding was corroborated 

by practical studies in layer chickens (Wolc et al., 2011). Therefore, a recursion algorithm 

may eliminate animals that are more than one to two generations apart or are from another 

line or breed. With actual data sets, the number of such animals may be approximately 

constant even with increasing numbers of genotypes. Therefore, time for computation of 

any !T would be equal regardless of the number of genotypes. 

The third way to reduce computing time is related to the selection of regression 

variables for ordinary least squares. Two methods to select animals were presented: 

selection of all animals based on a genomic relationship threshold (first algorithm 

application) and selection of a specified number of closest-related animals (second 

algorithm application). For both selection methods, genomic (or A22 ) relationships for a 

given animal are defined by genomic (or A22 ) relationships among all its relatives. 

However, some relationships with relatives could be the same for two closely related 

animals; i.e., the incidence matrix in the ordinary least squares equations (equation III.4) 

of two animals could contain identical blocks. Thus, some matrix manipulation could 

easily lead to solutions for the second animal based on solutions for the first animal. This 

method of reducing computing time achieves some of the advantage realized from 

decreasing the number of animals selected for ordinary least squares. Moreover, animals 
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are so far selected only on the basis of their closeness (using a threshold p) to deduct 

linear combinations between their relationships. This criterion (closeness) could to be 

enhanced; as for the case of A, some close animals (for instance, half-sibs) might not be 

needed whereas close parents of close animals would be. If x is an animal of interest for 

estimation of genomic relationships of a given animal y closely related to it, then, z, parent 

of x though not related to y, might be helpful for estimation because it would explain not 

the similarity but the difference between x and y. 

The development of this approximation algorithm was based on the assumption 

that using a complete G for genomic evaluation is appropriate, and algorithm 

approximations were compared with G that links all genotyped animals. However, the 

inclusion of some distant relationships in G could be detrimental to evaluation accuracy. 

In such a case, the approximated G, which assumes contributions of closely related 

individuals from recent generations and from the same line, would result in higher 

accuracy. For example, if a few breeds were evaluated together with no predictability 

across breeds, G!1  from regular algorithms would contain nonzero off-diagonal elements 

across breeds. Those elements, which should be zero, would be a source of “noise” in 

GEBV. By selecting only closely related animals, the recursive approximation algorithm 

would set those elements to zero automatically and can be potentially more beneficial. 

However additional research is needed to clarify this point. 

Conclusions 

This recursive algorithm is powerful enough to approximate the inverse of a 

matrix such as G or A22 . As the number of rounds of recursion increases, the inverse 

approximation becomes closer to the real inverse. The coefficient of correlation between 

approximated and real GEBV showed a strong increase in the first recursion rounds 

indicating that few rounds may be enough to recover important genomic relationships. 

Currently used applications of the algorithm can be optimized to achieve efficient 

selection of closely related animals. The algorithm may also be particularly suitable in the 

case of the inversion of A22 , because it achieves a highly sparse factorization of this 

matrix within a few rounds of recursion. As quality of approximation depends on the 

number of rounds of recursion, the computing time required by each additional round is 

crucial and has to be optimized. As shown before, several computational improvements 

that could be developed in the future might reduce computational time needed. 
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Appendix 

Application 1 
The genomic matrix G first is ordered from oldest to youngest animal. For any 

row i from 2 to n, the algorithm proceeds as follows: 

1. Select individuals older than animal i and with a genomic relationship with 

animal i that is larger than the parameter p defined for this recursion round. 

If none can be selected under that condition, take all individuals older than 

animal i in round 1 or ignore the line (i.e., none is selected) in the next 

rounds. 

2. Perform ordinary least squares regression of the genomic relationships 

among those animals on their genomic relationships with animal i. 

3. Update the lower triangular matrix !T with the regression estimates on the 

off-diagonals and 1 on the diagonal. 

4. Then, as in equation (III.6), !T1G ! !T1 in round 1 returns D1, and !Tx !Dx!1 ! "Tx  in 

each of the next rounds returns Dx. 

5. Finally, !T1 in round 1 or !Tf !Tx  in each of the next rounds updates !Tf . 

After t rounds, a last product returns !Gt
!1 using equation (III.8), where !Dt

!1 is made 

up of diagonal elements of Dt. Steps 1 and 3 occur at each round but are different for 

round 1 and successive rounds. Steps 2 and 4 occur at each round. Step 5 does not occur 

for round 1. The assignation of a value to threshold p in step 1 has been made arbitrarily. 

This value nonetheless depends on the distribution of off-diagonals of the matrix which 

the inverse has to be approximated and may be deduced from this distribution. 

Application 2 
Only step 1 of application 1 is changed for application 2. Instead of selecting all 

animals that are older than animal i and have a genomic relationship with animal i that is 

larger than parameter p, a maximum of k animals is selected. If i is ≤(k + 1), all animals 

are selected, and if i is >(k + 1), the k animals with the largest genomic relationships with 

animal i are selected. This modification avoids regression with more than k estimators. In 

addition, each !T  created is sparser, and the increment is equal from each round to the next 

(k estimators are added). 
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BRIEF SUMMARY OF CHAPTER III 

• Two algorithms were proposed to approximate the determination of 

contributors: the close-family approach and the recursive close-family 

approach. The contributions are then computed by linear regression. 

• Use of the close-family approach is not time-expensive but not suited for 

the case of G. Use of the recursive close-family approach should be 

prohibitive in terms of computing time, albeit well suited for both matrices. 

• In the case of A22 , results show that a majority of the contributions are 

close to 0. It would therefore be meaningful to address the following 

questions: which contributions are actual zeros? Which contributions are 

actual non-zeros? 
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ALGORITHM 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[FROM: P. Faux and N. Gengler. 2013. Inversion of a part of the additive 

relationship matrix using pedigree information. Genetics Selection Evolution, 45:45] 

Introduced in the previous chapter, the close-family algorithm 
makes a brute approximation of the sparsity pattern of A22 . Two 
types of error are then possible: discarding relevant contributors 
and considering non-contributing animals as contributors. 
The pedigree contains the genealogical knowledge that is used to 
compute A and, consequently, to compute A22 . In this chapter, 
we propose a heuristic algorithm that exhaustively searches the 
pedigree to find dependencies between genotyped animals; such 
a search results in setting up the sparsity pattern of the inverse 
Cholesky factor of A22  and, by logical matrix product, of A22

!1 . 
The inverse of A22  is then computed using prior information on 
its sparsity pattern to avoid useless computations. 
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Abstract 
Background. In recent theoretical developments, the information available (e.g. 

genotypes) divides the original population into two groups: animals with this information 

(selected animals) and animals without this information (excluded animals). These 

developments require inversion of the part of the pedigree-based numerator relationship 

matrix that describes the genetic covariance between selected animals (A22 ). Our main 

objective was to propose and evaluate methodology that takes advantage of any potential 

sparsity in the inverse of A22  in order to reduce the computing time required for its 

inversion. This potential sparsity is brought out by searching the pedigree for 

dependencies between the selected animals. Jointly, we expected distant ancestors to 

provide relationship ties that increase the density of matrix A22  but that their effect on 

A22
!1  might be minor. This hypothesis was also tested. 

Methods. The inverse of A22  can be computed from the inverse of the triangular 

factor (T!1 ) obtained by Cholesky root-free decomposition of A22 . We propose an 

algorithm that sets up the sparsity pattern of T!1  using pedigree information. This 

algorithm provides positions of the elements of T!1  worth to be computed (i.e. different 

from zero). A recursive computation of A22
!1  is then achieved with or without information 

on the sparsity pattern and time required for each computation was recorded. For three 

numbers of selected animals (4000; 8000 and 12 000), A22  was computed using different 

pedigree extractions and the closeness of the resulting A22
!1  to the inverse computed using 

the fully extracted pedigree was measured by an appropriate norm. 

Results. The use of prior information on the sparsity of 1−T  decreased the 

computing time for inversion by a factor of 1.73 on average. Computational issues and 

practical uses of the different algorithms were discussed. Cases involving more than 12 

000 selected animals were considered. Inclusion of 10 generations was determined to be 

sufficient when computing A22 . 

Conclusions. Depending on the size and structure of the selected sub-population, 

gains in time to compute A22  are possible and these gains may increase as the number of 

selected animals increases. Given the sequential nature of most computational steps, the 
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proposed algorithm can benefit from optimization and may be convenient for genomic 

evaluations. 

Background  

For a population of n animals, the numerator relationship matrix (A), is an n-by-n 

matrix with the following properties: 

(1) aij  is the numerator relationship coefficient between two animals i and j 

among n, as defined by Wright (1922);  

(2) diagonal element aii  is equal to 1+Fi , where Fi  is the inbreeding 

coefficient (Wright, 1922) of animal i; 

(3) A is non-singular and symmetric: for two animals i and j among n, aij = aji . 

Because the numerator relationship matrix describes the additive similarity 

between animals, it is an important element explaining genetic (co)variances between 

animals and has numerous applications in the field of animal genetics, the most important 

one being its use in setting up the mixed model equations for estimation of breeding 

values (Henderson, 1973).  

In some situations, a particular type of information (genomic information, foreign 

genetic evaluation, phenotypes on a particular trait, etc.) is only available for some 

animals, which are selected for this particular purpose, while other animals are excluded. 

The original population can therefore be split into two sub-populations: 

(1) a sub-population composed of animals called “excluded” hereafter; 

(2) a sub-population composed of animals called “selected” hereafter. 

Splitting the original population in this way leads to the following partition of A: 

A =
A11 A12

A21 A22

!

"
#
#

$

%
&
&

. 

The four blocks include the relationships between excluded animals ( A11 ), 

between excluded and selected animals (A12  and A21 ) and between selected animals 

(A22 ). 
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Recent methodological developments in animal breeding require inversion of A22 , 

for example for genotyped animals in the context of genomic prediction using a single-

step procedure (Misztal et al., 2009; Christensen and Lund, 2010; Gengler et al., 2012). 

Another example concerns external animals when integrating foreign information into a 

local genetic evaluation (Vandenplas and Gengler, 2012). It is also noteworthy that the 

pedigree-based relationship matrix A22  and the genomic relationship matrix (G; 

VanRaden, 2008) show structural similarities: both matrices express polygenic/genomic 

similarities among animals inherited from ancestors that are not represented in these 

matrices. Thus, the present research on A22  can be extended to genomic relationships in 

G. 

Based on the original work by Henderson (1976) on inversion of A, a general 

framework for the inversion of relationship matrices follows (see Appendix). Henderson 

outlined a method that is based on the root-free factorization of A and showed the high 

sparsity of the inverse triangular factor of A. An efficient use of this sparsity then allows 

direct computation of A!1  as a sum of individual contributions based on a chronological 

reading of the pedigree. Applying partitioned matrix theory, van Arendonk et al. (1994) 

gave a general expression for the sum of individual contributions outlined by Henderson 

(1976): an additional row/column in A leads to updating its inverse by increasing the 

order by 1 and by summing the square of a very sparse vector to A!1 . The very sparse 

vector is the corresponding row (below the diagonal) of the inverse triangular factor. All 

details on these developments are given in Appendix. 

When required, the inverse of 22A  is currently obtained by brutal inversion 

algorithms (e.g. generalized inverse algorithm). In these algorithms, any potential sparsity 

occurring in the matrix to invert or in its inverse is brought out by matrix computations. In 

contrast, the main objectives of this paper were to investigate how potential sparsity in the 

inverse triangular factor of A22  can be characterized using only the pedigree, thus without 

requiring matrix computations, and then use the sparsity pattern of the inverse triangular 

factor of A22  in the computation of its inverse. Whereas the structure of the inverse 

triangular factor is known for A (positions are given by the pedigree; values are a priori 

known), no information is available on the structure of the inverse triangular factor of 

A22 , neither on the positions of non-zero elements nor on the values of these elements. 
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Moreover, the inverse triangular factor of A22  may be close to dense. Therefore, we 

addressed our objective in the following five steps: 

(1) inversion of A22  with an algorithm that uses the inverse triangular factor; 

(2) development of an algorithm that uses pedigree information to find the 

positions of the non-zero elements (sparsity pattern) in the inverse 

triangular factor of A22  ; 

(3) inversion of A22  with the algorithm of step (1) but restricting 

computations to the non-zero elements identified by the algorithm in step 

(2); 

(4) assessment of the time reduction when computing the inverse as in step (3) 

instead of as in step (1); 

(5) and evaluation of the effect of the number of generations in the pedigree 

used to compute A22 , in order to reduce density of the inverse triangular 

factor. 

Methods 

Blockwise inversion of A22 
For simplicity, we assume that we are working on the last selected animal, indexed 

as animal n. Similarly to inversion of A (see equation IV.A.6 in Appendix), assume that 

A22  is partitioned in a sub-matrix Z, of order (n-1), a (n-1)-long vector y, and a scalar m 

as: 

A22 =
Z y
!y m

"

#
$
$

%

&
'
'
 (IV.1) 

Using blockwise inversion, 1
22
−A  can be recursively computed using the following 

equation: 

A22
!1 = Z!1 0

"0 0

#

$
%
%

&

'
(
(
+
1
s
) !Z!1y

1

#

$
%
%

&

'
(
(

! "y Z!1 1#
$%

&
'(
 (IV.2) 

where s is a scalar equal to yZy 1−ʹ′−m . 
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Computing yZb 1−=  and defining 1−= sα  simplifies equation (IV.2) as follows: 

A22
!1 = Z!1 0

"0 0

#

$
%
%

&

'
(
(
+! !b

1

#

$
%

&

'
() ! "b 1#
$

&
'  (IV.3) 

Similarly, as for A (see Appendix), there is a link between vector b and the root-

free Cholesky factorization of A22  (A22 =TD !T ), in that bʹ′−  corresponds to the last row 

of the inverse triangular factor of A22  (T!1 ). 

Equation (IV.3) shows that A22
!1  can be constructed recursively by adding a vector 

product to the previous result (Z!1 ). This recursive construction of A22
!1  will be called 

“Algorithm A” and implies, from the second row to the last row, the computation of the 

whole vector b. 

If an animal and its parents are all selected, vector b is as sparse as in the case of 

A, i.e. the only non-zero elements of b correspond to parents. Restricting computations to 

these elements, i.e. discarding computations involving elements that we know equal 0, 

results in saving computing time. Such a case is, however, highly trivial. In the next 

sections, we propose a method to deal with more complex cases.  

Contribution of selected animals to relationships in A22: 
characterizing the sparsity pattern of T-1 
For animal n, vector b is the row of T!1  that spans from column 1 to column (n-1). 

By definition (b = Z!1y !thus !Zb = y ), vector b contains the required coefficients to 

compute relationships (y) of animal n with the n-1 preceding animals from the 

relationships between those n-1 preceding animals (Z). In the case of A, only known 

parents of animal n are required to compute its relationships with the preceding animals. 

Therefore, only positions of known parents have a value different from zero in vector b. 

In the case of A22 , some selected animals replace the parents if they are excluded: the 

value in b of these selected animals is different from 0, which means that they are needed 

to compute relationships between selected animals (y) from the relationships between all 

selected animals (Z). This can be illustrated by the example pedigree in Figure 4 and 

Tables 7 and 8, which specifyA22  and T!1  for the example pedigree. Three cases are 

outlined and detailed in the following: 



  THE SPARSITY PATTERN ALGORITHM 

   65 

(i) animal G has two known parents, E and F. Animal E is excluded; its parent C 

(grandparent of G) is thus required (T!1
CG " 0 ) to explain the relationship between C and G 

(A22;CG = 0.25 ). 

(ii) animal K has one known parent, F, that is also selected. Any relationship that 

K shares with other selected animals is necessarily and only explained by F 

(!X " F,TKX
#1 = 0 ). 

(iii) animal L has one known parent, E, that is excluded. Its selected halfsib (G) 

and the selected parent of G (F, which is unrelated to L) are required, among others, to 

explain any relationship that L shares with other selected animals. 

Table 7 Matrix A22 for the example of Figure 4 

 C F G I J K L 
C 1.00  0.25  0.25  0.25 
F  1.00 0.50   0.50  
G 0.25 0.50 1.00 0.06 0.06 0.25 0.25 
I   0.06 1.00   0.06 
J 0.25  0.06  1.00  0.06 
K  0.50 0.25   1.00  
L 0.25  0.25 0.06 0.06  1.00 
Empty cells are 0. 

Table 8 Inverse triangular factor ( 1−T ) of A22 for the example of Figure 4. 

 C F G I J K L 
C 1.00       
F  1.00      
G -0.25 -0.50 1.00     
I 0.02 0.05 -0.09 1.00    
J -0.25    1.00   
K  -0.50    1.00  
L -0.18 0.13 -0.27 -0.05   1.00 
Empty cells are 0. 

Animals that are required to explain relationships of a given selected animal with 

other selected animals will hereafter be denoted as the contributors of this selected 

animal. Contributors of a selected animal can be found by an exhaustive search of 

selected animals that replace any excluded parent of the selected animal. Their 

determination uses the pedigree and returns which elements of b (and thereby of T!1 ) are 

worth computing because they are expected to be non-zero. By subtraction, we obtain 

which elements are zeros, which is referred to as the “sparsity pattern” of T!1  in the 

following. In the next sub-section, we propose a heuristic algorithm that streamlines the 
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determination of the sparsity pattern of T!1 . Similar methodologies (Gilbert, 1994; 

George and Liu, 1980) have been developed for the triangular factor of a symmetric-

positive definite matrix rather than the inverse of the triangular factor.  

 

Figure 4 Small example: a population of 12 animals. Genealogical tree for a 
population of 12 animals, partitioned in sub-populations 1 (excluded, circle) and 2 
(selected, square). Alphabetical order gives the birth order. 

An algorithm to set up the sparsity pattern 
Our proposed heuristic algorithm to set up the sparsity pattern of the inverse 

triangular factor of A22  (see pseudo-code below) requires two inputs: the pedigree (of 

length n0, renumbered and ordered: parents precede progeny) and the subpopulation to 

which any animal belongs: excluded (population status is 1) or selected (population status 

is 2). The purpose of the algorithm is to complete two vectors of variable length for any 

animal i. The first vector (r(i) ) contains references to excluded parents of animal i. The 

second vector (c(i) ) contains selected contributors of animal i. The positions of non-zeros 

in the i-th row in T!1  (sparsity pattern) includes any position of the i-th row that is listed 

in c(i) . 

Initialize a vector x as the integer sequence from 1 to n0. 

For any animal i in the whole population (i goes from 1 to n0),  

(1) initialize two vectors c(i)  and r(i)  as empty vectors 

(2) if the status of animal i is 2, then append element i to c(i) ; or else if the 

status of animal i is 1, append element i to r(i)  
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(3) if the sire s of animal i is known and its status is 2, then append element s 

to c(i) ; or else if s is known but its status is 1, append vector r(s)  to r(i)  

(4) if the dam d of animal i is known and its status is 2, then append element d 

to )(ic ; or else if d is known but its status is 1, append vector r(d )  to r(i)  

(5) if the status of animal i is 2 and the vector r(i)  is not empty, then: 

a. select all elements of x that are at positions given in r(i) , remove 

duplicates and gather them in a temporary list t 

b. for any element k in list t, 

i. Append to c(i)  the elements of vector c(k )  not yet in c(i)  

ii. Select elements of x that are equal to k and replace them by i; 

or else if the status of animal i is 1 or if the vector )(ir  is empty, do nothing. 

If the whole population was selected (i.e. A22 = A , every animal has status 2), it 

can be easily deduced from the algorithm that only the animal itself (in step (1)) and its 

known sire and dam (in steps (2) and (3)) would enter vector c(i) . The corresponding T!1  

would be highly sparse, as it is for A. This also means that if numerous parents are 

selected, then this algorithm is expected to run very fast. 

An example of the use of this algorithm is given in the Results section. 

Use of the sparsity pattern in blockwise inversion of A22 
The algorithm for blockwise inversion of A22  (Algorithm A, summarized in 

equation IV.3) is modified to account for sparsity and will be called Algorithm B. For 

simplicity, we still consider the last selected animal (animal n). Algorithm B reduces 

computations to obtain b from y = Zb  (equations IV.2 and IV.3) by three procedures, 

depending on the number (k) of elements in the corresponding vector )(nc  and the length 

of b (n-1). 

The first procedure (called EMPTY) is used when 0=k  (c(n)  is empty). If so, only 

α  is added to element A22,nn
!1 . The value of α  is just the inverse of A22,nn . 
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The second procedure (called PROD, for matrix PRODuct) is used when k is 

smaller than but relatively close to (n-1). In such a case, we perform a line-wise partition 

(equation IV.4) of b and 1−Z  between non-zeros (of subscript u) and null (subscript v) 

entries of b in order to avoid useless computations: 

bu
bv

!

"
#
#

$

%
&
&
=

bu
0

!

"
#
#

$

%
&
&
= Zu

Zv

!

"
#
#

$

%
&
&
y' bu = Z

uy  (IV.4) 

Since (n-1) is the number of elements in b and k the number of elements in bu , k 

dot products (of (n-1)-long vectors) would be performed instead of (n-1) dot products (of 

(n-1)-long vectors).  

The third procedure (called LS, for Linear System of lower size) is used when k is 

much smaller than (n-1). In such a case, we extend the previous partition of b to a 

blockwise partition of Z and y (the non-zero and zero elements of b are respectively 

indexed by u and v): 
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 (IV.5) 

Then, applying partitioned matrix theory to equation (IV.5) returns the following 

expressions for bu  and vb  (with SZ = Zvv !ZvuZuu
!1Zuv ): 

bu = Zuu
!1yu + Zuu

!1ZuvSZ
!1ZvuZuu

!1yu ! Zuu
!1ZuvSZ

!1yv
bv = !SZ

!1ZvuZuu
!1yu + SZ

!1yv

"
#
$

%$
. 

Vector bu can be expressed in terms of bv  (bu = Zuu
!1yu !Zuu

!1Zuvbv ) and, since bv  

is a vector of zeros, it comes that computing bu  shrinks to compute only Zuu
!1yu . In other 

words, the linear system Zb = y  is replaced by a linear system of lower size Zuubu = yu , 

and solving it is valuable only if the number of operations required to solve it is lower 

than the number of operations to achieve the product in procedure PROD. We chose the 

less expensive procedure (PROD or LS) by estimation of the number of expected floating-

point multiplications. 
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Experimental design for tests on real populations 
In order to evaluate Algorithm B in comparison with regular inversion (Algorithm 

A), different 22A  were computed on the basis of a real pedigree provided by the 

Luxembourg breeders society CONVIS. This pedigree includes dairy cows from 

Luxembourg with their ancestors tracing back up to 24 generations and contains 387 499 

animals. Statistics of the pedigree data are Table 9. 

Table 9 Statistics of the population used (dairy cows from Luxembourg) 

Total number of animals 387 499 
Number of cows 366 773 
Number of bulls 20 726 

Number of animals by birth year class:  
Before 1950 5441 
From 1950 to 1974 24 577 
From 1975 to 1999 229 016 
From 2000 to 2012 128 465 

Maximum number of generations of pedigree 39 

Average number of generations1 for animals in different birth year classes: 
Before 1950 3.28 
From 1950 to 1974 6.49 
From 1975 to 1999 19.03 
From 2000 to 2012 25.11 

Pedigree completeness: number of animals with (% of the pedigree): 
Both parents unknown: 70 167 (18.1%) 
Dam known, sire unknown 69 721 (18.0%) 
Sire known, dam unknown 17 141 (4.4%) 
Both parents known 230 470 (59.5%) 

1For a given animal, the number of generations is computed as the number of generations between this 
animal and its most distant ancestor. 
 

Selected sub-populations of three sizes (4000, 8000 and 12 000 animals) were 

designed and are identified hereafter as the three size scenarios S4k, S8k and S12k. 

Animals of the selected sub-populations were randomly chosen from a pool of animals 

born after 1999 (128 465 animals) on the assumption that only recent animals could be of 

interest (those being genotyped or in production). 

Because a pedigree with a lower number of extracted generations is expected to 

provide a sparser T!1 , the impact of the number of extracted generations was also 

evaluated for each size scenario. This enabled us to assess how many extracted 

generations were required in the pedigree to compute a A22
!1  that is a sufficient 
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approximation to the A22
!1  computed using all available ancestors in the pedigree, which 

will be referred to as the “real inverse”. Extracting no animals other than selected animals 

refers to “generation 0”: the population is only made of selected animals. When extracting 

one generation of ancestors (“generation 1”), excluded parents enter the population. When 

extracting two generations of ancestors (“generation 2”), excluded grandparents also enter 

the population, and so on. Details on the number of animals extracted and the percentage 

of extraction after each generation, considered as the ratio between the number of animals 

in the population and the maximum number of animals available in the pedigree, are 

outlined in Figure 5. 

Deviations from the real inverse were measured by the following norm: 

N =
tr (A22

(g) !A22
( f ) ") (A22

(g) !A22
( f ) )( )

tr (A22
( f ) ")A22

( f )( )
, where A22

(g)  is the inverse of A22  

computed using g extracted generations and A22
( f )  is the real inverse. This norm can be 

interpreted as the average difference between the value of any element of A22
(g)  and its 

corresponding value in A22
( f ) . The two matrices are equal when N is equal to 0. 
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Figure 5 Pedigree extraction facts. Generation by generation extraction of the 
pedigree of the selected population for three size scenarios (green: S4k; orange: 
S8k; blue: S12k): number of extracted animals (■) and proportion of selected 
animals in the extracted population (●), expressed as a percentage. Extraction 
went up to 23 generations for scenario S4k and up to 24 generations for scenarios 
S8k and S12k. 
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Matrix A22  was computed in two steps. Inbreeding coefficients were first 

computed for each size scenario and number of extracted generations. The average 

inbreeding coefficient was never greater than 1.23% and the greatest inbreeding 

coefficient was 44.53%. Matrix A22  was then computed using the method of Colleau 

(2002). 

Two test software programs 
In order to evaluate potential gains in time when using Algorithm B instead of 

Algorithm A to invert A22 , we developed two test programs in Fortran 95. The programs 

were neither optimized for speed, nor parallelized. Therefore, all comparisons have to be 

interpreted as relative figures. 

The first program applies the recursive construction of the inverse, as outlined in 

Algorithm A (equations IV.2 and IV.3). Potential null entries in y are checked to avoid 

useless computations when performing product Z!1y . 

The second program restricts the same recursive construction of the inverse to 

non-zero elements by procedures EMPTY, PROD and LS. Potential null entries in y are 

also taken into account when performing the product Zuy  (procedure PROD). The linear 

system Zuubu = yu  (procedure LS) is solved by factorization and by backward and forward 

substitutions. 

For both programs, computing time was recorded using Fortran intrinsic 

subroutine CPU_TIME. For the program that uses Algorithm B, computing time includes 

the time required to determine the sparsity pattern. All computations and file storage were 

performed using double precision (15 digits). Each job was repeated 20 times on an 

Intel® Xeon® 64-bit processor (RAM: 8 Gb, cache size: 6 Mb, clock speed: 3 GHz).  

Results 

Characterizing the sparsity pattern: a numerical example 
The algorithm to characterize the sparsity pattern was applied to the example 

pedigree of Figure 4 and specified in Table 10 (including animal status). The algorithm 

starts by initializing a vector x equal to
 
1,2,3, 4, 5, 6, 7,8, 9,10,11,12[ ] . Then, we 

consecutively treat each animal depending on its status and the status of its parents.  
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Table 10 Renumbered pedigree for the example of Figure 4. 

 Number Sire Dam Status 
A 1 - - 1 
B 2 - - 1 
C 3 1 2 2 
D 4 - - 1 
E 5 3 4 1 
F 6 - - 2 
G 7 6 5 2 
H 8 - 4 1 
I 9 8 - 2 
J 10 1 - 2 
K 11 6 - 2 
L 12 - 5 2 
Population status of the animal is given in a 
4th column: 1 for excluded, 2 for selected. 

Animal 1. Status 1 and unknown parents. Thus, r(1) = 1[ ] , c(1) = ![ ]  and xx = . 

Animal 2. Status 1 and unknown parents. Thus, r(2) = 2[ ] , c(2) = ![ ]  and xx = . 

Animal 3. Status 2 and known parents (1 and 2; both status 1). Thus, c(3) = 3[ ]  and 

r(3) = 1,2[ ] . The list of elements of x that match r(3)  is 1,2[ ] . Then, c(3) = 3,c(1),c(2)!" #$= 3[ ]  

and any element of x equal to 1 or 2 is replaced by 3, returning 

x = 3,3,3, 4, 5, 6, 7,8, 9,10,11,12[ ] . 

Animal 4. Status 1 and unknown parents. Thus, r(4) = 4[ ] , c(4) = ![ ]  and xx = . 

Animal 5. Status 1 and known parents (status 1 and 2). Thus, c(5) = 3[ ]  and 

r(5) = 5,r(4)!" #$= 5, 4[ ] . No list to set up because animal has status 1; xx = . 

Animal 6. Status 2 and unknown parents. Thus, r(6) = ![ ] , c(6) = 6[ ]  and xx = . 

Animal 7. Status 2 and known parents (status 1 and 2). Thus, c(7) = 7,6[ ]  and 

r(7) = r(5)!" #$= 5, 4[ ] . The list of elements of x that match )7(r  is 5, 4[ ] . Then, 

c(7) = 7,6,c(5),c(4)!" #$= 7,6,3[ ]  and any element of x equal to 5 or 4 is replaced by 7, 

returning x = 3,3,3, 7, 7, 6, 7,8, 9,10,11,12[ ] .
 
 

Animal 8. Status 1 and one known parent (status 1). Thus, r(8) = 8,r(4)!" #$= 8, 4[ ] , 

c(8) = ![ ]  and x = x . 
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Animal 9.  Status 2 and one known parent (status 1). Thus, c(9) = 9[ ]  and 

r(9) = r(8)!" #$= 8, 4[ ] . The list of elements of x that match )9(r  is 8, 7[ ] . Then, 

c(9) = 9,c(8),c(7)!" #$= 9, 7, 6,3[ ]  and any element of x equal to 8 or 7 is replaced by 9, 

returning x = 3,3,3, 9, 9, 6, 9, 9, 9,10,11,12[ ] . 

Animal 10.  Status 2 and one known parent (status 1). Thus, c(10) = 10[ ]  and 

r(10) = r(1)!" #$= 1[ ] . The list of elements of x that match r(10)  is 3[ ] . Then, 

c(10) = 10,c(3)!" #$= 10,3[ ]  and any element of x equal to 3 is replaced by 10, returning 

x = 10,10,10, 9, 9, 6, 9, 9, 9,10,11,12[ ] . 

Animal 11.  Animal has status 2 and has one known parent (status 2). Thus, 

c(11) = 11,6[ ]  and r(11) = ![ ] . No list to set up because r(11)  is empty; x = x . 

Animal 12.  Status 2 and one known parent (status 1). Thus, c(12) = 12[ ]  and 

r(12) = r(5)!" #$= 5, 4[ ] . The list of elements of x that match r(12)  is 9[ ] . Then, 

c(12) = 12,c(9)!" #$= 12,9, 7, 6,3[ ]  and any element of x equal to 9 is replaced by 12, returning 

x = 10,10,10,12,12,12,12,12,12,10,11,12[ ] . 

Vectors c(i)  of the selected animals (3, 6, 7, 9, 10, 11 and 12) contain the non-zero 

elements of T!1  (Table 11) and these match with T!1  in Table 8. 

Table 11 Sparsity pattern of 1−T  for the example of Figure 4. 

 C F G I J K L 
C X       
F  X      
G X X X     
I X X X X    
J X    X   
K  X    X  
L X X X X   X 
X indicates non-zero entries. 

Effect of accounting for sparsity on CPU time for inversion of A22 
Algorithms A and B were both applied to the matrices created by different 

pedigree extractions of the three size scenarios. The elapsed CPU time results (averaged 

over 20 repetitions) are shown in Figure 6. Taking sparsity into account (Algorithm B) 
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instead of using an inversion algorithm with cubic complexity (Algorithm A) reduced the 

elapsed CPU time for computing the inverse. For instance, the relative gains in computing 

speed of Algorithm B for the fully extracted pedigree were 1.67 faster for S4k, 1.75 faster 

for S8k, and 1.77 faster for S12k. 
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Figure 6 CPU time required for inversion of 22A  by two algorithms. Elapsed 
CPU time required for inversion of 22A of three different sizes (green: 4000; 
orange: 8000; blue: 12000), computed using pedigrees with different numbers of 
extracted generations, by algorithms B (■) and A (▼). Red lines show upper and lower 
confidence intervals (99%; 20 repetitions). 

Effect of the number of extracted generations on accuracy of the 
inverse of A22 
For each size scenario, A22  was computed using different numbers of extracted 

generations and the inverses were compared (Figure 7) to A22
!1  computed using the fully 

extracted pedigree (after 23, 24 and 24 generations respectively for scenarios S4k, S8k 

and S12k) by computing the norm N. As shown in Figure 7, regardless of the size of the 

matrix, the norm stabilized after 14 generations to values less than 1E-13, which can be 

attributed to errors due to precision. 
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Figure 7 Effect of the depth of the pedigree on 1
22
−A . Differences, as base-10 

logarithm of the norm N, between 1
22
−A  based on a pedigree with a limited number 

of extracted generations and 1
22
−A  based on a fully extracted pedigree, for three 

size scenarios (green: S4k; orange: S8k; blue: S12k). 

Discussion 

Computation time required by the algorithm to characterize the 
sparsity pattern 
Figure 8 shows the elapsed CPU time (averaged over 20 repetitions) when running 

the proposed algorithm to determine the sparsity pattern of T!1  on populations with 

different numbers of selected animals (4000; 8000; 12 000) and that were extracted from 

several generations. The curves of the three size scenarios (S4k, S8k and S12k) presented 

a similar behaviour. When the population consists only of selected animals (generation 0), 

the elapsed time was less than 1 second (S4k: 0.03 s, S8k: 0.11 s and S12k: 0.29 s). For 

this case, only non-zero entries occur for selected sires or dams of selected animals, a 

fortiori present in the pedigree. Then, elapsed CPU time increased linearly up to the 15th 

extracted generation, although at a different rate for the different size scenarios. Beyond 

that point, adding ancestors did not affect the elapsed time. These results have to be 

related with pedigree extraction (Figure 5): does it make sense to spend more time for 

additional generations? Almost all available ancestors have entered the population after 

extracting 10 generations (between 95-99% of the number of animals in the last extraction 

round). However, elapsed CPU time continued to increase at the same rate from 
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generations 10 to 15. For instance, in scenario S12k, adding ~3% of the final population 

cost an additional ~4 seconds (or ~22% of the total elapsed time). The usefulness of this 

small group of remote ancestors for inversion of A22  is discussed hereafter (sub-section 

“Number of generations to extract”). 
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Figure 8 CPU time required for determination of the sparsity pattern of 1−T . 
Elapsed CPU time required by the proposed algorithm for determination of the 
sparsity pattern of 1−T , by number of extracted generations, for three size 
scenarios (green: S4k, orange: S8k and blue: S12k). Red lines show upper and lower 
confidence intervals (99%; 20 repetitions). 

For the fully extracted population (after 23, 24 and 24 generations for scenarios 

S4k, S8k and S12k, respectively), there was a close-to-linear relationship between the size 

of the selected population and the elapsed CPU time (approximately 6 seconds for 4000 

additional animals in the selected sub-population). The effective computational 

complexity of this algorithm is difficult to establish, however, because it mostly depends, 

first, on how the population was split (for instance, a selected sub-population that includes 

mainly a few lines or families would not contain that many excluded parents) and, 

secondly, on how the population is structured (depth of the pedigree, effective size of the 

population, average inbreeding). The embedded loop in the algorithm (step (4b) in the 

pseudo-code) is the main computational bottleneck and performs k iterations. In a 

population of n0 animals, if k is related to the two factors mentioned above (i.e. splitting 

and structure of the population), then the computing time required by the algorithm would 
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behave as n0 ! k , where k would be a case-specific factor. This agrees with the 

observations in Figure 8. 

Memory requirements of the algorithm to characterize the 
sparsity pattern 
For a population of n0 animals with n selected animals, vectors c(i)  and y(i)  have 

the greatest RAM requirements. In our implementation, vector )(iy  stores few elements 

(positions of excluded ancestors) for all animals (thus ~n0 integers). For selected animals, 

vector c(i)  stores non-zero positions and includes approximately n ! (n !d )  integers, where 

d  is the average density of T!1  (number of non-zeros in the lower part of T!1  averaged 

by line). For excluded animals, c(i)  accounts for potential selected ancestors, therefore 

including approximately (n0 ! n) "a  integers, where a  is the average number of selected 

ancestors per excluded animal. Memory would thus be allocated for approximately 

n2d + (n0 ! n) "a  integers. None of these integers may be declared as 3-byte integers when 

n0 is lower than 224 (i.e. when pedigree contains less than 16.77 millions of animals). 

Use of the algorithm to characterize the sparsity pattern on 
greater populations 
If additional animals are selected, then the proportion of selected animals in the 

population would likely increase. In fact these additional animals would either bring new 

excluded ancestors (case 1), share ancestors with already selected animals (case 2), or 

have no registered parents in the pedigree (case 3). The two last cases are expected to be 

more important as the number of selected animals increases. Therefore, matrix T!1  of 

such a population should get sparser. These expectations were confirmed by randomly 

picking animals from the pool of 128 465 animals born after 1999, simulating eight larger 

selected sub-populations of 16 000 up to 128 000 animals. Table 12 gives sizes and 

proportions of the selected sub-populations. Using a computer with higher memory 

resources (64 Gb of RAM), the sparsity pattern of these new situations was computed. 

Then, the degree of sparsity was assessed as the percentage of null entries in the lower 

triangular part of T!1  for these new situations, as well as for previous size scenarios. The 

results in Figure 9 show that the degree of sparsity remained the same for low percentages 

of selected animals in the population (lower than 20%), while the degree of sparsity 

increased linearly beyond approximately 20k animals in these specific cases. The average 
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degree of sparsity by number of selected animals corresponded to the average number of 

contributors for a given animal in a given size situation. Figure 10 shows that the average 

number of contributors was linearly related to the number of selected animals up to ~80k 

selected animals, beyond which the average number of contributors was constant. We 

expected the average number of contributors to decrease as the number of selected 

animals increased. These new selected animals would then cover more of the relationships 

due to excluded animals. Note that the average number of contributors would be less than 

2 if all animals were selected (i.e.A22 = A ). 

Table 12 Populations extracted for different sets of selected animals 

Number of 
selected animals 

Size of the 
extracted population 

Proportion of selected animals 
in the extracted population (%) 

4 000 40 196 9.95 
8 000 59 120 13.53 
12 000 73 864 16.25 
16 000 87 237 18.34 
32 000 127 809 25.04 
48 000 159 259 30.14 
64 000 183 750 34.83 
80 000 204 637 39.09 
96 000 222 546 43.14 
112 000 238 130 47.03 
128 000 252 147 50.76 
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Figure 9 Degree of sparsity of 1−T . Proportion of null entries in the lower 
triangular part of 1−T  for different proportions (%) and numbers (thousands of 
animals) of selected animals in an extracted population. 
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Figure 10 Average number of contributors. Average number of contributors by 
line of 1−T , for different numbers of selected animals (in thousands of animals). 
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Computation time required by the algorithm for inversion of A22 
using the sparsity pattern (Algorithm B) 
When running Algorithm B, the procedure (EMPTY, PROD or LS) to compute 

vector b was chosen according to the estimated number of floating-point multiplications 

to be performed. A view of this choice along all (n-1) lines of T!1  is given in Figure 11 

for each size scenario (A22  was always computed using a fully extracted pedigree). Due 

to prior reordering of the pedigree by generation, the first lines of T!1  correspond to 

founders (unrelated animals) and are thus empty. Procedure LS occurred less than 

procedures EMPTY and PROD but was evenly distributed among line numbers, 

particularly for scenario S12k. 

Table 13 Estimated computational complexity1 of Algorithm B 

Procedure Complexity for line i Proportion Complexity on n lines 
EMPTY 1 pE )(nOpE ⋅  
LS )()()( 23 kOkOkO ++  pL pP ! O(n ! k

3)+O(n ! k2 )+O(n ! k)"# $%  

PROD )()( 2 ikOkO ⋅+  pP pP ! O(n ! k
2 )+O(n2 ! k)"# $%  

Total 

)()(
)()( 23

kOikO
kOkO

+⋅+

+
 

1 pP !O(n
2 ! k)+ pL !O(n ! k

3)+ (pL + pP ) !O(n ! k
2 )

+pL !O(n ! k)+ pE !O(n)
 

Matrix is of order n and average number of contributors is k;  
1computational complexity is assessed as the expected number of floating-point multiplications to be 
performed. 

 

Figure 11 Procedure choice when running algorithm B. Procedure choice 
(green: EMPTY; yellow: LS; blue: PROD) when running algorithm B, along all 
lines of 1−T , for inversion of matrix 22A  with a fully extracted pedigree, for three 
size scenarios [(a): S4k; (b): S8k ; (c): S12k]. 
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Considering Algorithm B led to estimation of the computational complexities 

based on the expected number of floating-point multiplications involved in the different 

tasks achieved by Algorithm B, as specified in Table 13. Total complexity is detailed for 

treatment of one line and for treatment of one full matrix of order n in Table 13, where 

treatment refers to all tasks to be performed, i.e. computing b and adding b !b  to the 

previous inverse. If k (average number of contributors) is considered as independent of n, 

the most complex term is O(n2 ! k) , which is required when using the PROD procedure 

(proportion pP of the total). The PROD procedure is used less frequently for greater 

matrices (see Figures 11 and 12 beyond 80k animals). Treating k as independent of n is 

also a more reasonable assumption for greater matrices (Figure 10), since k is undoubtedly 

related to n for smaller matrices. The total complexity for a matrix of order n becomes:  

(d )3 pL O(n
4 )+ d pP + (d )

2 (pL + pP )!" #$%O(n
3)

+d pLO(n
2 )+ pEO(n)

, 

where d  represents the average density of the matrix. The most complex term 

( (d )3 pLO(n
4 ) ) is tempered by two very low coefficients: the proportion of times the LS 

procedure is used ( pL ), which may be very low for small matrices (Figure 12), and the 

cube of the average density ( d ), which was lower than 0.5 in our examples (Figure 9) for 

matrices of order beyond 32 000. Thus, Algorithm B seems more suitable for large 

matrices than for small matrices, regardless of whether there is dependence between n and 

k or not.  

The issue of numerical stability was also addressed. When using procedure PROD, 

the result of the previous iteration was used in the current iteration through α  and b. 

Accumulating errors could lead to instabilities and/or divergences. However, in LS 

procedure, the result of the previous iteration does not affect the b that is computed. 

Choosing the LS procedure at regular intervals among iterations using the PROD 

procedure (see Figure 11) stops the accumulation of errors that could have resulted from 

continuously choosing the PROD procedure. Therefore, interlacing choices for both 

procedures is a good way to prevent numerical instability. Independence between 

iterations also allows procedure LS to parallelized. 
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Figure 12 Proportional use of different procedures in algorithm B. 
Proportional (%) use of the three procedures in algorithm B (green: EMPTY; 
yellow: LS; blue: PROD), for different numbers of selected animals (in thousands 
of animals). 

Memory requirements of the algorithm for inversion of A22 using 
sparsity pattern (Algorithm B) 
Algorithm B requires allocation of more than twice the RAM than Algorithm A 

because it cannot store the results of the inversion in the input matrix. This is due to 

procedure LS working on different parts of A22 . However, since elements that are 

required for LS are identified when determining the sparsity pattern, they could be stored 

separately in order to reduce the amount of RAM required. For that reason, sparsity 

patterns should be established prior to computation of A22  to determine which 

relationships are worth being computed. 

Number of generations to extract 
The depth of the pedigree to be used for instance in genetic evaluations, is still a 

question of debate, and often moderately deep pedigrees are used, especially when only 

recent data is analyzed. 

Results in Figure 7 suggest that pedigree from a limited number of generations (5 

to 10) is sufficient to compute A22
!1  with reasonable accuracy. The explanation is that 

distant ancestors do not greatly enhance a relationship. For instance, a common ancestor 

to animals i and j that enters the pedigree after g extracted generations and that is older 
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than any selected animal, can only add up to 2!2g  to the value of the relationship between 

i and j. In generation g, i and j can have a maximum of 2g  common ancestors. Therefore, 

extracting an additional generation can increase the relationship between i and j by only 

up to ! = 2!g . Regardless of the number of animals added to the pedigree when extracting 

generation 10, the maximum change brought to any relationship reduces to less than 

0.001, which would have a minor effect on the inverse scale, as confirmed by Figure 7. 

However, computing time required for determination of the sparsity pattern 

increases linearly after 10 generations (Figure 8). Thus, limiting extraction of pedigree to 

10 generations appears to be a good balance between taking into account relationships due 

to distant ancestors and computing time. Applying a similar study to pedigree extractions 

for routine genetic evaluations would be meaningful and may lead us to consider 

extracting a number of generations instead of a birth year limit, which is current common 

practice.  

Practical use in a genomic background 
For genomic evaluations, two specific situations where A22

!1  is needed may require 

the use of Algorithm B. First, as explained above and shown in equation (IV.3), the 

inverse of the matrix is computed recursively by adding a block specific to the current 

animal to the previous inverse. At each genomic evaluation, A22
!1  could therefore be stored 

in a file and reused at the next evaluation cycle. At each evaluation, the matrix would be 

enhanced by adding newly genotyped animals. However, this approach has some limits: 

(1) Animals have to be listed by generation order and only animals younger 

than those already genotyped can be added because older animals may 

cause changes in the sparsity pattern. This could be easily implemented in 

a cattle breed such as Holstein, where only few animals are key ancestors 

of the breed. 

(2) The resulting file may be large but this could be reduced by sparse storage 

approaches. 

Meyer et al. (2013) recently applied a similar methodology for computation of the 

inverse of the genomic relationship matrix (G): their methodology also updates the 

previous inverse of G, necessitating its storage on disk from an evaluation to the next one. 
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Secondly, when using a pedigree of only one extracted generation, which contains 

genotyped animals and their ungenotyped parents, inversion of A22  is even faster (Figure 

6) and the inverse seems to be a reasonable approximation of 1
22
−A  computed with a full 

extracted pedigree (see Figure 7 and discussion here above). Such a fair approximation of 
1
22
−A  may be useful as a preconditioner to solve A22x = v , for instance, as required in the 

iterative solution of MME of single-step genomic BLUP (best linear unbiased prediction) 

proposed by Legarra and Ducrocq (2012). 

Current limits 
The algorithm to determine the sparsity pattern of the inverse triangular factor of 

22A  is obviously useful only in inversion algorithms that use the inverse triangular factor. 

For other inversion algorithms, the algorithm to determine the sparsity pattern should not 

be useful. 

Inversion algorithms that use the inverse triangular factor are useful in certain 

cases (e.g., for updating an inverted matrix or for obtaining quick approximations), but 

they would be less efficient, in terms of computing time, for the single purpose of 

inversion. The time required by Algorithms A and B was compared with the time required 

by subroutine “dkmxhf.f90” (K. Meyer, University of New England, Australia), which is 

a regular and efficient inversion algorithm. For inversion of the three different orders of 

22A  (4000, 8000 and 12 000), computing times of dkmxhf.f90 were lower than 

computing times obtained with Algorithm A and similar to those obtained with Algorithm 

B (accounting for sparsity). For small numbers of extracted generations, computing times 

were slightly lower for Algorithm B than dkmxhf.f90, but were greater when greater 

numbers of generations were extracted. However, the computing speed of Algorithm B 

can benefit from several optimizations (e.g., parallelization of the LS procedure and use of 

specific libraries for matrix products). 

For computational ease, a small population (less than 1 million animals) was used 

in this study. Gains in computing time have to be tested for other sizes of population. This 

study was also restricted to only one population by size scenario and used repetitions (20) 

of the algorithm on the same data. Use of a Holstein population may also be criticized 

because although the average computed inbreeding was never greater than 1.23%, such a 
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population has few key ancestors. Having the key ancestors in the selected sub-population 

might avoid density, because they would be contributors of many other selected animals. 

Conclusions  

The determination of the sparsity pattern of T!1  using pedigree information is a 

prior step that allows gains in computing time for inversion based on the use of 1−T . This 

allowed the computing time for inversion of matrices of three different sizes (4000, 8000 

and 12 000 selected animals) to be reduced by a factor 1.73 on average. Gains in 

computing time are expected to be higher if the number of selected animals exceeds 80 

000. Memory requirements for inversion of such a matrix would increase and the 

algorithm would become numerically more stable, since the LS procedure would become 

more important than the PROD procedure. Moreover, computation of the inverse by a 

recursive method may be very helpful in the case of genomic prediction, where a new 

batch of younger selected animals at each upcoming evaluation must be added to the 

previous inverse matrix already computed. 

The results on the number of pedigree generations required for the selected 

animals suggest that no more than 14 generations should be extracted. If the working 

precision is less than 15 digits, this can even be reduced. A good balance between 

computing time for determination of the sparsity pattern and accuracy may be achieved 

with 10 extracted generations. 

Appendix: Inversion of the numerator relationship matrix 
using the inverse triangular factor 

The numerator relationship matrix (A) can be factorized as 

A =TD !T . (IV.A.1) 

Henderson (1976) proposed a recursion rule to compute the triangular factor T: 

T(i) =
T(i!1) 0

b(i)" T(i!1 1

#

$

%
%
%

&

'

(
(
(
 (IV.A.2) 

In equation (IV.A.2), )1( −iT  and )(iT  are two matrices of respective sizes (i-1) and i. 

They refer T computed after, respectively, (i-1) and i recursions. Vector )(ib  is a vector of 
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parental contributions: it summarizes the linear dependency between parents and 

offspring. This vector is null except on positions corresponding to parents of i where it is 

equal to 0.5. Henderson (1976) also showed that the inverse triangular factor ( 1−T ) only 

contains three different values: 0, 1and -0.5, since it is obtained by triangular matrix 

inversion (equation IV.A.3). The elements of the diagonal are equal to 1 and the lower 

off-diagonal elements are equal to the vector )(ibʹ′−  corresponding to the ith animal; they 

contain thus only 0 and -0.5 elements. 

T(i)
!1 =

T(i!1)
!1 0

! "b(i) 1

#

$

%
%

&

'

(
(
 (IV.A.3) 

Besides T, the diagonal matrix D is computed one element at a time according to 

Henderson (1976) and Quaas (1976). At the ith recursion )(iD  has the form: 

D(i) =
D(i!1) 0
"0 dii

#

$

%
%

&

'

(
(

 (IV.A.4) 

Replacing equations (IV.A.2) and (IV.A.4) in (IV.A.1) shows that the recursion 

rule for computation of T is actually identical to that of the tabular method (equation 

IV.A.5.3; Emik and Terril, 1949; Henderson, 1976), since it computes the last below-

diagonal row in )(iA  as a linear combination of rows in )1( −iA . 

)(iA  ʹ′= )()()( iii TDT       (IV.A.5.1) 

=
T(i!1)D(i!1) "T(i!1) T(i!1)D(i!1) "T(i!1)b(i)
"b(i)T(i!1)D(i!1) "T(i!1) "b(i)T(i!1)D(i!1) "T(i!1)b(i) + dii
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 (IV.A.5.2)  

=
A(i!1) A(i!1)b(i)
"b(i)A(i!1) "b(i)A(i!1)b(i) + dii
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   (IV.A.5.3) 

Replacing !b(i)A(i"1)b(i) + dii  in equation (IV.A.5.3) by iia  (the equivalence can be 

easily shown) expresses the tabular method as in van Arendonk et al. (1994): 

A(i) =
A(i!1) A(i!1)b(i)
"b(i)A(i!1) aii

#
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&

'
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(

  (IV.A.6) 
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Applying the partitioned matrix theory to equation (IV.A.6), van Arendonk et al. 

(1994) structured A!1  as a sum of n updates of a null matrix (recursion rule in equation 

IV.A.7) involving multiplication of a sparse vector ( )(ib− ) by itself. 

A(i)
!1 =

A(i!1)
!1 0
"0 0

#

$
%
%

&

'
(
(
+
1
dii

!b(i)
1

#

$
%
%

&

'
(
(

! "b(i) 1#
$%

&
'(  (IV.A.7) 

The sparse vector !b(i)  is actually the transpose of the i-th below-diagonal row of 

T!1  (see equation IV.A.3). Such a construction of A!1  requires thus to know the 

following: 

(1) the positions and values of non-zero elements in )(ib , i.e. the structure of 

1−T ; 

(2) some elements of the original matrix, to compute iid  as aii ! "b(i)A(i!1)b(i) . 

After meeting these requirements (determination of the structure of the inverse 

triangular factor and computation of some elements of the original matrix), the same 

framework was extended to the inversion of other relationship matrices used in animal 

breeding: e.g. gametic relationship matrix (Schaeffer et al., 1989), dominance (Hoeschele 

and VanRaden, 1991) and epistasis (VanRaden and Hoeschele, 1991) effects or 

covariance matrix of marked QTL effects (Fernando and Grossman, 1989). 
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BRIEF SUMMARY OF CHAPTER IV 

• An algorithm was developed to set up the sparsity pattern of the inverse 

Cholesky factor of A22  (i.e. to define, for each genotyped animal, which 

other animals were contributors of that animal). This pre-processing step, 

is applied on the pedigree before inversion ofA22 . It does not require much 

time because it does not involve floating-point operations but a pedigree 

search. 

• Used in the frame of the Sherman-Morrison algorithm for inversion of 

matrices (successive update of a zeroed matrix), knowing the sparsity 

pattern allows avoiding useless computations. Therefore, computing time 

is reduced when using the sparsity pattern instead of not using it. 

• A fair approximation of A22
!1  can be obtained by the following strategy: (1) 

computing A22  after extraction of few (1, 2 or 3) generations of non-

genotyped ancestors of genotyped animals, (2) computing the sparsity 

pattern of the inverse of this A22 , and (3) using the sparsity pattern when 

inverting A22  with the Sherman-Morrison algorithm. 

RELATED PUBLICATIONS 

• P.Faux and N. Gengler. 2013. Strategies for inversion of the additive 

relationship matrix among genotyped animals. In: Book of abstracts of the 

64th Annual Meeting of the European Association for Animal Production. 
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[FROM: P. Faux and N. Gengler. (submitted). A method to approximate the inverse 

of a part of the additive relationship matrix. Journal of Animal Breeding and 

Genetics] 

In genotyped populations, it comes out that the inverse of A22  is 
frequently dense. Therefore, setting up its sparsity pattern and 
using it for inversion of A22  is not helpful because useless 
computations only concern few elements of the inverse. 
However, we pointed out that most of the contributions were 
small. Moreover, the absolute value of a contribution tends to 
decreases as the number of pedigree branches to search from the 
animal up to its contributor increases. Therefore, we propose to 
restrict the pedigree search for establishing the sparsity pattern to 
a limited number of branches. The so-approximated sparsity 
pattern is then used in approximation of the inverse of A22 . In 
order to assess the applied interest of these approximations, tests 
are run using the approximated inverses in a traditional mixed 
model. 
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Abstract 

Single-step genomic predictions need the inverse of the part of the additive 

relationship matrix between genotyped animals (A22 ). Gains in computing time are 

feasible with an algorithm that sets up the sparsity pattern of A22
!1  (SP algorithm) using 

pedigree searches, when A22
!1  is close to sparse. The objective of this study is to present a 

modification of the SP algorithm (RSP algorithm) and to assess its use in approximating 

A22
!1  when the actual A22

!1  is dense. The RSP algorithm sets up a restricted sparsity pattern 

of A22
!1  by limiting the pedigree search to a maximum number of searched branches. We 

have tested its use on 4 different simulated genotyped populations, from 10,000 to 75,000 

genotyped animals. Accuracy of approximation is tested by replacing the actual A22
!1  by 

its approximation in an equivalent mixed model including only genotyped animals. 

Results show that limiting the pedigree search to 4 branches is enough to provide accurate 

approximations of A22
!1 , which contain about 80% of zeros. Computing approximations is 

not expensive but may require a great amount of memory (at maximum, ~81 minutes and 

~55 Gb of RAM for 75,000 genotyped animals using parallel processing on 4 threads). 

Keywords: matrix computations, ssGBLUP. 

Introduction 

In a unified approach (single-step genomic BLUP - ssGBLUP - , Misztal et al., 

2009; Christensen and Lund, 2010), all the three information sources (pedigrees, 

phenotypes and genotypes) are used to compute genomically-enhanced breeding values 

(GEBV). The originality of this method lies on the use of a modified additive relationship 

matrix H (Legarra et al., 2009), accounting for both pedigree-based and genomic 

relationships, instead of the additive relationship matrix A. The ssGBLUP requires 

inversion of two symmetric matrices whose order is equal to the number of genotyped 

animals: G, genomic relationship matrix and A22 , part of the additive relationship matrix 

gathering relationships between genotyped animals. 

As for any symmetric positive-definite matrix, their inversion has a cubical 

complexity and is performed so far by direct inversion algorithms (e.g. as described in 

Aguilar et al., 2011). The case of G has been investigated by different studies performing 

computation (Meyer et al., 2013) or approximation (Misztal et al., 2014) of its inverse at 
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lower computational costs. For the case of A22 , we recently proposed a heuristic 

algorithm (“SP algorithm” for Sparsity Pattern algorithm) that sets up the sparsity pattern 

of its inverse using pedigree information (Faux and Gengler, 2013). It showed that A22
!1  

might be sparse in some situations, depending on the structure of the pedigree of 

genotyped animals. In such a case, computing time savings are possible because 

computations are restricted to non-zero elements. 

However, this method is useless when A22
!1  is dense or close to dense. In this 

study, we present a method to approximate A22
!1  by zeroing elements of the inverse 

Cholesky factor of A22 . Our aim is to assess its efficiency in terms of approximation 

accuracy and computer resources (time and memory) consumption for different orders of 

A22 . 

Material and Methods 

Simulation of realistic test populations 
In the frame of applied researches on implementation of genomic evaluation for 

dairy cattle in the Walloon Region of Belgium, 2,427 genotyped animals (1,855 males and 

574 females) were available. Because this number is limited in regard to our main 

objective that is to test approximations for huge matrix orders, we propose to simulate test 

populations that mimic the structure of this real population (denoted hereafter as “P2”). 

Matrix A22
!1  of P2 contains ~20% of elements equal to 0. This is due to the fact 

that genotyped animals in P2 are mainly born in same years (2000 to 2011) and are 

therefore highly likely to share the same non-genotyped ancestors. 

In addition to genotyped animals in P2, a certain number of animals are randomly 

picked in the pedigree used for official genetic evaluations of dairy cattle in Walloon 

Region of Belgium. Animals are chosen in year of birth classes from 2000 to 2011 so that 

each class contains a proportionate number to its number in P2, in order to have a final 

number of genotyped animals equal to 10,000, 25,000, 50,000 or 75,000. 

Eventually, a maximum of 6 generations are extracted for all genotyped animals, 

giving the 4 populations (P10, P25, P50 and P75) detailed in Table 14. 
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Table 14 Details on populations used in the study: type (real or simulated), sizes 
and sparsity degrees.  

Population Type 
Number of 

genotyped animals 
Total number 

of animals 
Sparsity 
degree1 

P2 Real 2,427 17,677 20.31 
P10 Simulated 10,000 74,529 9.46 
P25 Simulated 25,000 148,446 8.91 
P50 Simulated 50,000 243,005 10.62 
P75 Simulated 75,000 322,634 10.44 

1Sparsity degree is expressed as the percentage of elements equal to zeros in the corresponding A22
!1 . 

Sparsity in the inverse of A22 and SP algorithm 
For any genotyped animal i, its relationships with other genotyped animals 

(A22;1:i!1,i ) can be computed as a linear combination bi  of the relationships between 

animals preceding him (A22;1:i!1,1:i!1 ): 

A22;1:i!1,i = A22;1:i!1,1:i!1 "bi  (V.1) 

We name the j-th element (!j, j =1: i"1) of bi  “contribution” of the j-th animal 

to the i-th animal and we call a “contributor” of the i-th animal any animal j whose 

contribution is not zero. Vector bi  is related to the root-free Cholesky factorization of 

A22  (A22 =TD !T ) as bi! = "Ti,1:i"1
"1 . 

Applying simple searching rules to the pedigree of each genotyped animal, the SP 

algorithm finds out which genotyped animals are contributors of a given genotyped 

animal. Defining a “branch” as a parent-offspring connection, the rules are the following, 

for the last animal in an age-ordered pedigree: 

(1) explore ascending branches: 

a. if an ancestor is genotyped, then add it to the list of contributors 

and stop exploration in this branch; 

b. if an ancestor is not genotyped, then add it in a temporary list and 

keep exploring in this branch until genotyped ancestors or founders 

are found; 

(2) explore descending branches of each non-genotyped ancestor in the 

temporary list and add any of their genotyped progenies in the list of 

contributors; 
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(3) apply the same rules (1) and (2) to each genotyped progeny found through 

rule(2) until no more animals are in the temporary list of non-genotyped 

ancestor. 

For other animals than the last one in pedigree, animals younger than him must 

simply be ignored. This algorithm has been implemented in a sequential way in Faux and 

Gengler (2013). As an example, it can be applied to the last animal (animal 12) in the 

genealogical tree in Figure 13. 

 

Figure 13 Example genealogical tree of 12 animals. Genotyped and non-
genotyped animals are respectively tagged with squares and circles. Indexes show the 
number of branches to search starting from animal 12 in order to find its contributors. 

In this figure, the animal identifier gives the age order (1 is the oldest animal and 

12 is the youngest) and square tags identify genotyped animals.  

(1) Apply rule (1) to animal 12: animal 1 is a genotyped ancestor, thus a 

contributor of animal 12, and animals 4, 7 and 2 are non-genotyped 

ancestors, thus left in a temporary list. 

(2) Apply rule (2) to animals 4, 7 and 2: 2 genotyped progenies are found 

(animals 9 and 10). Thus, they join animal 1 in the list of contributors. 

(3) Following rule (3), apply rules (1) and (2) to animals 9 and 10. Two other 

genotyped progenies (animals 8 and 11) also enter the list of contributors. 

(4) Following rule (3), apply rules (1) and (2) to animals 8 and 11. A 

genotyped ancestor (animal 6) enters the list of contributors and the search 

is over as we have searched all available branches. 
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In this example, all genotyped animals are contributors of the last animal in 

pedigree. Therefore, vector of contributions bi  is fully dense (last row in T!1 , see Table 

15). As A22
!1 = T!1( )"D!1T!1 , the sparsity pattern of A22

!1  can be obtained from the sparsity 

pattern of T!1 : all cross-positions of non-zero entries in a row of T!1  are non-zero entries 

in A22
!1 . Therefore, in our example, A22

!1  is fully dense because bi  is too (Table 15). 

Table 15 Actual T!1  (below diagonal) and A22
!1  (diagonal and above diagonal) 

for the example in Figure 13. 

 1 6 8 9 10 11 12 
1 1.07 0.01 -0.02 0.08 0.04 -0.01 -0.29 
6  1.36 -0.00 0.01 0.19 -0.73 -0.03 
8   1.07 -0.29 -0.01 0.00 0.08 
9   -0.25 1.15 0.04 -0.01 -0.31 
10     1.11 -0.37 -0.16 
11  -0.5   -0.25 1.46 0.05 
12 -0.25 -0.02 0.07 -0.27 -0.14 0.05 1.17 
Empty cells denote zeros. No null entries out of 49 for A22

!1 (dense). 

The SP algorithm only determines the non-zero elements in bi  not their values, 

which are solutions of equation (V.1). To restrict their computation only to contributors, a 

possibility is to partition equation (V.1) between non-zero (subscript ui) and zero 

(subscript vi) entries in bi : 

Aui ,i

Avi ,i

!

"

#
#

$

%

&
&
=

Aui ,ui
Aui ,vi

Avi ,ui
Avi ,vi

!

"

#
#

$

%

&
&
'
bui
bvi

!

"

#
#

$

%

&
&
 (V.2) 

and to compute bui  as Aui ,ui
!1 Aui ,i

. Once contributions are computed, computation of 

A22
!1  can be successively achieved, from the first animal in pedigree to the last one, by 

adding the following to proper positions of a zeroed matrix: 

!i
!1 "

!bui
1

#

$
%
%

&

'
(
(
" !bui) 1
#

$
%

&

'
(  

where !i = Ai,i !Ai,ui
bui . When there are few non-zero contributions, then A22

!1  

tends to be sparse and computing time gains are possible because inversion involves few 

operations. 
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Conversely, computing time gains are null when A22
!1  is dense or close to dense. 

However, it was reported that a majority of non-zero contributions were close to 0 (Faux 

et al., 2012). As an example, Figure 14 shows a distribution of the absolute value of non-

zero contributions, in a real case (population P2), among absolute value classes. Each 

black bar gives the percentage of non-zero contributions whose absolute values, on a 

logarithmic scale, is in the corresponding class. In addition, each grey bar gives the 

cumulative percentage of non-zero contributions pertaining to lower classes. About 86% 

of contributions pertain to classes lower than class -3, meaning that 86% of non-zero 

contributions are lower than 10-3. 
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Figure 14 Distribution of absolute value of 2,249,997 contributions of a real 
genotyped population (P2) among logarithmic classes (black bars) and 
percentage of contributions lower, in absolute value, than a certain logarithmic 
class (grey bars). 

Modified SP algorithm 
Why are these contributions so small? In Figure 15, we investigated the 2,249,997 

non-zero contributions among the 2,427 genotyped animals in population P2. This figure 

shows, on a logarithmic scale, how the average absolute value of a contribution decreases 

as the contributor becomes more distant, i.e. as more branches have to be searched to find 

this contributor. On average, contributions from a contributor that is located at 4 branches 

are approximately equal to 10-2. We observe the same decrease in our small example: in 

Figure 13, indexes show the number of branches to explore to connect animal 12 to other 
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animals and the contributions (last row of Table 15) also decreases as the contributor is 

more distant. Therefore, it would be meaningful to restrict the computations of 

contributions to contributors found after searching a limited number of branches. 

We modify the SP algorithm by adding a criterion k: for any genotyped animal, 

the search for contributors stops as soon as k, a maximum of number of branches to 

search, is reached (“RSP algorithm” for Restricted Sparsity Pattern algorithm). 
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Figure 15 Average contributions, on a logarithmic scale, in terms of the 
number of branches to search to connect the animal to its contributor, for a 
real genotyped population (P2). Plain, dashed and dotted lines respectively show the 
average, the average plus 3 times the standard deviation and the maximum of absolute values of 
contributions found at each number of searched branches. 

As an example, let us use the RSP algorithm for animal 12 in Figure 13. When k = 

1, no contributors can be found. When k = 2, two contributors are found: animals 9 and 1. 

Considering only 2 contributors instead of 6 would greatly reduce density of the inverse 

(see Table 16: the percentage of zeros in A22
!1  is 57%). When k = 3, one additional 

contributor is found: animal 10. When k = 4, we add animal 8. When k = 5, we add animal 

11 and when k = 6, animal 6. 

To compute contributions, we assume, in equation (V.2), that only contributors 

found within the k first branches are indexed by ui and consequently, that bvi ! 0 . 

Computing relevant contributions as Aui ,ui
!1 Aui ,i

 is therefore an approximation. Greater is k; 

better is the approximation, albeit less sparse: using example (Fig. 13), compare Tables 16 
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and 17 (approximated T!1  and A22
!1  respectively for k = 2 and k = 4) and Table 15 (actual 

T!1  and A22
!1 ). 

Table 16 Approximated T!1  (below diagonal) and A22
!1  (diagonal and above 

diagonal), when searching the pedigree for contributors located at maximum 
2 branches, for the example in Figure 13. 

 1 6 8 9 10 11 12 
1 1.07   0.07   -0.29 
6  1.36   0.18 -0.73  
8   1.07 -0.27    
9   -0.25 1.14   -0.29 
10     1.09 -0.36  
11  -0.5   -0.25 1.45  
12 -0.25   -0.25   1.14 
Empty cells denote zeros. 28 null entries out of 49 for A22

!1 (sparse at ~57%). 

Table 17 Approximated T!1  (below diagonal) and A22
!1  (diagonal and above 

diagonal), when searching the pedigree for contributors located at maximum 
4 branches, for the example in Figure 13. 

 1 6 8 9 10 11 12 
1 1.07  -0.02 0.08 0.04  -0.29 
6  1.36   0.18 -0.73  
8   1.07 -0.29 -0.01  0.08 
9   -0.25 1.15 0.04  -0.31 
10     1.11 -0.36 -0.15 
11  -0.5   -0.25 1.45  
12 -0.25  0.07 -0.27 -0.12  1.17 
Empty cells denote zeros. 16 null entries out of 49 for A22

!1 (sparse at ~33%). 

Implementation of the RSP algorithm 
The RSP algorithm requires keeping in memory all elements of the original matrix 

requested for computation of approximated contributions, i.e. elements in matrix Aui ,ui
 

and vectorAui ,i
 for each genotyped animal. Those requested elements actually correspond 

to the non-zero elements in the approximated inverse, i.e. to cross-positions of non-zero 

elements in T!1 .  

Therefore, we implemented the following sequence of operations: (1) computation 

of the sparsity pattern of T!1  using RSP algorithm; (2) computation of the sparsity pattern 

of A22
!1  from the sparsity pattern of T!1 ; (3) allocation of two sparse matrices with as 

much non-zero entries as expected in A22
!1 ; (4) column-wise computation of A22  (i.e. one 
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genotyped animal at a time) using method by Colleau (2002); for each animal, only 

requested elements are stored at their proper places in a sparse matrix allocated at the 

previous step; (5) eventually, inversion itself by the computation of approximated 

contributions and their addition to proper places in the second sparse matrix. 

In order to reduce even more the sparsity of the approximated inverse, we choose 

to add to the final inverse only contributions whose absolute value is greater than 10-3. 

Operations (1) and (5) can be parallelized as they perform independent 

computations for all genotyped animals. The implementation described here before has 

therefore also been implemented with OpenMP directives (http://www.openmp.org/). 

Test protocol for accuracy of approximation 
We test the approximation method for k = 1 to 4 and on 4 different orders of A22  

(10,000, 25,000, 50,000 and 75,000). To avoid time-wasting and memory-demanding 

computations, actual inverses were not computed. We appreciate the quality of 

approximations by using them in a model equivalent to a classic mixed model and 

comparing the estimated breeding values (EBV) returned by both models.  

The test protocol is the following: (1) simulation of true breeding values (TBV) 

and phenotypes (3 phenotypes per animal, with 3 different heritabilities: 0.10, 0.30 and 

0.50) only for genotyped animals, using the simulation method by Van Vleck (1994); (2) 

prediction of EBV for all animals, genotyped or not, using a single-trait mixed model in 

which an overall mean is the sole fixed effect and an additive genetic effect and a normal 

error are random effects (model 1); (3) considering the same observations (thus, with 

observations only for genotyped animals: 1 observation per genotyped animal), prediction 

of EBV for only genotyped animals using a model equivalent to the previous one, but 

with a reduced number of levels for the genetic effect (only genotyped animals) and using 

the approximated A22
!1  in the mixed model equations (model 2). If we would have used 

the actual A22
!1  instead of the approximated A22

!1  in model 2, then solutions of model 2 and 

solutions of model 1 for genotyped animals would have been equal. 

Therefore, comparisons involve 2 types of EBV: those of genotyped animals 

computed with model 1 (EBV1) and those computed with different models 2 using 

different approximations of A22
!1  (EBV2k, where k stands for the maximum number of 

branches searched by RSP algorithm in this approximation). Spearman rank correlations 
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between EBV1 and EBV2k and the linear regression of EBV2k on EBV1 are computed, 

as well as the variance of the difference (EBV1-EBV2k). Also, reliabilities are computed, 

for EBV1 and EBV2k, as the squared correlation between TBV and EBV. 

Results and Discussion 

Approximation accuracy 
On Figure 16, reliabilities of EBV1 (black bars) and EBV2k (white and grey bars) 

are given for the 4 orders of A22  and the 3 simulated sets of phenotypes (each with a 

different heritability). White and grey bars are reliabilities using, from left to right, a k 

(maximum number of searched branches) from 1 to 4 in the approximation of A22
!1 . 

Comparisons have to be done between each group of 5 bars (same heritability and matrix 

order), not between groups of different heritabilities and/or matrix order. 
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Figure 16 Reliabilities (as squared correlations between true and estimated 
breeding values) of EBV1, EBV21, EBV22, EBV23 and EBV24 for 4 different 
orders of A22  and 3 different heritabilities (0.10, 0.30 and 0.50). 

Using k = 4 does not highly impact the reliability of breeding values. In the worst 

case (h2 = 0.10; matrix order = 25,000), reliabilities of EBV1 and EBV24 are respectively 

20.58% and 20.02% and in the best case (h2 = 0.50; matrix order = 50,000), reliabilities of 

EBV1 and EBV24 are respectively 60.33% and 60.18%. Moreover, the slopes and 

intercepts of the linear regressions of EBV1 on EBV24 are respectively close to 1 and 0 

(Table 18), showing that no inflation/deflation affects the estimation of breeding values. 
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The ratio between variance of the difference (EBV1-EBV24) and variance of EBV1 

ranges from 0.27% (h2 = 0.30; matrix order = 50,000) to 1.97% (h2 = 0.10; matrix order = 

10,000), suggesting that no one breeding value in EBV24 was completely different from 

those in EBV1. For a visual appreciation, this worst case (h2 = 0.10; matrix order = 

10,000) is plotted on Figure 17. 

In addition, when k = 4, there are no major re-rankings between EBV, as 

Spearman’s rank correlations in Table 18 suggest: all correlations are above 99%, except 

for the fore-mentioned worst case (98.88%). 
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Figure 17 Estimated breeding values of 10,000 genotyped animals using an 
animal model (EBV1) vs. estimated breeding values using an equivalent 
model with approximated A22

!1  for which the maximum number of searched 
branches (k) was equal to 4 (EBV24). Heritability was 0.10. The identity line is in grey. 
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Computation time 
On a Intel® Core™ i7 with 12 computing units (clock speed: 3.20 GHz; RAM: 64 

Gbytes), the computing times were averaged on 10 repetitions, for approximations of A22
!1  

when k, the maximum number of searched branches, is equal to 4 (Fig. 18). These times 

covered the three following operations: computation of the sparsity pattern of T!1 , 

computation of the sparsity pattern of A22
!1  and approximation of the inverse. 

For 75,000 genotyped animals, computing the approximated inverse required 

about 4 hours using the serial implementation and about 81 minutes using the parallel 

implementation on 4 threads, in which respectively ~5 and ~3 minutes were dedicated to 

computation of sparsity patterns. As the actual A22
!1  was not computed, these computing 

times can only be compared to other values in literature. For instance, Aguilar et al. 

(2011) reported inversion times using generalized inverse and optimized subroutines for 

parallel computation: about 3,160 (103.5) seconds for the actual A22
!1  an order of 25,000. In 

our implementation, the approximated A22
!1  of an order of 25,000 was 453 (102.65) seconds 

with serial and 150 (102.18) seconds with parallel (4 threads) implementations. 

For all cases (4 different sizes and 4 values of k), speed-ups using parallel 

implementation with 4 threads were about 3 times compared to use of serial 

implementation. 
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Figure 18 Computing times for approximated inverses of different orders of 
A22 , when the number of branches searched equals 4, for serial (plain line) and 
parallel (dashed line) implementations. 
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Memory requirements and sparsity 
As matrices were sparse and stored in sparse structures, the memory peaks for 

approximation of the inverse when k = 4 were limited: about 1.53, 6.24, 12.80 and 29.47 

Gb for the respective orders 10,000, 25,000, 50,000 and 75,000, using serial 

implementation. 

Parallel implementation required more memory at the consumption peak, about 

twice of the serial implementation when using 4 threads (e.g. 55.51 Gb for 75,000 

genotyped animals). The reason is that the sparse matrix that stored the inverse was 

explicitly duplicated for each thread and reduced into a single one by the end of the 

parallel region, in order to avoid between-threads competition to access the same element. 

When k = 1, the RSP algorithm only explores one branch and thus only select as 

contributors the parents of the current animal, if those were genotyped. The resulting 

approximated inverse is as sparse as a A!1  of same order (more than 99.98% of zeros in 

all cases outlined). When k = 4, the approximated A22
!1  is definitely less sparse: from 

~78% (order of 25,000) to ~84% (order of 10,000). But, even if less sparse, it means that 

only ~16% to ~22% of the memory needed to store the actual inverse is required when 

using the approximated inverse. 

Conclusions 

The absolute value of a contribution to the additive relationships of a genotyped 

animal decreases, in average, as the contributor becomes more distant of this genotyped 

animal in terms of pedigree branches. The algorithm to set up the sparsity pattern of A22
!1  

using pedigree information can be modified (RSP algorithm) in order to restrict the 

pedigree search to a limited number of branches. The restricted sparsity pattern can then 

be used in approximation of A22
!1 . If the search for contributors of a genotyped animal 

does not exceed more than 4 branches to search, then the approximation can be quickly 

computed, even for large matrices (orders of 25,000 to 75,000). Using this approximated 

A22
!1  in a mixed model showed that prediction of breeding values was not highly 

impacted; therefore that such approximation is accurate. 
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BRIEF SUMMARY OF CHAPTER V 

• The pedigree search for establishment of the sparsity pattern of the inverse 

Cholesky factor of A22  can be limited to a defined number of pedigree 

branches. However, it requires a non-sequential implementation of the 

algorithm that exhaustively searches the pedigree to set up this sparsity 

pattern. 

• Using an approximated A22  (based on a approximated sparsity pattern of 

A22
!1 ) instead of a regular A22  in a simple mixed model on simulated 

phenotypes does not greatly impact the computation of breeding values, if 

the pedigree searches for contributors are stopped once a maximum of 4 

branches were explored. 

• Pedigree search for dependencies as well as computation of the vector of 

contributions and the subsequent update of a zeroed matrix to obtain the 

approximated A22
!1  are independent operations for each genotyped animal. 

Therefore, this approximation of A22
!1  supports parallelization and, using 4 

threads, the approximation was sped up by 3. 
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• P. Faux and N. Gengler. 2014. Efficient approximations of the inverse of a 

part of the additive relationship matrix. At: 2014 World Congress on 

Genetics Applied to Livestock Production. Poster in Vancouver (Canada). 
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Based on the framework for inversion of relationship matrices 
shown in Chapter II, different algorithms and strategies were 
proposed in Chapters III to V. All can be used with A22  whereas 
only those of Chapter III can be used with G. In this final 
chapter, we first draw a comparative study between the different 
algorithms applied to each specific case of matrix. This 
comparative study is needed because tests in the previous 
chapters were run on different machines. 
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The literature review in Chapter II gave the two main axes of our research. First, 

most of the relationship matrices used in animal breeding are inverted using the algorithm 

of Sherman and Morrison (1950). The main reason is its original use by Henderson (1976) 

and Quaas (1976) for the specific case of A. By analogy, we proposed to follow the same 

algorithm for the two relationship matrices concerned by our study (A22  and G). 

Secondly, the core of this algorithm is the computation, animal by animal, of the 

contributions of animals preceding the current animal to relationships of this animal with 

the rest of the population. This computation covers two aspects: (1) determining which 

animals have a non-zero contribution (those are later called contributors); and (2) 

assessing the value of their contribution. 

Approximations of the inverses of A22  or G can be made by an approximation of 

the search for contributors and a subsequent approximation of their contributions. 

Throughout chapters III to V, different algorithms and strategies were proposed to 

determine contributors (or to approximate their determination), for the specific cases of 

A22 (Chapters III, IV and V) and of G (Chapter III). Also, different implementations of 

the Sherman-Morrison algorithm have been proposed to compute the values of actual or 

approximated contributions. In the next subsections, we present a comparative study of 

these proposed algorithms, strategies and implementations. 

Algorithms and strategy for determination of contributors 
in the specific case of A22 

In Chapter IV, an algorithm was proposed to exhaustively search the pedigree in 

order to genuinely determine the contributors of any animal in A22 . These contributors 

being the animals having a non-zero value in the lower part of the inverse Cholesky factor 

of A22  (T!1 ), this algorithm establishes the sparsity pattern of T!1 . We later denote it as 

“SP algorithm” (for “Sparsity Pattern algorithm”). 

From Chapters III to V, three different algorithms for approximating the 

determination of contributors have been proposed. These are the following: the close-

family approach (“CF” algorithm), the recursive close-family approach (“RCF” 

algorithm) and the restricted sparsity pattern algorithm” (“RSP” algorithm). In addition, in 

Chapter IV, a strategy that consists to compute the sparsity pattern of T!1  using a 
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pedigree with fewer extracted generations of non-genotyped ancestors for genotyped 

animals has been proposed (sparsity pattern algorithm, with limited extracted generations 

or “SPG” algorithm). 

Details on algorithms and strategies 
The SP algorithm 

Rules to establish the sparsity pattern of T!1  were first enunciated in Chapter IV 

(section “Material and Methods”). However, a more comprehensive formulation of this 

algorithm was given in Chapter V (section “Material and Methods”). Following the latter, 

an example is given for animal 16 in Figure 19: exploration of ascending branches reveals 

animals 4, 6 and 10 as contributors, exploration of descending branches from non-

genotyped ancestors reveals animals 11, 12 and 13 as contributors and eventually, 

applying the same rules for those last contributors reveals animal 8 as being a contributor 

too. 

 

Figure 19 Genealogical tree of 16 animals (10 genotyped, in squares), showing 
the actual contributors (in grey) of animal 16th. Identifiers give age order (1: oldest; 16: 
youngest). Left and right subscripts are respectively the additive relationship with animal 16th and 
the number of branches to reach the contributor from animal 16th. 

The CF algorithm 
Close-family of a genotyped animal was firstly introduced, in equation (III.3), 

such as the set of genotyped animals older than him and sharing a relationship greater or 

equal to a threshold p with this animal. This algorithm does not require any pedigree 

search; contributors are simply selected on the value of their relationships with the current 
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animal. Note that, if the close-family threshold p is set to 0, then all animals are 

considered as contributors and, consequently, the non-contributing animals obtain a null 

contribution while actual contributors obtain their actual contribution. However, two types 

of errors may be encountered: discarding actual contributors (e.g. animals 8, 11 and 12 in 

the illustrated example of Figure 20) or considering non-contributing animals as 

contributors (e.g. animals 15 and 14 in Figure 20). 

 

Figure 20 Genealogical tree of 16 animals (10 genotyped, in squares), showing 
the contributors (in grey) of animal 16th found using the CF algorithm (considering 
the animals sharing an additive relationship greater or equal to 0.10 as members of 
the same close-family). Identifiers give age order (1: oldest; 16: youngest). Left and right 
subscripts are respectively the additive relationship with animal 16th and the number of branches to 
reach the contributor from animal 16th. 

The RCF algorithm 

Multiplying A22  by the T!1  approximated by the CF algorithm and its transpose 

(equation III.5) produces a matrix D whose inverse is approximated, in the CF algorithm, 

by an element-wise inversion of the diagonal. However, an approximation of the inverse 

of D can be obtained by computing an approximated T!1  for this matrix in a similar 

manner as the CF algorithm achieved forA22 . The same operation is then recursively 

applied on the resulting D until this matrix is diagonal. Using two rounds of recursion (the 

first with a threshold equal to 0.10 and the second with a threshold equal to 0.005) in our 

illustrated example (Figure 21), we considered more animals as contributors than with the 

CF algorithm. However, we still face the same problems, namely discarding contributors 

(animal 8) and considering non-contributing animals as contributors (animals 15 and 14). 
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Figure 21 Genealogical tree of 16 animals (10 genotyped, in squares), showing 
the contributors (in gray) of animal 16th found using the RCF algorithm 
(considering two rounds of recursion with the respective thresholds: 0.10 and 
0.005). Identifiers give age order (1: oldest; 16: youngest). Left and right subscripts are 
respectively the additive relationship with animal 16th and the number of branches to reach the 
contributor from animal 16th. 

The fore-mentioned problems of misattributing contributors were circumvented by 

the development of the SP algorithm. However, the number of contributors can be large in 

regard to matrix order whereas most of them still have small contributions. This led us to 

restrict the number of contributors by limiting the pedigree search to the close-

neighbourhood of the current animal. It was achieved by two means: the SPG strategy and 

the RSP algorithm. 

The SPG strategy 
In this strategy, the fully-extracted pedigree is replaced by a less deep pedigree for 

genotyped animals: extraction of non-genotyped ancestors of genotyped animals is only 

made for few generations. This pedigree is then used for both computation of A22 and 

determination of contributors using the SP algorithm. It means consequently that the 

approximation of A22
!1  is actually the inverse of an approximation of A22 , since it was 

computed by ignoring some pedigree links. This strategy is illustrated (Figure 22) by 

considering only 2 generations of non-genotyped ancestors of genotyped animals, what 

breaks links between genotyped animals. 
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Figure 22 Genealogical tree of 16 animals (10 genotyped, in squares), showing 
the contributors (in gray) of animal 16th found using the SPg strategy (performing 
extraction of 2 generations of non-genotyped ancestors of genotyped animals). 
Identifiers give age order (1: oldest; 16: youngest). Left and right subscripts are respectively the 
additive relationship with animal 16th and the number of branches to reach the contributor from 
animal 16th. Animals and branches in grey are ignored. 

The RSP algorithm 
The previous strategy has one main drawback: when the genotyped population is 

made of animals of the same generation sharing a lot of common ancestors, then 

extracting only two or three generations of non-genotyped ancestors does not help to 

reduce the number of contributors. We have then proposed (Chapter V) to restrict 

pedigree search for establishment of the sparsity pattern to a limited number of branches 

in order to discard contributors with small contributions. This option is illustrated in 

Figure 23, where the pedigree search is stopped once a maximum number of 4 branches 

were searched. In this example and for this animal, it led to consider the same contributors 

as with the SPG strategy. 
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Figure 23 Genealogical tree of 16 animals (10 genotyped, in squares), showing 
the contributors (in gray) of animal 16th found using the RSP algorithm (stopping 
the pedigree search when a maximum of 4 branches were explored). Identifiers give 
age order (1: oldest; 16: youngest). Left and right subscripts are respectively the additive 
relationship with animal 16th and the number of branches to reach the contributor from animal 16th. 

Implementation of the computation of the inverse or of its 
approximation in the specific case of A22 
The Sherman-Morrison algorithm for inversion was formulated in different 

manners throughout the chapters of this thesis (equations II.13 and IV.3 – where it is 

referred as blockwise inverse– or partially in equation V.1). Based on equation (IV.3), the 

core of the algorithm is the computation of a contribution vector (b), for any genotyped 

animal. This vector is then weighted by a factor (! ), multiplied by its transpose ( !b ) and 

added to the previous results. 

Following this formulation, in Chapter IV, we proposed three procedures to obtain 

the vector of contributions: 

(1) when there are no contributors, procedure EMPTY: only the weighting 

factor !  is computed; 

(2) when the number of contributors is relatively small in regard of the row 

number, procedure LS: b is computed by solving a low-sized linear system; 

(3) when the number of contributors is relatively high in regard of the row 

number, procedure PROD: b is computed on the basis of the inverse 

updated at the previous iteration. 
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Procedure EMPTY is the less likely to occur; only founders require it. Procedures 

LS and PROD have an opposite advantage/disadvantage: PROD requires the inverse of 

the previous iteration whereas LS does not (the main loop of an algorithm using LS may 

be parallelized); PROD is featured for large number of contributors whereas LS is not 

(complexity increases cubically with number of contributors, see Table 13). 

We tested the algorithms and strategy here before (SP, CF, RCF, RSP algorithms 

and SPG strategy) with the following implementations for each of them. 

The SP algorithm was implemented with only PROD procedure. The vector of 

contributions is obtained by computing the vector-column of A22  (using method of 

Colleau, 2002) corresponding to the current animal and multiplying the inverse updated at 

the previous iteration by this vector-column, only for contributors. The inverse is then 

updated before moving to next genotyped animal in pedigree. The SPG strategy uses the 

same implementation. 

Approximations made with CF, RCF and RSP algorithms cannot use the PROD 

procedure: computing an approximation of contributions, then adding it to the previous 

inverse and using this one to compute contributions for next animals quickly leads to 

numerical divergence. Therefore, the CF, RCF and RSP algorithms are implemented 

using LS procedure. For the comparisons here after, none of these implementations was 

taking advantage of parallelization, albeit operations can be made in parallel for all 

genotyped animal (in the case of CF, RCF and RSP algorithms) and matrix operations for 

a single animal can be improved by use of multi-thread libraries (e.g. MKL, LAPACK). 

Note that, here below, the names of algorithms and strategy will refer to their 

implementation rather than only to the algorithm/strategy itself. 

Comparative study between the different approximation 
algorithms 
Test protocol and materials 
Comparisons involved different sizes of matrices (4,000; 8,000; 16,000 and 

32,000) obtained from genotyped populations designed as in Chapter IV. The test protocol 

was identical to that of Chapter V: one TBV and one phenotype were simulated using the 

method of Van Vleck (1994) for each genotyped animal assuming a heritability of 0.30. 

The solutions of a model with an overall mean and an additive genetic effect were 

computed using a regular animal model. An equivalent model that uses the approximation 
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of the inverse of A22  times the genetic variance component as variance matrix for the 

genetic effect was used to compute approximated EBVs for genotyped animals. The 

Spearman rank correlation between these approximated EBVs and the actual EBVs is 

recorded for each type of approximation to assess re-rankings of animals due to the use of 

approximations. The reliability of approximated and actual EBVs are also computed. 

Eventually, the distance norm N between a matrix and its approximation is computed for 

each approximation of A22
!1  (N was introduced in Chapter IV). 

As A22  is computed and used one column at a time in the implementation of the 

SP algorithm, the recorded computing times cover two operations: computation of A22  

and computation/approximation ofA22
!1 . 

For each type of approximations (CF, RCF, SPG and RSP algorithms), the ranges 

of approximation parameters (close-family threshold(s), number of generations to extract 

and maximum number of branches to search) were limited to relevant approximations 

only. Each A22
!1  was also obtained using the Fortran 95 subroutine DKMXHF by K. 

Meyer (University of New-England, Australia). 

All computations were made on a Intel® Core™ i7 computer with 12 computing 

units (clock speed: 3.20 GHz; RAM: 64 Gbytes). Results for computing times and 

memory requirements are given in Table 19 and results for quality of approximation in 

Table 20. 

Results 
In Table 20, one may consider that an approximation is accurate at a first level 

(Spearman correlation above 99%, what matches with a norm N less than 1E-2) or at a 

second level (Spearman correlation above 99.5%, what matches with a norm N less than 

5E-3). First level of approximation accuracy happens with CF when p=010, with RCF 

when p1=0.10 and p2=0.01, with SPG when g=2 or more and with RSP when k=4 or more. 

In regard to computing time for the actual inverse (DKMXHF and SP algorithms in Table 

19), computing times by RCF are prohibitive and those using SPG when g=2 or more are 

in the same range as the actual inverses. Therefore, for a first level approximation, the 

challenge is between CF (when p=0.10) and RSP (when k=4). Second level of 

approximation accuracy challenges computing time of the actual inverse only with RSP, 

when k=5. 



  

Ta
bl

e 
19

 C
om

pu
tin

g 
re

qu
ir

em
en

ts
 o

f d
iff

er
en

t a
lg

or
ith

m
s 

fo
r 

co
m

pu
tin

g 
or

 a
pp

ro
xi

m
at

in
g 

th
e 

in
ve

rs
e 

of
 A

22
. C

om
pu

tin
g 

tim
es

 
(in

 m
in

ut
es

) 
an

d 
m

ax
im

um
 r

eq
ui

re
d 

ra
nd

om
-a

cc
es

s 
m

em
or

y 
(in

 G
by

te
s)

 f
or

 c
om

pu
tin

g 
or

 a
pp

ro
xi

m
at

in
g 

th
e 

in
ve

rs
e 

of
 4

 d
iff

er
en

t 
or

de
rs

 o
f 
A
22

 u
si

ng
 d

iff
er

en
t a

lg
or

ith
m

s, 
as

 w
el

l a
s t

he
 p

er
ce

nt
ag

e 
of

 e
le

m
en

ts
 tr

ea
te

d 
as

 z
er

o 
in

 th
e 

co
m

pu
te

d 
(a

ct
ua

l o
r a

pp
ro

xi
m

at
ed

) 
in

ve
rs

e.
 

Si
ze

 
 

D
K

M
X

H
F

 
SP

 

C
F

 
R

C
F

 
SP

G
 

R
SP

 

p=
0.

20
 

p=
0.

10
 

p 1
=

0.
10

 
p 2

=
0.

01
 

g=
0 

g=
1 

g=
2 

g=
3 

k=
2 

k=
3 

k=
4 

k=
5 

4,
00

0 

Ti
m

e 
0.

26
7 

0.
64

9 
0.

02
2 

0.
03

3 
0.

73
9 

0.
00

3 
0.

28
3 

0.
49

1 
0.

56
8 

0.
02

5 
0.

03
2 

0.
04

3 
0.

07
2 

M
em

or
y 

0.
06

6 
2.

27
9 

0.
14

7 
0.

20
0 

0.
26

2 
0.

12
7 

0.
22

0 
0.

25
0 

0.
25

7 
0.

01
8 

0.
01

8 
0.

02
2 

0.
06

2 

%
0 

- 
43

.1
42

 
99

.6
42

 
85

.8
05

 
60

.0
27

 
99

.9
74

 
65

.1
78

 
48

.2
60

 
44

.1
92

 
99

.8
91

 
99

.0
50

 
95

.2
39

 
79

.7
84

 

8,
00

0 

Ti
m

e 
2.

09
5 

4.
79

1 
0.

06
9 

0.
18

6 
4.

23
5 

0.
01

0 
2.

62
2 

4.
00

8 
4.

52
1 

0.
07

8 
0.

10
3 

0.
15

9 
0.

44
2 

M
em

or
y 

0.
25

5 
5.

27
5 

0.
75

3 
0.

82
4 

1.
03

1 
0.

50
2 

0.
91

5 
1.

00
2 

1.
02

5 
0.

03
8 

0.
04

9 
0.

09
5 

0.
29

7 

%
0 

- 
42

.4
08

 
99

.4
65

 
83

.2
88

 
61

.4
41

 
99

.9
87

 
59

.4
49

 
46

.3
41

 
43

.1
07

 
99

.8
97

 
98

.5
94

 
92

.4
23

 
74

.5
37

 

16
,0

00
 

Ti
m

e 
17

.1
95

 
36

.5
13

 
0.

25
2 

1.
85

6 
71

.9
66

 
0.

04
5 

22
.8

69
 

32
.5

82
 

35
.1

94
 

0.
25

2 
0.

36
9 

0.
75

7 
3.

82
8 

M
em

or
y 

1.
00

6 
9.

31
0 

3.
00

6 
3.

25
3 

4.
44

0 
2.

00
4 

3.
72

7 
3.

99
5 

4.
05

1 
0.

13
6 

0.
19

6 
0.

45
7 

1.
47

2 

%
0s

 
- 

43
.6

82
 

99
.2

14
 

80
.5

48
 

62
.2

82
 

99
.9

93
 

56
.7

01
 

46
.5

25
 

44
.4

58
 

99
.8

99
 

97
.9

90
 

89
.9

29
 

70
.3

31
 

32
,0

00
 

Ti
m

e 
14

6.
95

6 
30

9.
77

3 
0.

88
3 

20
.4

45
 

73
2.

86
8 

0.
29

4 
20

6.
48

3 
28

0.
59

1 
29

9.
16

2 
0.

87
9 

1.
61

3 
4.

63
5 

44
.5

29
 

M
em

or
y 

4.
00

9 
42

.9
51

 
12

.0
14

 
12

.6
85

 
17

.5
53

 
8.

03
2 

33
.7

23
 

34
.4

92
 

34
.6

72
 

0.
52

7 
0.

84
2 

2.
09

6 
5.

90
4 

%
0 

- 
47

.8
03

 
98

.9
23

 
78

.5
70

 
63

.3
55

 
99

.9
96

 
57

.4
14

 
50

.0
58

 
48

.3
47

 
99

.8
94

 
97

.3
14

 
88

.0
10

 
68

.6
81

 

A
pp

ro
xi

m
at

io
ns

 p
ar

am
et

er
s:

 p
 (C

F)
 is

 th
e 

cl
os

e-
fa

m
ily

 th
re

sh
ol

d;
 p

1 a
nd

 p
2 (

R
C

F)
 a

re
 re

sp
ec

tiv
el

y 
th

e 
th

re
sh

ol
d 

of
 th

e 
fir

st
 a

nd
 se

co
nd

 ro
un

ds
 o

f r
ec

ur
si

on
; g

 (S
PG

) i
s t

he
 

nu
m

be
r o

f e
xt

ra
ct

ed
 g

en
er

at
io

ns
 o

f n
on

-g
en

ot
yp

ed
 a

nc
es

to
rs

 o
f g

en
ot

yp
ed

 a
ni

m
al

s;
 k

 (R
SP

) i
s t

he
 m

ax
im

um
 n

um
be

r o
f s

ea
rc

he
d 

pe
di

gr
ee

 b
ra

nc
he

s. 



 

 

Ta
bl

e 
20

 Q
ua

lit
y 

of
 a

pp
ro

xi
m

at
io

n 
of

 t
he

 in
ve

rs
e 

of
 A

22
 b

y 
di

ffe
re

nt
 a

lg
or

ith
m

s. 
Sp

ea
rm

an
 r

an
k 

co
rr

el
at

io
ns

 (
ρ)

 a
nd

 r
el

ia
bi

lit
ie

s 
(R

EL
) 

of
 a

ct
ua

l 
an

d 
ap

pr
ox

im
at

ed
 E

B
V

 f
or

 4
 d

iff
er

en
t 

nu
m

be
rs

 o
f 

ge
no

ty
pe

d 
an

im
al

s 
us

in
g 

di
ff

er
en

t 
al

go
rit

hm
s, 

as
 w

el
l 

as
 t

he
 

di
ff

er
en

ce
 n

or
m

 N
 b

et
w

ee
n 

th
e 

ac
tu

al
 a

nd
 a

pp
ro

xi
m

at
ed

 in
ve

rs
es

 o
f 
A
22

. 

Si
ze

 
 

A
ct

ua
l 

in
ve

rs
e 

C
F

 
R

C
F

 
SP

G
 

R
SP

 

p=
0.

20
 

p=
0.

10
 

p1
=

0.
10

 
p2

=
0.

01
 

g=
0 

g=
1 

g=
2 

g=
3 

k=
2 

k=
3 

k=
4 

k=
5 

4,
00

0 

ρ 
(%

) 
10

0 
97

.6
1 

99
.4

3 
99

.8
3 

94
.2

6 
98

.6
6 

99
.8

0 
99

.9
6 

96
.8

1 
98

.6
0 

99
.1

7 
99

.6
8 

RE
L(

%
) 

33
.2

4 
32

.1
1 

32
.7

7 
33

.0
5 

31
.2

3 
32

.6
1 

33
.0

6 
33

.2
3 

31
.5

2 
32

.5
8 

32
.5

6 
32

.8
2 

N
  

0 
0.

02
3 

0.
00

8 
0.

00
4 

0.
07

1 
0.

00
9 

0.
00

2 
0.

00
1 

0.
02

5 
0.

01
3 

0.
00

7 
0.

00
4 

8,
00

0 

ρ 
(%

) 
10

0.
00

 
97

.9
7 

99
.5

0 
99

.8
0 

93
.1

4 
99

.2
4 

99
.8

6 
99

.9
7 

97
.3

4 
99

.0
0 

99
.4

9 
99

.7
7 

RE
L(

%
) 

34
.5

2 
33

.2
8 

34
.2

5 
34

.3
9 

30
.3

5 
34

.1
7 

34
.3

9 
34

.5
1 

32
.7

2 
33

.9
5 

34
.1

1 
34

.3
0 

N
  

0 
0.

02
2 

0.
00

8 
0.

00
4 

0.
08

0 
0.

00
8 

0.
00

2 
<0

.0
01

 
0.

02
2 

0.
01

2 
0.

00
6 

0.
00

3 

16
,0

00
 

ρ 
(%

) 
10

0.
00

 
97

.4
0 

99
.4

3 
99

.7
9 

91
.2

1 
98

.4
7 

99
.7

3 
99

.9
6 

96
.3

1 
98

.5
0 

99
.3

4 
99

.7
8 

RE
L(

%
) 

37
.1

4 
35

.5
4 

36
.7

8 
37

.1
5 

30
.9

8 
36

.2
5 

37
.0

6 
37

.1
7 

34
.7

6 
36

.2
1 

36
.8

0 
37

.1
1 

N
  

0 
0.

01
9 

0.
00

7 
0.

00
4 

0.
08

8 
0.

00
7 

0.
00

1 
<0

.0
01

 
0.

02
0 

0.
01

0 
0.

00
5 

0.
00

3 

32
,0

00
 

ρ 
(%

) 
10

0.
00

 
97

.9
2 

99
.5

3 
99

.8
1 

90
.3

4 
99

.0
3 

99
.8

4 
99

.9
7 

96
.9

6 
98

.9
3 

99
.5

5 
99

.8
3 

RE
L(

%
) 

38
.1

2 
36

.6
5 

37
.8

6 
38

.0
0 

31
.0

9 
37

.4
3 

38
.0

0 
38

.0
9 

35
.8

9 
37

.4
4 

37
.8

6 
37

.9
9 

N
  

0 
0.

01
6 

0.
00

7 
0.

00
3 

0.
09

1 
0.

00
5 

0.
00

1 
<0

.0
01

 
0.

01
6 

0.
00

8 
0.

00
4 

0.
00

2 

A
pp

ro
xi

m
at

io
ns

 p
ar

am
et

er
s:

 p
 (C

F)
 is

 th
e 

cl
os

e-
fa

m
ily

 th
re

sh
ol

d;
 p

1 a
nd

 p
2 (

R
C

F)
 a

re
 re

sp
ec

tiv
el

y 
th

e 
th

re
sh

ol
d 

of
 th

e 
fir

st
 a

nd
 se

co
nd

 ro
un

ds
 o

f r
ec

ur
si

on
; g

 (S
PG

) i
s t

he
 

nu
m

be
r o

f e
xt

ra
ct

ed
 g

en
er

at
io

ns
 o

f n
on

-g
en

ot
yp

ed
 a

nc
es

to
rs

 o
f g

en
ot

yp
ed

 a
ni

m
al

s;
 k

 (R
SP

) i
s t

he
 m

ax
im

um
 n

um
be

r o
f s

ea
rc

he
d 

pe
di

gr
ee

 b
ra

nc
he

s. 
 



CHAPTER VI 

120 

Discussion 
For these three different approximations (CF when p=0.10 and RSP when k=4 or 

k=5), the computing time ratios between the elapsed time for DKMXHF and the elapsed 

times for each approximation, for the 4 different orders of A22 , are plotted in Figure 24. 

 

Figure 24 Computing time ratios between computing the actual inverse using 
DKMXHF and the approximated inverse using 3 approximations (CF when the 
close-family threshold is set to 0.10 and RSP when the number of searched 
branches is limited to a maximum of 4 or 5), for 4 different orders of A22 . 

This figure shows that, for a comparable approximation, RSP (when k=4) is a 
better choice than CF (when p=0.10): the speed-up for having an approximation instead of 
the actual inverse increases up to ~31 times faster with the order of the matrix with RSP 
when k=4, whereas it slightly decreases for orders above 8,000 with CF when p=0.10. As 
explained above, CF algorithm makes two types of errors (discarding relevant 
contributors/considering non-contributing animals as contributors), whereas RSP only 
removes distant contributors, expected to have smaller contributions (see Figure 15). 
Therefore, as the order of the matrix increases, the number of animals considered as 
contributors keeps growing with CF whereas it stays stable with RSP, what would explain 
the greater computing times required by CF. In addition, the resulting approximation is 
~10% sparser using RSP when k=4 than CF when p=0.10. It may be worth to detail the 
elapsed time between the different operations when using the RSP algorithm. 
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For instance, here below are the proportions of total time (4.635 min; see Table 
19) covered by each operation to approximate inversion of a matrix of order 32,000 with 
RSP when k=4: 

- setting up the restricted sparsity pattern of T!1 : 10% of total time; 

- setting up the restricted sparsity pattern of A22
!1 : less than 1% of total time; 

- computing A22 : 14% of total time; 

- computing the contributions: 44% of total time; 

- adding the product of the vector of contributions to A22
!1 : 31% of total time. 

The last operation would be unnecessary if a rearrangement of equations avoids 

the use of the explicit A22
!1 . In our parallelized implementation, this operation is also 

critical: it demands more memory to avoid thread competitions when accessing the same 
element in memory. Circumventing this operation may therefore allow using more threads 
without requiring prohibitive amounts of memory. 

Memory requirements depend on the implementation: number of variables to store 

(e.g. only A22  and few working vectors in the case of DKMXHF vs. A22 , A22
!1 , T!1  and 

Tf
!1  in the case of RCF), storage type for each of these variables (sparse or dense; 

triangular or full) and percentage of zeros inA22
!1 . This latter factor (also shown in Table 

19) affects the required memory if the main variables (A22
!1 or A22 ) are stored sparse, e.g. 

as with the current implementation of RSP algorithm. When accounting for these three 
factors in each implementation, the memory requirements are the same for the different 
algorithms, except for SP algorithm. In that case, additional memory is required for 
storage of an important sparsity pattern. 

It might be interesting to relate on different points these algorithms to the work of 

Chow (2000) who introduces power of sparsified matrices to compute sparse approximate 

preconditioners. The approximate inverses proposed in this contribution follow the same 

scheme as the CF algorithm: an approximate sparsity pattern is computed retaining values 

of the original matrix upon a given threshold. Following the nomenclature in this paper, 

the RCF algorithm can be qualified as an adaptive procedure to produce an approximate 

inverse of A22 : a first approximation of the sparsity pattern is performed, then a 

minimization problem is solved, the initial pattern is updated and the process is repeated 

until the approximation is good enough. Eventually, the strategy followed by Chow 
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(2000) is similar to our strategy in that sense that it aims to reduce computations by a pre-

processing step in which an approximate sparsity pattern is computed. However, floating-

point operations are still required in that study during the pre-processing step. In contrast, 

the main advantage of RSP algorithm is that it does not involve floating-point operations 

in the pre-processing step that computes an approximate sparsity pattern. 

Conclusions 
The best strategy to approximate the inverse of A22  when the order of the matrix 

exceeds tens of thousands would be to use the RSP algorithm, limiting the number of 

searched pedigree branches to 4 or 5. The results also show that there is no need to extract 

more than 3 generations of non-genotyped ancestors of genotyped animals. For instance, 

using a pedigree including only 2 generations of non-genotyped ancestors should reduce 

memory and time required by the establishment of the approximated sparsity pattern 

without compromising the quality of approximation. 

Algorithms for determination of contributors in the 
specific case of G 

Since the rules that prevail for the computation of A22  (Henderson, 1976; Colleau, 

2002) are not the same as for G (VanRaden, 2008; Leutenegger et al., 2006; Bömcke and 

Gengler, 2009) , only the analogy between A22  and G might dictate to use the same 

(actual or approximate) sparsity pattern for both. The comparative study between 

approximation algorithms for the specific case of G is limited to the CF and RCF 

algorithms. Their use for this matrix was already introduced and discussed in Chapter III. 

However, no numerical tests were made in that chapter. 

Therefore, tests were conducted and results were compared with actual inversion 

using subroutine DKMXHF. Tests involved the 2,427 genotyped animals available in 
Walloon Region of Belgium. This population was introduced in Chapter V as “P2” (see 
details in Table 14). In order to assess the quality of approximation, phenotypes were 
simulated for genotyped animals using the method of Van Vleck (1994) and a ssGBLUP 
with an overall mean and 17,677 levels of genetic effect, each one matching one animal 
was used to estimate GEBV for the whole population. The same model was also solved 
with the actual inverse of G in order to compute Spearman rank correlations between the 
actual and approximated GEBVs for all animals in population as well as only for 
genotyped populations. The approximation parameters (thresholds) were chosen so that 
computing times were not prohibitive. 
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Results (Table 21) are not good: the best Spearman correlation (97.438%) is lower 
than 99% for GEBVs of genotyped animals. Spearman correlations for GEBVs of all 
animals are even worst. Moreover, finding the appropriate close-family threshold has a 
cost: it requires multiple trials, increasing the computing cost of these algorithms. 

Table 21 Computing requirements of CF and RCF algorithms for computing 
or approximating the inverse of G and quality of approximation of its inverse. 
Computing times (in seconds) and maximum required random-access memory (in 
Mbytes) for computing or approximating the inverse G for 2,427 animals, as well 
as the percentage of elements treated as zero in the approximated inverse and the 
Spearman rank correlations between GEBVs computed using approximated 
inverse and GEBVs computed using actual inverse, for all 17,677 animals in 
population (ρALL) and for 2,427 genotyped animals (ρGENO). 

 
Actual 
inverse 

CF RCF 

p=0.20 p=0.15 p=0.10 p=0.05 
p1=0.10 
p2=0.01 

Time 9.021 0.116 0.260 2.376 147.153 5.704 

Memory 70.100 70.704 71.452 76.448 141.428 93.740 

%0 - 94.908 80.232 21.726 0.337 67.277 

ρALL  (%) 100 83.527 69.522 60.561 66.270 74.198 

ρGENO  (%) 100 90.940 92.246 93.193 97.438 92.233 

 

In conclusion, these two algorithms are not suited at all for approximation of the 
inverse of G. Better approximations can be found through partition of the genotyped 
population between young and proven animals as in Misztal et al. (2014).  
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PERSPECTIVES 
AND 

CONCLUSIONS 
 
 
 
 
 
 
 
 
 
 
 
 

The achievement of this thesis provides three types of 
perspectives: perspectives of use of the developed algorithms and 
strategies, perspectives of future researches and perspectives for 
animal breeding. The last type goes beyond the framed objectives 
of the thesis and sketches potential benefits for breeders of 
research fields related to the thesis. Final conclusions are 
eventually drawn at the end of this chapter. 
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Perspectives of use of the proposed algorithms and 
strategies 

Use of the SP algorithm 
As shown in the comparative study here before, the SP algorithm sets up the full 

sparsity pattern of A22
!1  but is not helpful to reduce computations time compared to other 

algorithms. However, the SP algorithm is useful even as a stand-alone algorithm to study 

the structure of the population. Using it as a step prior to inversion or other computations 

involving A22  (e.g. factorization) reveals sparsity in the inverse matrix without 

prohibitive computational time (in our last implementation, the sparsity pattern of T!1  is 

returned within less than a minute for 50,000 animals). Having the sparsity pattern of A22
!1  

provides an additional clue for the choice of algorithm to perform the upcoming 

computations. The cases outlined in the comparative study were having close to 

denseA22
!1 , due to the way genotyped animals were chosen in the population and to the 

structure of this population. This might be no longer the case in other situations. 

Conversely, if the genotyped population is relatively small and A22
!1  is found dense by SP 

algorithm, then a classical inversion has to be preferred. Dependencies (however, without 

the value of the contribution) of breeding values between genotyped animals are also 

available through the use of the SP algorithm. 

Use of the RSP algorithm 
The most interesting prospective use of RSP algorithm would be to replace, in 

ssGBLUP, A22
!1  by an approximated A22

!1  that would require less time to be computed 

without compromising accuracy of GEBVs. Research work on that topic is currently in 

progress at the University of Georgia. Theoretical developments other than ssGBLUP also 

require A22
!1  (e.g. Vandenplas and Gengler, 2012) and might work with approximated 

inverses. 

Also, using an A22  made of recorded animals (in an equivalent model as in 

Chapter V) instead of a matrix A containing all animals in population may substantially 

reduce the number of equations for variance component estimation. Reduced animal 

model were already proposed (Quaas and Pollak, 1980; Quaas, 1988) but a model 

including only recorded animals and, therefore, the part of A containing  relationships 
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between those animals, was, to our knowledge, not developed so far. There are two 

constraints to such a model. Firstly, A22
!1  should be obtained at a low computational cost. 

Secondly, A22
!1  has to be as sparse as possible, since variance component estimation 

requires inversion of the left-hand side (LHS) of the mixed model equations (MME). 

These two constraints may be overcome by the use of the RSP algorithm. In order to 

improve sparsity, other animals than only recorded ones might be included in A22 . 

As an illustration, let us use a small data set provided by CONVIS s.c., and 

designed for variance component estimation (Arnould et al., 2014). This data set is made 

of repeated observations on 8,811 cows sharing a fully-extracted pedigree of 22,876 

animals. If A22  is made of the 8,811 recorded cows, the SP algorithm assesses the actual 

sparsity of its inverse as equal to 48.1% of null elements. Such A22  would be time-

expensive to invert. Moreover, the LHS of the MME of such a reduced model would be 

too dense to be easily inverted by sparse inversion (e.g. as in Misztal and Perez-Enciso, 

1993). If the top 1,000 non-recorded animals with the greatest number of offspring are 

added to A22 , then the order of A22  is 9,811 but the actual sparsity of its inverse is 98.8% 

of null elements. The time required for inversion is dramatically reduced whereas the 

sparsity degree is not yet high enough for sparse matrix inversion of the LHS. Using the 

RSP algorithm with k=5 increases the sparsity degree up to 99.9%, what is enough for 

sparse matrix inversion of the LHS. This illustrative example shows how the RSP 

algorithm could be used to decrease the order of the LHS of MME. In such case, a “full” 

model in which the additive genetic effect accounts for 22,876 rows and columns would 

be replaced by a “reduced” model in which the additive genetic effect accounts for 9,811 

rows and columns, however with an approximated inverse of its covariance matrix. 

It is eventually worth noting that a similar approach could be used to assess how 

genotyping few important animals could affect the sparsity of A22  (made, in this case, of 

genotyped animals). 
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Perspectives of future researches 

On the SP algorithm 
A first and main perspective of future research concerns the SP algorithm. Its 

exploration rules were empirically set up; no formal evidence of these rules was found. 

However, they were tested on many different pedigrees, with or without inbreeding, and 

were not falsified. Different trials were made to transfer the heuristic rules to a graph 

theory problem (as in Chow, 2000), but did not bring any results so far. Concerning the 

SP algorithm, researches should also test if some permutations of animals would make 

additional sparsity emerge. 

On the RSP algorithm 
The RSP algorithm is a simplification of the SP algorithm based on the view that 

the distance between a contributor and the animal it refers to affects the value of its 

contribution. Other factors may also affect these values. For instance, the number of 

equivalent contributors: if x contributors (instead of only one) are found by the same 

pedigree path (e.g. x half-sibs found only through the dam, without other connections to 

other ancestors), then the contribution of each of the x contributors is equal to the 

contribution that would have a single one divided by their number. Therefore, listing the 

different equivalent paths would produce a lower system to solve. Dividing a so-

computed contribution by the number of equivalent contributors would return the proper 

contributions. In addition, when a lot of contributors are found within the first searched 

branches in regard to those found in next searched branches, they explain most of the 

relationships of the animal. The search may thus be stopped once a sufficient number of 

contributors are found. 

On taking advantage of parallel computations 
Implementations (CF, RCF and RSP) in which the vector of contributions is 

computed independently can be parallelized. The end of Chapter IV already discussed this 

point. Moreover, parallelization was implemented in Chapter V for the RSP algorithm: in 

average, the computation of the approximation was sped up by 3 when using 4 threads. 

Nevertheless, the process required more random-access memory because the variable that 

stores the inverse was explicitly duplicated and reduced by the end of the parallel region. 

In addition, computing time required by the step of update of this duplicated inverse is not 

negligible. Computing times were recorded for both operations (computation of the vector 
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of contributions and update of the inverse) in our prototypic implementations: CPU times 

were close for both (the whole CPU-time is segmented in section Discussion of Chapter 

VI). Research efforts should therefore be put on modifying the equations that will further 

use A22
!1  in order to avoid update of the inverse, so that the only remaining computing 

bottle-neck would be the computations of contributions. 

On the issue of parallelization, Meyer and Tier (2013) recently showed the interest 

of Graphical Processing Units (GPU) for computing the inverse of G. For approximation 

of the inverse of A22  by the RSP algorithm, it would also be relevant to test the use of 

GPU since the linear systems to solve independently have low sizes (e.g. 790 equations on 

average for the case of 75,000 animals outlined in Chapter V). 

Perspectives for animal breeding 

In the frame of an increasing number of genotypes 
As mentioned in Chapter I, the growing number of genotyped animals increases 

the need for computations strategies (Hickey, 2013). These strategies include, in the case 

of G, approximations (Misztal et al., 2014) or higher computing resources (Meyer et al., 

2013). For this reason the RSP algorithm is helpful, even if it returns an approximation 

rather than the real inverses. As shown in the discussion of Chapter IV, the number of 

contributors is no more coupled to the order of the matrix once the order goes beyond 

~80,000 genotyped animals. We may thus expect the number of approximate contributors 

when using the RSP algorithm with k = 4 or k = 5 to follow the same trend. As a 

consequence, the RSP algorithm would become a very interesting way to avoid complete 

inversion of such very large A22 . 

In addition, the structure of the upcoming genotyped population will matter. As 

more families (both parents + offspring) will be genotyped in the future, A22  will become 

closer to A. The SP and RSP account for that by stopping exploration of pedigree if 

genotyped animals are reached in the two first searched branches (from animal to sire and 

to dam). However, it still has to integrate the fact that computations are reduced if full-

sibs (with non-genotyped parents) are genotyped. In such case, it can be easily shown that 

the vector of contributions of an animal is the vector of contributions of the full-sib times 

a factor plus a contribution for the full-sib. 
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In the frame of improved genetic evaluation systems 
As explained in Chapter I, two types of advances made national evaluations on a 

large scale (i.e. including several millions of animals, using an animal model rather than 

sire / sire-maternal-grand-sire models) possible, in the late 20th century: technological 

developments (availability of computer with higher resources, at a better prize) and 

methodological developments that eased setting up the evaluations (inversion techniques 

of relationship matrices, see Chapter II). Nowadays, the use of molecular information, as 

well as the growing size of number of evaluated traits, often requiring complex modelling, 

has increased the demand for both technological and methodological developments. The 

final output of this thesis is to ease computations linked to a particular case of a time-

consuming operation (inversion of A22 ). Reduced time for achieving computations would 

mean that evaluations can be more frequent and may also become continuous (e.g. as 

proposed in Misztal et al., 1991). Such an improvement would be highly profitable for 

breeders: decision-making would indeed be more efficient as frequently updated breeding 

values would be available. 

In the frame of multi-line evaluations 
The SP algorithm, as well as other algorithms arising from this one (SPG and 

RSP), is useful in the frame of multi-line evaluations. Indeed, this algorithm only uses the 

genealogical information to find out which genotyped animals do contribute to other ones, 

i.e. for a given genotyped animal, which other genotyped animals will impact its breeding 

value. In multi-breeds evaluation, breeds can easily be identified what allows to easily 

break the genomic dependencies over breeds, if needed. In multi-lines, however, these 

dependencies are not that obvious. For that reason, exploring the pedigree with the SP 

algorithm is useful to set up the sets of contributors for each animal and avoid additional 

computations. 

In the general frame of genomic selection 
The development of the algorithms presented in this thesis is, beyond their use, 

framed in the field of genomic selection. Therefore, the research led in the frame of this 

thesis, as well as discussions with peers and attendances to scientific workshops and 

conferences, was helpful to understand the challenges and opportunities that can be 

brought to different breeding areas by genomic selection. 
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A major opportunity brought by the “genomics” era is the use of the molecular 

information from the SNP to maintain genetic diversity through a better estimation of 

relationship and inbreeding coefficients. Using that “gross information” represented by 

SNP, the research has mainly be focusing these last years on selection, i.e. on obtaining 

better estimation of breeding values by including an additional source of information. The 

use for conservation purposes has been neglected. 

As outlined in an extension article (Faux et al., 2014), this extra-source of 

information can be useful when pedigrees are incomplete or missing. Some 

methodological developments, using algorithms described above and the ssGBLUP 

theory, showed that genomically-enhanced inbreeding coefficients could be easily 

computed for the dairy cattle population from Luxembourg (Faux and Gengler, 2014). 

For this population, access to the genomic information is therefore critical. Since 

milk composition traits are routinely recorded in Luxembourg (Arnould et al., 2012), the 

breeders from Luxembourg have access to phenotypes for novel traits that can be an 

“exchange currency” to obtain genotypes. By sharing genotypes with them, external 

collaborators could obtain GEBV on these novel traits for their animals. As shown in a 

short study on this topic (Faux et al., 2012), the 440 currently genotyped animals are not 

yet enough to improve significantly the reliability of breeding values. However, by a joint 

effort of genotyping more local cows (keeping access to these genotypes) and a more 

proactive strategy to promote the phenotypes, this could generate the needed phenotypes.  
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Conclusions 

We have proposed several algorithms that either set up, or approximate the 

sparsity pattern of A22  and G. Once set up, the (actual or approximate) sparsity pattern is 

used to compute the inverse of these matrices. If the actual sparsity pattern is known (only 

possible for the specific case of A22 ) then the inverse is computed by using the previously 

computed inverse to obtain the vector of contributions (Sherman-Morrison algorithm). If 

the sparsity pattern is approximate (as it was only the case for G using CF and RCF 

algorithms and as it was the case for A22  using different algorithms) then the inverse is 

computed by solving a linear system of lower size to obtain the vector of contributions. In 

both cases, the weighted product of the vector of contributions by its transpose updates 

the inverse. 

It was shown that using approximated sparsity patterns greatly help to reduce the 

time needed for computation of approximation of A22
!1 . Restricting the sparsity pattern to 

the first searched branches (RSP algorithm) returned the best approximations. If the 

number of searched branches is limited to 4, the approximation is up to 31 times faster 

than the actual inverse and does not greatly impact futures computations using the inverse. 

The approximation is even better if the number of searched branches is limited to 5, but 

then the approximation process is only 4 times faster than the actual inversion. 

Conversely, it was shown that the approximations proposed for the sparsity pattern 

of G and for its inverse were not sufficient to not impact computations of GEBVs using 

the ssGBLUP procedure. 

As the number of genotyped animals increases, approximations using the RSP 

algorithm should become more interesting as they take a reasonable advantage of the a 

priori knowledge of the population structure to set up an approximate sparsity pattern of 

A22
!1 . This algorithm may be improved to be even more efficient: fewer computations for 

better approximations should be possible. Moreover, it offers potentialities for variance 

component estimation. 
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