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In this article, we propose a robust methodology to select the most appropriate error distribution
candidate, in a classical multiplicative heteroscedastic model. In a first step, unlike to the traditional
approach, we don’t use any GARCH-type estimation of the conditional variance. Instead, we propose
to use a recently developed nonparametric procedure [30]: the Local Adaptive Volatility Estimation
(LAVE). The motivation for using this method is to avoid a possible model misspecification for the
conditional variance. In a second step, we suggest a set of estimation and model selection procedures
(Berk-Jones tests, kernel density-based selection, censored likelihood score, coverage probability)
based on the so-obtained residuals. These methods enable to assess the global fit of a given
distribution as well as to focus on its behavior in the tails. Finally, we illustrate our methodology on
three time series (UBS stock returns, BOVESPA returns and EUR/USD exchange rates).
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1. Introduction

Since the 2008 financial crisis, the literature faces a renewed interest in the choice of
an adequate error distribution, able to capture the skewness and excess kurtosis of
stochastic processes [see, among others 8, 12, 34, 36]. In this article, we propose a robust
methodology to select a distribution family in a classical multiplicative heteroscedastic
model. This model is defined by :

rt = σtzt, (1)

σ2
t = V ar(rt|Ft−1), (2)

zt ∼ Fz(·), (3)
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where rt is the daily return, σ2
t the conditional variance of rt and zt are i.i.d. ran-

dom variables distributed according to a cumulative distribution function Fz(.) with
E(zt|Ft−1) = 0 and E(z2

t |Ft−1) = 1, Ft−1 being the information set of all returns up to
t− 1.

In this context, Bollerslev [7] early emphasized the usefulness of nonnormal density
functions. Later, Bai et al. [1] also noticed that the error distribution needs to exhibit
strong excess kurtosis in GARCH models to ensure a theoretical unconditional kurtosis
coherent with empirical evidence. Other authors [19, 22] highlighted the importance
of the distribution assumption for the quality of Value-at-Risk (VaR) and expected
shortfall (ES) forecasts. Meanwhile, when modeling conditional variance parametrically
(e.g. with a GARCH model or one of its variants - see Francq and Zakoian [17] for a
review), resulting estimators relying on the normal law may suffer from weak efficiencies.
For example, Engle and Gonzalez-Rivera [15] showed that, for nonnormal data, the loss
of efficiency can be up to 84% when estimating parameters with a Maximum Likelihood
(ML) procedure based on the normal distribution.

These considerations lead researchers to propose alternative flexible probability den-
sity functions with heavy tails for zt in model (1) to take these issues into account. The
most common distributions are the Student’s law and its generalization, the skewed-t
distribution [16]. Its use in GARCH or EGARCH models considerably improves forecasts
[7, 22, 27]. Another well-known family of functions is the generalized error distribution
(GED).Christoffersen et al. [12] show its nice fitting characteristics on daily stock
returns for different GARCH-type models. Some studies also focus on the Generalized
Hyperbolic (GH) distributions, a five-parameters family of density functions, introduced
first by Barndorff-Nielsen [3]. Eberlein and Keller [14] and Bingham and Kiesel [6] note
the interesting goodness-of-fit (GOF) performance of these density functions for daily
stock returns. More recently, Stavroyiannis et al. [36] also propose to use the Pearson
type-IV distribution.

Nevertheless, the coexistence of so many distributions reflects the fact that few articles
concentrate on the comparison and the selection of an adequate distribution, despite
the large number of available ones. Moreover, most of articles on the subject study
this issue in the framework of GARCH-type models. Basically, the traditional approach
consists in testing the fit of specific distribution families using GOF tests on the
estimated innovations (i.e. ẑt = rt/σ̂t) obtained using a GARCH-type estimator of the
conditional variance [see, 29, for a detailed review]. But the drawback of this approach
is a possible misspecification error due to the parametric variance assumption. Indeed,
parametric variance models often exhibit a lack of flexibility: among others, Lamoureux
and Lastrapes [28] show that GARCH models are extremely sensitive to misspecified
structural breaks, Bali and Guirguis [2] point out that variance model misspecifications
can cause an overestimation of the kurtosis in the estimated residuals and Jalal and
Rockinger [24] emphasize the negative impact of a variance misspecification on the
estimation of tail-related risk measures. Consequently, all specification and validation
procedures based on these so-estimated residuals are very sensitive to the type of
variance model used. Besides, different distributional assumptions might not be rejected
by classical GOF tests. In these cases, AIC, BIC or HQC criteria can help identifying
the best assumption, but no formal procedure exists in our context.

This study suggest another approach, based on a two-step methodology. First, follow-
ing the work of Heuchenne and Van Keilegom [23], we propose to use a nonparametric
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estimation of the conditional variance, instead of a classical GARCH-type estimation.
This approach is a robust alternative that avoids the risk of a misspecified parametric
variance. More particularly, beyond standard regression technique [31, 37], Mercurio
and Spokoiny [30] developed a local constant model for the estimation of the conditional
volatility (LAVE), consisting of a moving average of past squared returns over time
intervals of varying lengths [25]. The advantages of this method are its ability to quickly
react to jumps occurrences and its interval selection procedure independent from the
true distribution of the error terms [8, 25]. Chen et al. [8] successfully applied this
technique in a multiplicative model of type (1)-(3) and showed its good performance in
one-day-ahead VaR forecasts.

Second, we suggest a set of estimation and model selection procedures for the error
distribution, assessing both the global fit and the fit in the tails. Instead of relying on
classical GOF tests like Chi-squared and Kolmogorov-Smirnov (K-S) tests (known for
their lack of power), or any other single measure of the fit, we suggest to adapt four
different statistics to our situation: kernel density-based selection test and Berk and
Jones [5] test for an assessment of the global fit; [13] weighted likelihood scores and
empirical risk level (ERL) tests to focus on the behavior in the tails. The finite sample
behavior of the proposed statistics are investigated in a simulation study.

Finally, we give an empirical illustration of our methodology on three daily returns
time series (EUR/USD exchange rate, BOVESPA index and UBS stock) where we
compare the Normal Inverse Gaussian (NIG), hyperbolic (HYP), skewed-t and the
Sinh-arcsinh distributions [26].

The rest of the paper is organized as follows: in Section 2, we present the LAVE
standardization technique and the different goodness-of-fit indicators used. In Section
3, we present the results of the simulation study, while Section 4 is devoted to the
presentation of the empirical study. We conclude and discuss in Section 5.

2. Method

2.1 Local Adaptive Volatility Estimation (LAVE)

To estimate the conditional variance (σ̂t) without any risk of misspecification, we suggest
to use the nonparametric LAVE technique [25, 30]. For all rt, t = 1, ..., n, we compute σ̂t
using It previous squared returns r2

t−1, ..., r
2
t−It :

σ̂t = (1/It)

It∑
i=1

r2
t−i, (4)

with It the local window length at time t. To select It, defined as an interval of homo-
geneity, we follow the step-by-step procedure detailed in Jeong and Kang [25], based
on a power transform of rt and a simple t-test (we have implemented this procedure in
MatLab, files are available upon request to the authors). Starting from model (1)-(3),
we consider that some γ > 0 exists such that,

|rt|γ = σγt |zt|γ = E|zt|γσγt + σγt (|zt|γ − E|zt|γ) = θt + σγt (|zt|γ − E|zt|γ), (5)
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where θt = E|zt|γσγt [25]. The null hypothesis of a constant variance on It implies a
constant trend θt = θIt for all t ∈ It. This trend can be approximated by the average of
|rt|γ over It :

θ̂It = (1/It)

It∑
i=1

|rt−i|γ ,

This estimation is used in a sequence of t-tests to select It as the largest interval of
homogeneity. The related asymptotic theory and the detailed hypothesis tests used can
be found in Jeong and Kang [25].

As explained previously, using nonparametric estimators also makes sense, since it is
impossible to know the exact structure of the volatility process. Moreover, Chen et al. [8]
show throughout simulations that GARCH model and the LAVE provide estimations of
similar quality for various kinds of variances and nonnormal innovations. This question
is beyond the scope of this paper but additional simulations are available upon demand.

2.2 Estimation and model selection procedures

We use the LAVE to obtain estimated innovations (ẑt). Then, we use both estimation
and model selection procedures, to assess the quality of a single distribution and to
compare two competing kind of distributions.

2.2.1 Goodness-of-fit of the whole distribution

First, we propose to use a GOF test that assesses the global fit of different density func-
tions candidates: the Berk-Jones test (5 and more recently, 38), based on the empirical
cumulative distribution function of the estimated innovations. We compute the likeli-
hood of each estimated innovation Ẑ = {ẑ1, ẑ2, ..., ẑn}, both under a tested parametric
hypothesis Fθ (an assumed parametric family under H0) and using the empirical cdf Fn
built on Ẑ. In the present situation, the B-J statistic is defined by:

Rn,Fθ = sup
x
n−1 log[

(
Fn(x)

Fθ̂(x)

)nFn(x)(1− Fn(x))

1− Fθ̂(x)

)n(1−Fn(x)

], (6)

where θ̂ is the maximum likelihood estimator (MLE) of θ under the assumed family Fθ.
We reject the parametric hypothesis if this statistic is too large.

This goodness-of-fit test provides an interesting assessment of the quality of the fit,
as it does not use any bandwidth parameter. Nevertheless, the limit distribution of this
statistic is only known for directly observable data. In our case, the innovations are
not observable and we work with estimated residuals obtained after a nonparametric
standardization. As explained by Heuchenne and Van Keilegom [23], the bootstrap is a
good solution to derive the bounds of the critical region for a statistic of interest and
to build hypothesis tests accordingly. Consequently, we apply the following parametric
bootstrap procedure to find the critical bound of the statistic, under the null hypothesis
that the innovations are Fθ distributed:

For i = 1, ..., N ,
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(1) Generate randomly n i.i.d. innovations Z∗i = {z∗i,1, ..., z∗i,n} from the parametric dis-
tribution Fθ̂.

(2) Multiply each resampled innovation by the corresponding estimated volatility σ̂t, t =
1, ..., n.

(3) We obtain R∗i = {r∗i,1, ..., r∗i,n}, a particular realization of the returns sample in the
bootstrap world.

(4) Estimate the conditional volatilities σ̂∗i,t by LAVE, t = 1, ..., n.

(5) We obtain Ẑ∗i = {ẑ∗i,1, ..., ẑ∗i,n}.

For each hypothesis to test, we obtain N resamples for each dataset leading to
N realizations of Rn,Fθ . The null hypothesis is rejected if the statistic computed on
the original sample is higher than the quantile 1−α of these realizations (one-sided test).

Second, we propose to use a statistic relying on the kernel density estimator of the
estimated residuals to determine which distribution displays the best fit. We compute the
bandwidth using the normal rule [35]. Based on that estimated density, we compute an
estimator of the integrated mean squared error between the true and the parametrically
estimated (fθ̂) densities (KIMSEfθ̂ hereunder). We use a nonparametric bootstrap
procedure this time to estimate this quantity:

For i = 1, ..., N ,

(1) Generate randomly n i.i.d. innovations from the historical distribution of the esti-

mated innovations Ẑ = {ẑ1, ẑ2, ..., ẑn}.
(2) Multiply each resampled innovation by the corresponding estimated volatility σ̂t.
(3) We obtain R∗i = {r∗i,1, ..., r∗i,n}, a particular realization of the returns sample in the

bootstrap world.
(4) Estimate the conditional volatilities σ̂∗i,t by LAVE, t = 1, ..., n.

(5) We obtain Ẑ∗i = {ẑ∗i,1, ..., ẑ∗i,n}.

Once again, we obtain N resamples for each dataset to compute KIMSEfθ̂ defined by:

KIMSEfθ̂ =
1

N

N∑
i=1

∫ +∞

−∞
(fθ̂∗i

(x)− f̂(x))2dx =
1

N

N∑
i=1

KISEifθ̂ , (7)

where f̂(x) the kernel density estimation built on the initial estimated innovations Ẑ,

fθ̂∗i
is the parametric estimation of the error distribution and θ̂∗i are the MLE based

on Ẑ∗i , i = 1, ..., N . For N sufficiently large, this quantity is approximately normally

distributed, given the initial sample Ẑ. Indeed, the bootstrap procedure ensures the
conditional independence between the KISEifθ̂ for i = 1, ..., N . If now the goal is to

compare two IMSEfθ̂j , j = 1, 2, (i.e. E[
∞∫
−∞

(fθ̂j (x) − f(x))2dx]) we can simply use the

following statistic D̄ for paired data:

D̄ =
1

N

N∑
i=1

[KISEifθ̂1
−KISEifθ̂2 ] =

1

N

N∑
i=1

Di, (8)

Indeed, taking differences makes now the Di, i = 1, ...N, are i.i.d. given Ẑ and conse-
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quently:

√
ND̄ → N(0, σ2

D), (9)

under the null hypothesis that IMSEfθ1 = IMSEfθ2 . Using the empirical boot-

strap variance of Di, σ̂
2
D, as an estimate of σ2

D, a simple standardization gives us

∆ = D̄/
√
σ̂2
D/N → N(0, 1) given Ẑ and if the observed |∆| ≥ Φ−1(1 − α/2), the null

hypothesis can be rejected with a test level α.

Notice that the spirit of this bootstrap procedure is different from the previous one.
Indeed, here we replicate the observed data to get an estimator of IMSEfθ̂ . For the B-J
test, we generate data from a given parametric null hypothesis to get estimators of the
critical bound of a statistic, under this hypothesis.

2.2.2 Goodness-of-fit in the tail of the distribution

As mentioned in the previous subsection, KIMSEfθ̂ and the B-J test both take into
account the fit of the whole distribution. In VaR modeling, we need to focus on a specific
quantile of the innovations distribution (let’s say of order p) and on the fit in the tail.
To measure the quality of the quantile estimation provided by the parametric method,
we first define qθ(p), as the quantile function of the density fθ (i.e. if a r.v. X ∼ fθ,
P (X ≤ qθ(p)) = p). The idea is to estimate the difference between p and so-named
empirical risk level (ERL) pθ̂ given by:

pθ̂ =
1

n

n∑
t=1

1(ẑt ≤ qθ̂(p)), (10)

where θ̂ are the MLE obtained from the initial sample Ẑ.

Again, we use the same bootstrap procedure as in the B-J test to obtain a bootstrap
estimation of the critical bounds (α level two-sided test) for the corresponding statistic
(pθ̂ − p). Then, we are able to test if the quantile of order p of the true innovations

distribution (F−1
z (p)) is significantly different from the quantile of the same order

for the assumed parametric distribution. In the latter case, the assumed parametric
assumption can be rejected. Conceptually, this test can be related to the coverage test
of Christoffersen [11], but applied in-sample on robust estimated innovations.

The weakness of this test is that it compares the quality of the fit of a particular
distribution with respect to the true (unknown) distribution, using only a specific
point of the estimated distribution. To compare the fit in the tail provided by different
candidates, we need a selection test (i.e. comparing two fits) that gives a particular
weight to the left tail of the distribution. Following that idea, we propose to use the
selection test of Diks et al. [13], based on a weighted Kullback-Leibler Divergence (KLD).
As explained in Diks et al. [13], we can test the relative accuracy of two candidate
conditional distribution of the returns, g1

t and g2
t , by taking the difference of their

weighted KLD, at each observable rt. This quantity can be estimated by the empirical
mean d̄wl of the weighted scores differences dwlt , t = 1, ..., n:
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d̄wl =
1

n

n∑
t=1

dwlt =
1

n

n∑
t=1

(Swl(ĝ1
t ; rt)− Swl(ĝ2

t ; rt)), (11)

with

Swl(ĝjt ; rt) = 1(rt ∈ A) log(ĝjt (rt)) + 1(rt ∈ Ac) log

∫
Ac

ĝjt (s)ds

 , j = 1, 2, (12)

where ĝjt is an estimator of gjt ,j = 1, 2, A is the region of interest for the fit and Ac its
complement. We propose to use two different regions of interest: the 5% first observations
and the 1% first observations (which are the classical test levels for VaR). The assumed

conditional distributions of the returns gjt are linked to the distributions of the innovations
fθj through the following relationship:

gjt (rt) =
1

σt
fθj (rt/σt), j = 1, 2. (13)

Parameters estimators for fθj are the same as the ones used in the previous tests (thus,
MLE obtained on the whole sample of estimated innovations) and σ̂t are computed using
the LAVE. The set of dwlt is not i.i.d. but using the following statistic,

T =
d̄wl√
σ̂2
n/n

, (14)

with σ̂2
n being a heteroscedasticity and autocorrelation-consistent (HAC) estimator of the

variance of
√
nd̄wl, Giacomini and White [18] demonstrate that this statistic is asymp-

totically normally distributed under very weak conditions (see this article and Wooldrige
and White, 1988, for more details). In particular, it allows using both para- and non-

parametric estimators in the computation of ĝjt . For σ̂2
n, we use the same HAC estimator

as in Diks et al. [13] and Giacomini and White [18]:

σ̂2
n = γ̂0 + 2

G−1∑
k=1

akγ̂k, (15)

where γ̂k is the lag-k sample autocovariance of the sequence of dwlt , ak = 1 − k/G,
k = 1, · · · , G − 1, are the Bartlett weights and G = bn1/4c (where bxc denotes the
integer part of x).

This statistic has some interesting properties. First, it is a relative measure of the
fit between two distributions, such that we don’t need the true unknown distribution
or a proxy of it. Second, this weighting scheme allows assessing the fit in the tail by
controlling the impact of the central observations on the statistic: the censoring of
the returns outside A allows ignoring the shape of the density function in this region.
Moreover, the second term of the censored score in (13) avoids a possible selection bias
if the tails’ thickness of the compared density functions are different [13].
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To summarize our approach, after the LAVE standardization, we propose to compute
the four different statistics presented in this section. B-J and pθ̂ statistics enable to reject

irrelevant distributions while we use KIMSE and d̄wl statistics in comparative tests to
determine if some distributions have a significantly higher GOF performance than the
others. Moreover, we assess both the global fit (with the B-J and the KIMSE statistics)
and the fit in the tail (with pθ̂ and d̄wl statistics).

3. Practical implementation and simulations

In this section, we study the finite sample behavior of the proposed methodology. Due
to the large number of observations needed and the bootstrap procedure, the computa-
tion time is quite extensive. Therefore, we only focus on three different data generating
processes (DGP), combining either GARCH(1,1) or GJR-GARCH(1,1,1) [20] conditional
variances with innovations distributed according to some usual parametric distributions.

3.1 Simulation set-up

We make use of MatLab 2013a for all implementations. We use equations (1) to (3) to
generate the data, with equation (2) being either a GARCH(1,1) process:

σ2
t = ω + αr2

t−1 + βσ2
t−1 (16)

or a GJR-GARCH(1,1,1) process:

σ2
t = ω + αr2

t−1 + 1(rt−1 ≤ 0)φr2
t−1 + βσ2

t−1 (17)

We assumed three different distributions for zt:

zt
iid∼ T (ν), (18)

zt
iid∼ skewed− t(λ, ν), (19)

zt
iid∼ hyperbolic(θ1, θ2, θ3, θ4), (20)

with their two first moments equal to 0 and 1 respectively. We consider the three
following DGP:

DGP1: GARCH(1,1) with ω = 10−4, α = .05 and β = .92 combined with T-distributed
zt where ν = 5.4.

DGP2: GJR-GARCH(1,1,1) with ω = 10−4, α = .05, φ = .1 and β = .8, combined
with skewed-t-distributed zt where λ = 0.9 and ν = 7.
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DGP3: GARCH(1,1) with ω = 10−4, α = .20 and β = .75 combined with hyperbolic
(HYP) distributed zt where θ = [4.5329, 3.4371, 0.3263,−1.05].

Notice that all distributions parameters are chosen to exhibit leptokurtosis, and
even asymmetries for the skewed-t and hyperbolic cases. Also, the sum of the variance
parameters is close to unity to mimic typical GARCH parameters found on empirical
data (see, e.g., Chen and Lu [10]).

For each DGP, we generate B = 1000 samples of size n = 600. For the computation of
the LAVE, we set in equation (5), m0 = 5 and γ = .5 [see 25]. In addition, in this last
paper, the level of the multiple test is 0.05 (at iteration k - (k+ 1)m0 data under study-
it is divided by k to obtain the level of each separate test). To improve the computing
time, It is bounded to a size of 200 observations. Data from time t = 1 to t = 200
are used as initial training set. We compare the true distribution (Student-t, skewed-
t or hyperbolic) to an alternative distribution having the same number of unknown
parameters (i.e. Student-t to GED distributions, skewed-t and hyperbolic distributions
to NIG distributions). Parameters estimates are obtained via MLE on the estimated
residuals rt/σ̂t. Based on these estimators, we compute the four different measures of the
fit (Berk-Jones statistic, KIMSE, d̄wl and pθ̂) for each sample and for each parametric
hypothesis, using equations (6), (7), (10) and (11) proposed in Section 2. When the
bootstrap is needed, we generate N = 200 resamples. Notice also that due to the small
size of our samples, we compute the ERL statistics with levels of p equal to 30%, 20%,
15% and 10%. In the KLD tests, we use censoring scores at 20%, 10%, 5% and 1% levels.
We also repeat the corresponding selection tests with samples of size 1000, 2000 and
3000. The test level of all tests is set at 5%.

3.2 Simulation results

We observe that, for DGP 2 and DGP 3, the Berk-Jones tests exhibit satisfactory powers
(Table 1). The tests seem a bit conservative, though, probably due to the small size of
our samples (the type-I error is too low). For DGP1, the tests are not very powerful
against the alternative considered. It is not surprising, as Student distributions can be
well approximated by GED distributions. This low level of rejections indicates that the
GED distribution fits quite well the true Student distribution.

Concerning the ERL tests, the performance is mixed. For the second DGP, we reject
the alternative hypothesis quite often for all values of p tested. However, the type-I
errors are a bit too high for DGP1 and DGP3. It illustrates a weakness of this test:
because we use a single point of the distribution to reject or not a parametric hypothesis,
the test tends to over-reject and to not be powerful. Especially, in the case of the third
DGP, these results could be attributed to the parameters estimation of the hyperbolic
distribution. Indeed, as noted by [4], the likelihood functions of hyperbolic distributions
are quite flat. It could cause to provide parameters estimates that fits very well the
centre of the distribution at the expense of the tails. In our case, this effect could be
also reinforced by the filtering process of the variance and the bootstrap procedure.

Using the KIMSE statistic (Table 2), we are able to detect significant differences
between the true distributions and the alternative ones in all DGP. This leads us to
select most of the time the true distribution. Once again, for the first DGP, we detect
a difference in favour of the true distribution only 14.4% of the time. These values are
obviously affected by the alternative tested. Nevertheless, these tests are quite useful to
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detect the distribution that best fits the whole distribution of the data (obviously, the
true one). We do not observe any spurious powers.

The tests based on the censored likelihood score (Table 2) bring a different perspective
to the analysis. Using an uncensored statistic, this test selects quite adequately the
true distribution, especially when the size of the sample increases (by going from 600
observations to 1000, we double the power of the test for the two first DGP). Using the
censoring statistics, we observe that in the case of medium-size samples (i.e. 600 and
1000 observations) and high censoring levels, we select more often the true distribution.
Thus, the censoring procedure seems to improve the detection of differences for these
sample sizes.

However, we select also more often the alternative distribution, comparing to the
test with the uncensored statistic (and that holds for all censoring levels and sam-
ple sizes tested). In fact, even if these results seem counter-intuitive at first, they
are not that surprising, as nothing guarantees that the true distribution has the
highest censored likelihood score: indeed, we obtain estimations of the parameters
using ML techniques based on the whole sample. Therefore, if we use the true
distribution, it tends to guarantee an estimated distribution with the lowest possible
Kullback-Leibler divergence, but not one with the highest censored likelihood score.
When the alternative is selected, it means that, due to the parameters estimation, this
alternative has a significantly higher likelihood score in the selected tail than the true
distribution with estimated parameters. A possibility to avoid these feature would have
been to estimate the parameters using censored MLE. We would have had presumably
lower selection ratios of the alternative, but also a less good estimation of the parameters.

For large samples (i.e. 2000 and 3000 observations), the selection ratios of the true
distribution tend to increase at all censoring levels. It is clearly less obvious for the
alternative. We also notice that for the second and third DGP, the selection ratios of the
true distribution stay above the ones of the alternative, for all levels tested and all sample
sizes. For the first DGP, at the censoring level of 10%, the selection ratio of the alternative
is higher for a sample size of 600 but this effect disappears when the sample size increases.

Some could argue that working with sample sizes of 2000 or 3000 observations is
unrealistic, but because we use the LAVE instead of parametric estimators of the
conditional variances, we do not dread a possible parameter instability. Therefore we
can make a full use of the available data (e.g., for stock returns, 10 years of data is not
unusual).

Hence, in the perspective of selecting the distributions that best fit some parts of the
data, these tests seem to exhibit interesting properties. In particular, this simulation
study reveals the necessity to combine different measures of the fits to detect the various
differences among the hypotheses tested. For instance, if the Berk-Jones tests and the
ERL tests lack of power to reject the GED hypothesis, the KIMSE statistics and the
censored likelihood scores could prove useful. Also, it shows that the censored likelihood
scores (especially if we are far in the tail) often improve the selection of the true distri-
bution compared to the uncensored ones. The simulations highlight the need for large
samples too.

For the KIMSE tests, the figures in the first column indicate the proportion of samples
where the alternative has a significant lower KIMSE than the true estimated distribu-
tion. The second column indicates the proportion of samples where the true estimated

10



June 5, 2014 Journal of Applied Statistics A*new*methodological*approach*for*error*distributions*selection*in*Finance*-
*final*280514

(a) (b) (a) (b)
pθ̂(0.1) DGP1 6.7 8.2 pθ̂(0.15) DGP1 5.6 6.7

DGP2 4.7 12.6 DGP2 3 20.6
DGP3 6.4 9.4 DGP3 6.3 11.7

pθ̂(0.2) DGP1 5.1 6.2 pθ̂(0.30) DGP1 5.7 5.8
DGP2 2.9 38.3 DGP2 1.6 13.9
DGP3 6.1 13.5 DGP3 5.3 15.8

Berk-Jones DGP1 4.6 3 - - -
DGP2 2.5 14 - - -
DGP3 4 9.6 - - -

Table 1. Estimated type-I errors (column (a)) and powers (column (b)) of the Berk-Jones tests and the ERL
tests at four different levels (30%,20%, 15% and 10%).

size censoring level DGP1 (a) (b) DGP2 (c) (d) DGP3 (e) (f)
600 KIMSE 14.4 0 31.2 0.1 21.2 0

100% 19.7 0.3 40.3 0.3 11 0.1
20% 29.5 21 49.8 5.2 44 23.1
10% 13.7 17.7 55.7 13 41.9 21.9
5% 19.2 11.6 65 14.6 47 24.3
1% 36.9 8.6 65.9 24.7 53 25.4

1000 100% 36.7 0.2 76.8 0.1 18.5 0.3
20% 38.6 22.5 57.8 6.9 57.8 23.6
10% 26.2 17.7 67.6 14.6 55.5 23.4
5% 29.5 13.1 71.1 17.6 56.3 23.6
1% 49.1 8.7 69.9 25.7 54.7 25.1

2000 100% 70.9 0.1 97.2 0 29 0.3
20% 48.8 23.9 64.7 7.2 60.2 28
10% 46.2 21.6 73 16 60.8 24.9
5% 51.2 16.9 75.8 18.8 61.7 23.3
1% 61.3 7.1 73 23.2 59.9 27.2

3000 100% 86.8 0 99.8 0 37.5 0.1
20% 51.2 25.9 69 8.8 66.2 25.4
10% 55.2 22 76.1 16.8 66.3 22.9
5% 57.7 15.4 77.2 17.3 65.3 21.9
1% 63.3 8.7 74.1 23.4 60.2 28.9

Table 2. Rejection proportions of the KIMSE tests and the Kullback-Leibler divergence (KLD) tests for the three

DGP, using no censoring, 20%, 10%, 5% and 1% censoring levels. Column (a), (c) and (e) indicate the proportion
of samples where the true distribution has a significantly higher censored likelihood score, whereas column (b), (d)

and (f) indicate the proportion of samples where the wrong distribution has a significantly higher likelihood score.
For the KIMSE tests, the figures in columns (a), (c) and (e) indicate the proportions of samples where the KIMSE
computed with the true model is significantly higher than with the wrong model. The figures in columns (b), (d)

and (f) indicate the proportions of samples where the KIMSE computed with the wrong model is significantly

higher than with the true model. For the KLD tests, we also use samples of 1000, 2000 and 3000 observations.
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distribution has a significant lower KIMSE than the alternative.

4. Empirical illustration

In this section, we illustrate the proposed methodology on three different time series,
where we test four different distributions for the innovations. Indeed, recent works em-
phasize the flexibility of GH subfamilies [8, 9, 33] and skewed-t distributions [22, 27],
but other alternatives exist, like the sinh-arcsinh (SHASH) distributions [26]. Therefore,
we will compare the NIG, the HYP (i.e. subfamilies of the GH distributions for λ equal
respectively to −1/2 and 1), the skewed-t [21] and the SHASH distributions. Details
concerning the GH and the skewed-t alternatives can be found in Appendix B. In the
next subsection, we present the important features of the SHASH distributions.

4.1 The Sinh-arcsinh distribution

This family of density functions has four parameters (ξ, η, ε, δ), with easily interpretable
meanings (location, scale, asymmetry and kurtosis) and the normal law as a central par-
ticular case (with values of the parameters being respectively 0, 1, 0 and 1). Moreover, we
have analytical expression for the cdf, the quantile function and the moment generating
function, that allow a quick and straightforward implementation (especially for random
number generation). Besides, its flexibility allows for asymmetry and heavier as well as
lighter tails than the normal law (a feature not possible with the skewed-t distributions).
See Figure 1(a) and 1(b) for shapes of the SHASH with various sets of parameters. Also,
these functions may overcome fitting difficulties met by GH subfamilies (see Figure 2)
and avoid to deal with a flat likelihood function [4], responsible for optimization problems
[32]. In their original paper, Jones and Pewsey Jones and Pewsey [26] showed that the
SHASH distributions provide better fits than the normal and the Student’s laws for
non-mesokurtic data (the strengths of glass fibres and the ice floe snow depth). However,
they did not use any financial data nor did they compare the SHASH distributions
to others four-parameters families of functions. In fact, to the best of our knowledge,
this distribution has never been used in Finance but only in Engineering. Therefore,
we will compare its performance to the NIG, the hyperbolic (HYP) and the skewed-
t distributions on financial data, using the methodology described in the previous section.

Analytically, the probability density function (pdf) of a variable X following a SHASH
distribution with parameters ξ, η, ε, δ is given by:

fξ,η,ε,δ(x) = η−1Zξ,η(x)−1/2δCε,δ((x− ξ)η) exp(−S2
ε,δ((x− ξ)/η)/2), (21)

where

Zξ,η(x) = (2π(1 + ((x− ξ)/η)2)), (22)

Cε,δ(x) = cosh(δ sinh−1(x)− ε) = (1 + S2
ε,δ(x))1/2, (23)

Sε,δ(x) = sinh(δ sinh−1(x)− ε). (24)

Skewness increases with increasing ε, positive skewness corresponding to ε > 0. The kur-
tosis decreases with increasing δ, δ < 1 yielding heavier tails than the normal distribution.
Equations of the two first moments can be found in Appendix B.
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Figure 1. Shapes of SHASH densities (a) with ξ = 0, η = 0.6, ε = −0.1 and heavier tails than the Normal law

(δ < 1, ranging from 0.85 to 0.45) and (b) with ξ = 0,η = 1, δ = 0.95 and positive skewness (values of ε ranging

from 0 to 1).
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Figure 2. Solid line and dotted: SHASH functions with η and δ parameters equal to 1.2 (resp. 1.4) and 0.5.
Dashed and dashed-dotted: hyperbolic distributions with parameters obtained via MLE on samples of sinh-arcsinh

distributed random variables (with the same η and δ as above). For this kind of stochastic process, no hyperbolic
distribution seems able to provide an good fit.

4.2 Data

We applied the proposed methodology on three different time series :

(1) Stock returns data : UBS daily returns for the period 10 June 2003 - 7 June 2013,
(2) Stock index data : BOVESPA daily returns for the period 4 January 1999 - 12 April

2012,
(3) Exchange rate data : EUR/USD daily returns for the period 15 June 2000 - 10

October 2012.

The prices have been extracted respectively from www.nasdaq.com,
www.finance.yahoo.com and www.federalreserve.gov. We compute the daily log-
returns from these prices (rt = log(Pt/Pt−1)). Samples have respectively 2517, 3282 and
3215 observations. Notice also that UBS prices have been adjusted for the 2:1 stock
split of 10th July 2006. A first exploratory analysis reveals also that an AR(1) (with no
significant intercept) is suitable to model the conditional mean of UBS stock returns.
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Thus, before applying the proposed methodology, we correct this series by removing
its conditional mean using the estimated AR(1) parameters. For the other time series,
autocorrelations and partial autocorrelations are not significantly different from 0. We
also test for mean nonstationarity using augmented Dickey-Fuller tests with 21 lags.
The unit-root hypothesis is rejected at the 99% level for all series. Finally, a graphical
analysis indicates that we have series exhibiting heteroscedasticity (Figure 3) and high
significant autocorrelations of the squared returns at multiple lags, indicating that
equation (1) is suitable to model these returns. Graphs and detailed results of the tests
can be found in Appendix A.
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Figure 3. Daily stock returns of the AR(1) UBS residuals, the BOVESPA and the EUR/USD time series. Notice

that y axis have different scales.

4.3 Results

4.3.1 LAVE standardization

In the LAVE computation, we set m0 = 5, and γ = 0.5, as recommended in Chen
et al. [8] and Jeong and Kang [25]. Figure 4 shows the estimated conditional standard
deviations with this method and Figure 5 the residuals obtained after standardization.
Descriptive statistics of the residuals are presented in Table 5. As expected, the kurtosis
coefficients are higher than 3 and the skewness coefficients are lower than 0, indicating
leptokurtosis and negative skewness. The interval where the estimated innovations take
their values seems rather constant along the time, suggesting a correct standardization.
Estimated parameters for all time series and for the four distributions are listed in
Appendix B.

4.3.2 Fits comparisons

We use the estimated residuals to perform the tests described in Section 2. When the
bootstrap is needed, we run 1000 resamples. The Berk-Jones tests do not reject any
distribution tested (Table 6). It is not very surprising, because all distributions tested
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Figure 4. Conditional standard deviation estimations of the three time series using the LAVE technique with
m0 = 5, γ = .5 and the 200 first observations as training set.
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Figure 5. Scatter plots of the daily returns after standardization of the same time series (scales of the y axis are

different).

Descriptive statistics UBS BOVESPA EUR/USD
Skewness -0.7861 -0.6057 -0.1216
Kurtosis 10.6246 6.2410 9.3898

Table 3. Descriptive statistics for the residuals after LAVE filtering.

are quite flexible (they can all model asymmetries and leptokurtosis). If we stop our
analysis here, it is not easy to determine if some distributions could best fit the data.
Therefore, we compute the KIMSE statistic (Table 5 to 7) and we observe that:

• the skewed-t distribution has the lowest statistics for the three series,
• significant differences are detected, between the SHASH distribution and the other

ones, as well as between NIG and skewed-t distributions (Table 6),
• no difference is detected between NIG and HYP distributions.

Hence, it seems that skewed-t distributions provide the best fits for these datasets. At
the contrary, the SHASH distributions appear to provide the worst fits.

Nevertheless, until now we only focused on the goodness-of-fit of the whole distribu-
tion. Can we also detect differences between the goodness-of-fits in the tails? The results
of the tests based on the ERL statistic (pθ̂) with 5% and 1% quantiles (typical quantiles
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used for VaR computations), are displayed in Table 8. Globally, SHASH distributions
lead to a smaller number of rejections and provide the closest ERL to p most of the time.
More precisely, we identify the SHASH distribution as being the best to model the 5%
quantile for all time series (with the HYP distribution in the BOVESPA time series);
the NIG, the HYP and the SHASH distributions seem to be the most adequate distribu-
tions for the 1% quantile of the UBS, BOVESPA and EUR/USD time series respectively.

The results of the tests based on the censored likelihood scores are displayed in Table
9 and Table 10. If we compute the scores without censoring, results are similar to the
ones deduced from the KIMSE statistics (the SHASH distributions provide the worst fits,
skewed-t distributions provide the best fits). With the censoring at the 5% level, we can
conclude for the UBS series that the SHASH distribution provides a significantly higher
score (hyperbolic and skewed-t distributions have significantly lower scores). With the
censoring at the 1% level, skewed-t distributions appear to better fit the data for the
BOVESPA time series, whereas both skewed-t and NIG distributions better fit the UBS
time series. No significant differences can be detected for the scores of the EUR/USD
time series, indicating that all the distributions tested provide similar goodness-of-fits.

Rn,f UBS BOVESPA EUR/USD
SHASH 0.0063 0.0064 0.0050

NIG 0.0043 0.0035 0.0038
HYP 0.0055 0.0043 0.0036
SKT 0.0043 0.0030 0.0041

Table 4. B-J test statistics for the fits with SHASH, NIG, HYP and skewed-t (SKT) distributions. The 95%

quantile is obtained using 1000 resamples. * indicates a rejection at the 5% test level and ** a rejection at the 1%

test level. No rejection occurs.

KIMSE UBS BOVESPA EUR/USD
SHASH 0.0237 0.0133 0.0112

NIG 0.0145 0.0080 0.0060
HYP 0.0132 0.0083 0.0075
SKT 0.0088 0.0056 0.0037

Table 5. Values of the KIMSE for the fits with SHASH, NIG, HYP and skewed-t distributions.

∆ UBS BOVESPA EUR/USD
SHASH - HYP 2.9813** 2.7072** 1.3893
SHASH - NIG 3.6833** 3.1434** 2.8153**
SHASH - SKT 3.7630** 3.2454** 2.8430**

HYP - NIG -0.7755 0.4306 0.6504
HYP - SKT 2.7635** 2.6570** 1.4611
NIG - SKT 3.5642** 3.1717** 2.7049**

Table 6. Values of the ∆ statistics for the three time series. * indicates a rejection at the 5% test level and ** a

rejection at the 1% level.
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p-value of ∆ UBS BOVESPA EUR/USD
SHASH - HYP 0.0014 0.0034 0.0824
SHASH - NIG 0.0001 0.0008 0.0024
SHASH - SKT 0.0001 0.0006 0.0022

HYP - NIG 0.2190 0.3334 0.2507
HYP - SKT 0.0029 0.0039 0.0720
NIG - SKT 0.0002 0.0007 0.0034

Table 7. p-values of the ∆ statistics for the three time series.

pθ̂ expected coverage UBS BOVESPA EUR/USD
5% SHASH 0.0543 0.0590* 0.0583

NIG 0.0567 0.0607* 0.0632*
HYP 0.0562* 0.0590* 0.0615*
SKT 0.0609 0.0621* 0.0664*

1% SHASH 0.0142 0.0101* 0.0128
NIG 0.0132 0.0094* 0.0142
HYP 0.0151* 0.0094 0.0139
SKT 0.0161 0.0108* 0.0146

Table 8. Values of the ERL statistic at the 5% and 1% level. * indicates a rejection at the 5% test level (two-sided

test).

d̄wl UBS BOVESPA EUR/USD
SHASH-HYP -0.0074** -0.0042** -0.003*

5% 0.0050** -0.0017* -0.0018
1% 0.0019** -0.0011 -0.0017

SHASH-NIG -0.0114** -0.0049** -0.0037
5% 0.0001 -0.0018 -0.0024
1% -0.0031** -0.0014 -0.0024

SHASH-SKT -0.0152** -0.0057** -0.0050
5% 0.0041* -0.0027 -0.0039*
1% -0.0030** -0.0025* -0.0040

HYP-NIG -0.0040** -0.0008* -0.0007
5% -0.0049** -0.0002 -0.0006
1% -0.0050** -0.0003 -0.0007

HYP-SKT -0.0078** -0.0016* -0.002
5% -0.0009 -0.0009 -0.0021
1% -0.0049** -0.0014** -0.0023

NIG-SKT -0.0038** -0.0008 -0.0013
5% 0.0040** -0.0009** -0.0015
1% 0.0001 -0.0012** -0.0017

Table 9. d̄wl statistic between SHASH , HYP, NIG and skewed-t (SKT) density functions using no censored
likelihood scores (first line) and censored regions up to the 5% and 1% empirical quantiles. A positive sign indicates
that the first distribution of the label is the closest to the true distribution. * indicates a significant difference at

the 5% test level, ** at the 1% test level.
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d̄wl p-value UBS BOVESPA EUR/USD
SHASH-HYP 0.0000 0.0012 0.0388

5% 0.0000 0.0325 0.0925
1% 0.0000 0.0608 0.0951

SHASH-NIG 0.0000 0.0021 0.0658
5% 0.4707 0.0686 0.1024
1% 0.0000 0.0723 0.0989

SHASH-SKT 0.0002 0.0047 0.1008
5% 0.04 0.2505 0.0423
1% 0.0050 0.0164 0.0916

HYP-NIG 0.0033 0.0282 0.1831
5% 0.0000 0.3470 0.1295
1% 0.0000 0.1191 0.1086

HYP-SKT 0.0040 0.0426 0.1863
5% 0.2938 0.0679 0.1123
1% 0.0000 0.0018 0.0891

NIG-SKT 0.0097 0.0892 0.1923
5% 0.0000 0.0159 0.1061
1% 0.3860 0.0000 0.0813

Table 10. p-values of the standardized d̄wl statistic using the same censoring rules as above and HAC estimators

of the variance.

5. Conclusion

In this article, we contribute in two ways to the existing literature. First, we develop a
whole methodology to compare the GOF of different density functions unconditionally
on a parametric variance model. We propose a method to identify and select the
most appropriate error distributions in the framework of a classical multiplicative
heteroscedastic model. This methodology enables a GOF analysis robust to a model
misspecification, unlike traditional approaches relying on GARCH-type filtering. It also
allows to use large samples without being restricted by some parameters stationarity
hypothesis. Moreover, we adapt estimation and model selection tests to this context. We
also pay attention to assess not only the global fit of candidate distributions but also the
fit in the (left) tail. Indeed, some of the proposed selection tests focus specifically on the
left tail of the distribution and can be useful in the perspective of VaR or ES modeling. It
would be possible to use a single statistic (like the Anderson-Darling statistic) combining
both perspectives, but the risk is to be stuck with a statistic neither good to assess the
global fit nor the fit in the tail. Therefore, we use a two-step procedure to distinguish
the global fit from the fit in the tail. A simulation study indicates good powers of the
selection tests based on the KIMSE statistic and the censored likelihood score but also
highlights the need of large samples, a requirement easily met with financial time series.

Second, we illustrate our methodology in an empirical study where we compare the
GOF of four different distributions (skewed-t, NIG, HYP and SHASH distributions).
We show, on financial time series of various kinds (stock returns, emerging market index
returns and exchange rate returns), that the skewed-t distribution seems to be the best
error distribution at the global level, but that NIG, HYP and SHASH distributions
could be more suitable if we focus only on the left tail of the data. More generally, both
the simulations and the empirical study emphasize the necessity to combine different
measures of the fit to detect possible differences between distributions.
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Appendix A. Preliminary analysis

We check for a possible unit root in the mean of our data, that would reject the station-
arity hypothesis :

Time series Augmented DF stat p-value
UBS -10.2611 0.000**

BOVESPA -11.6946 0.000**
EUR/USD -11.4139 0.000**

Table A1. Results of the Augmented Dickey-Fuller test with 21 lags. ** indicates that the null hypothesis of a

unit root is rejected at the 1% test level.

We also check for a possible conditional mean of the ARMA kind. An AR(1) model
with no intercept and α = 0.1077 seems suitable for the UBS time series. Sample
autocorrelation functions (ACF) for various lags are not significant for the other time
series (see Figure A.1).

The presence of heteroscedasticity is confirmed by significant ACF of the squared
returns at various lag (indicating a time dependency in the variance), as shown in Figure
A2.

After the filtering of the conditional variance with the LAVE, we also check if the sam-
ple autocorrelations of the squared estimated innovations have been correctly removed.
Some autocorrelations for the lags between 2 and 10 remain significantly different from
zero as shown on the following graphs. Nevertheless, most of the second order time de-
pendencies have been removed (see Figure A.3).
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Figure A1. Plot of the ACF with robust standard errors for AR(1) UBS errors, BOVESPA and EUR/USD time

series.

0 5 10 15 20 25 30

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Lag

S
A

C
F

0 5 10 15 20 25 30

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Lag

S
A

C
F

0 5 10 15 20 25 30

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Lag

S
A

C
F

Figure A2. Plot of the ACF with robust standard errors for squared AR(1) UBS errors, BOVESPA and EUR/USD
time series.

Appendix B. Distributions references

Generalized Hyperbolic distribution

The pdf of a GH function is given by [32] :

fGH(x;λ, α, β, δ, µ) = a(λ, α, β, δ)(δ2 + (x− µ)2)(λ− 1

2
)/2Gλ− 1

2
(x), (B1)

Gλ− 1

2
(x) = Kλ− 1

2
(α
√
δ2 + (x− µ)2) exp(β(x− µ)) (B2)
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Figure A3. Sample autocorrelations for the squared estimated innovations for the five time series tested up to lag

50. If the bar is up to the dotted line, the autocorrelation at the corresponding lag is significantly different from
0 (with a level of confidence of 95%).

a(λ, α, β, δ) =
(α2 − β2)λ/2

√
2πα(λ−1/2)δλKλ(δ

√
α2 − β2)

, (B3)

where Kν(x) is the modified Bessel function, δ > 0, α > |β| and x ∈ R. For λ = 1,
we obtain HYP functions, while for λ = −1/2, we obtain NIG functions (seeBarndorff-
Nielsen [3] for more details on these density functions).

Skewed-t distribution

Following the notation of Hansen [21], the pdf of a standardized skewed-t distribution is
given by:

fSK(x;λ, ν) =


bc

(
1 + 1

ν−2

(
bx+a
1−λ

)2
)−(ν+1)/2

x < −a/b,

bc

(
1 + 1

ν−2

(
bx+a
1+λ

)2
)−(ν+1)/2

x ≥ −a/b,
(B4)

where 2 < ν < ∞ is the scale parameter and −1 < λ < 1 is the skewness parameter,
for x ∈ R. The constant a,b and c are given by :

a = 4λc

(
ν − 2

ν − 1

)
,

b2 = 1 + 3λ2 − a2,

c =
Γ
(
ν+1

2

)√
π(ν − 2)Γ

(
ν
2

) .
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Sinh-arcsinh distribution

The two first moments are given by:

E(Xξ,η,ε,δ) = η(ε/δ)P1/δ + ξ, (B5)

E(X2
ξ,η,ε,δ) =

η2

2
{cosh(2ε/δ)P2/δ − 1}, (B6)

where

Pq =
e1/4

(8π)1/2
{K(q+1)/2(1/4) +K(q−1)/2(1/4)}. (B7)

with K being the Bessel function of the second kind.

Parameters of the fitted distributions

SHASH parameters ξ η ε δ
UBS 0.0504 0.4846 -0.0351 0.6583

BOVESPA 0.0967 0.6025 -0.0690 0.7384
EUR/USD -0.0032 0.5250 0.0022 0.6837

Table B1. Estimated parameters of the SHASH distributions for the three time series.

NIG parameters α β δ µ
UBS 1.1569 -0.0943 1.1453 0.0937

BOVESPA 1.6042 -0.2607 1.5411 0.2538
EUR/USD 1.2788 0.0114 1.2787 -0.0114

Table B2. Estimated parameters of the NIG distributions for the three time series.

HYP parameters α β δ µ
UBS 1.6770 -0.1048 0.6535 0.1041

BOVESPA 1.9999 -0.2684 1.1132 0.2615
EUR/USD 1.7099 0.0096 0.73 -0.0096

Table B3. Estimated parameters of the HYP distributions for the three time series.

Skewed-t parameters λ ν
UBS -0.0418 5.4567

BOVESPA -0.0950 7.8023
EUR/USD 0.0053 6.4310

Table B4. Estimated parameters of the skewed-t distributions for the three time series. α is the asymmetry

parameters and ν the df
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