
Chapter 8

Anthropogenic Effects in Landscapes:
Historical Context and Spatial Pattern

Jan Bogaert, Isabelle Vranken, and Marie André

Abstract Bio-cultural landscapes are characterized by anthropogenic pattern fea-

tures, of which the measurement constitutes a key step in landscape analysis.

Metrics and strategies for this measurement of anthropogenic patterns and their

dynamics are discussed, considering the pattern/process paradigm, the patch-

corridor-matrix model and the complementarity of landscape composition and

configuration as conceptual benchmarks. Historically, noticeable anthropogenic

effects are accepted to have appeared in landscapes after the invention of agricul-

ture and further trends of landscape change could be linked to the development of

agriculture. Through time, a sequence of landscape dynamics with three stages is

expected, in which a natural landscape matrix is initially substituted by an agricul-

tural one; urban patch types will later on dominate the matrix as a consequence of

ongoing urbanization. The importance of the development of agriculture and its

productivity for the evolution of settlements, villages and cities is emphasized.

Anthropogenic change of landscapes confirms the status of geographical space as a

limited resource.
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8.1 Bio-cultural Landscapes and Anthropogenic Patterns

More than 75 % of the Earth’s ice-free land shows evidence of alteration as a result

of human residence and land use, with less than a quarter remaining as wildlands

(Ellis and Ramankutty 2008). Globally most landscapes are blends of human

activities with the expression of biodiversity, i.e. they are bio-cultural landscapes

(Bridgewater and Arico 2002). This relationship between biological and cultural

diversity has not been explored as biodiversity itself; this study of bio-cultural

diversity involves a search for patterns across landscapes (Stepp et al. 2005). An

intrinsic reciprocal relationship between culture and landscape structure exists:

culture changes landscapes and culture is embodied by landscapes (Nassauer 1995).

In the current contribution, the cultural component of landscapes is generalized

to the large-scale spatial footprint of Man’s actions, which refer to agriculture,

urbanization, industrial development, road infrastructure or any other substitution

or alteration of an original natural land cover by an anthropogenic type. This latter

process is denoted as “anthropization” (Bogaert et al. 2011b); the modification of

landscapes by human action leads to anthropogenic landscapes, in which man-made

features dominate and the original natural patch types often are reduced to a

scattered pattern.

A series of typical changes in landscape and biological characteristics during the

conversion of natural lands to human-dominated landscapes has been reported

(August et al. 2002). Hobbs and Hopkins (1990) in McIntyre and Hobbs (1999)

expressed the range of human effects on landscapes in terms of the prevalent land

use and using four levels: conservation of a more or less unmodified system,

utilization of components of the system (e.g., forestry), replacement of the system

by another type (e.g., agriculture), and complete destruction (e.g., urban develop-

ment). Anthropogenic activities that require much space and which destroy or

replace original land covers will consequently dominate human-driven landscape

dynamics; they are considered exogenous disturbances (McIntyre and Hobbs 1999;

Fischer and Lindenmayer 2007). This human impact on ecosystems and landscapes

has lead to the recognition of 18 “anthropogenic biomes”, grouped in dense

settlements, villages, croplands, rangelands and forested (Ellis and Ramankutty

2008).

Landscape ecology focuses on landscape pattern (Bogaert et al. 2011b; Bogaert

and André 2013). Its central hypothesis is known as the pattern/process paradigm,

which states that patterns and processes in landscapes are related in a way that

landscape patterns condition those processes characterized by a spatial dimension,

and that processes occurring in a landscape can modify landscape patterns (Turner

1989; Coulson et al. 1999; Noon and Dale 2002). The propagation of fire in a

landscape as a function of vegetation and soil patterns (Diouf et al. 2012), biodi-

versity patterns as a function of landscape fragmentation (Barima et al. 2010a;

Bogaert et al. 2011a), edge effects on soil parameters (Alongo et al. 2013), gap

pattern dynamics in stressed vegetations (Van Peer et al. 2001), vegetation pattern

change due to atmospheric deposits of heavy metals (Vranken et al. 2013), or
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periodic vegetation communities and the mechanisms behind their dynamics

(Deblauwe et al. 2008, 2011, 2012; Diouf et al. 2010), can be cited as examples

or closely related topics. This focus on spatial pattern distinguishes landscape

ecology from general ecology (Fahrig 2005).

Consequently, many metrics have been developed and tested, also by the current

authors (e.g., Salvador-Van Eysenrode et al. 1998; Bogaert et al. 1999b, 2000a, c, d,

2001b, 2002a, b). Analyses have shown that many metrics were correlated or

mathematically related (Bogaert et al. 2002a; Bogaert and Hong 2004). It is

recommended that those metrics are used for analysis which capture orthogonal

pattern features (Bogaert and Mahamane 2005; Bogaert et al. 2011b). Many metrics

have found applications outside landscape ecology (e.g., Bogaert et al. 2002c; Li

et al. 2005; Hufkens et al. 2008), which illustrates the validity of the metrics

involved and the aforementioned paradigm across spatial and temporal scales.

This pattern-orientated identity of landscape ecology has created links towards

other concepts such as fractal theory (e.g., Bogaert et al. 2000a; Imre and Bogaert

2004, 2006; Bamba et al. 2009; Bogaert et al. 2011b) or percolation theory (e.g.,

Bogaert and Impens 1998; Bogaert et al. 1999b, 2000b).

Landscape elements are generally classified as patches, corridors or matrix

(Forman and Godron 1986; Urban et al. 1987; Forman 1995). Patches form the

basic units of landscape pattern, and reflect homogeneous conditions significantly

different from their surroundings. Patches representing a same land cover form a

patch type or class. The definition of patches and patch types requires an application

of the contrast concept, which corresponds to the magnitude of the difference

between two patch types with regard to an ecologically significant characteristic

(Forman 1995; Farina 2000b). Generally, morphological or structural characteris-

tics are considered, such as vegetation type, density or height (Reino et al. 2009;

Watling and Orrock 2010). A high contrast between adjacent land cover types

generates edge effects, considered a main consequence of patch type fragmentation

(Bogaert et al. 2011a); metrics have been developed by the current authors to

quantify its impact (e.g., Bogaert et al. 1999a, 2001a, c, 2011a; Bogaert 2001;

Salvador-Van Eysenrode et al. 2002; Barima et al. 2011; Vranken et al. 2011;

Iyongo Waya Mongo et al. 2012, 2013).

Corridors can be considered a special type of patches, characterized by linear

forms, and crucial for the connectivity of a patch type (Bogaert and Mahamane

2005). It should be noted that in most analyses, patch type connectedness is

quantified instead of connectivity; the former concept refers to the physical links

between landscape elements while the latter concept refers to the perception of

connectedness by a particular species or group (Fig. 8.1) (Bogaert et al. 2000d).

Therefore, the difference between patches and corridors is merely functional and

often ignored in pattern analysis. In Fischer and Lindenmayer (2007), a third type is

distinguished, “ecological connectivity” which refers to the connectedness of

ecological processes across multiple scales, including trophic relationships, distur-

bance processes and hydro-ecological flows; its measurement remains however

complicated.
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The landscape matrix is formed by these patch types (generally one single type

but a co-dominance of two or more types cannot be excluded) dominating the

landscape by their extent (Bogaert and Mahamane 2005); in case of the absence of a

dominant patch type, the landscape is often considered a mosaic.

Urban et al. (1987) stated that the primary influence of Man is to rescale patterns

in space and time. This relationship between temporal and spatial patterns is a key

concept in landscape ecology (Turner et al. 2001; Wiens 2009). Every process is

characterized by a particular temporal and spatial scale or range which defines its

frequency or duration, and its extent (August et al. 2002). In general, larger time

steps are characteristic for processes concerning larger areas, and vice versa. For

example, global temperature change increases slowly while smaller areas have

already shown significant changes over shorter time periods (Bogaert

et al. 2002c). This space-time relationship can be used to detect anthropogenic

landscape dynamics, since the speed and extent of land cover change indicate the

cause of the dynamics, anthropogenic causes leading to rapid land cover change on

a large extent (August et al. 2002; Wiens 2009).

The attention of landscape ecology for large scale patterns is directly related to

the spatial scale that corresponds to landscapes. Hierarchy theory (Allen and Starr

1982; Urban et al. 1987; Forman 1995; Burel and Baudry 2003; Bogaert and

Mahamane 2005) states that the biosphere can be considered a sequence of scales

reflecting a range of complexity or spatial levels, starting with the biosphere itself

and going down to the elementary particles composing atoms. Different levels are

distinguished among which the landscape, situated directly above the ecosystem

level. Thus, landscapes are composed of ecosystems, a vision which corresponds to

the definition put forward by Forman and Godron (1986) and which can be

shortened as “landscapes are eco-complexes”; small-scale pattern features are

Fig. 8.1 Landscape connectivity and connectedness. Connectivity depends on patch type con-

nectedness and its interaction with species traits. Connectedness depends on patch and patch type

characteristics which can be related. Patch and patch type area, patch shape, patch density and the

spatial dispersion of patches determine patch type connectedness
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ignored when they correspond to the sub-patch level. Landscape ecology research is

consequently posed from a scale of a few meters to a 1,000 km across which most

ecological processes are completed (Farina 2000a; Farina et al. 2005).

8.2 Measuring Anthropogenic Patterns

Landscape pattern itself is generally divided in two components: landscape com-

position and landscape configuration (Bogaert et al. 2011b) (Fig. 8.2). Composition

refers to the number of patch types present in the landscape, their area and their

definition. Landscape configuration is conditioned by landscape composition and

refers to the spatial arrangement and geometry of the patch types (shapes, sizes,

density and dispersion of patches). Its assessment is based on a multi-scalar

approach, integrating pattern features at the patch, patch type and landscape

level. Juxtaposition between patch types can also be considered as a component

of landscape configuration. Patch dispersion assessment is often limited to the

detection of aggregated, random or uniform patterns (Havyarimana et al. 2013;

Kumba et al. 2013; Rakotondrasoa et al. 2013).

Patch definition is the first step of a configuration analysis; it is based upon

technical aspects such as the type of pixel connectivity considered in raster based

data (4-connectivity is generally applied) and the application (or not) of the

minimum mapping unit technique (Bogaert and Hong 2004; Bamba et al. 2008;

Bogaert et al. 2008). Patch orientation and spatial resolution also influence the final

size and shape of the patches.

The definition of patch types directly affects their number and areas (Colson

et al. 2009; Bastin et al. 2011) and consequently, landscape composition. Land-

scape composition change is preferably assessed by a transition matrix (e.g.,

Forman and Godron 1986; Dale et al. 2002; Bamba et al. 2008; Barima

et al. 2009, 2010b; Bogaert et al. 2011a; Diallo et al. 2011), which has two entries

in a diachronic analysis, one for each land cover map. It is composed of three

groups of values. Firstly, the row and column totals refer to the patch type areas for

the first and second map, respectively. These data can be used for landscape matrix

identification or for composition analysis by means of heterogeneity metrics, such

as the Simpson or Shannon indices. Secondly, the central part of the transition

matrix should be observed. Its values reflect transitions from the patch types on the

rows to the patch types on the columns. This core part can be split up in two groups:

the values on the diagonal, reflecting those areas which did not go through a change

of their land cover, and the values outside the diagonal, representing land cover

change. The higher the values on the diagonal relatively to those outside from it, the

less dynamic a landscape was in the time period considered. To deal with a new

patch type (i.e. a patch type not present on the first land cover map but appearing on

the second map), a row should be inserted which contains only zero values. Patch

types disappearing from the landscape will be characterized by the overall presence

of zero values in their columns.
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The interpretation of the transition matrix can be visualized by a scheme in

which arrows indicate the areal exchanges between patch types. Metrics based on

the transition matrix could be suggested. The ratio of the sum of the values outside

the diagonal to the value on the diagonal could be used to express the dynamics of

an individual patch type. Row and column values will enable distinct interpretation.

The row values will reflect the tendency of the patch type to lose area to other types;

the column values will reflect the tendency of the patch type to increase its extent

through land cover change of other patch types. Analogously, the ratio of the sum of

the values on the diagonal to the sum of the values outside the diagonal will reflect

overall landscape dynamics; in case of maximum dynamics (every areal unit of the

landscape is converted into another patch type), this ratio will equal zero; in case of

a perfectly static landscape, the ratio will equal infinity.

To detect anthropogenic effects, the nature of the patch types should be taken

into account. Exchanges in favor of anthropogenic classes such as urban zones or

agricultural patch types will reflect a decrease in the degree of naturalness of the

landscape. An application of the landscape disturbance index (O’Neill et al. 1988;

August et al. 2002; Barima et al. 2011; Bogaert et al. 2011b; Mama et al. 2013)

seems useful in this context. It can be used to verify the hypothesis which relates

increasing landscape entropy, i.e. spatial compositional heterogeneity, to higher

levels of anthropogenic impact (Bogaert et al. 2005). Figure 8.3 shows that max-

imum entropy is to be observed at intermediate levels of anthropogenic influence.

The aforementioned trends observed by Bogaert et al. (2005) seem to correspond to

the upward parts of the curves. The bell-shaped trends in Fig. 8.3 are not unex-

pected: the extremities of the curves correspond to landscapes with high

Fig. 8.2 Landscape pattern is determined by landscape composition (patch type dominance,

definition, and richness) and configuration (shapes, sizes, dispersion and densities of patches;

patch type juxtaposition). Patch type definition depends on the contrast between patch types
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dominance, hence low heterogeneity; in between, equilibrium of anthropogenic and

natural types is expected, characterized by higher index values for heterogeneity

and evenness. This has noteworthy perspectives since entropy is considered a driver

of biodiversity (Fahrig et al. 2011).

The transition matrix can be used to simulate future landscape evolution (Urban

and Wallin 2002; Barima et al. 2010b, 2011; Vranken et al. 2011;

Fig. 8.3 Impact of anthropogenic landscape disturbance on landscape entropy. Compositional

spatial heterogeneity is used as a proxy for landscape entropy and is measured by means of the

Shannon evenness index (He) and the Shannon diversity index (Hd). Anthropogenic impact is

measured by a logarithmic transformation of theUdisturbance index (O’Neill et al. 1988) which is

the ratio between the cumulative area of anthropogenic patch types and the cumulative area of

natural patch types. Sixteen study zones from classified Landsat TM scenes in the Democratic

Republic of the Congo (labels 4, 8, 9, 10, 14, 15, 16) and Benin (labels 1, 2, 3, 5, 6, 7, 11, 12, 13)

have been used. A higher dispersion for landscapes dominated by natural land covers is observed;

while natural patterns are generally site-specific and rather unique, patterns of urbanization and

agricultural development can be site-independent, leading to pattern uniformity across sites within

the same cultural area (Bridgewater and Arico 2002; Grimm et al. 2008). The different relative

positions of landscapes in both graphs emphasize the interaction of the number of patch types with

evenness
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Toyi et al. 2013a). To decouple simulations from the time periods characterizing

the transition matrix, annual probabilities of landscape change are to be determined.

This operation is still subject to debate. The algorithm proposed by Urban and

Wallin (2002) could not always be validated (data not shown). The determination of

these annual probabilities seems more difficult than expected, and requires a

profound mathematical analysis, as shown by Takada et al. (2010).

Patch shape analysis represents a central activity in pattern assessment. Two

main analysis types can be distinguished. Firstly, patch shape can be compared to a

reference shape, generally an isodiametric one such as a disk or square (Patton

1975; Bogaert et al. 2000c; Bogaert 2001). This analysis is useful when estimating

edge effects, which are proportionally larger for elongated or complex shapes than

for isodiametric ones of equal area (Forman and Godron 1986; Toyi et al. 2013b).

The difference between both shapes can then be expressed by means of a perimeter-

to-area ratio, obligatory dimensionless to avoid size effects (Fig. 8.4). Perimeter-to-

area ratios are generally based on the isoperimetric principle, which states that of all

shapes with an equal perimeter, the disk is characterized by the largest area

(Fig. 8.5); the principle could also be interpreted otherwise: of all shapes with an

equal area, the disk is characterized by the shortest perimeter. For raster based data,

the reference perimeter does not correspond to a circular shape but is a function of

the number of pixels composing the patch (Bogaert et al. 2000c; Bogaert and Hong

2004).

The second type of shape analysis consists of the determination of the fractal

dimension. Since it cannot be determined for a single patch (i.e. when multi-scalar

information is not available), a regression technique is applied to estimate it for a

group of patches with similar geometry (Krummel et al. 1987; Imre and Bogaert

2004; Bamba et al. 2009, 2010; Bogaert et al. 2011b; Colson et al. 2011; Diallo

et al. 2011). The statistical regression parameters can consequently be interpreted to

validate this hypothesis; to guide the analyst in its selection, a common origin of the

patches, i.e. a common shape-forming process, could be suggested. In case of shape

regularity, which indicates anthropogenic effects, the fractal dimension will tend

towards one; for increasing patch complexity, associated with natural patch

forming processes, fractal dimension will be significantly higher, with two as its

upper bound.

A relationship has been shown between patch size and fractal dimension

(Krummel et al. 1987); larger patches are expected to be characterized by a larger

fractal dimension since their shapes are determined by natural patterns, such as

geomorphologic discontinuities; small patches are often anthropogenic and even

when they are natural, their shape is usually determined by adjacent anthropogenic

patches. Nevertheless, it should be noted that aggregation of anthropogenic patches

can generate complex patch geometries which could be confounded with natural

landscape elements (Fig. 8.6).

The dynamics of a patch type can be characterized by the identification of the

corresponding transformation process (Forman 1995; Jaeger 2000; Bogaert

et al. 2004, 2008; Koffi et al. 2007; Vranken et al. 2011). As for a transition matrix,

two land cover maps are needed in a diachronic analysis; the analysis is done per
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patch type. The current technique has the advantage that it is based on basic pattern

information (number of patches, patch type area, patch type perimeter) and that it is

applicable to patch types with decreasing or increasing area, hence for natural and

anthropogenic types, the latter generally characterized by an increase in their extent

in time when anthropogenic effects become more dominant. A second advantage is

the availability of a decision tree model which guides the analyst directly to the

spatial transformation process for the patch type considered; in order to determine

the transformation process, the model uses comparisons of the number of patches,

patch type area and patch type perimeter before and after transformation of the type

(e.g., Bogaert et al. 2004, 2008; Barima et al. 2009; Diallo et al. 2011).

Fig. 8.4 The impact of patch size on patch shape assessment. a is the patch area, p is the patch

perimeter. The three square shapes should generate an identical shape index value when their

shape is quantified. This is observed for
ffiffiffi

a
p

=p, which is dimensionless. When a/p is used (a non

dimensionless metric), larger patches are characterized by larger values, which is to be avoided

Fig. 8.5 The isoperimetric principle. (a) Circular shape with area ac and perimeter pc. (b)
Irregular shape with perimeter p¼ pc; consequently a< ac. (c) Irregular shape with area a¼ ac;

consequently p> pc. No shapes exist for which p¼ pc and a> ac or for which a¼ ac and p< pc
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8.3 Historical Perspective on Anthropogenic Effects
in Landscapes

Anthropogenic effects refer to those land use and land cover dynamics which are

caused by human activities. Since Man replaces natural land covers by anthropo-

genic ones, and since this substitution is not a random one, landscape pattern can be

used to detect anthropogenic influence. Historically, noticeable anthropogenic

effects are accepted to be associated with the start of agriculture (Fig. 8.8). No

other activity has transformed humanity, and the Earth, as much as agriculture

(Tilman 1998). In ecological terms, agriculture represents a symbiotic relationship

between humans and domesticated plants and animals (Cox and Atkins 1979). It is

evident that also earlier in time, i.e. before the invention of agriculture, anthropo-

genic effects should have occurred; however, due to the low population density, the

local (or even sub-patch) character of the land cover changes and the non-sedentary

character of the populations involved, they can be accepted of little or no signifi-

cance. Before the invention of agriculture, it is supposed that Man lived in equi-

librium with its environment and that all landscapes were natural landscapes.

Three ages are generally distinguished to subdivide the Holocene: the Paleolithic

pre-agricultural era, which ended about 10,000 years BP, the agricultural era,

between 10,000 years BP and the industrial revolution (~1800), and the agro-

industrial era, since the industrial revolution (Cox and Atkins 1979; Smith 1989;

Gupta 2004; Pinhasi et al. 2005; Sheaffer and Moncada 2009; Balaresque

et al. 2010). Landscape-scale dynamics have occurred since man has become

sedentary. This change of life style is accepted to have been directly related to

Fig. 8.7 Spatial transformation processes generally observed for natural and anthropogenic patch

types. Arrows indicate causal relationships and expected sequences in time. Solid arrows refer to

processes characterizing natural patch types. Dashed arrows refer to processes characterizing

anthropogenic patch types
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the invention of agriculture in the Neolithic era. Early hominids were hunters and

gatherers who relied on naturally occurring vegetation, fruits, nuts, carrion and

game for subsistence (Gupta 2004; Sheaffer and Moncada 2009). Hunters and

gatherers did not establish permanent settlements such as villages. They moved

their camps in response to changes in the season and climate (Gupta 2004).

Among the most significant examples of human impact on the evolution of

ecological niches come from domestication of animals and plants; domestication

refers to the process of reciprocation, by which animal and plant species come to

depend on humans for survival, while providing humans with numerous benefits in

turn (Cox and Atkins 1979; Gupta 2004). The process of domestication has been

markedly important for spatial expansion and population increase of humans during

the Holocene (Soja 2003; Gupta 2004; Sheaffer and Moncada 2009). It is however

noteworthy that this link between agricultural development and population growth

is still subject to debate (Childe 1950; Kohl and Wright 1977; Armelagos

et al. 1991). Domesticated species were of prime importance for agriculture:

without agriculture, the complex, technically innovative societies and large

human populations that exist today could not have evolved (Gupta 2004). Hus-

bandry is consequently defined as the cultivation of domesticated plants and

Fig. 8.8 Relationships between the development of agriculture, the evolution of Man’s sedentary

lifestyle and landscape change. After a period of hunting and gathering food in which nature and

its biomass production were observed, Man developed a sedentary lifestyle through domestication

of plants and animals. The natural landscape matrix was consequently replaced by an agricultural

one. The use of animal energy enabled Man to increase agricultural productivity, leading to rural

exodus and the development of villages and cities. After the industrial revolution, agriculture

increasingly integrated with industrial activities. Urban development in recent times was only

possible by these earlier developments in husbandry. Urbanization actually introduces new

landscape dynamics replacing agricultural landscapes by urban ones
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animals for use by human societies, as many domesticated plants and animals

would not survive without human intervention (Gupta 2004). As for grain crops,

the main selection criteria involved, next to increased plant yield, also increased

seed size, non shattering seed, naked seed and reduced seed toxins (Sheaffer and

Moncada 2009).

Agriculture allowed and even forced people to become sedentary, which can be

defined as living for a prolonged period in one place, as establishing permanent

villages and towns and as developing classified societies that included dedicated

social or professional segments such as farmers, artisans, soldiers, religious leaders,

teachers and governors (Gupta 2004). The shift from the nomadic life style of the

hunters and gatherers to the sedentary one of the early farmers was suggested to

have been a consequence of the larger amount of energy required for hunting and

gathering than for agricultural practices to obtain the same calories of food energy

(MacDonald 2003; in Gupta 2004), together with the intrinsic dynamics of human

populations and more favorable climates leading to the exuberance of vegetation

and diversification of the plant communities (Gupta 2004; Sheaffer and Moncada

2009).

It is appealing to detail these links between the start of husbandry, the founding

of settlements, the development of villages, and the origin of cities. Increasing

agricultural productivity is suggested as a key concept in this sequence. While

agricultural production itself refers to the total quantity of biomass produced, the

productivity concept expresses this quantity as a function of the production factors

used (e.g., Van Zanden 1991). These factors can be numerous and heterogeneous,

such as the time between the preparation of the land and the final yield, the number

of farmers involved in production, the production surface used, energy inputs, or the

quantities and types of fertilizers used. The nomadic lifestyle of Man before the

development of agriculture and its dependence on natural rhythms and production

had taught Man to observe and understand its environment. Through this necessity

to adapt his life style to nature, Man acquired knowledge on the production of

biomass in nature (Braidwood 1979; Sheaffer and Moncada 2009). Later on,

agricultural productivity was increased, e.g. by use of energy provided by domes-

ticated animals (Demangeon 1933; Childe 1950; Davis 1955; Kohl and Wright

1977; Smith 2009). This enabled individuals to leave the agricultural sector.

Through this tendency, the initial agricultural settlements, which were still domi-

nated by farmers and their families, were converted into (non-agricultural) villages,

and later on, into urbanized zones. Between 6000 and 4000 B.C., certain innova-

tions (such as the ox-drawn plow) facilitated, when taken together, a more intensive

and more productive use of the Neolithic elements themselves; the rise of cities and

towns required in addition to highly agricultural conditions, a form of social

organization in which certain strata could appropriate part of the produce grown

by the cultivators (Davis 1955).

One can agree with the dominant view that the diverse technological innovations

constituting the Neolithic culture were necessary to the existence of settled com-

munities (Davis 1955). Surprisingly, Soja (2003) states that no agricultural surplus

was necessary for the development of cities, but that cities were necessary for the

8 Anthropogenic Effects in Landscapes: Historical Context and Spatial Pattern 101



production of an agricultural surplus, at least in certain regions in the world. This

hypothesis is denoted a persistent error in the non archeological literature:

archeological records show quite clearly and consistently throughout the world

that the Neolithic revolution (agriculture) occurred first, and only afterwards did the

first cities emerge (Smith 2009).

It should be noted that land change to build cities and to support the demands of

urban populations itself drives other types of environmental change: urban dwellers

depend on the productive and assimilative capacities of ecosystems well beyond

their city boundaries (ecological footprint concept), to provide the flows of energy,

material goods and nonmaterial services that sustain human well-being and quality

of life (Grimm et al. 2008; Vranken et al. 2011; Seto et al. 2012).

Agriculture also evolved throughout history. A tendency towards uniformity

(of production systems and crops) on large scales has been observed (Ramade

2005), stimulated, amongst others, by the green revolution (Evanson and Gollin

2003), the sustainability and socioeconomic impacts of which have been criticized.

New technologies have been applied, and high levels of energy input have become

characteristic for production. The use of energy in multiple farming systems and for

different crops has been debated (Cox and Atkins 1979; Cleveland 1995; Ramade

2005; Gliessman 2006; Pimentel and Pimentel 2008; Pimentel et al. 2008; Pimentel

2009; Sheaffer and Moncada 2009); larger energy inputs are not always coupled to

higher energy efficiency. Moreover, a shift towards the production of feed and

biofuels instead of food has been observed, despite their less favorable energy

balance and environmental issues (Pimentel 2003; Pimentel and Patzek 2005;

Gliessman 2006; Groom et al. 2008; Pimentel et al. 2009). Growing crops for

biofuel not only ignores the need to reduce natural resource consumption, but

exacerbates the problem of malnourishment worldwide by turning food grain into

biofuel (Pimentel et al. 2009): this raises major ethical and moral issues (Pimentel

2003; Pimentel and Patzek 2005). The aforementioned trends, combined with the

increasing demographic pressure, will have profound impacts on landscapes, since

larger areas will be required to produce biomass to directly feed humans, to grow

livestock, and to provide alternatives for fossil fuels. This potential spatial impact

of biofuel production is discussed in Groom et al. (2008).

8.4 Agriculture and Urbanization: Matrix Competitors

Agricultural development from a local, low productive activity to an extensive,

high yielding production process based on high energy inputs, has put his footprint

on societies and landscapes. Through technical developments and concomitant

fossil fuel consumption, one farmer has nowadays become able to produce more

per unit area and on larger extents than ever before. Therefore, it can be accepted

that agricultural land uses became dominant in landscapes through time and have

replaced the original natural patch types, such as forests, by anthropogenic ones,

such as fields, fallow lands, pasture lands or agricultural buildings. This tendency,
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often detected as deforestation, has been frequently observed (Lepers et al. 2005).

This increase of patch types related to farming consequently decreased the cumu-

lative area of natural areas; often only non fertile areas or difficultly accessible

zones such as mountains or swamps were not converted into farmland. Land

accessibility is often cited as the main cause of landscape change, next to their

intrinsic properties (August et al. 2002). The landscape matrix, which has been

dominated exclusively by natural patch types before the arrival of agriculture, was

consequently systematically replaced by an anthropogenic, agricultural matrix

(Figs 8.9 and 8.10). The area increase of the anthropogenic type(s) was mainly

caused by patch creation, enlargement and aggregation. The decreasing overall area

for the natural patch types was the consequence of perforation, dissection, frag-

mentation, shrinkage and attrition.

Not only total patch type area, but also the number of patches per type was

influenced by this substitution (Fig. 8.11). Initially, both types, natural and anthro-

pogenic, were characterized by an increase in their number of landscape elements.

This increase could have been expected to be faster for the natural than for the

anthropogenic types, since anthropogenic activities, especially farming, are con-

sidered to have been more efficient when aggregated in space: short distances

between farmlands were preferred and adjacent lands even more. This increase in

the number of patches slowed down when patches started aggregating (for anthro-

pogenic types) or disappearing (for natural types). When the substitution had

continued, finally both types would have been characterized by a low(er) number

of patches, and the final frequencies of patches could then be described using the

typology of Forman and Godron (1986) categorizing them in disturbance patches,

remnant patches, introduced patches and environmental resource patches,

according to their origin or cause of existence (Fig. 8.12).

Fig. 8.9 Historical perspective of typical landscape dynamics (theoretical model). Initial natural

patch types (C) decreased in area (a) after the invention of agriculture and were only partially

preserved (b). Agricultural patch types (B) increased (c) after the invention of agriculture and

became dominant (e). The decrease of agricultural patch types ( f ) and their smaller final extents

(g) were caused by urban growth (A) which accelerated (h) due to continuous rural exodus and

intrinsic urban population growth after an initial period of settlement (d ). Trends shown are not to

be interpreted quantitatively, since their magnitudes are not representative and intend to illustrate

expected landscape dynamics only. Model mainly inspired on northern hemisphere landscapes
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This substitution of a natural matrix (of which the land cover types were mainly

determined by the abiotic context, such as the climate or geomorphology) by an

agricultural one could have been repeated later on, but this time when an urban

matrix was replacing the formerly dominant agricultural one. Urbanization is

namely expected to be dominant in contemporary landscapes, with a dominant

Fig. 8.10 Schematic representation of the historical evolution of the landscape matrix in which

anthropogenic patch types have become dominant (theoretical model). (a) dominance of the initial

natural patch types; (b) decrease of the matrix dominance of natural patch types due to area

increase of agricultural patch types; (c) co-dominance of natural and agricultural patch types; (d )

increasing dominance of agricultural patch types; (e) maximum dominance of agricultural patch

types; ( f ) decrease of agricultural patch types because of substitution by urbanization; (g)

co-dominance of urban and agricultural patch types; (h) increasing dominance of urban patch

types; i) equilibrium state (hypothesis). Trends shown are not to be interpreted quantitatively,

since their magnitudes are not representative and intend to illustrate expected landscape dynamics

only. Model mainly inspired on northern hemisphere landscapes

Fig. 8.11 Evolution of patch density when a natural land cover (A) is replaced by an anthropo-

genic one (B). Theoretical model of the replacement of a natural landscape matrix by an

agricultural one. Initial patch density increase of natural patch types is mainly caused by dissection

and fragmentation; the later decrease of patch density is caused by patch attrition. The initial

increase of anthropogenic patch density is expected to be caused by patch creation. Due to patch

proximity, patch enlargement, and ongoing patch creation, anthropogenic patches are hypothe-

sized to aggregate more rapidly to form large contiguous landscape elements forming the land-

scape matrix, which decreases patch density of this type. Crossing curves should not be excluded
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urban world population projected for the middle of the twenty-first century (Grimm

et al. 2008; Montgomery 2008); urban land cover could even increase by >1

million km2 by 2030, nearly tripling the global urban land area circa 2000 (Seto

et al. 2012). For centuries, cities were compact with high population densities, with

limited physical extents; this trend has been reversed over the last 30 years with

urban areas that are nowadays expanding on average twice as fast than their

populations (Seto et al. 2012). For the United States, a >30 % of increase of the

amount of land devoted to urban and built-up uses between 1982 and 1997 was

noted (Alig et al. 2004).

Two major pathways of urban impacts on land cover are to be considered. In the

developed world, large-scale urban agglomerations and extended peri-urban settle-

ments fragment the landscapes of such large areas that various ecosystem processes

are threatened; however, ecosystem fragmentation in peri-urban regions may be

offset by urban-led demands for conservation and recreational land uses; on the

other hand, in less developed countries, urbanization seems to outbid all other uses

for land adjacent to the city, including prime croplands (Lambin et al. 2001). Urban

zones are characterized by rapid enlargement and the management of peri-urban

zones, where rural and urban areas meet and conflict, announces itself as a key issue

for landscape ecology in the near future, although an unambiguous functional and

morphological definition and identification of peri-urban zones remains subject to

debate (Fig. 8.13) (Forman 2008; André et al. 2012). These peri-urban environ-

ments are the glue that link core cities in extended urbanized regions (Grimm

et al. 2008): the “edge” of the city expands into the surrounding rural landscape,

including changes in soils, built structures, markets, and informal human settle-

ments, all of which exert pressure on fringe ecosystems.

Thus, according to the aforementioned landscape dynamics model, which can be

denoted as the “nature-agriculture-urban model”, natural landscapes are replaced

by anthropogenic ones, initially dominated by agriculture, later on by land covers

reflecting urban development. It should be noted, however, that there are different

trajectories of land cover change in different parts of the world (e.g., decrease of

cropland in temperate areas and increase in the tropics) (Lepers et al. 2005). This

observation confirms the aforementioned model with tropical countries still

expanding their agricultural matrix while in temperate zones the urbanization has

Fig. 8.12 Patch typology

(Forman and Godron 1986).

(a, e) disturbance patch;

(b, h) remnant patch, natural

patch type; (c, d )

environmental resource

patch, natural patch type;

( f, g) introduced patch,

anthropogenic patch type;

(i) landscape matrix, natural

patch type
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already taken over, although a co-dominance of both agriculture and urbanization

should not be excluded. Agricultural development and urbanization are not syn-

chronized between developed and developing countries but since both hemispheres

seem to follow the same model, the outcome of both evolutions is predictable. In

Forman and Godron (1986) a similar, five-step anthropization gradient was

presented, with natural, managed, cultivated, suburban and urban landscapes.

8.5 Concluding Commentary: Space Is a Limited Resource

The concept of limited (or not renewable) resources refers to those elements that

can be extracted or consumed but for which the available quantity is considered

well-defined. When a fraction of the resource is used, the remaining quantity

consequently declines. Sometimes, this consumed quantity can be restored after a

long period, but the delay is often too long to consider the resource as renewable.

This concept of resource limitation can also be applied in landscape ecology.

Landscapes are composed of different types of land cover which each occupy a

fraction of a geographical space. This geographical space is limited, i.e. it corre-

sponds to a well-defined extent. Consequently, space could and should be

Fig. 8.13 Urbanization and agriculture alter the composition and configuration of natural patch

types. A disintegration and area decrease of natural patch types is observed and contiguous zones

are replaced by isolated patches subject to edge effects. The natural matrix is transformed into a

scattered pattern of remnant patches. An anthropogenic matrix dominates now the landscape.

Urban growth leads to functional and structural rural-urban conflicts in peri-urban areas
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considered as a limited resource: the use of space by one land cover type reduces the

remaining space available to other types.

This recognition of space as a limited resource underlines the importance of

landscape ecology in preserving sufficient space with an optimal configuration to

enable a coexistence of the development of anthropogenic activities with the

preservation of ecosystem services (Costanza et al. 1997; Pimentel et al. 1997),

even in an urban context (Bolund and Hunhammar 1999; Tratalos et al. 2007). For

the foreseeable future, the fate of terrestrial ecosystems and the species they support

will be intertwined with human systems: most of “nature” is nowadays embedded

within anthropogenic mosaics of land use and land cover; while climate and

geology have shaped ecosystems and evolution in the past, human forces may

now outweigh these across most of Earth’s land surface today (Ellis and

Ramankutty 2008).
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Yangambi, R.D. Congo. Tropicultura 31:36–43
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