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Abstract 

This paper proposes an alternative sampling scheme to the Hotelling’s T2 control chart with 

variable parameters (VP T2). Indeed, the sampling interval h, the sample size n and the 

control limit k vary between minimum and maximum values while the warning line is kept 

fixed over time. The proposed method uses only one measurement scale and therefore 

overcomes the usual difficulties of using two scales. Finally, we show the merits of the 

proposed method as a good option for its ease of application and its quick responses to small 

and moderate shifts in a multivariate process. 

 

Keywords: Multivariate Control Chart, Hotelling’s T2 Control Chart, Variable Parameters 

(VP), Genetic Algorithm (GA), Adjusted Average Time to Signal (AATS). 

1. Introduction  

Quality control problems in industry may involve more than a single quality 

characteristic, i.e., a vector of characteristics. The Hotelling’s (1947) T2 control 

chart is one of the most widely used tools in multivariate statistical process control. 

Consider a process in which p correlated characteristics are being measured 

simultaneously and controlled jointly. It is assumed that the joint probability 

distribution of the quality characteristics is a p-variate normal distribution with the 

vector of in-control means ),...,( 001 pµµ=ʹ′0µ  and the variance-covariance matrix∑ . 

The procedure requires computing the sample means for each of the p quality 

characteristics from a sample of size n. The vector ),...,( 1 pxx=ʹ′x  gives the p sample  
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means. Then the subgroup statistics )2
0

1
0 µx()µxn( −∑ʹ′−= −T are plotted on a 

control chart in sequential order. For the sake of simplicity, we assume here that 0µ  

and ∑  are known or are estimated from large enough samples. In this case, T2 is 

distributed as a chi square random variable with p degrees of freedom. Each of the 

T2 values is compared with the upper α  percentage of the chi square distribution ( k 

= ),(2 pαχ  ) and if the sample values fall below the control limit k the process is 

considered in control, otherwise the process is said to be out of control and the 

corresponding subgroup(s) investigated. It is usually assumed that the variance-

covariance structure of the quality characteristics being charted does not change and 

that assignable causes are manifested by a shift at least in one component of the 

mean vector of the process. The magnitude of this shift is often expressed 

by )µ(µ)µ(µ 0
1

0 −∑ʹ′−= −
11

2d , the Mahalanobis distance, and 1µ  is the out of 

control mean vector. In this case, the T2 statistic is distributed as a non-central chi-

square distribution with p  degrees of freedom and non-centrality parameter 2nd=η  

(Faraz and Parsian, 2006).  

The traditional practice in applying the T2 chart is to obtain samples of fixed 

size n0 at constant intervals h0 which is called a Fixed Ratio Sampling (FRS) 

scheme, but it is slow in detecting a small to moderate process shifts. Recently, the 

ideas of the variable sample sizes (VSS) (see, Faraz and Moghadam, 2009; Faraz et 

al. 2010), double sampling scheme (DS) (see, Faraz et al. 2012a; Tornga and Lee, 

2009), variable sampling intervals (VSI) (see, Amin and Hemasinha, 1993; 

Chengular et al. 1989; Faraz et al., 2011); variable sample sizes and sampling 

intervals (VSSI) (see, Costa 1998; Faraz et al. 2012b), double warning lines scheme 

(DWL) (see, Faraz and Parsian, 2006; Faraz and Saniga, 2011), variable sample 

sizes and control limits (VSSCL) (see, Chen and Hsieh, 2007; Seif et al. 2011 a&b), 

variable sampling intervals and control limits (VSICL) (see, Torabian et al. 2010) 

and variable parameters VP (see, Costa 1999; Chen, 2007; Lin, 2009; Faraz et al. 

2013 a&b) has been proposed in literature to provide users with a tool that detects 

small shifts more quickly than the classical FRS scheme. The question arises that 

which scheme is the most effective and powerful. Faraz and Parsian (2006)  through 

a comparison between the FRS, VSS, VSI, VSSI and DWL schemes (the VP and 
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VSSCL are not included) have shown that the DWL scheme is more powerful than 

the other schemes in detecting small, moderate and even large shifts. Chen (2007) 

extended the VP scheme proposed by Costa (1999) to multivariate case and 

compared the two-scaled variable parameter (2VP) T2 chart with the VSS, VSI, and 

VSSI T2 charts (the DWL scheme is not included) and the results indicate that the 

2VP T2 chart outperforms the VSS, VSI, and VSSI T2 charts, especially in detecting 

small shifts. However, the 2VP scheme is dominated by the VSI scheme when the 

process change in the mean vector is moderate or large. The same result is obtained 

by Chen and Hsieh (2007) and they showed that the two-scaled variable sample 

sizes and control limits (2VSSC) T2 chart presents a similar performance to the 2VP 

T2 chart. The proposed 2VP and 2VSSC schemes require the user to construct a T2 

chart with two different measuring scales. One on left hand side and the other on the 

right hand side. This approach is a tedious and of course unwilling for the 

practitioners. Hence, in this paper we propose the VP, VSSCL and VSICL T2 

control charts in a way that they gains from a single measuring scale, a problem 

heretofore not addressed. Furthermore, through a comparison between all existing T2 

charts using variable ratio sampling schemes, the adaptive sampling policy to the T2 

chart is proposed. The paper is organized as follows: in the next section, the Markov 

chain approach to construct VP, VSSCL and VSICL T2 charts are discussed. The 

performance measure and GA approach to statistically optimal design of the 

schemes are then studied afterwards. The section 3 makes a comparison between the 

VP, VSSCL, VSICL, DWL, VSSI, VSS and VSI schemes and finally the optimal 

sampling policy is then proposed.  

 

2. The VP, VSSCL and VSICL T2 Schemes: Markov Chain Approach  

The VP T2 control chart is an extension of the VSSI T2 control chart discussed 

by Faraz and Parsian (2006). Let  1h  and 2h  be maximum and minimum sampling 

intervals, 1k  and 2k  be maximum and minimum control limits, and n1 and n2 be 

maximum and minimum sample size respectively, such that 120 hh << , 120 kk <<  

and n1 < n2. Here we refer to the set (k1, h1, n1) as minimum sampling plan and the 

set (k2, h2, n2) as maximum sampling plan. The decision to switch between 

maximum and minimum sampling plans depends on position of the prior sample 
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point on the control chart. If the prior sample point (i-1) falls in the safe region, we 

use the minimum sampling plan and if the prior sample point (i-1) falls in the 

warning region, we use the maximum sampling plan for the current sample. Finally, 

if a sample point falls in the action region, then the process is considered out of 

control. Here the safe, warning and action regions are given by the warning limit w 

and the control limit jk . The safe region is given by [0,w), the warning region is 

given by [w, jk ), and the action region is given by [ jk ,∞ ) , where 1=j  if the prior 

sample point comes from the minimum plan and 2=j  if the prior sample point 

comes from the maximum plan (see figure 1). The following function summarizes 

the control scheme of the VP T2 control chart: 

( ih , ik ) = 
⎪⎩

⎪
⎨
⎧

<≤

<≤

 k  T  wif  ),,(

      wT 0 if  ),,(

1-i
2

1-i222

2
1-i111

nhk

nhk
   (1) 

2.1 Performance Measure   

The average time from the process mean shifts until the chart produces a signal 

is used to measure its statistical efficiency. This statistical measure is called AATS 

and determines the speed with which a control chart detects a process mean shift. 

The average time of the cycle (ATC) is the average time from the start of the 

production until the first signal after the process shift. If the assignable cause occurs 

according to an exponential distribution with parameterλ then the expected time 

interval that the process remains in control is 1/λ . Therefore, 

  
λ
1

−= ATCAATS      (2) 

The memoryless property of the exponential distribution allows the 

computation of the ATC using the Markov chain approach. The Markov chain approach 

we employ here is similar to that originally proposed by Faraz and Saniga (2009) in which 

they made a unification and some corrections to Markov chain approaches to develop 

control charts with variable ration sampling policies. The fundamental concepts of the 

Markov chain approach can be found in Cinlar (1975). Here, at each sampling stage, one of 

the following transient states is reached according to the status of the process (in or out of 

control), length of the sampling interval (short or long) and quantity of the control limit ( 1k  

or 2k ): 
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State 1:   w<≤ 2T0  and the process is in control; 

State 2:   jkw <≤ 2T  and the process is in control;   

State 3:   jw<≤ 2T0  and the process is out of control;  

State 4:   jj kw <≤ 2T  and the process is out of control; 

State 5: (absorbing state): jk≥
2T  and the process is out of control. 

The transition probability matrix is given as follows: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

10000
00
00

454443

353433

2524232221

1514131211

ppp
ppp
ppppp
ppppp

P  

Where ijp  denotes the transition probability that i  is the prior state and j  is the current 

state. In what follows, ),,( ηpxF  will denote the cumulative probability distribution 

function of a non-central chi-square distribution with p degrees of freedom and non-

centrality parameter 2dnii =η  and 2,1;)exp( =−= ihq ii λ . Then, ijp ’s are 
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The expected number of trials needed in each state to reach the absorbing state can be 

obtained from 1Q)(Ib −−ʹ′  where Q is the matrix obtained from P on deleting the elements 

corresponding to the absorbing state, I is the identity matrix of order 4 and 

)0,0,,( 21 pp=ʹ′b  is a vector of initial probabilities, with 1
2

1

=∑
=i

ip . Hence, 

hQ)(Ib 1−−ʹ′=ATC      (3) 

Where ),,,( 2121 hhhh=ʹ′h  is the vector of sampling time intervals. In this paper the 

vector bʹ′  is set to )0,0,1,0( , for providing an extra protection and preventing problems 

that are encountered during start-up.  

The VP scheme should be such designed that satisfies two conditions. First, it should 

guaranty that the both FRS and VP schemes have the same ratio sampling (sampled items 

and sampling frequencies) as long as the process is in control. By using the elementary 
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properties of Markov chains, the average number of samples (ANS) for the VP scheme 

during the in control period is calculated as follows:  

)0,0,1,1( ʹ′−ʹ′= −1Q)(IbANS      (4) 

Faraz and Saniga (2009) showed that the ANS and ATC for the FRS schemes are easily 

determined by 

01
1
q

ANS
−

=       (5) 

0
00

0

1
1

1
h

q
qATC ×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−
+

−
=

β
    (6) 

Where here )exp( 00 hq λ−= and ),,( 00 ηβ pkF= . Now, by equating expressions (4) and 

(5), the parameter w is obtained as follows: 

)0,,
)()0,,()()0,,(

))(0,,()0,,((
10212012

20121 p
qqqpkFqqqpkF

qqpkFpkFFw
−−−

−
= −  (7) 

The second condition is that the VP schemes should have the average Type I error rate 

equals to 0α  during in-control period. Now, assume that the probability of having the 

minimum sampling plan while the process is in control is p0. Therefore, the maximum 

sampling plan occurs with the probability (1-p0) as long as the process is in control. Hence, 

we should have    

⎪
⎩

⎪
⎨

⎧

=−+

=−+

=−+

00201

00201

00201

)1(

)1(
)1(

ααα pp
npnpn
hphph

    (8) 

Where 2,1,0;)0,,(1 =−= ipkF iiα . Hence, expressions for the calculation of n2 and k2 

are obtained by  

0

100
2 1 p

npnn
−

−
=      (9) 

⎥
⎦

⎤
⎢
⎣

⎡

−

−
= − 0,,

1
)()(

0

1001
2 p

p
kFpkFFk    (10) 

where 
21

20
0 hh

hhp
−

−
= . 

The VSICL T2 chart, as an especial case of the VP scheme, is obtained by 

letting n1 = n2 =n0. In this case, the expression of w is the same as (7). When  h1 = h2 

= h0, the VP T2 chart is called the VSSCL T2 chart. The expression of w for this 

particular case is obtained as fallows:  
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)0,,
)()0,,()()0,,(

))(0,,()0,,((
10012002

20121 p
nnqpkFnnqpkF

nnpkFpkFFw
−−−

−
= −   (11) 

Other special cases of the VP scheme are VSSI, VSS and VSI schemes which are obtained 

by letting k1 = k2 = k0; k1 = k2 = k0 & h1 = h2 = h0 and k1 = k2 = k0 & n1 = n2 =n0, respectively 

(see Faraz and Parsian, 2006; Faraz and Moghadam, 2009 and Faraz et al, 2011).  

 

2.2 Optimization Problem and Genetic Algorithm Approach 

In this paper, we have limited the value of long sampling interval h1 to 

maximum hours available in a work shift, i.e. 8≤h . The short sampling interval h2 is 

limited to 0.1 because periods less than 0.1 hours can be problematic in the field. In 

fact, a minimum period should be set such that the process can generate the required 

sample size. Therefore, the general optimization problem is defined as follows: 

+∈≤≤

≤≤≤≤

≤≤≤≤

Znnn
kkkw

hhh
ts
AATS

201

102

102

0
81.0

:.
min

     (12) 

The optimization problem has both continuous and discrete decision variables 

and a discontinuous and non-convex solution space. This problem can be solved 

with Meta heuristic search techniques which are the most widely used tools in this 

area; examples include taboo search, simulated annealing, artificial neural network, 

genetic algorithms, etc. The genetic algorithm approach (GA) is a method for 

solving both constrained and unconstrained optimization problems, which is based 

on natural selection the process that drives biological evolution. GA repeatedly 

modifies a population of individual solutions. At each step, GA selects individuals at 

random from the current population to be parents and uses them produce the 

children for the next generation. Over successive generations, the population evolves 

toward an optimal solution. GA can be applied to solve a variety of optimization 

problems that are not well suited for standard optimization algorithms, including 

problems in which the objective function is discontinuous, non differentiable, 

stochastic, or highly nonlinear. GA has received a great deal of attention in the 

recent literature and we apply it here as an appropriate technique for solving the 
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optimization problem (Faraz et al., 2010). For the details of the solution method, the 

readers are referred to Faraz et al. (2010).  

The procedure to solve the optimization problem (12) using genetic algorithm is 

as follows:  

For a given FRS parameters (k0, h0, n0) and VP parameters (k1, h1, h2, n1), first 

the value of k2 is determined from equation (10) which allows the parameter w takes 

a value from equation (7). The value of parameter n2 is determined using equation 

(9). Hence, the objective is to find the four chart parameters (k1, h1, h2, n1) that 

minimize the AATS measure. In the VSICL scheme, for given h1 and h2 values, the 

parameters w and k2 take a value using equations (7) and (10), respectively. Finally, 

in the case of VSSCL, for given n1 and n2 values, the parameter k2 takes a value 

from equation (10) in that  
21

20
0 nn

nnp
−

−
=  . The parameter w is then determined using 

equation (11). This procedure ensures that the comparison of the different schemes 

is meaningful and unbiased. That is, the in-control performance of schemes are 

matched.  

Tables 1, 2 and 3 provide the statistically optimal design for the VP, VSSCL and 

VSICL T2 charts with a comparison to the FRS T2 chart. The numerical solutions for 

p = 2, 3, 4, 5, 10 and 20; n0 = 2, 3, 4, 5 and 10 and =λ 0.0001, 0.001, 0.01 and 0.1 

are available upon request from the second author.  

The results indicate that the proposed VP scheme with one warning limit 

performs well to the two-scaled VP (2SVP) scheme and furthermore it considers 

implementing considerations due to its fewer parameters and its one-scaled property. 

The differences between the two schemes are not much even for detecting small 

shifts. If varying the sampling intervals is not practical in the field, the VSSCL 

scheme is then an alternative to the VP T2 chart. Table 2 presents the results. If 

varying sample sizes is not desired, the VSICL scheme is recommended. Table 3 

gives the optimal parameters of the VSICL scheme. With a comparison to the VSI 

scheme, varying the control limit improves the power of that chart. Our findings 

indicate that the VP scheme is more powerful than the VSICL and consequently VSI 

scheme in detecting small shifts; however, the differences between two schemes to 

detect moderate to large shifts are not significant. The surprising finding is that the 
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VSSCL scheme is more powerful than the VP scheme in detecting small mean 

shifts. This is discussed in the next section.  

 

3.  A numerical comparison between the different variable ratio sampling 

schemes  

The practitioners are faced to a group of seven variable ratio sampling policies: VP, 

DWL, VSSCL, VSICL, VSSI, VSS and VSI. Each sampling scheme overcomes the 

FRS schemes (except in detecting large shifts) and can be used upon application 

considerations and the amount of the specific shift, which is of concern. Table 4 

summarizes the comparison results between these schemes and provides information 

to help practitioners in selecting the most powerful scheme in order to have the 

maximum protection over a pre-determined value of the shift. The results are 

somewhat opposed to what we expected. Comparison results indicate that for small 

shifts (d≤ 0.5) the VSSCL scheme is superior to the DWL, VP, VSICL, VSSI, VSS 

and VSI schemes. The VP and then the DWL schemes show better performance than 

the others in detecting moderate shifts (0.5 < d ≤ 1.5). For detecting larger shifts (d 

>1.5) the VSICL and VSI schemes are good options. However, the differences 

between schemes in detecting large shifts are not significant, but due to their 

simplified structures can be recommended in practice.  

According to Tables 1 - 4, it is clear that different schemes have different 

structures for detecting different magnitude of shifts in the process. So, when 

estimating the magnitude of shift is costly or a process is subject to multiple shifts, 

then it is recommended to apply a scheme that shows good performance for all 

shifts. We have to take into account that a different curve AATS versus d  is 

obtained in function of selected value of d  employed to optimize the power of the 

chart. After analyzing the diverse available options, Faraz and Parsian (2006) 

showed that the optimum charts are obtained for 75.0=d  and these charts generally 

show a very good performance. Furthermore, as mentioned by Costa (1999), the 

parameter λ  has minor influence on the AATS and hence on comparing results. 

Hence, in this section a comparison is made for the case p = 2, n0 = 2, h0 = 1 and λ = 

0.01. Hence, the following charts are compared: 

1. The VP T2 chart: k1 = 25.87; k2  = 6.51; w = 4.17; h1 = 1.13; h2 = 0.1; n1 =1 

and n2 =9.  
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2. The DWL T2 chart: k = 10.60; wh = 1.27; wn = 5.20; h1 = 2.03; h2 = 0.1; n1 =1 

and n2 =14. 

3. The VSSCL T2 chart: k1 = 25.14; k2  = 6.27; w = 4.41; h = 1; n1 =1 and n2 

=10.  

4. The VSICL T2 chart: k1 = 13.51; k2  =9.69; w = 1.14; h1 = 2.20; h2 = 0.1; and 

n =2. 

5. The VSSI T2 chart: k = 10.60; w = 4.71; h1 = 1.10; h2 = 0.1; n1 =1 and n2 =11. 

6. The VSS T2 chart: k = 10.60; w = 5.48; h = 1; n1 =1 and n2 =15.  

7. The VSI T2 chart with parameters k = 10.60; w = 0.63; h1 = 3.47; h2 = 0.1; 

and n =2. 

Figure 2 illustrates the comparison results when d differs from small to large 

shifts. The comparison shows that the VSICL and VSI schemes are unable to detects 

small to moderate shifts. These two schemes have a good power in detecting the 

shifts d ≥ 1.5.  As Faraz and Parsian (2006) indicated, the DWL schemes is always a 

better option in detecting almost all process mean shifts while compared to the VSS, 

VSI and VSSI schemes, but when it comes to the VP and VSSCL T2 charts, other 

schemes are dominated. In fact, adopting variable action limits provides a great 

improvement for the DWL and VSSI T2 charts. Even more, the VSSCL and VP 

schemes have smaller value of the parameter n2 with respect to the VSS, VSSI and 

DWL schemes. In fact, letting the control limits vary between maximum and 

minimum values, smaller sample sizes are then required to detect out of control 

states, which is more economical too. By a comparison between the both VP and 

VSSCL schemes, we find out that the power of the VSSCL scheme, with not large 

differences, is almost smaller than the VP scheme and on the average the VSSCL 

scheme alarms almost 42 minutes sooner than the VP T2 chart in detecting small 

mean shifts (d = 0.5). On the other hand, the VP scheme shows better performance 

than the VSSCL in detecting moderate to large shifts (0.75 ≤ d ≤ 2) and on the 

average nearly 25 minutes sooner alarms. Of course, the VP scheme imposes some 

difficulties in application since the sampling intervals changes during the monitoring 

process. These adaptive changes in sampling intervals cause to increase the 

complexity of the chart. Hence, the VSSCL scheme, which always takes samples at 

fixed sampling intervals h0, is more convenient than the VP scheme. As a result, it 

can be concluded that the VSSCL scheme is a statistically optimal sampling scheme 

for the T2 control chart. It quickly detects small shifts as soon as possible and shows 
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a very good performance when compared to the VP scheme in detecting for 

moderate to large shifts. Note that, the proposed VSSCL scheme does not require 

two charts with different measurement scales, since it only has one warning limit 

and that enables users to monitor the process in a single measurement scale.  

 

4. Concluding remarks  

The Hotelling's 2T control chart, a direct along of univariate shewhart X  control 

chart, is perhaps the most commonly used tool in industry for simultaneous 

monitoring of several quality characteristics. Recent studies have shown that 

applying variable ratio sampling (VRS) schemes yield faster detection of small to 

moderate shifts with respect to the FRS T2 control charts. Among existing schemes, 

the variable parameters (VP) has been proved to have a very good performance on 

detecting small to moderate shifts, however applying the VP T2 charts encounters 

some difficulties in the field. In this paper, we proposed an alternative to the VP T2 

chart in that the sampling interval h, the Sample size n and control limit k vary 

between minimum and maximum values while keeping the warning line fixed over 

time. The proposed method uses only one measurement scale to overcome the 

applied difficulties of using two scales in the field. This idea is also applied to the 

VSS and VSI schemes to form the VSSCL and VSICL T2 charts. Through numerical 

comparisons between the seven existing VRS schemes in the literature, we show that 

the VSSCL scheme is statistically optimal and performs excellent for small shifts in 

process mean. Moreover, the VSSC T2 chart performs well to the VP T2 chart in 

detecting moderate to large shifts and that the VSSC T2 chat is a more popular 

scheme in practice than the VP charts due to its fewer parameters and ease of 

application. In fact, one may give up the merits of the VP scheme in detecting 

moderate to large shifts for the ease of application of the VSSCL scheme in the 

field.  
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Figures 

 

Figure 1. A schematic VP T2 control chart 
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Figure 2. A comparison between different schemes the case p = 2, n0 = 2, h0 = 1 and λ = 0.01 
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Tables 

  

 

 

 Table 1. A Comparison between the VP , 2SVP and FRS schemes in accordance with 

AATS performance for  p =2 and 4, n0 =2, 3 and 5, h0 =1, α = 0.005 and λ = 0.01. 

 

p n0 d k1 k2 w h1 h2 n1 n2 AATSVP AATS2SVP AATSFRS 

2 

2 

0.5 32.64 5.99 4.70 1.10 0.10 1 11 26.29 24.43 76.36 

1.0 22.32 7.35 3.30 1.22 0.10 1 6 4.47 4.36 17.99 

1.5 15.31 8.47 2.29 1.43 0.10 1 4 1.66 1.66 5.26 

2.0 11.09 9.82 2.33 1.42 0.10 1 4 0.93 0.93 2.01 

3 

0.5 42.45 6.36 4.31 1.12 0.10 1 18 14.32 13.45 54.82 

1.0 25.45 8.37 2.26 1.44 0.10 1 7 2.69 2.6 10.01 

1.5 13.01 9.16 1.86 1.60 0.10 1 6 1.08 1.08 2.68 

2.0 10.60 10.60 2.20 1.46 0.10 1 7 0.69 0.69 1.06 

5 

0.5 80.11 7.36 3.28 1.22 0.10 1 21 7.64 6.41 32.44 

1.0 23.63 9.04 1.58 1.77 0.10 1 10 1.48 1.4 4.42 

1.5 10.60 10.60 1.73 1.67 0.10 1 10 0.72 0.72 1.17 

2.0 10.60 10.60 2.18 1.47 0.10 1 13 0.56 0.56 0.60 

4 

2 

0.5 48.53 9.49 7.90 1.10 0.10 1 11 38.09 37.78 100.77 

1.0 32.15 10.62 6.65 1.17 0.10 1 7 6.45 6.39 28.20 

1.5 21.68 11.85 5.31 1.32 0.10 1 4 2.23 2.23 8.32 

2.0 16.42 12.55 5.76 1.26 0.10 2 3 1.15 1.15 3.01 

3 

0.5 96.98 9.49 7.90 1.10 0.10 1 21 20.02 19.88 76.87 

1.0 31.86 11.65 5.47 1.30 0.10 1 8 3.70 3.70 15.96 

1.5 17.34 12.27 5.53 1.29 0.10 2 5 1.38 1.38 4.09 

2.0 15.30 13.34 6.73 1.17 0.10 3 4 0.79 0.79 1.46 

5 

0.5 83.07 10.57 6.70 1.17 0.10 1 26 10.25 10.14 48.69 

1.0 20.16 11.93 5.33 1.32 0.10 3 10 1.93 1.96 6.95 

1.5 15.11 14.08 6.00 1.23 0.10 4 9 0.83 0.83 1.64 

2.0 14.86 14.86 7.80 1.10 0.10 4 14 0.59 0.59 0.70 

 



 

 

 

18 

 

 

 

Table 2. A Comparison between the VSSCL and FRS schemes in accordance with AATS 

performance for  p =2 and 4, n0 =2, 3 and 5, h0 =1, α = 0.005 and λ = 0.01. 

 

p n0 d k1 k2 w n1 n2 AATSVSSCL AATSFRS 

2 

2 

0.5 30.08 5.52 5.19 1 14 25.59 76.36 

1.0 21.03 6.92 3.74 1 7 4.90 17.99 

1.5 14.96 8.04 2.76 1 5 2.19 5.26 

2.0 12.14 9.31 1.99 1 4 1.39 2.01 

3 

0.5 96.36 6.21 4.46 1 19 14.11 54.82 

1.0 24.52 7.86 2.77 1 9 3.12 10.01 

1.5 15.48 8.99 1.73 1 6 1.59 2.68 

2.0 12.52 10.21 0.60 1 4 1.01 1.06 

5 

0.5 59.76 7.09 3.56 1 24 7.55 32.44 

1.0 26.87 8.80 1.81 1 11 2.05 4.42 

1.5 16.18 10.04 0.60 1 6 1.07 1.17 

2.0 10.60 10.60 0.00 1 5 0.60 0.60 

4 

2 

0.5 94.37 8.53 8.92 1 16 35.69 100.77 

1.0 30.00 10.25 7.06 1 8 6.73 28.20 

1.5 20.69 11.28 6.04 1 6 2.74 8.32 

2.0 15.15 13.56 7.08 1 6 1.75 3.01 

3 

0.5 84.91 9.31 8.08 1 23 19.46 76.87 

1.0 90.58 11.39 5.76 1 10 3.97 15.96 

1.5 21.15 12.48 4.55 1 6 1.88 4.09 

2.0 14.99 14.10 7.43 3 6 1.16 1.46 

5 

0.5 95.58 10.35 6.94 1 29 10.05 48.69 

1.0 26.52 12.07 4.95 2 13 2.43 6.95 

1.5 15.23 13.73 6.18 4 9 1.23 1.64 

2.0 14.86 14.86 3.37 4 6 0.71 0.70 
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Table 3. A Comparison between the VSICL and FRS schemes in accordance with AATS 

performance for  p =2 and 4, n0 =2, 3 and 5, h0 =1, α = 0.005 and λ = 0.01. 

 

p n0 d k1 k2 w h1 h2 AATSVSICL AATSFRS 

2 

2 

0.5 87.41 9.77 0.84 2.75 0.10 65.99 76.36 

1.0 13.80 9.59 1.22 2.09 0.10 9.90 17.99 

1.5 12.96 9.22 1.80 1.63 0.10 2.28 5.26 

2.0 11.69 8.93 2.86 1.29 0.10 1.01 2.01 

3 

0.5 13.15 9.73 1.14 2.19 0.10 42.53 54.82 

1.0 13.61 9.44 1.41 1.90 0.10 4.72 10.01 

1.5 12.05 8.99 2.47 1.38 0.10 1.24 2.68 

2.0 11.01 9.01 4.09 1.14 0.10 0.70 1.06 

5 

0.5 13.59 9.68 1.14 2.19 0.10 21.49 32.44 

1.0 12.74 9.16 1.94 1.56 0.10 1.92 4.42 

1.5 11.10 8.97 3.86 1.16 0.10 0.73 1.17 

2.0 10.60 10.60 4.71 1.10 0.10 0.56 0.60 

4 

2 

0.5 17.64 14.16 2.43 2.77 0.10 88.25 100.77 

1.0 18.85 14.09 2.36 2.87 0.10 16.63 28.20 

1.5 18.22 13.62 3.28 1.97 0.10 3.62 8.32 

2.0 16.70 13.11 4.68 1.44 0.10 1.35 3.01 

3 

0.5 18.08 14.18 2.29 2.98 0.10 62.36 76.87 

1.0 18.78 13.91 2.69 2.44 0.10 7.93 15.96 

1.5 17.19 13.25 4.19 1.57 0.10 1.75 4.09 

2.0 15.68 12.97 6.18 1.21 0.10 0.83 1.46 

5 

0.5 18.57 14.18 2.22 3.09 0.10 34.29 48.69 

1.0 17.99 13.52 3.48 1.85 0.10 2.97 6.95 

1.5 15.82 12.97 5.91 1.24 0.10 0.88 1.64 

2.0 14.97 14.07 7.91 1.10 0.10 0.59 0.70 
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Table 4. A Comparison between the VP, DWL, VSSCL, VSICL, VSSI, VSS, VSI and FRS 

schemes in accordance with AATS performance for p =2 and 4, n0 =2, 3 and 5, h0 =1, α 

= 0.005 and λ = 0.01. 

 

p n0 d VP DWL VSSCL VSICL VSSI VSS VSI FRS 

2 

2 

0.5 26.29 37.67 25.59* 65.99 48.22 39.97 66.10 76.36 

1.0 4.47* 4.72 4.90 9.90 5.18 5.88 10.54 17.99 

1.5 1.66* 1.73 2.19 2.28 1.83 2.38 2.43 5.26 

2.0 0.93* 0.98 1.39 1.01 1.17 1.43 1.04 2.01 

3 

0.5 14.32 18.71 14.11* 42.53 20.98 19.79 43.87 54.82 

1.0 2.69* 2.69* 3.12 4.72 3.06 3.61 5.06 10.01 

1.5 1.08* 1.19 1.59 1.24 1.57 1.69 1.29 2.68 

2.0 0.69* 0.69* 1.01 0.69* 1.15 1.02 0.69* 1.06 

5 

0.5 7.64 9.09 7.55* 21.49 9.45 9.72 22.53 32.44 

1.0 1.48 1.46* 2.05 1.92 2.21 2.27 2.03 4.42 

1.5 0.72* 0.72* 1.07 0.73 1.51 1.09 0.74 1.17 

2.0 0.56* 0.56* 0.60 0.56* 1.15 0.60 0.56* 0.60 

4 

2 

0.5 38.09 54.97 35.69* 88.25 73.12 57.36 89.55 100.77 

1.0 6.45* 6.92 6.73 16.63 7.75 8.29 17.38 28.20 

1.5 2.23* 2.27 2.46 3.62 2.38 3.03 3.85 8.32 

2.0 1.15* 1.17 1.23 1.35 1.17 1.76 1.40 3.01 

3 

0.5 20.02 26.94 19.48* 62.36 33.65 27.92 63.67 76.87 

1.0 3.71* 3.84 3.81 7.93 4.15 4.69 8.39 15.96 

1.5 1.38* 1.38* 1.42 1.75 1.42 2.00 1.84 4.09 

2.0 0.79* 0.79* 0.84 0.83 0.79* 1.16 0.84 1.46 

5 

0.5 10.25 12.66 9.96* 34.29 13.12 13.13 35.38 48.69 

1.0 1.93 1.93 1.80* 2.97 2.07 2.70 3.16 6.95 

1.5 0.83* 0.83* 0.90 0.88 0.87 1.24 0.90 1.64 

2.0 0.59* 0.59* 0.70 0.59* 0.63 0.71 0.59* 0.70 

 

 


