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Abstract

Being a quasi-brittle material, concrete under tensile loading exhibits a strain
softening behaviour that cannot be accurately reproduced with classical (with-
out an internal length parameter) continuum mechanics models. An internal
length parameter must be introduced to regularize the problem, as in the
case of the so called second gradient model. In this approach, an enriched
kinematic description of the continuum is adopted considering higher (sec-
ond) order gradients of the displacements following the work of Cosserat,
Toupin, Mindlin and Germain. The model has been developed by Chambon
and co-workers and has been mainly used with plasticity constitutive laws
to reproduce the non linear behaviour of soils. It is here applied for the first
time to concrete and reinforced concrete specimens considering material laws
based on the damage mechanics theory. The advantages and limitations of
the approach are discussed, and possible improvements towards more realistic
responses are suggested.
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1. Introduction

Since the 70’s [1],[2],[3] researchers study the strain localization in quasi-
brittle materials, or more generally in materials exhibiting strain softening.
Strain localization zones are clearly observed in experimental tests [4] and
it is well known that they cannot be modelled with classical (without an
internal length parameter) continuum mechanics models. Analytically, the
differential operator becomes hyperbolic and an infinite number of solutions
is possible. Numerically, the loss of ellipticity appears as a pathological mesh
dependency of the results. These shortcomings are due to the lack of an in-
ternal length parameter in the continuum model that characterizes the width
of the localization zone [5],[6],(7],[8],[9],[10],[11]. Different approaches exist
in the literature to regularize the problem and to obtain objective numerical
global (i.e. forces, displacements) and local (i.e. strains, stresses, internal
variables) results. The first are important for design purposes and the sec-
ond to deal for example with durability and crack propagation problems.
The different approaches are briefly summarized hereafter (see also [12] for
a more detailed literature review):

e Regularisation based on energy: The principle is to keep the same
fracture energy dissipated during the formation of cracks whatever the
size of the finite element mesh [13],[14],[15],[16]. For this, the post
peak behaviour of the adopted constitutive law is changed according
to the size of the finite elements. This approach provides global results
that may seem independent of the size of the mesh. Nevertheless,
the localization zone is necessarily concentrated in one element (as
in a classical continuum mechanics model without an internal length
parameter) and thus local and global results are not objective. Results
are also dependent on the orientation of the finite element mesh.

e Regularisation based on time dependency: Viscous terms are intro-
duced in the model that restore the ellipticity of the differential opera-
tor [17]. However, because this method does not introduce an internal
length to control the width of the localization zone, severe mesh de-
pendence is avoided for dynamic but not for quasi-static calculations
[18].

e Regularisation based on spatial dependency:
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— Using a non local integral type variable (i.e. on the damage pa-

rameter or on the equivalent strain for constitutive laws based on
damage mechanics) [8]. For this integral type model, the inter-
action between material points across a crack [19] can still pose
problems. Similar difficulties also exist for materials presenting a
different behaviour in traction and compression (consider for ex-
ample the interactions across the compression and traction zones
for a concrete beam submitted to bending, see also section 4).
Different approaches can be found in the literature to deal with
these problems, mainly consisting in modifying the adopted weight
function either near the boundaries [20] or by introducing a de-
pendence on the stresses [21]. Nevertheless, this last assumption
implies that the internal length is no longer a constant material
parameter but that it decreases with increasing loading. Further-
more, as is the case for the other regularisation techniques, the
ability of the method to reproduce accurately global and local
results under size effect needs to be more thoroughly studied [22].

Using strain gradients controlling the evolution of the internal
variables (i.e. the second gradient of the plastic strain in the
consistency condition and/or the flow rule) [7],[23]. This type of
model is shown to be equivalent to the integral type model [23].

Alternatively, the nonlocal variable can be defined via an implicit
gradient of the corresponding local variable, and is then the so-
lution of a boundary value problem [24]. This type of model is
shown to be equivalent to the integral type model [23].

By taking into account gradient of internal variables (the damage
variable in the case of damage models) in the energy [25], [26],
[27]. The gradient term here, acts as a penalization term for the
cases of high localisation.

More recently, strain localization due to damage has been treated
using the thick level set approach [28]. The level set separates the
undamaged from the damaged zone while the damage variable
and its growth is a function of the level set propagation. The
force driving the damage front is non-local in the sense that it
averages information over the thickness in the wake of the front
[28].
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— A rather natural way of introducing (indirectly) a length param-
eter in a continuum model is to account for the microstructure of
the material. The general class of the so called microstructured
models or higher order continuum models allows for the descrip-
tion of the kinematics of the microstructure by using an additional
tensor in the displacement field. Higher order continuum theories
can be traced back to the works of the Cosserat brothers [29],
Toupin [30] and Mindlin [31],[32] and have been generalized and
properly formulated by Germain [33],[34] using the virtual power
method.

In this article, we choose to work with the second gradient model devel-
oped by Chambon and co-workers [35],[36],[37],[38],[39]. This model can be
seen as a particular case of a higher order continuum (see section 2) and has
been mainly used till now to regularize problems involving strain localization
in soils. It is used hereafter to concrete and reinforced concrete elements.

The article is structured as follows: the theoretical framework of the sec-
ond gradient model and its numerical implementation are at first presented.
The objectivity of the numerical results is shown for a 1d concrete specimen
and the evolution of the localization zone is discussed. The article ends with
a case study, the simulation of a three point bending test on a reinforced con-
crete beam. Discussion on the numerical results show the advantages and
limitations of the approach that should be considered as a first step towards
the use of local second gradient models for concrete structures.

2. The second gradient model

2.1. Theoretical framework

As detailed in the seminal work of Germain [33],[34], using the virtual
power method one can choose a field of virtual displacements to describe the
proper kinematics of a higher order continuum including its microstructure.
The internal stresses, limit conditions and equilibrium equations appear nat-
urally as long as the linear form representing the virtual power is correctly
defined and that it respects the principle of material independence.

The second gradient model developed by Chambon et al.[35],[36] can be
seen as a particular case of a higher order continuum where up to second
gradient terms are adopted and the macro strains are considered equal to
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the micro strains. The authors have come to this assumption following ex-
perimental results that showed that for the case of geomaterials micro ro-
tations equal macro rotations [40],[41]. They have presented case studies in
the framework of plasticity and have shown that this type of model restores
mesh objectivity but not the uniqueness of the solution [37],[38],[39],[42].

For the second gradient model, the virtual displacement field must be
chosen as a field of continuous and continuously differentiable velocities. Ac-
cording to the general theory for continua with microstructure presented in
[37] and assuming that micro strains are equal to macro strains, the virtual
work principle equation takes the following form (for any «, o* defining the
virtual quantity). For the sake of simplicity, we neglect hereafter the body
force terms and the presentation is done for a 2d continuum:

our OPur
i+ Bk ) dS) = suy + PyDul)dr, 1
a5 + S a0 = | i+ RDu) 0
with

e i,j and k (varying from 1 to 2)

e 1; the coordinates

e u; the macro displacements field

e Dq the normal derivative of any quantity ¢

dq
Dqg=— 2
q 81% Nk, ( )

e 0;; the Cauchy stresses (macro stresses)
e ;i the double stresses

e p, the classical traction forces

e P, the double traction forces

e [' the boundary of 2
The Cauchy stress o;; is, as in classical continua, symmetric, the double

stress X;;; is symmetric with respect to its indices j and k. Application of
the virtual work principle equation (1) and two integrations by parts provide

6
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the balance equation and the boundary conditions. The balance equations
become:

do;;  O*%,;
Tij L2k g (3)
Ox;  Ox;0xy
Assuming that the boundary is regular (which means existence and unique-
ness of the normal for every point of the boundary I" of the studied domain),
after one more integration by parts, we get
DY DY Dn
ijk n;— ijk i + l
Dl‘k D-Tj D x

Dn;
_]Eijk = Di, (4)

0N —npn; DY —
AR} J v ka

Ei]'knjnk -

and
Eijknjnk = Pi (5)
where p; and P; are prescribed. The tangential derivative of any quantity ¢
is defined by:
Dqg — 9q  9q
Daz; - Oxj;  Oxy
To complete the equations of the problem two constitutive laws have to be
introduced linking the static variables macro stresses 0;; and double stresses
Yk respectively with the kinematic variables strains (first gradient of the
displacements) 27“;'_ and double strains (second gradient of the displacements).
The two constitutive laws are usually supposed decoupled [35],[36]. The first
gradient law can be any classical constitutive law (e.g. based on damage
mechanics or plasticity). The second gradient law is usually based on linear
elasticity.
Following the work of Mindlin [31],[32], the vector of double stresses for
a bidimensional case has eight components and can be found considering
the derivative of the strain energy with respect to the second gradient of
the strains and symmetry of the tensor [31],[32],[43]. The obtained result is
(where a!, a?, a?, o, a® are five independent constants in the general case of

an isotropic material):

ngn;.

S11 ol2345 0 o2 0  al2 12 0 Y
2112 0 al4d o145 0 a?® 0 0 al? X112
Y121 0 al4s  ql4s 0 o 0 0 al? X121
2122 a?3 0 0 a3t 0 a2 a2 0 X122
So1t = 0 0 a® 0 o o 0 023 Yo (7 (6)
2212 (112 0 0 a25 0 a145 Oél45 0 X212
2221 Oz12 0 0 a25 0 a145 0[145 0 X?Ql
2222 0 Oél2 al? 0 a23 0 0 a12345 X222




152

153 with:

0*u,
- 7
Xpar Ox,0x, (7)

' =2(a! +a® + o’ + o' + ),
a® = a® +2a°,

a? =al +a?/2,

a'¥ =a'/2+ o' +a%/2,

a® =a?/2+a”,

o =2(a® + 2a%). (8)

154 As there is no clear physical definition of the different material constants
155 and in order to simplify the equations the following particular case of the
s general isotropic form is proposed [39], where only one material parameter
7 B is adopted with :

1

o

1

o

« s
o> =B
o’ = —B/2 (9)
a*=B
o’ =—B
158
19 leading to :
Sin B 0 0 0 0 B/2 B/2 0 X111
Y112 0 B/2 B/2 0 B/2 0 0 B/2 X112
Sia1 0 B/2 B2 0 B/2 0 0 B/2 X121
S | _ 0 0 0 B 0 B/2 B/2 0 X122 (10)
Y211 - 0 —-B/2 —BJ/2 0 B 0 0 0 X211 ’
So1o B/2 0 0 -B/2 0 B/2 B/2 0 X212
Sor B/2 0 0 -B/2 0 B/2 B/2 0 X221
S 0 B/2 B2 0 0 0 0 B X222
160
161 This expression derives from the the strain energy density defined as

162 (considering only the second gradient terms) :

8
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VVX = §<2ininjk, — XkiiXkjj + 2ijiXk:j1ﬁ - 2ijiX1ﬁjk:) (11)

It is shown in [35],[36],[42] and in subsection 3.3 that the material param-
eter B is directly linked with the size and the evolution of the localization
zone.

The second gradient model uses the gradient of kinematic variables. The
constitutive equation remains local and so ideas and algorithms used in clas-
sical models can be adopted. Formulation of a second gradient extension for
any classical model is thus straightforward.

2.2. Numerical implementation

The second gradient of the displacement necessitates the use of C! ele-
ments in a finite element code. This is avoided by introducing a new field of
unknowns v;; imposed to be equal to the gradient of the displacements using
Lagrange multipliers \;; [39],[44]. The new weak formulation of the problem
then becomes:

au: * auf * * *
/S;O'ija—xj —&—Zijkvijyk dQ —/ )‘U(% — Uij) dQ = /F(pzuz —‘rP,DUl)dF, (12)

Q J

% 8“1
/Q)\ij(axj 0;;)dY = 0. (13)

The problem is discretized using a nine (9) nodes finite element, where
eight (8) nodes are used for the variables w;, four (4) for v;; and one (1)
node at the center for the Lagrange multiplier );;, see figure 1. This element
has been implemented in the finite element code LAGAMINE (University of
Liége) and the problem is solved using the classical Newton-Raphson method
[44].

3. One-dimensional problem : objectivity of the results and evolu-
tion of the localization zone

3.1. Objectivity of the results

The objectivity of the numerical results obtained with a second gradi-
ent model has been discussed in the past using constitutive laws for soils
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Figure 1: The 2d second gradient finite element, [44].

based on the mathematical theory of plasticity [37],[38],[39]. We study here-
after numerically the objectivity of the results for concrete specimens using
constitutive laws based on damage mechanics.

Let’s consider the case of one-dimensional traction applied on a concrete
specimen. Figure 2 shows the boundary conditions adopted for the 2d second
gradient finite element mesh introduced into the code LAGAMINE. In order
to avoid possible 2d effects, the vertical displacements u, are considered equal
to zero at the upper and lower boundaries along the specimen. The section
is considered equal to 0.1x1m? and the length 1m. The right end of the
specimen is fixed (u; = ug = 0) and the horizontal displacement U is applied
at the left end. The additional external double forces are assumed to be zero
at both ends. As no global snap-back is expected with these material and
geometrical parameters (see [36] equation (38) for a snap-back criterion), the
test is simply controlled by the imposed displacement.

upper boundary: w,=0
- P 5 fixed
u,=u,=0
AN N LW S U AN AW ALY
lower boundary: u,=0

£y

X

Figure 2: Concrete specimen under 1D traction: Boundary conditions and applied loading.

The constitutive law linking the stresses with the strains is a classical
damage mechanics law [45] with an initial slope G = 30 G Pa and a slope

at the peak G = —16.7 G Pa corresponding to a strain epy = l.e™*, see

10
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figure 3(a). The constitutive law linking the double stresses with the second
gradient of the displacements is based on linear elasticity and depends on
a single parameter considered equal to B = 0.37 GN, see figure 3(b) and
section 2.1. The two constitutive laws are supposed decoupled.

A A

stress

double
stress

strain b) strain gradient.

Figure 3: Concrete specimen under 1d traction, constitutive laws: (a) first gradient
(stresses Vs. strains), (b) second gradient (double stresses Vs. strain gradients).

Analytically, bifurcation in a 1D problem appears at the peak. In order
to visualize different possible solutions, an algorithm of random initialisation
of the iterative solver of the equilibrium equation is applied just after the
peak [46],[47]. For every step, a full Newton-Raphson involving a numer-
ical consistent tangent stiffness operator for the complete model (i.e. the
second gradient terms as well as the classical ones) is used. The results
of two meshes with 14 and 50 elements are presented hereafter, [48]. The
convergence criterion and convergence rates are detailed in section 3.2.

Figure 4 shows the global force versus displacement curve. The differences
just after the peak correspond to distinct converged solutions. At the end of
the loading however, both meshes converge to the same solution.

The above remark can be better understood looking at the local results.
Figure 5 presents the distribution of the damage variable - varying from 0
(undamaged section) to 1 (damaged section) - just after the peak, at a strain
equal to 1.2F — 04. Figure 6 presents the distribution of the damage variable
at the end of the loading at a strain equal to 2.9 —04. Just after the peak, the
mesh with 14 elements converges to a solution with two patterns (a hard part
and a soft (localized) part solution). The mesh with 50 elements converges to
a three pattern solution (hard - soft (localized) - hard), figure 5. At the end
of the loading however, it switches to the same two-pattern solution as the
mesh with 14 elements, figure 6. This phenomenon of switching deformation

11
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0.0E+00
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Figure 4: Concrete specimen under 1d traction: Force versus displacement curve.

20 modes was also found using plasticity models in [49]. At the end of the

. loading the localization patterns and global curves provided by both meshes
22 become thus identical.

(a)

* 1.000E-03

.000E-03

(b) , v

Figure 5: Concrete specimen under 1d traction: Distribution of the damage variable just
after the peak (strain equal to 1.2F — 04): (a) 14 element mesh, (b) 50 element mesh.

12
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Figure 6: Concrete specimen under 1d traction: Distribution of the damage variable at
the end of the loading (strain equal to 2.9F — 04): (a) 14 element mesh, (b) 50 element
mesh.

From the above it is obvious that the use of the second gradient model
with damage mechanics laws regularizes the problem (mesh independency)
but does not restore the uniqueness of the solution for the corresponding
boundary value problem. This was also found for constitutive laws based on
plasticity [47],]49].

It is also observed in figure 4 that the non homogeneous results at the
end present a higher strength. Indeed, and for the same end displacement,
the maximum stress is larger than in the homogeneous case (see also [50]).
An explanation of this numerical behaviour could be that the stiffness intro-
duced by the second gradient terms does not vanish because of the adopted
elastic law. A way to deal with this behaviour is either to introduce a cou-
pling between the first and second gradient material laws (something that
can also help to a priori control the evolution of the localisation zone (see [48]
and subsection 3.3). It can also be argued that at some point a displacement
discontinuity must be introduced because the continuous damage model can-
not model correctly a crack. In our case, this should be done by inserting
a cohesive zone element since the discontinuity should be introduced before
the damage reaches its maximum value. An approach like this is for example
proposed for the case of a model with gradient of the internal variables by
Cuvilliez et al [51], see also [52],[53],[54].

)

3.2. Numerical convergence

Let F™ and F*** be the internal and external nodal forces vectors ob-
tained from the finite element discretization of equations (12) and (13). Let

13
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also [/ be the out of balance forces defined by F™ — Fe®* and Fret the
vector of the forces associated with the fixed degrees of freedom. In the fol-
lowing, the forces associated with the displacement degrees of freedom are
noted F'(u;), those associated with either the gradient or Lagrange multiplier
degrees of freedom are noted F'(v;;, A;;). A norm for the force vectors is here
adopted as the sum over the degrees of freedom of the absolute values of the
vectors coordinates :

I F (=) |F (14)

dof 4

The convergence criterion for the nodal forces is met when :

o N LT TR L YR
Ny Ny < 1s]
- i rec1s1ion 15
2 |‘F75‘1Ct(ui)” + ||FT5aCt(Uijy/\ij)H — p ( )
N’Seuct N’:i(wt

where N, NIt N,, and N’ are the number of degrees of freedom and
the number of fixed degrees of freedom for the displacement field and both
the gradient and Lagrange multipliers respectively. For the previous compu-
tation, the precision was set at 10711,

A typical convergence profile for the one dimensional traction test is
shown in figure 7 starting from the random initialization. Convergence diffi-
culties observed at the first step are a direct result of the random initialization
[47]. The first few iterations for this step show a important error. However
as soon as a solution is found, a classical convergence rate is recovered.

Convergence difficulties are also encountered seven steps after the random
initialization (corresponding to around 70 total iterations). They correspond
to a switching deformation mode [49]. Again, a classical convergence rate is
recovered once the new localized solution is found.

3.3. Fvolution of the localization zone

The internal length parameter does not appear clearly from the previous
equations. However, an analytical solution exists for the 1d problem when
a bilinear first gradient law and an elastic second gradient law are adopted
[35],[36]. The authors have proven that the solutions are built using patches
of different fundamental solutions, consisting - as in section 3 - of hard parts
corresponding to the unloading (or elastically loading) pieces and soft parts
for the loading pieces of the medium. Various analytical patterns are possible

14
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Figure 7: Concrete specimen under 1d traction: Typical convergence profile

(a hard-soft solution, a soft-hard-soft solution...) but their number is finite.
This is not the case for a classical continuous mechanics medium without
regularization where an infinite number of solutions is possible, [42]. The
analytical solution [35],[36] introduces specific ratios for the hard (w) and
the soft pattern (n)

Gel

W= 5 >0 (16)
—GY

—n? = 5 >0, (17)

and a wavelength [, given by the following equation:

|—B

This wavelength is proportional to the ratio of the moduli of the elastic
second gradient law and of the softening branch corresponding to the first
gradient law. It is only an indicator of the width of the localization zone, it
does not provide its exact value. This is due to the fact that it corresponds
to a period of the soft part standing alone. The real solution being a patch
of the different solutions [, is larger than the actual width [42].

Analytical equation (18) is valid for a 1d problem considering a bilinear
first gradient law and an elastic second gradient law. Nevertheless, it can be
used to estimate the initial length of the localization zone and its evolution

15
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[42]. For concrete structural elements submitted to traction for example,
constitutive laws have the general form of figure 3, [45]. As damage increases,
the slope G of the stress strain curve diminishes (in absolute value) and
the width of the band is thus found increased (see figures 5,6). For the
case of compression, where concrete exhibits a more ductile behaviour the
localization zone will at first decrease and then increase, [42] (remark: a
simplified 1d model to a priori control the evolution of the localization zone -
constant, decreasing or increasing - is presented in [48] considering a coupling
between the first and the second gradient law).

In the following section, an engineering case study is presented: the nu-
merical simulation of a three point bending test on a reinforced concrete
beam using the second gradient model.

4. Three point bending test of a reinforced concrete beam

4.1. Experimental configuration

A three point bending test was conducted on a reinforced concrete beam
having the following geometrical characteristics: thickness b = 200mm,
height h = 500mm and span 5000mm. The geometry of the beam and
informations about the steel reinforcement are shown in figure 8. A vertical
cyclic load was applied at the upper part of the beam. Figure 9 presents the
positions of six strain gages to monitor the axial strains on the steel bars.

4.2. Finite element discretisation

The three point bending test is modelled hereafter as a two dimensional
problem using the second gradient finite element described in section 2.2.
Two meshes have been used for the simulations, figure 10. The first mesh
consists of 5180 elements, 4148 of which are second gradient elements and
1032 truss elements representing the horizontal reinforcement. The average
size of the concrete elements for this mesh is of 0.02mx0.035m. The second
mesh consists of 13494 elements with an average size of 0.01mx0.017m for the
concrete elements. Concrete and steel elements are supposed to be perfectly
bonded (for engineering applications where we are mostly concerned with the
behavior of a structure on the ultimate limit state (ULS) this assumption is
acceptable [57], [58]). The end nodes at each lower extremity of the beam
are blocked vertically; the right node is blocked horizontally. For the finite
element calculations, monotonically increased displacements are applied at
the upper part of the beam through an elastic plate, which is very stiff

16
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Figure 8: 3 point bending test: beam dimensions and steel reinforcement, [55],[56].
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Figure 9: 3 point bending test: Position of the strain gages, [55],[56].

compared to the other materials. At the supports at both ends of the beam
and on the upper part, where the displacements are applied, an elastic linear
law is introduced to prevent from artificial numerical damage.

4.8. Material parameters

A classical damage mechanics law is used for the first gradient constitu-
tive law [45]. The concrete material parameters are provided in table 1.
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Figure 10: 3 point bending test: finite element meshes and boundary conditions.

E (GPa) epo A, B, A, B. 5
372  0.1B05 0.7 6800 0.42 780 1.1

Table 1: 3 point bending test: concrete material parameters, [45].

The elastic modulus B for the second gradient constitutive law is consid-
ered equal to 1.5 MN. A way to choose this parameter is discussed in section
4.4. The first gradient material law and the second gradient are hereafter
considered uncoupled.

An elastic perfectly plastic law is used for the reinforcement. The follow-
ing parameters are adopted, tables 2 and 3 (where o, the yield stress and
HA states for high adherence):

E (GPa) o, (MPa) Section (m?)
195 466 16.085E-04 (2HA32)

Table 2: 3 point bending test: steel parameters (lower part).

4.4. Choosing the material parameter B

As discussed in section 3.3, the analytical solution provided in equation
18 can be used as an indicator of the initial size of the localization and its
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E (GPa) o, (MPa) Section (m?)
195 466 1.0053E-04 (2HAS)

Table 3: 3 point bending test: steel parameters (upper part).

evolution. As damage increases, the slope of the first gradient law decreases
(in absolute value) and the width of the band is increased.

The above argument is verified hereafter for the case of the three point
bending test: A 1d second gradient calculation is performed on a concrete
specimen adopting the parameters of table 1 and an elastic modulus B equal
to 1.5 MN. Equation 18 provides an initial width of the localization band
(approximately) equal to 15cm. In figure 11, the evolution of the profile
of the concrete axial strains for different values of imposed displacements
coming from the 1d calculation is provided. At the beginning of the loading
the width of the localization zone is (approximately) equal to 15 cm. At
the end of the loading it is found (approximately) equal to 30cm. Figure 12
presents the numerical profile of the concrete axial strains for the three point
bending test along the red line for an imposed displacement of 6mm. The
strain distribution presents several strain bands similar to the one found for
the 1d case, figure 11. Comparison is more obvious in figure 13 where the
strain distributions coming from the 1d model (dotted lines) and the three
point bending test (continuous lines) are plotted. The same ”peak strains”
(the maximum strain found in the band) are found (see red, green and orange
lines in figures 11 and 13).

From the above it is obvious that for a three point bending test a 1d
second gradient model can be used to calibrate the parameter B and thus
the initial width of the localization zone and its evolution.

4.5. Numerical results

Figure 14 presents the numerical force versus displacement (measured at
the center of the beam) curve compared to the experimental one (note: dur-
ing the experiment the beam was loaded and unloaded cyclically whereas
in the simulation the beam is loaded with a monotonic increasing displace-
ment). At this global level results for both meshes were identical. The force
displacement graph exhibits the classical reinforced concrete behaviour in
three stages: In the first stage, concrete and steel stay both in the elastic
regime; then concrete starts to damage and the slope of the force displace-
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Figure 11: Choosing the material parameter B: 1d second gradient numerical calculation,
evolution of the width of the localization zone.

Figure 12: Choosing the material parameter B: 3 point bending test, concrete axial strain
profile along the red line obtained numerically for an imposed displacement of 6mm.

ment curve changes. Finally, steel enters in a plastic phase and a second
change in the slope appears. The numerical model provides however more
stiff results at the last levels of the loading.

Figure 15 shows the evolution of the numerically obtained axial strains at
different positions on the reinforcement bars as function of the global force.
Results are found comparable to the experimental data [55],[56]. The model is
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Figure 13: Choosing the material parameter B: comparison of the strain profiles coming
from the 1d second gradient model and the three point bending tests.
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Figure 14: 3 point bending test: force-displacement curve.

;0 able to capture positive and negative strains and thus to distinguish the parts
;0  of beam in traction or in compression. The strain gage 4 is inside a strain
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Figure 15: 3 point bending test: force versus axial strains obtained numerically at different
positions on the reinforcement bars.

Figure 16 shows the distribution of the damage variable in concrete at
different stages of loading and for the two mesh sizes. The damage distri-
butions for the two meshes are similar (mesh objectivity) but not exactly
the same. This is due to the fact that the second gradient method doesn’t
restore the unicity of the solution and small changes in the model can trigger
different solutions. In contrast to a classical continuum mechanics model
(without any regularization technique), the different solutions are however
physically acceptable. For similar bending tests, classical non-local damage
models which define an equivalent strain by averaging over a certain distance
(material length parameter) have sometimes a tendency to develop artificially
damage on the upper, compressed part of the beam (even if the local strain is
not high enough to cause compressive damage). This is due to the principle
of averaging over an area. There is no such problem with this model as the
variables are local.

The damage pattern develops numerically with sudden peaks which ex-
perimentally correspond to developing cracks. The crack opening can not
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Figure 16: 3 point bending test: distribution of the damage variable in concrete at different
steps for the two meshes.

be modelled directly in this simulation as the displacement field remains
continuous, but it can be approximated from the damage model by simply
measuring the displacement jump between two points located on the oppo-
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site sides of a damaged zone. This obviously works only when the damaged
bands are clearly separated. The width and separation of the damage bands
can be controlled by changing the internal length, which in our case means
changing the slope of either or both the first gradient and second gradient
constitutive laws.

5. Conclusions

A second gradient model is adopted to simulate the behaviour of plane
concrete and reinforced concrete structural elements using a classical damage
mechanics law. The contribution is clearly a first step in the modelling of
concrete failure with such type of models and the authors tried to highlight
the advantages and drawbacks of the approach.

More specifically, objective (mesh independent) global and local results
are obtained and damage is localized into bands whose width is controlled
by the model parameters. The uniqueness of the solution is not restored
and the evolution of the localization zone is discussed. In its actual form,
the model provides a higher residual stress and spreading damage/strain
fields. Nevertheless, possible solutions are proposed and efforts are currently
made for their implementation. These results are encouraging and represent
the first steps toward a wider use of second gradient models for concrete
structures.
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