
EHBT: An eÆient protool for group keymanagement?Sandro Rafaeli, Laurent Mathy, and David HuthisonComputing Department, Lanaster University, LA1 4YR, Lanaster, UKAbstrat. Several protools have been proposed to deal with the groupkey management problem. The most promising are those based on hi-erarhial binary trees. A hierarhial binary tree of keys redues thesize of the rekey messages, reduing also the storage and proessing re-quirements. In this paper, we desribe a new eÆient hierarhial binarytree (EHBT) protool. Using EHBT, a group manager an use keys al-ready in the tree to derive new keys. Using previously known keys savesinformation to be transmitted to members when a membership hangeours and new keys have to be reated or updated. EHBT an ahieve(I � log2 n) message size (I is the size of a key index) for join operationsand (K � log2 n) message size (K is the size of a key) for leave operations.We also show that the EHBT protool does not inrease the storage andproessing requirements when ompared to other HBT shemes.1 IntrodutionWith IP multiast ommuniation, a group message is transmitted to all mem-bers of the group. EÆieny is learly ahieved as only one transmission is neededto reah all members. The problems start beause any mahine an join a mul-tiast group and start reeiving the messages sent to the group without thesender's knowledge. This harateristi raises onerns about privay and seu-rity sine not every sender wants to allow everyone to have aess to its ommu-niation.Cryptographi tools an be used to protet group ommuniation. An en-ryption algorithm takes input data (e.g. a group message) and performs sometransformations on it using a key (where the key is a randomly generated num-ber). This proess generates a iphered message. There is no easy way to reoverthe original message from the iphered text other than by knowing the key [9℄.When applying suh tehnique, it is possible to run seure multiast sessions.Group messages are proteted by enryption using a hosen key (group key).Only those who know the group key are able to reover the original message.However, distributing the group key to valid members is a omplex problem.Although rekeying a group before the join of a new member is trivial (send thenew group key to the old group members enrypted with the old group key),? The work presented here was done within the ontext of ShopAware - a researhprojet funded by the European Union in the Framework V IST Programme.



rekeying the group after a member leaves is far more ompliated. The old keyannot be used to distribute a new one, beause the leaving member knows theold key. A group manager must, therefore, provide other salable mehanisms torekey the group.Several researhers have studied the use of a hierarhial binary tree (HBT)for the group key management problem. Using an HBT, the key distributionentre (KDC) maintains a tree of keys, where the internal nodes of the tree holdkey enryption keys (KEKs) and the leaves orrespond to group members. Eahleaf holds a KEK assoiated to that one member. Eah member reeives andmaintains a opy of the KEK assoiated to its leaf and the KEKs orrespondentto eah anestor node in the path from its parent node to the root. All groupmembers share key held by the root of the tree. For a balaned tree, eah memberstores log2 n + 1 keys, where n is the number of members. This hierarhy isexplored to ahieve better performane when updating keys.In this paper, we propose a protool to eÆiently built an HBT, whih weall the EHBT protool. The EHBT protool ahieves (I � log2 n) message size foraddition operations and (K � log2 n) message size for removal operations keepingthe storage and proessing on both, lient and server sides to a minimum. Weahieve these bounds using well-known tehniques, suh as a one{way funtionand the xor operator.2 Related WorkWallner et al [13℄ were the �rst to propose the use of an HBT. In their approah,every time the group membership hanges, internal node keys (a�eted by themembership hange) are updated and every new key is enrypted with eah ofits hildren's keys and then multiast. A rekey message onveys 2 � log2 n keysfor inluding or removing a member.Caronni et al [12℄ proposed a very similar protool to that of Wallner, butthey ahieve a better performane regarding the size of multiast messages forjoining operations. We refer to this protool as HBT+. Instead of enryptingnew key values with their respetive hildren's key, Caronni proposes to passthose keys into a one{way funtion. Only the indexes of the refreshed keys needto be multiast and an index size is smaller than the key size.An improvement to the hierarhial binary tree approah is the one{wayfuntion tree (OFT) proposed by MGrew and Sherman [5℄. The keys of a node'shildren are blinded using a one{way funtion and then mixed together usingthe xor operator. The result of this mixing is the KEK held by the node. Theimprovement is due to the fat that when the key of a node hanges, its blindedversion is only enrypted with the key of its sibling node. Thus, the rekey messagearries just log2 n keys.Canetti et al [3℄ proposed a slightly di�erent approah that ahieves the sameommuniation overhead. Their sheme uses a pseudo{random{generator (PRG)[9℄ to generate the new KEKs rather than a one{way funtion and it is appliedonly on user removal.



Perrig et al proposed the eÆient large{group key (ELK) protool [6℄. TheELK protool is very similar to the OFT, but ELK uses pseudo{random fun-tions (PRFs)1 to build and manipulate the keys in the tree. ELK employs atimely rekey, hene, at every time interval, the KDC refreshes the root key usingthe PRF funtion and then uses it to update the whole key tree. By deriving allkeys, ELK does not require any multiast messages during a join operation. Allmembers an refresh their own keys, hene no rekey message is required. Whenmembers are deleted, as in OFT, new keys are generated from both its hildren'skeys.3 EÆient Hierarhial Binary Tree ProtoolIn the EHBT protool, a KDC maintains a tree of keys. The internal nodes of thetree hold KEKs and the leaves orrespond to group members. Keys are indexedby randomly hosen numbers. Eah leaf holds a seret key that is assoiated tothat member. The root of the tree holds a ommon key to all members.Anestors of a node are those nodes in the path from its parent node to theroot. The set of anestor of a node is alled anestor set. Eah member knowsonly its own key (assoiated to its leaf node) and keys orrespondent to eahnode in its anestor set. For a balaned tree, eah member stores log2 n+1 keys,where n is the number of members.In order to guarantee bakward and forward serey [11℄, the keys related tojoining members or leaving members should be hanged every time the groupmembership hanges. The new keys in the anestor set of an a�eted leaf aregenerated upwards from the key held by the a�eted leaf's sibling up to the root.Using keys that are already in the tree an save information to be transmittedto members when a membership ours and new keys have to be reated orupdated.The formula F(x; y) = h(x � y) is used to generate keys from other keys,where h is a one{way hash funtion and � is a normal xor operator. The obviousfuntionality of funtion h is to hide the original value of x and y into value z ina way that if one knows only z he annot �nd the original values x and y. Thefuntionality of � is to mix x and y and generate a new value.We say that a key ki an be refreshed by doing k0i = F(ki; i), where i isthe index (or identi�er) of key ki or key ki an be updated by deriving one ofits hildren key by doing k0i = F(kleftjrighti ; i), where kleftjrighti is the key of i'seither left or right hild. Appendix A desribes the reason for using index i infuntion F .3.1 Rekey Message FormatA member an reeive two types of information in a rekey message, one tellinghim to refresh or update the value of a key, the other telling him the new value1 ELK uses the stream ipher RC5 [8℄ as the PRF.



of a key. In the former ase, the member reeives an id and in the latter ase,he reeives a key value. After deriving a key, a member will try to derive allother keys by himself (from that key up to the root) unless he reeives anotherinformation telling him something di�erent. For example, if key Ki is refreshed,the KDC needs to send to K's holders the identi�ation of the key so that theyan perform the refresh operation themselves. Or, if a node n has its key updated(K 0n = F(kL; n)), then it implies sending to member L the index n and to theother hild, namely R, the new key value K 0n (beause R does not know L's key).
` ` `

indexes and
commands

keys

+i + j i {K j}K i` ` `Fig. 1. Example of a rekey message.The rekey message that relays this information has two parts. The �rst partarries ommands and the seond arries keys. Eah piee of information isindexed by a key index. Keys are enrypted with the key indiated by the keyindex (see Figure 1), but ommands are not enrypted beause they do not arryvital information. Based on ommands and keys, members an �nd out whihkeys they must refresh or update, or just substitute, beause they have reeiveda new key value to a spei� key.Algorithm 1: Reading rekey message algorithm.(1) reeive rekey message(2) set last ommand to "keep key"(3) while there is a key to be derived(4) get a key index from key{list(5) searh indexes part of rekey message for key index(6) if there is a ommand(7) exeute the ommand on the spei� key(8) set last ommand to this ommand(9) else(10) searh keys part of the rekey message for key index(11) if there is a key(12) substitute it in the key list(13) set last ommand to "update"(14) if there is no ommand or key(15) exeute last ommand in urrent keyThe algorithm to handle rekey messages starts with a member holding a listof known keys (key{list). After exeuting the algorithm, a member will have allhis keys freshened up. A simpli�ed version of this algorithm appears in Algorithm1.



In the remainder of this paper, we use the following notation:+i or �i or �i are ommands to be applied on key iR(ki) refresh ki applying F(ki; i)U(ki) update kj applying F(ki; j)fxgk enryption of x with kj : ommand ommand to key j's holder[ommands; keys℄ message ontaining ommands and keys4 Basi OperationsIn this setion, we desribe the basi algorithms for join and leave operations forsingle and multiple ases.
u1

n14
K14

n18
K18

n1
k1

n34
K34

n2
k2

u1

n14
K'14

n18
K'18

n58
K58

n12
K12

n1
k'1

n34
K34

n58
K58

u2Fig. 2. User u2 joins the tree. n1
k'1

n14
K'14

n12
K12

u1 u2

n2
k2

n43
K43

n58
K58

n18
K'18

n3
k3

n4
k'4

u4 u3

n1
k1

n14
K14

u1 u4

n4
k4

n58
K58

n18
K18

Fig. 3. Users u2 and u3 join the tree.Single Member Join Algorithm. When a member joins the group, it isassoiated to a leaf node n. The KDC assigns a randomly hosen key kn to n.Leaf n is then inluded in the tree at the parent of the shallowest leaf node s(to keep the tree as short as possible). Leaf s is removed from the tree, and inits plae a new node p is inserted. Leaves s and n are inserted as p's hildren.We see an example in Figure 2: Member 2 is plaed in leaf n2, whih is insertedat node n12. Node n12 beomes the new parent of leaves n1 and n2. Leaf n2 isassigned key k2.In order to keep the bakward serey, keys in n1's anestor set need toreeive new values. Key k1 is refreshed (k01 = R(k1)), K12 reeives a value basedon k01 (K12 = U(k01)) and keys K14 and K18 are refreshed (K 014 = R(K14) andK 018 = R(K18)).Note that during a join operation, keys, whih were already in the tree, arejust refreshed. Members holding those keys only need to be told those keys'indexes to be able to generate their new values, whih means that these keys donot have to be transmitted. In the same way, members that had their keys usedfor generating new keys just have to be told the index of the new key and theyan generate that key by themselves.The KDC generates uniast messages for member n2 ([k2; K12; K014; K018℄) andmember n1 ([+12℄), and multiast message [14 : �14; 18 : �18℄.



Member u2 reeives its uniast message and reates its key{list. Member u1reeives its uniast message and derives key K12, inluding it in its key{list.Members holding keys K14 and K18 refresh these keys.Multiple Members Join Algorithm. Several new members are insertedin the tree as in the single member join algorithm. They are assoiated to nodesand the nodes are plaed at the parent of the shallowest leaves. However, thekeys in the tree are modi�ed in a slightly di�erent manner. New nodes' anestorsets onverge at some point and all keys that are in more than one anestor setare modi�ed only one.See Figure 3 for an example. Members u2 and u3 joined the group and havebeen plaed at nodes n12 and n43, respetively. Following the single member joinalgorithm, the keys in member u2's anestor set are hanged: �rst, k01 = R(k1),and then, K12 = U(k01), K14 = R(K14), K 018 = R(K18). In the same way, keys inmember u3's anestor set are hanged: �rst, k04 = R(k4), and then, K43 = U(k04).KeysK12 and K18 have already been hanged beause of member u2, hene theyare not hanged again.The KDC generates uniast messages for member n2 ([k2; K12; K014; K018℄),member n3 ([k3; K43; K014; K018℄), member u1 ([+12℄) and member u4 ([+43℄), andmultiast message [14 : �14; 18 : �18℄.Members u2 and u3 reeive their uniast messages and reate their respetivekey{lists. Member u1 reeives the uniast message, derives keyK12, and inludesit in its key{list. Member u4 does the same with key K43. Members holding keysK14 and K18 refresh these keys.
u1

n14
K'14

n18
K'18

n1
k'1

n34
K34

n2
k2

u1

n14
K14

n18
K18

n58
K58

n12
K12

n1
k1

n34
K34

n58
K58

u2Fig. 4. User u2 leaves the tree.
n1
k'1

n14
K'14

u1

n34
K34

u5

n58
K'58

n78
K78

n5
k'5

n18
K'18

n1
k'1

n14
K14

n12
K12

u1 u2

n2
k2

n34
K34

u5

n56
K56

n58
K58

n78
K78

n5
k5

u6

n6
k6

n18
K'18

Fig. 5. Users u2 and u6 leave the tree.Single Member Leave Algorithm.When a member u leaves or is removedfrom the group, its sibling s replaes its parent p. Moreover, all keys known byu should be updated to guarantee forward serey. For example, see Figure 4:u2 leaves (or is removed from) the group and its node is removed from the tree.Node n12 is also removed and leaf n1 is promoted to its plae.In order to keep the forward serey, keys in n1's anestor set need to reeivenew values. Keys K14 and K18 have to be updated: k01 = R(k1), K 014 = U(k01)and K 018 = U(K 014).Note that in removal operations, all keys in the removed member's anestorset are updated. Those keys annot be just refreshed beause the removed mem-



ber knows their previous values and ould easily alulate the new values. Sinethe new values are all generated from the removed member's sibling key, whihwas not known by the removed member, the removed member annot �nd thenew values.The KDC generates multiast message [1 : �12; fK014gK34 ; fK018gK58 ℄.Member n1 refreshes k01 and, beause it has removed K12, it updates K14and K18. Members holding key K34 get new key K 014 and then update key K18.Members holding key K58 get new key K 018.Multiple Members Leave Algorithm. This algorithm is handled simi-larly to the single member leave algorithm. The leaving nodes are removed andthe tree shape is adjusted aordingly. As in the multiple join algorithm, therean be several di�erent path from removed nodes to the root, whih means thatthe root key an be updated by several nodes (see Figure 5).In order to avoid several root key versions for the same operation, the KDChooses one of the paths and use it to update the root key. For example, inFigure 5, n2 and n6 leave the group and nodes n1 and n5 are promoted to theirrespetive parents' plaes (n12 and n56). Both are used to derive their new parentkeys K 014 and K 058, but then they both annot be used to update keyK 018. In thisase, the KDC hooses one of them to update key K 018 and the other will reeivethe updated key. For instane, the KDC hooses node n1 and then the keys areupdated as follows: k01 = R(k1), K 014 = U(k01), K 018 = U(K 014), k05 = R(k5) andK 058 = U(k05).The KDC generates multiast message [1 : �12; 5 : �56; fK014gK34 ; fK058gK78 ;fK018gK058 ℄.Member n1 refreshes k01 and, beause it has removed K12, it updates K 014and K 018. Key K34's holders reover K 014 and update K 018. Member n5 refreshesk05 and updates K 058, but sine there is a new key enrypted with K 058, n5 stopsupdating its keys and just reovers K 018. Key K78's holders reover K 058 and,sine there is a key enrypted with it, they just reover K 018.Rebalaning. The eÆieny of the key tree depends ruially on whetherthe tree remains balaned or not. A tree is said to be balaned if no leaf is muhfurther away from the root than any other leaf. In general, for a balaned binarytree with n leaves, the distane from the root to any leaf is log2 n, but if thetree is unbalaned, the distane from the root to a leaf an beome as high asn. Therefore, it is desirable to keep a key tree as balaned as possible.The rebalaning works by getting the shallowest and deepest internal nodesand omparing their depths. If the depth gap is larger than two then it meansthat the tree is unbalaned and needs to be levelled. For balaning the tree, thedeepest leaf node is removed, whih makes its sibling to go one level up (similarlyto the removing algorithm), and inserted at the shallowest node (similarly to theinserting algorithm). This proedure is repeated until the di�erene between thedepths of the shallowest and the deepest nodes is smaller than two.In a rebalaning operation, the deepest node, whih has been moved fromone position in the tree to another, requires that its old keys need to be updated(as in a deletion operation) and it needs to have aess to the keys in its new



path to the root (as in an insertion operation). Therefore, an insertion and adeletion are performed simultaneously.
n1
k1

n18
K'18

n12
K12

u1 u2

n2
k2

n38
K38

u5

n56
K56

n59
K'59

n79
K'79

n5
k5

u6

n6
k6

u7

n7
k7

n9
k'9

u9

n19
K'19

n8
k8

n3
k'3

u3 u8

n1
k1

n18
K18

n12
K12

u1 u2

n2
k2

n89
K89

u5

n56
K56

n59
K59

n79
K79

n5
k5

u6

n6
k6

u7

n7
k7

n9
k9

u9

n19
K19

n8
k8

n3
k3

u3

u8Fig. 6. Rebalaning the tree.See Figure 6 for an example. The tree needs a rebalaning, so leaf n8 isdeleted from its original position (n89) and inserted into a new position (n38).The deletion starts a removal operation with leaf n9 updating the new keys. Atthe same time, leaf n3 starts refreshing the keys on its path (as an insertionrequires). The new keys are alulated as follows: k09 = R(k9), K 079 = U(k09),K 059 = U(K 079), k03 = R(k3), K38 = U(k03) and K 018 = R(K 018). Key K 019 does notneed to be hanged.The KDC generates uniast messages for member n8 ([K38; K018℄ and memberu3 ([+38℄), and multiast message [9 : �89; 18 : �18; fK079gk7 ; fK059gK56 ℄.Member n8 deletes all its known keys and replaes them by those just re-eived. Member n9 updates its keys. Members n7 and key k56's holders extrattheir parts and update their keys. Member n3 derives K 038. Key K18's holdersrefresh K 018.5 EvaluationIn this setion, we ompare the properties of the EHBT algorithm with the otheralgorithms introdued in setion 2: PRGT2 (Canetti et al.), HBT+ (Caronni etal), OFT (MGrew and Sherman) and ELK (Perrig). We fous our riteria onKDC omputation, joined member omputation (for insertions), sibling ompu-tation (sibling to the joining/leaving member), size of the multiast message,size of the uniast messages and storage at both KDC and members.The notations used in this setion are:2 Canetti does not speify the PRG funtion to use, hene we assume the same RC5algorithm used in ELK.



n number of member in the groupd height of the tree (for a balaned tree d = log2 n)I size of a key index in bitsK size of a key in bitsG key generationH hash funtion exeutionX xor operationE enryption operationD deryption operationTable 1 summarizes the omputation required from the KDC, joined mem-ber and sibling to joined member, and message size of joining member's uniastmessage, sibling's uniast message and multiast message during single join op-erations. Table 1. Single join operation equations.Sheme/ Computation Message sizeResoure KDC Join member Sib member Join uniast Sib uniast MultiastEHBT G + (d + 1)(X + H + E) (d + 1)D (d + 1)(X + H) (d + 1)K I dIPRGT 2G + dH + (d + 1)E (d + 1)D D + dH (d + 1)K I +K dIHBT+ 2G + dH + (d + 1)E (d + 1)D D + dH (d + 1)K I +K dIOFT G + (d + 1)H + dX + 3dE (d + 1)D + d(H +X) 2D + d(H +X) (d + 1)K I + 2K (d + 1)KELK G + (4n � 2)E and (d + 3)E (d + 1)D 2dE and 2E (d + 1)K I 0Table 2 summarises multiple join operation equations. The parameters anal-ysed are the same parameters used in Table 1. The equations are valid for mul-tiple joins when the original number of members is doubled after the mass join,whih means that every old member gets a new sibling (a new member) and allthe keys in the tree are a�eted. This represents the worst ase possible for joinoperations. For the sake of the equations in this table, n is the original numberof members in the group previously to the mass join, but d is the new height ofthe tree after the mass join.Table 2. Multiple join operation equations.Sheme/ Computation Message sizeResoure KDC Join member Sib member Join uniast Sib uniast MultiastEHBT nG + (3n � 1)(X +H) + n(d + 1)E (d + 1)D (d + 1)(X +H) n : (d + 1)K n : I (n� 1)IPRGT 2nG + (n� 1)H + n(d + 2)E (d + 1)D D + dH n : (d + 1)K n : I +K (n� 1)IHBT+ 2nG + (n� 1)H + n(d + 2)E (d + 1)D D + dH n : (d + 1)K n : I +K (n� 1)InG + (4n � 2)(H +X)+ (d + 1)D+ 2D+OFT (nd + 5n� 1)E d(H +X) d(H +X) n : (d + 1)K n : I + 2K (2n � 2)KELK (8n� 2)E and nG + n(d + 3)E (d + 1)D 2dE and 2E n : (d + 1)K n : I 0EHBT requires less omputation than the other shemes, but it loses outto ELK when omparing the message sizes. The reason for that is that ELKemploys a timed rekey, whih means that the tree is ompletely refreshed at



intervals, despite membership hanges, thus only the index of the new parentinserted needs to be sent to the sibling of the joining member. However, this risestwo issues: �rst, at every interval the KDC has to refresh all its 2n-1 keys, whihimplies unneessary work for the KDC; seond, this sheme does not supportrekey on membership hanges (regarding join operations). Additionally, ELKimposes some delay on the joining member before he reeives the group key.Table 3. Single leave operation equations.Sheme/ ComputationResoure KDC Sib member MultiastEHBT d(X +H + E) d(X +H) I + dKPRGT (2d + 1)E D + dE I + (d + 1)KHBT+ 2dE dD I + 2dKOFT d(H +X + E) D + d(H + X) I + (d + 1)KELK 8dE dD + 5dE I + d(n1 + n2)Table 3 summarizes the KDC omputation, sibling omputation and multi-ast message size during single leave operations. We also analyse the equationsof multiple leave operations, and we show the results in Table 4. For mass leav-ing, we onsider the situation when exatly half of the group members leave thegroup. The sibling of every leaving member remains in the tree, and hene, allkeys in the tree are a�eted.Table 4. Multiple leave operation equations.Sheme/ ComputationResoure KDC Sib member MultiastEHBT (2n� 1)(X +H) + (n � 1)E D + (d + 1)(X + H) nI + (n � 1)KPRGT (5n=2� 2)E D + dE (3n=2� 1)KHBT+ (2n � 2)E dD nI + 2(n � 1)KOFT (2n � 2)H + (n � 1)X + (3n � 2)E (d + 1)D + d(H +X) nI + (3n � 2)KELK (7n � 3)E dD + 5dE nI + (n� 1)(n1 + n2)For leaving operations, again EHBT ahieves better results than the othershemes regarding the omputations involved, but loses out to ELK when om-paring the multiast message size. ELK has a slightly smaller multiast messagethan EHBT, beause it sari�es seurity. ELK uses only n1 +n2 bits of a totalK possible bits for generating a new key and this proedure weakens that key,Consequently, an expelled member needs to ompute only 2n1+n2 possibilities toreover the new key. In EHBT, however, an expelled member needs to omputethe full 2K operations to brute-fore the new key.We have simulated a group with 8192 members. For the alulations of themultiple join operations, we doubled the size of the group to 16384 members,and then we removed all joining members and �nished with the 8192 originalmembers. We measured enryption and deryption times for the RC5 algorithm,



MD5 hash funtion and xor operation. We used 16-bit keys for the alulations.We used Java version 1.3 and IAIK [4℄ ryptographi toolkit on a 850Mhz MobilePentium III proessor. It takes 1:72 � 10�2 ms for RC5 to enrypt a 16-bit keywith a 16-bit key, and 1:73 � 10�2 ms to derypt it. Hashing a 16-bit key takes4:95 � 10�3 ms and xoring it takes 1:59 � 10�3 ms. Finally, generating a 16-bitkeys takes 7:33 �10�3. Applying these numbers into Tables 2 and 4 produes theresults in Table 5 that show that EHBT in general is faster to ompute than theother protools.Table 5. Time in milliseonds for multiple joins and leaves.Sheme/ Multiple Join Multiple LeaveResoure KDC Join member Sib Member KDC Sib memberEHBT 2334 0:25 0:09 248:03 0:10PRGT 2415 0:25 0:08 352:22 0:24HBT+ 2415 0:25 0:08 281:77 0:22OFT 2951 0:35 0:12 516:78 0:32ELK 1140 + 2455 0:25 0:48 + 0:03 1105:46 1:34Finally, EHBT and the other shemes require the KDC to store 2n� 1 keysand members to store d+ 1 keys.6 Seurity ConsiderationsThe seurity of the EHBT protool relies on the ryptographi properties of theh funtion. One{way hash funtions, unfortunately, are not proven seure [2℄;nevertheless, for the time being, there has not been any suessful attak oneither the full MD5 [7℄ or SHA [1℄ algorithms [10℄.Taking into aount the use of hash funtions as funtion h, attaks on thehidden key are limited to brute-fore attak. Suh an attak an take 2n hashesto �nd the original key, with n being the number of bits of the original key usedas input.In order to guarantee bakward serey and forward serey, every time thereis a membership hange, the keys related to joining members or leaving membersare hanged.When a member is added to the tree, all keys held by nodes in its anestorset are hanged to avoid giving the new member aess to past information. Forexample, see Figure 2, when member n2 is inserted in the tree, keyK12 is reatedand keys K 014 and K 018 are refreshed. Node n2 does not have aess to the oldvalues, beause it only reeives the new key values, whih were hidden by thehash funtion, and assuming the hash funtion is seure, n2 has no other way toreover the old key but brute-foring it. The same rule applies when n2 leaves;key K12 is deleted from the tree and keys K 014 and K 018 are updated and sinen2 does not have aess to their new values it does no longer has aess to thegroup ommuniation.



7 ConlusionUsing one{way hash funtions and xor operations, we onstruted an eÆientHBT protool that ahieves better overall performane than other HBT proto-ols. Our protool, alled EHBT, requires only (I � log2 n) message size for joinoperations and (K � log2 n) message size for leaving operations. Additionally,EHBT requires the same key storage as other HBT protools, and it requiresmuh less omputation to rekey the tree after membership hanges.Referenes1. N. F. P. 180-1. Seure Hash Standard. National Institute of Standards and Teh-nology, U.S. Department of Commere, DRAFT, May 1994.2. S. Bakhtiari, R. Safavi-Naini, and J. Pieprzyk. Cryptographi Hash Funtions: ASurvey. Tehnial Report 95-09, University of Wollongong, July 1995.3. R. Canetti, J. Garay, G. Itkis, D. Miianio, M. Naorr, and B. Pinkas. MultiastSeurity: A Taxonomy and Some EÆient Construtions. In Pro. of INFOCOM99, volume 2, pages 708{716, New Yok, NY, USA, Marh 1999.4. I.-J. Group. IAIK, java{rypto toolkit. Web site at http://jewww.iaik.tu-graz.a.at/index.htm.5. D. A. MGrew and A. T. Sherman. Key Establishment in Large Dynami GroupsUsing One-Way Funtion Trees. Tehnial Report No. 0755, TIS Labs at NetworkAssoiates, In., Glenwood, MD, May 1998.6. A. Perrig, D. Song, and J. D. Tygar. ELK, a New Protool for EÆient Large-Group Key Distribution. In 2001 IEEE Symposium on Seurity and Privay, Oak-land, CA, USA, May 2001.7. R. Rivest. The MD5 Message-Digest Algorithm. RFC 1321, April 1992.8. R. Rivest. The RC5 enryption algorithm. In Fast Software Enryption, 2nd Int.Workshop, LNCS 1008, pages 86{96. Springer-Verslag, Deember 1995.9. B. Shneier. Applied Cryptography Seond Edition: protools, algorithms, andsoure ode in C. John Wiley & Sons, In., 1996. ISBN 0-471-11709-9.10. W. Stallings. Cryptography and Network Seurity. Prentie{Hall, 1998. ISBN0-138-69017-0.11. M. Steiner, G. Taudik, and M. Waidner. Cliques: A new approah to group keyagreement. Tehnial Report RZ 2984, IBM Researh, Deember 1997.12. M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and B. Plattner. The VersaKeyFramework: Versatile Group Key Management. IEEE Journal on Seleted Areasin Communiations (Speial Issue on Middleware), 17(9):1614{1631, August 1999.13. D. Wallner, E. Harder, and R. Agee. Key Management for Multiast: Issues andArhitetures. RFC 2627, June 1999.A Reasoning on Using Index i in Funtion FIndex i is inluded in the formula F to avoid giving the possibility for members tohave aess to keys that they are not meant to. For example, removing membern2 in Figure 4, means new keys k01 = U(k1), k014 = R(k01) and k018 = R(k014).If, immediately after member n2 has left the group, member n0 joins it andis inserted as a sibling of n1, then it means new keys k001 = U(k01), k10 = R(k001 )(new node n10), k0014 = U(k014) and k0018 = U(k018).If we remove i from funtion F and instead only apply a simple hash h toupdate keys then the keys from the removal above beome k01 = h(k1), k014 =h(k01) (or h(h(k1))) and k018 = h(k014) (or h(h(h(k1)))) and the keys from the joinbeome k001 = h(k01) (or h(h(k1))), k10 = h(k001 ) (or h(h(h(k1)))), k0014 = h(k014)and k0018 = h(k018). As one an see, key k10 and k018 are idential, whih meansthat member n0 an have aess to past messages enrypted with k018 (or k10).


